xref: /dragonfly/sys/kern/vfs_mount.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 struct vnlru_info {
111 	int	pass;
112 };
113 
114 static int vnlru_nowhere = 0;
115 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
116 	    &vnlru_nowhere, 0,
117 	    "Number of times the vnlru process ran without success");
118 
119 
120 static struct lwkt_token mntid_token;
121 static struct mount dummymount;
122 
123 /* note: mountlist exported to pstat */
124 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
125 static TAILQ_HEAD(,mountscan_info) mountscan_list;
126 static struct lwkt_token mountlist_token;
127 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
128 struct lwkt_token mntvnode_token;
129 
130 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
131 
132 /*
133  * Called from vfsinit()
134  */
135 void
136 vfs_mount_init(void)
137 {
138 	lwkt_token_init(&mountlist_token, 1);
139 	lwkt_token_init(&mntvnode_token, 1);
140 	lwkt_token_init(&mntid_token, 1);
141 	TAILQ_INIT(&mountscan_list);
142 	TAILQ_INIT(&mntvnodescan_list);
143 	mount_init(&dummymount);
144 	dummymount.mnt_flag |= MNT_RDONLY;
145 }
146 
147 /*
148  * Support function called with mntvnode_token held to remove a vnode
149  * from the mountlist.  We must update any list scans which are in progress.
150  */
151 static void
152 vremovevnodemnt(struct vnode *vp)
153 {
154         struct vmntvnodescan_info *info;
155 
156 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
157 		if (info->vp == vp)
158 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
159 	}
160 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
161 }
162 
163 /*
164  * Allocate a new vnode and associate it with a tag, mount point, and
165  * operations vector.
166  *
167  * A VX locked and refd vnode is returned.  The caller should setup the
168  * remaining fields and vx_put() or, if he wishes to leave a vref,
169  * vx_unlock() the vnode.
170  */
171 int
172 getnewvnode(enum vtagtype tag, struct mount *mp,
173 		struct vnode **vpp, int lktimeout, int lkflags)
174 {
175 	struct vnode *vp;
176 
177 	KKASSERT(mp != NULL);
178 
179 	vp = allocvnode(lktimeout, lkflags);
180 	vp->v_tag = tag;
181 	vp->v_data = NULL;
182 
183 	/*
184 	 * By default the vnode is assigned the mount point's normal
185 	 * operations vector.
186 	 */
187 	vp->v_ops = &mp->mnt_vn_use_ops;
188 
189 	/*
190 	 * Placing the vnode on the mount point's queue makes it visible.
191 	 * VNON prevents it from being messed with, however.
192 	 */
193 	insmntque(vp, mp);
194 
195 	/*
196 	 * A VX locked & refd vnode is returned.
197 	 */
198 	*vpp = vp;
199 	return (0);
200 }
201 
202 /*
203  * This function creates vnodes with special operations vectors.  The
204  * mount point is optional.
205  *
206  * This routine is being phased out but is still used by vfs_conf to
207  * create vnodes for devices prior to the root mount (with mp == NULL).
208  */
209 int
210 getspecialvnode(enum vtagtype tag, struct mount *mp,
211 		struct vop_ops **ops,
212 		struct vnode **vpp, int lktimeout, int lkflags)
213 {
214 	struct vnode *vp;
215 
216 	vp = allocvnode(lktimeout, lkflags);
217 	vp->v_tag = tag;
218 	vp->v_data = NULL;
219 	vp->v_ops = ops;
220 
221 	if (mp == NULL)
222 		mp = &dummymount;
223 
224 	/*
225 	 * Placing the vnode on the mount point's queue makes it visible.
226 	 * VNON prevents it from being messed with, however.
227 	 */
228 	insmntque(vp, mp);
229 
230 	/*
231 	 * A VX locked & refd vnode is returned.
232 	 */
233 	*vpp = vp;
234 	return (0);
235 }
236 
237 /*
238  * Interlock against an unmount, return 0 on success, non-zero on failure.
239  *
240  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
241  * is in-progress.
242  *
243  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
244  * are used.  A shared locked will be obtained and the filesystem will not
245  * be unmountable until the lock is released.
246  */
247 int
248 vfs_busy(struct mount *mp, int flags)
249 {
250 	int lkflags;
251 
252 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
253 		if (flags & LK_NOWAIT)
254 			return (ENOENT);
255 		/* XXX not MP safe */
256 		mp->mnt_kern_flag |= MNTK_MWAIT;
257 		/*
258 		 * Since all busy locks are shared except the exclusive
259 		 * lock granted when unmounting, the only place that a
260 		 * wakeup needs to be done is at the release of the
261 		 * exclusive lock at the end of dounmount.
262 		 */
263 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
264 		return (ENOENT);
265 	}
266 	lkflags = LK_SHARED;
267 	if (lockmgr(&mp->mnt_lock, lkflags))
268 		panic("vfs_busy: unexpected lock failure");
269 	return (0);
270 }
271 
272 /*
273  * Free a busy filesystem.
274  */
275 void
276 vfs_unbusy(struct mount *mp)
277 {
278 	lockmgr(&mp->mnt_lock, LK_RELEASE);
279 }
280 
281 /*
282  * Lookup a filesystem type, and if found allocate and initialize
283  * a mount structure for it.
284  *
285  * Devname is usually updated by mount(8) after booting.
286  */
287 int
288 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
289 {
290 	struct vfsconf *vfsp;
291 	struct mount *mp;
292 
293 	if (fstypename == NULL)
294 		return (ENODEV);
295 
296 	vfsp = vfsconf_find_by_name(fstypename);
297 	if (vfsp == NULL)
298 		return (ENODEV);
299 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
300 	mount_init(mp);
301 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
302 
303 	vfs_busy(mp, LK_NOWAIT);
304 	mp->mnt_vfc = vfsp;
305 	mp->mnt_op = vfsp->vfc_vfsops;
306 	vfsp->vfc_refcount++;
307 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
308 	mp->mnt_flag |= MNT_RDONLY;
309 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
310 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
311 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
312 	*mpp = mp;
313 	return (0);
314 }
315 
316 /*
317  * Basic mount structure initialization
318  */
319 void
320 mount_init(struct mount *mp)
321 {
322 	lockinit(&mp->mnt_lock, "vfslock", 0, 0);
323 	lwkt_token_init(&mp->mnt_token, 1);
324 
325 	TAILQ_INIT(&mp->mnt_nvnodelist);
326 	TAILQ_INIT(&mp->mnt_reservedvnlist);
327 	TAILQ_INIT(&mp->mnt_jlist);
328 	mp->mnt_nvnodelistsize = 0;
329 	mp->mnt_flag = 0;
330 	mp->mnt_iosize_max = DFLTPHYS;
331 }
332 
333 /*
334  * Lookup a mount point by filesystem identifier.
335  */
336 struct mount *
337 vfs_getvfs(fsid_t *fsid)
338 {
339 	struct mount *mp;
340 
341 	lwkt_gettoken(&mountlist_token);
342 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
343 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
344 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
345 			break;
346 		}
347 	}
348 	lwkt_reltoken(&mountlist_token);
349 	return (mp);
350 }
351 
352 /*
353  * Get a new unique fsid.  Try to make its val[0] unique, since this value
354  * will be used to create fake device numbers for stat().  Also try (but
355  * not so hard) make its val[0] unique mod 2^16, since some emulators only
356  * support 16-bit device numbers.  We end up with unique val[0]'s for the
357  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
358  *
359  * Keep in mind that several mounts may be running in parallel.  Starting
360  * the search one past where the previous search terminated is both a
361  * micro-optimization and a defense against returning the same fsid to
362  * different mounts.
363  */
364 void
365 vfs_getnewfsid(struct mount *mp)
366 {
367 	static u_int16_t mntid_base;
368 	fsid_t tfsid;
369 	int mtype;
370 
371 	lwkt_gettoken(&mntid_token);
372 	mtype = mp->mnt_vfc->vfc_typenum;
373 	tfsid.val[1] = mtype;
374 	mtype = (mtype & 0xFF) << 24;
375 	for (;;) {
376 		tfsid.val[0] = makeudev(255,
377 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
378 		mntid_base++;
379 		if (vfs_getvfs(&tfsid) == NULL)
380 			break;
381 	}
382 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
383 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
384 	lwkt_reltoken(&mntid_token);
385 }
386 
387 /*
388  * Set the FSID for a new mount point to the template.  Adjust
389  * the FSID to avoid collisions.
390  */
391 int
392 vfs_setfsid(struct mount *mp, fsid_t *template)
393 {
394 	int didmunge = 0;
395 
396 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
397 	for (;;) {
398 		if (vfs_getvfs(template) == NULL)
399 			break;
400 		didmunge = 1;
401 		++template->val[1];
402 	}
403 	mp->mnt_stat.f_fsid = *template;
404 	return(didmunge);
405 }
406 
407 /*
408  * This routine is called when we have too many vnodes.  It attempts
409  * to free <count> vnodes and will potentially free vnodes that still
410  * have VM backing store (VM backing store is typically the cause
411  * of a vnode blowout so we want to do this).  Therefore, this operation
412  * is not considered cheap.
413  *
414  * A number of conditions may prevent a vnode from being reclaimed.
415  * the buffer cache may have references on the vnode, a directory
416  * vnode may still have references due to the namei cache representing
417  * underlying files, or the vnode may be in active use.   It is not
418  * desireable to reuse such vnodes.  These conditions may cause the
419  * number of vnodes to reach some minimum value regardless of what
420  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
421  */
422 
423 /*
424  * This is a quick non-blocking check to determine if the vnode is a good
425  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
426  * not a good candidate, 1 if it is.
427  */
428 static __inline int
429 vmightfree(struct vnode *vp, int page_count, int pass)
430 {
431 	if (vp->v_flag & VRECLAIMED)
432 		return (0);
433 #if 0
434 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
435 		return (0);
436 #endif
437 	if (sysref_isactive(&vp->v_sysref))
438 		return (0);
439 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
440 		return (0);
441 
442 	/*
443 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
444 	 * makes a larger set of vnodes eligible.  For now what this really
445 	 * means is that we try to recycle files opened only once before
446 	 * recycling files opened multiple times.
447 	 */
448 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
449 	case 0:
450 		if (pass < 3)
451 			return(0);
452 		break;
453 	case VAGE0:
454 		if (pass < 2)
455 			return(0);
456 		break;
457 	case VAGE1:
458 		if (pass < 1)
459 			return(0);
460 		break;
461 	case VAGE0 | VAGE1:
462 		break;
463 	}
464 	return (1);
465 }
466 
467 /*
468  * The vnode was found to be possibly vgone()able and the caller has locked it
469  * (thus the usecount should be 1 now).  Determine if the vnode is actually
470  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
471  * can be vgone()'d, 0 otherwise.
472  *
473  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
474  * in the namecache topology and (B) this vnode has buffer cache bufs.
475  * We cannot remove vnodes with non-leaf namecache associations.  We do a
476  * tentitive leaf check prior to attempting to flush out any buffers but the
477  * 'real' test when all is said in done is that v_auxrefs must become 0 for
478  * the vnode to be freeable.
479  *
480  * We could theoretically just unconditionally flush when v_auxrefs != 0,
481  * but flushing data associated with non-leaf nodes (which are always
482  * directories), just throws it away for no benefit.  It is the buffer
483  * cache's responsibility to choose buffers to recycle from the cached
484  * data point of view.
485  */
486 static int
487 visleaf(struct vnode *vp)
488 {
489 	struct namecache *ncp;
490 
491 	spin_lock_wr(&vp->v_spinlock);
492 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
493 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
494 			spin_unlock_wr(&vp->v_spinlock);
495 			return(0);
496 		}
497 	}
498 	spin_unlock_wr(&vp->v_spinlock);
499 	return(1);
500 }
501 
502 /*
503  * Try to clean up the vnode to the point where it can be vgone()'d, returning
504  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
505  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
506  * VFREE are still candidates for vgone()ing because they may hold namecache
507  * resources and could be blocking the namecache directory hierarchy (and
508  * related vnodes) from being freed.
509  */
510 static int
511 vtrytomakegoneable(struct vnode *vp, int page_count)
512 {
513 	if (vp->v_flag & VRECLAIMED)
514 		return (0);
515 	if (vp->v_sysref.refcnt > 1)
516 		return (0);
517 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
518 		return (0);
519 	if (vp->v_auxrefs && visleaf(vp)) {
520 		vinvalbuf(vp, V_SAVE, 0, 0);
521 #if 0	/* DEBUG */
522 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
523 			"vrecycle: vp %p succeeded: %s\n"), vp,
524 			(TAILQ_FIRST(&vp->v_namecache) ?
525 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
526 #endif
527 	}
528 
529 	/*
530 	 * This sequence may seem a little strange, but we need to optimize
531 	 * the critical path a bit.  We can't recycle vnodes with other
532 	 * references and because we are trying to recycle an otherwise
533 	 * perfectly fine vnode we have to invalidate the namecache in a
534 	 * way that avoids possible deadlocks (since the vnode lock is being
535 	 * held here).  Finally, we have to check for other references one
536 	 * last time in case something snuck in during the inval.
537 	 */
538 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
539 		return (0);
540 	if (cache_inval_vp_nonblock(vp))
541 		return (0);
542 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
543 }
544 
545 /*
546  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
547  * to avoid vnodes which have lots of resident pages (we are trying to free
548  * vnodes, not memory).
549  *
550  * This routine is a callback from the mountlist scan.  The mount point
551  * in question will be busied.
552  *
553  * NOTE: The 1/10 reclamation also ensures that the inactive data set
554  *	 (the vnodes being recycled by the one-time use) does not degenerate
555  *	 into too-small a set.  This is important because once a vnode is
556  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
557  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
558  *	 be cleaned/freed by the pageout daemon.
559  */
560 static int
561 vlrureclaim(struct mount *mp, void *data)
562 {
563 	struct vnlru_info *info = data;
564 	struct vnode *vp;
565 	int done;
566 	int trigger;
567 	int usevnodes;
568 	int count;
569 	int trigger_mult = vnlru_nowhere;
570 
571 	/*
572 	 * Calculate the trigger point for the resident pages check.  The
573 	 * minimum trigger value is approximately the number of pages in
574 	 * the system divded by the number of vnodes.  However, due to
575 	 * various other system memory overheads unrelated to data caching
576 	 * it is a good idea to double the trigger (at least).
577 	 *
578 	 * trigger_mult starts at 0.  If the recycler is having problems
579 	 * finding enough freeable vnodes it will increase trigger_mult.
580 	 * This should not happen in normal operation, even on machines with
581 	 * low amounts of memory, but extraordinary memory use by the system
582 	 * verses the amount of cached data can trigger it.
583 	 */
584 	usevnodes = desiredvnodes;
585 	if (usevnodes <= 0)
586 		usevnodes = 1;
587 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
588 
589 	done = 0;
590 	lwkt_gettoken(&mntvnode_token);
591 	count = mp->mnt_nvnodelistsize / 10 + 1;
592 
593 	while (count && mp->mnt_syncer) {
594 		/*
595 		 * Next vnode.  Use the special syncer vnode to placemark
596 		 * the LRU.  This way the LRU code does not interfere with
597 		 * vmntvnodescan().
598 		 */
599 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
600 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
601 		if (vp) {
602 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
603 					   mp->mnt_syncer, v_nmntvnodes);
604 		} else {
605 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
606 					  v_nmntvnodes);
607 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
608 			if (vp == NULL)
609 				break;
610 		}
611 
612 		/*
613 		 * __VNODESCAN__
614 		 *
615 		 * The VP will stick around while we hold mntvnode_token,
616 		 * at least until we block, so we can safely do an initial
617 		 * check, and then must check again after we lock the vnode.
618 		 */
619 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
620 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
621 		) {
622 			--count;
623 			continue;
624 		}
625 
626 		/*
627 		 * VX get the candidate vnode.  If the VX get fails the
628 		 * vnode might still be on the mountlist.  Our loop depends
629 		 * on us at least cycling the vnode to the end of the
630 		 * mountlist.
631 		 */
632 		if (vx_get_nonblock(vp) != 0) {
633 			--count;
634 			continue;
635 		}
636 
637 		/*
638 		 * Since we blocked locking the vp, make sure it is still
639 		 * a candidate for reclamation.  That is, it has not already
640 		 * been reclaimed and only has our VX reference associated
641 		 * with it.
642 		 */
643 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
644 		    (vp->v_flag & VRECLAIMED) ||
645 		    vp->v_mount != mp ||
646 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
647 		) {
648 			--count;
649 			vx_put(vp);
650 			continue;
651 		}
652 
653 		/*
654 		 * All right, we are good, move the vp to the end of the
655 		 * mountlist and clean it out.  The vget will have returned
656 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
657 		 * do not have to check again.  The vput() will move the
658 		 * vnode to the free list if the vgone() was successful.
659 		 */
660 		KKASSERT(vp->v_mount == mp);
661 		vgone_vxlocked(vp);
662 		vx_put(vp);
663 		++done;
664 		--count;
665 	}
666 	lwkt_reltoken(&mntvnode_token);
667 	return (done);
668 }
669 
670 /*
671  * Attempt to recycle vnodes in a context that is always safe to block.
672  * Calling vlrurecycle() from the bowels of file system code has some
673  * interesting deadlock problems.
674  */
675 static struct thread *vnlruthread;
676 static int vnlruproc_sig;
677 
678 void
679 vnlru_proc_wait(void)
680 {
681 	if (vnlruproc_sig == 0) {
682 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
683 		wakeup(vnlruthread);
684 	}
685 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
686 }
687 
688 static void
689 vnlru_proc(void)
690 {
691 	struct thread *td = curthread;
692 	struct vnlru_info info;
693 	int done;
694 
695 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
696 	    SHUTDOWN_PRI_FIRST);
697 
698 	crit_enter();
699 	for (;;) {
700 		kproc_suspend_loop();
701 
702 		/*
703 		 * Try to free some vnodes if we have too many
704 		 */
705 		if (numvnodes > desiredvnodes &&
706 		    freevnodes > desiredvnodes * 2 / 10) {
707 			int count = numvnodes - desiredvnodes;
708 
709 			if (count > freevnodes / 100)
710 				count = freevnodes / 100;
711 			if (count < 5)
712 				count = 5;
713 			freesomevnodes(count);
714 		}
715 
716 		/*
717 		 * Nothing to do if most of our vnodes are already on
718 		 * the free list.
719 		 */
720 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
721 			vnlruproc_sig = 0;
722 			wakeup(&vnlruproc_sig);
723 			tsleep(td, 0, "vlruwt", hz);
724 			continue;
725 		}
726 		cache_hysteresis();
727 
728 		/*
729 		 * The pass iterates through the four combinations of
730 		 * VAGE0/VAGE1.  We want to get rid of aged small files
731 		 * first.
732 		 */
733 		info.pass = 0;
734 		done = 0;
735 		while (done == 0 && info.pass < 4) {
736 			done = mountlist_scan(vlrureclaim, &info,
737 					      MNTSCAN_FORWARD);
738 			++info.pass;
739 		}
740 
741 		/*
742 		 * The vlrureclaim() call only processes 1/10 of the vnodes
743 		 * on each mount.  If we couldn't find any repeat the loop
744 		 * at least enough times to cover all available vnodes before
745 		 * we start sleeping.  Complain if the failure extends past
746 		 * 30 second, every 30 seconds.
747 		 */
748 		if (done == 0) {
749 			++vnlru_nowhere;
750 			if (vnlru_nowhere % 10 == 0)
751 				tsleep(td, 0, "vlrup", hz * 3);
752 			if (vnlru_nowhere % 100 == 0)
753 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
754 			if (vnlru_nowhere == 1000)
755 				vnlru_nowhere = 900;
756 		} else {
757 			vnlru_nowhere = 0;
758 		}
759 	}
760 	crit_exit();
761 }
762 
763 /*
764  * MOUNTLIST FUNCTIONS
765  */
766 
767 /*
768  * mountlist_insert (MP SAFE)
769  *
770  * Add a new mount point to the mount list.
771  */
772 void
773 mountlist_insert(struct mount *mp, int how)
774 {
775 	lwkt_gettoken(&mountlist_token);
776 	if (how == MNTINS_FIRST)
777 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
778 	else
779 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
780 	lwkt_reltoken(&mountlist_token);
781 }
782 
783 /*
784  * mountlist_interlock (MP SAFE)
785  *
786  * Execute the specified interlock function with the mountlist token
787  * held.  The function will be called in a serialized fashion verses
788  * other functions called through this mechanism.
789  */
790 int
791 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
792 {
793 	int error;
794 
795 	lwkt_gettoken(&mountlist_token);
796 	error = callback(mp);
797 	lwkt_reltoken(&mountlist_token);
798 	return (error);
799 }
800 
801 /*
802  * mountlist_boot_getfirst (DURING BOOT ONLY)
803  *
804  * This function returns the first mount on the mountlist, which is
805  * expected to be the root mount.  Since no interlocks are obtained
806  * this function is only safe to use during booting.
807  */
808 
809 struct mount *
810 mountlist_boot_getfirst(void)
811 {
812 	return(TAILQ_FIRST(&mountlist));
813 }
814 
815 /*
816  * mountlist_remove (MP SAFE)
817  *
818  * Remove a node from the mountlist.  If this node is the next scan node
819  * for any active mountlist scans, the active mountlist scan will be
820  * adjusted to skip the node, thus allowing removals during mountlist
821  * scans.
822  */
823 void
824 mountlist_remove(struct mount *mp)
825 {
826 	struct mountscan_info *msi;
827 
828 	lwkt_gettoken(&mountlist_token);
829 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
830 		if (msi->msi_node == mp) {
831 			if (msi->msi_how & MNTSCAN_FORWARD)
832 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
833 			else
834 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
835 		}
836 	}
837 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
838 	lwkt_reltoken(&mountlist_token);
839 }
840 
841 /*
842  * mountlist_scan (MP SAFE)
843  *
844  * Safely scan the mount points on the mount list.  Unless otherwise
845  * specified each mount point will be busied prior to the callback and
846  * unbusied afterwords.  The callback may safely remove any mount point
847  * without interfering with the scan.  If the current callback
848  * mount is removed the scanner will not attempt to unbusy it.
849  *
850  * If a mount node cannot be busied it is silently skipped.
851  *
852  * The callback return value is aggregated and a total is returned.  A return
853  * value of < 0 is not aggregated and will terminate the scan.
854  *
855  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
856  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
857  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
858  *			  the mount node.
859  */
860 int
861 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
862 {
863 	struct mountscan_info info;
864 	struct mount *mp;
865 	thread_t td;
866 	int count;
867 	int res;
868 
869 	lwkt_gettoken(&mountlist_token);
870 
871 	info.msi_how = how;
872 	info.msi_node = NULL;	/* paranoia */
873 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
874 
875 	res = 0;
876 	td = curthread;
877 
878 	if (how & MNTSCAN_FORWARD) {
879 		info.msi_node = TAILQ_FIRST(&mountlist);
880 		while ((mp = info.msi_node) != NULL) {
881 			if (how & MNTSCAN_NOBUSY) {
882 				count = callback(mp, data);
883 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
884 				count = callback(mp, data);
885 				if (mp == info.msi_node)
886 					vfs_unbusy(mp);
887 			} else {
888 				count = 0;
889 			}
890 			if (count < 0)
891 				break;
892 			res += count;
893 			if (mp == info.msi_node)
894 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
895 		}
896 	} else if (how & MNTSCAN_REVERSE) {
897 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
898 		while ((mp = info.msi_node) != NULL) {
899 			if (how & MNTSCAN_NOBUSY) {
900 				count = callback(mp, data);
901 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
902 				count = callback(mp, data);
903 				if (mp == info.msi_node)
904 					vfs_unbusy(mp);
905 			} else {
906 				count = 0;
907 			}
908 			if (count < 0)
909 				break;
910 			res += count;
911 			if (mp == info.msi_node)
912 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
913 		}
914 	}
915 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
916 	lwkt_reltoken(&mountlist_token);
917 	return(res);
918 }
919 
920 /*
921  * MOUNT RELATED VNODE FUNCTIONS
922  */
923 
924 static struct kproc_desc vnlru_kp = {
925 	"vnlru",
926 	vnlru_proc,
927 	&vnlruthread
928 };
929 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
930 
931 /*
932  * Move a vnode from one mount queue to another.
933  *
934  * MPSAFE
935  */
936 void
937 insmntque(struct vnode *vp, struct mount *mp)
938 {
939 	lwkt_gettoken(&mntvnode_token);
940 	/*
941 	 * Delete from old mount point vnode list, if on one.
942 	 */
943 	if (vp->v_mount != NULL) {
944 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
945 			("bad mount point vnode list size"));
946 		vremovevnodemnt(vp);
947 		vp->v_mount->mnt_nvnodelistsize--;
948 	}
949 	/*
950 	 * Insert into list of vnodes for the new mount point, if available.
951 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
952 	 */
953 	if ((vp->v_mount = mp) == NULL) {
954 		lwkt_reltoken(&mntvnode_token);
955 		return;
956 	}
957 	if (mp->mnt_syncer) {
958 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
959 	} else {
960 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
961 	}
962 	mp->mnt_nvnodelistsize++;
963 	lwkt_reltoken(&mntvnode_token);
964 }
965 
966 
967 /*
968  * Scan the vnodes under a mount point and issue appropriate callbacks.
969  *
970  * The fastfunc() callback is called with just the mountlist token held
971  * (no vnode lock).  It may not block and the vnode may be undergoing
972  * modifications while the caller is processing it.  The vnode will
973  * not be entirely destroyed, however, due to the fact that the mountlist
974  * token is held.  A return value < 0 skips to the next vnode without calling
975  * the slowfunc(), a return value > 0 terminates the loop.
976  *
977  * The slowfunc() callback is called after the vnode has been successfully
978  * locked based on passed flags.  The vnode is skipped if it gets rearranged
979  * or destroyed while blocking on the lock.  A non-zero return value from
980  * the slow function terminates the loop.  The slow function is allowed to
981  * arbitrarily block.  The scanning code guarentees consistency of operation
982  * even if the slow function deletes or moves the node, or blocks and some
983  * other thread deletes or moves the node.
984  */
985 int
986 vmntvnodescan(
987     struct mount *mp,
988     int flags,
989     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
990     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
991     void *data
992 ) {
993 	struct vmntvnodescan_info info;
994 	struct vnode *vp;
995 	int r = 0;
996 	int maxcount = 1000000;
997 	int stopcount = 0;
998 	int count = 0;
999 
1000 	lwkt_gettoken(&mntvnode_token);
1001 
1002 	/*
1003 	 * If asked to do one pass stop after iterating available vnodes.
1004 	 * Under heavy loads new vnodes can be added while we are scanning,
1005 	 * so this isn't perfect.  Create a slop factor of 2x.
1006 	 */
1007 	if (flags & VMSC_ONEPASS)
1008 		stopcount = mp->mnt_nvnodelistsize * 2;
1009 
1010 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1011 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1012 	while ((vp = info.vp) != NULL) {
1013 		if (--maxcount == 0)
1014 			panic("maxcount reached during vmntvnodescan");
1015 
1016 		/*
1017 		 * Skip if visible but not ready, or special (e.g.
1018 		 * mp->mnt_syncer)
1019 		 */
1020 		if (vp->v_type == VNON)
1021 			goto next;
1022 		KKASSERT(vp->v_mount == mp);
1023 
1024 		/*
1025 		 * Quick test.  A negative return continues the loop without
1026 		 * calling the slow test.  0 continues onto the slow test.
1027 		 * A positive number aborts the loop.
1028 		 */
1029 		if (fastfunc) {
1030 			if ((r = fastfunc(mp, vp, data)) < 0) {
1031 				r = 0;
1032 				goto next;
1033 			}
1034 			if (r)
1035 				break;
1036 		}
1037 
1038 		/*
1039 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1040 		 * in the mountlist where we expect it.
1041 		 */
1042 		if (slowfunc) {
1043 			int error;
1044 
1045 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1046 			case VMSC_GETVP:
1047 				error = vget(vp, LK_EXCLUSIVE);
1048 				break;
1049 			case VMSC_GETVP|VMSC_NOWAIT:
1050 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1051 				break;
1052 			case VMSC_GETVX:
1053 				vx_get(vp);
1054 				error = 0;
1055 				break;
1056 			default:
1057 				error = 0;
1058 				break;
1059 			}
1060 			if (error)
1061 				goto next;
1062 			/*
1063 			 * Do not call the slow function if the vnode is
1064 			 * invalid or if it was ripped out from under us
1065 			 * while we (potentially) blocked.
1066 			 */
1067 			if (info.vp == vp && vp->v_type != VNON)
1068 				r = slowfunc(mp, vp, data);
1069 
1070 			/*
1071 			 * Cleanup
1072 			 */
1073 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1074 			case VMSC_GETVP:
1075 			case VMSC_GETVP|VMSC_NOWAIT:
1076 				vput(vp);
1077 				break;
1078 			case VMSC_GETVX:
1079 				vx_put(vp);
1080 				break;
1081 			default:
1082 				break;
1083 			}
1084 			if (r != 0)
1085 				break;
1086 		}
1087 
1088 next:
1089 		/*
1090 		 * Yield after some processing.  Depending on the number
1091 		 * of vnodes, we might wind up running for a long time.
1092 		 * Because threads are not preemptable, time critical
1093 		 * userland processes might starve.  Give them a chance
1094 		 * now and then.
1095 		 */
1096 		if (++count == 10000) {
1097 			/* We really want to yield a bit, so we simply sleep a tick */
1098 			tsleep(mp, 0, "vnodescn", 1);
1099 			count = 0;
1100 		}
1101 
1102 		/*
1103 		 * If doing one pass this decrements to zero.  If it starts
1104 		 * at zero it is effectively unlimited for the purposes of
1105 		 * this loop.
1106 		 */
1107 		if (--stopcount == 0)
1108 			break;
1109 
1110 		/*
1111 		 * Iterate.  If the vnode was ripped out from under us
1112 		 * info.vp will already point to the next vnode, otherwise
1113 		 * we have to obtain the next valid vnode ourselves.
1114 		 */
1115 		if (info.vp == vp)
1116 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1117 	}
1118 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1119 	lwkt_reltoken(&mntvnode_token);
1120 	return(r);
1121 }
1122 
1123 /*
1124  * Remove any vnodes in the vnode table belonging to mount point mp.
1125  *
1126  * If FORCECLOSE is not specified, there should not be any active ones,
1127  * return error if any are found (nb: this is a user error, not a
1128  * system error). If FORCECLOSE is specified, detach any active vnodes
1129  * that are found.
1130  *
1131  * If WRITECLOSE is set, only flush out regular file vnodes open for
1132  * writing.
1133  *
1134  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1135  *
1136  * `rootrefs' specifies the base reference count for the root vnode
1137  * of this filesystem. The root vnode is considered busy if its
1138  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1139  * will call vrele() on the root vnode exactly rootrefs times.
1140  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1141  * be zero.
1142  */
1143 #ifdef DIAGNOSTIC
1144 static int busyprt = 0;		/* print out busy vnodes */
1145 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1146 #endif
1147 
1148 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1149 
1150 struct vflush_info {
1151 	int flags;
1152 	int busy;
1153 	thread_t td;
1154 };
1155 
1156 int
1157 vflush(struct mount *mp, int rootrefs, int flags)
1158 {
1159 	struct thread *td = curthread;	/* XXX */
1160 	struct vnode *rootvp = NULL;
1161 	int error;
1162 	struct vflush_info vflush_info;
1163 
1164 	if (rootrefs > 0) {
1165 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1166 		    ("vflush: bad args"));
1167 		/*
1168 		 * Get the filesystem root vnode. We can vput() it
1169 		 * immediately, since with rootrefs > 0, it won't go away.
1170 		 */
1171 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1172 			if ((flags & FORCECLOSE) == 0)
1173 				return (error);
1174 			rootrefs = 0;
1175 			/* continue anyway */
1176 		}
1177 		if (rootrefs)
1178 			vput(rootvp);
1179 	}
1180 
1181 	vflush_info.busy = 0;
1182 	vflush_info.flags = flags;
1183 	vflush_info.td = td;
1184 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1185 
1186 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1187 		/*
1188 		 * If just the root vnode is busy, and if its refcount
1189 		 * is equal to `rootrefs', then go ahead and kill it.
1190 		 */
1191 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1192 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1193 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1194 			vx_lock(rootvp);
1195 			vgone_vxlocked(rootvp);
1196 			vx_unlock(rootvp);
1197 			vflush_info.busy = 0;
1198 		}
1199 	}
1200 	if (vflush_info.busy)
1201 		return (EBUSY);
1202 	for (; rootrefs > 0; rootrefs--)
1203 		vrele(rootvp);
1204 	return (0);
1205 }
1206 
1207 /*
1208  * The scan callback is made with an VX locked vnode.
1209  */
1210 static int
1211 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1212 {
1213 	struct vflush_info *info = data;
1214 	struct vattr vattr;
1215 
1216 	/*
1217 	 * Skip over a vnodes marked VSYSTEM.
1218 	 */
1219 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1220 		return(0);
1221 	}
1222 
1223 	/*
1224 	 * If WRITECLOSE is set, flush out unlinked but still open
1225 	 * files (even if open only for reading) and regular file
1226 	 * vnodes open for writing.
1227 	 */
1228 	if ((info->flags & WRITECLOSE) &&
1229 	    (vp->v_type == VNON ||
1230 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1231 	    vattr.va_nlink > 0)) &&
1232 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1233 		return(0);
1234 	}
1235 
1236 	/*
1237 	 * If we are the only holder (refcnt of 1) or the vnode is in
1238 	 * termination (refcnt < 0), we can vgone the vnode.
1239 	 */
1240 	if (vp->v_sysref.refcnt <= 1) {
1241 		vgone_vxlocked(vp);
1242 		return(0);
1243 	}
1244 
1245 	/*
1246 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1247 	 * it to a dummymount structure so vop_*() functions don't deref
1248 	 * a NULL pointer.
1249 	 */
1250 	if (info->flags & FORCECLOSE) {
1251 		vhold(vp);
1252 		vgone_vxlocked(vp);
1253 		if (vp->v_mount == NULL)
1254 			insmntque(vp, &dummymount);
1255 		vdrop(vp);
1256 		return(0);
1257 	}
1258 #ifdef DIAGNOSTIC
1259 	if (busyprt)
1260 		vprint("vflush: busy vnode", vp);
1261 #endif
1262 	++info->busy;
1263 	return(0);
1264 }
1265 
1266 void
1267 add_bio_ops(struct bio_ops *ops)
1268 {
1269 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1270 }
1271 
1272 void
1273 rem_bio_ops(struct bio_ops *ops)
1274 {
1275 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1276 }
1277 
1278 /*
1279  * This calls the bio_ops io_sync function either for a mount point
1280  * or generally.
1281  *
1282  * WARNING: softdeps is weirdly coded and just isn't happy unless
1283  * io_sync is called with a NULL mount from the general syncing code.
1284  */
1285 void
1286 bio_ops_sync(struct mount *mp)
1287 {
1288 	struct bio_ops *ops;
1289 
1290 	if (mp) {
1291 		if ((ops = mp->mnt_bioops) != NULL)
1292 			ops->io_sync(mp);
1293 	} else {
1294 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1295 			ops->io_sync(NULL);
1296 		}
1297 	}
1298 }
1299 
1300 /*
1301  * Lookup a mount point by nch
1302  */
1303 struct mount *
1304 mount_get_by_nc(struct namecache *ncp)
1305 {
1306 	struct mount *mp = NULL;
1307 
1308 	lwkt_gettoken(&mountlist_token);
1309 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1310 		if (ncp == mp->mnt_ncmountpt.ncp)
1311 			break;
1312 	}
1313 	lwkt_reltoken(&mountlist_token);
1314 	return (mp);
1315 }
1316 
1317