xref: /dragonfly/sys/kern/vfs_mount.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.17 2006/05/06 02:43:12 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_object.h>
97 
98 struct mountscan_info {
99 	TAILQ_ENTRY(mountscan_info) msi_entry;
100 	int msi_how;
101 	struct mount *msi_node;
102 };
103 
104 struct vmntvnodescan_info {
105 	TAILQ_ENTRY(vmntvnodescan_info) entry;
106 	struct vnode *vp;
107 };
108 
109 static int vnlru_nowhere = 0;
110 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
111 	    &vnlru_nowhere, 0,
112 	    "Number of times the vnlru process ran without success");
113 
114 
115 static struct lwkt_token mntid_token;
116 
117 static struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
121 struct lwkt_token mntvnode_token;
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token);
130 	lwkt_token_init(&mntvnode_token);
131 	lwkt_token_init(&mntid_token);
132 	TAILQ_INIT(&mountscan_list);
133 	TAILQ_INIT(&mntvnodescan_list);
134 }
135 
136 /*
137  * Support function called with mntvnode_token held to remove a vnode
138  * from the mountlist.  We must update any list scans which are in progress.
139  */
140 static void
141 vremovevnodemnt(struct vnode *vp)
142 {
143         struct vmntvnodescan_info *info;
144 
145 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
146 		if (info->vp == vp)
147 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
148 	}
149 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
150 }
151 
152 /*
153  * Support function called with mntvnode_token held to move a vnode to
154  * the end of the list.
155  */
156 static void
157 vmovevnodetoend(struct mount *mp, struct vnode *vp)
158 {
159 	vremovevnodemnt(vp);
160 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
161 }
162 
163 
164 /*
165  * Allocate a new vnode and associate it with a tag, mount point, and
166  * operations vector.
167  *
168  * A VX locked and refd vnode is returned.  The caller should setup the
169  * remaining fields and vx_put() or, if he wishes to leave a vref,
170  * vx_unlock() the vnode.
171  */
172 int
173 getnewvnode(enum vtagtype tag, struct mount *mp,
174 		struct vnode **vpp, int lktimeout, int lkflags)
175 {
176 	struct vnode *vp;
177 
178 	KKASSERT(mp != NULL);
179 
180 	vp = allocvnode(lktimeout, lkflags);
181 	vp->v_tag = tag;
182 	vp->v_data = NULL;
183 
184 	/*
185 	 * By default the vnode is assigned the mount point's normal
186 	 * operations vector.
187 	 */
188 	vp->v_ops = &mp->mnt_vn_use_ops;
189 
190 	/*
191 	 * Placing the vnode on the mount point's queue makes it visible.
192 	 * VNON prevents it from being messed with, however.
193 	 */
194 	insmntque(vp, mp);
195 
196 	/*
197 	 * A VX locked & refd vnode is returned.
198 	 */
199 	*vpp = vp;
200 	return (0);
201 }
202 
203 /*
204  * This function creates vnodes with special operations vectors.  The
205  * mount point is optional.
206  *
207  * This routine is being phased out.
208  */
209 int
210 getspecialvnode(enum vtagtype tag, struct mount *mp,
211 		struct vop_ops **ops_pp,
212 		struct vnode **vpp, int lktimeout, int lkflags)
213 {
214 	struct vnode *vp;
215 
216 	vp = allocvnode(lktimeout, lkflags);
217 	vp->v_tag = tag;
218 	vp->v_data = NULL;
219 	vp->v_ops = ops_pp;
220 
221 	/*
222 	 * Placing the vnode on the mount point's queue makes it visible.
223 	 * VNON prevents it from being messed with, however.
224 	 */
225 	insmntque(vp, mp);
226 
227 	/*
228 	 * A VX locked & refd vnode is returned.
229 	 */
230 	*vpp = vp;
231 	return (0);
232 }
233 
234 /*
235  * Interlock against an unmount, return 0 on success, non-zero on failure.
236  *
237  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
238  * is in-progress.
239  *
240  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
241  * are used.  A shared locked will be obtained and the filesystem will not
242  * be unmountable until the lock is released.
243  */
244 int
245 vfs_busy(struct mount *mp, int flags)
246 {
247 	int lkflags;
248 
249 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
250 		if (flags & LK_NOWAIT)
251 			return (ENOENT);
252 		/* XXX not MP safe */
253 		mp->mnt_kern_flag |= MNTK_MWAIT;
254 		/*
255 		 * Since all busy locks are shared except the exclusive
256 		 * lock granted when unmounting, the only place that a
257 		 * wakeup needs to be done is at the release of the
258 		 * exclusive lock at the end of dounmount.
259 		 */
260 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
261 		return (ENOENT);
262 	}
263 	lkflags = LK_SHARED | LK_NOPAUSE;
264 	if (lockmgr(&mp->mnt_lock, lkflags))
265 		panic("vfs_busy: unexpected lock failure");
266 	return (0);
267 }
268 
269 /*
270  * Free a busy filesystem.
271  */
272 void
273 vfs_unbusy(struct mount *mp)
274 {
275 	lockmgr(&mp->mnt_lock, LK_RELEASE);
276 }
277 
278 /*
279  * Lookup a filesystem type, and if found allocate and initialize
280  * a mount structure for it.
281  *
282  * Devname is usually updated by mount(8) after booting.
283  */
284 int
285 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
286 {
287 	struct vfsconf *vfsp;
288 	struct mount *mp;
289 
290 	if (fstypename == NULL)
291 		return (ENODEV);
292 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
293 		if (!strcmp(vfsp->vfc_name, fstypename))
294 			break;
295 	}
296 	if (vfsp == NULL)
297 		return (ENODEV);
298 	mp = malloc(sizeof(struct mount), M_MOUNT, M_WAITOK);
299 	bzero((char *)mp, (u_long)sizeof(struct mount));
300 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
301 	vfs_busy(mp, LK_NOWAIT);
302 	TAILQ_INIT(&mp->mnt_nvnodelist);
303 	TAILQ_INIT(&mp->mnt_reservedvnlist);
304 	TAILQ_INIT(&mp->mnt_jlist);
305 	mp->mnt_nvnodelistsize = 0;
306 	mp->mnt_vfc = vfsp;
307 	mp->mnt_op = vfsp->vfc_vfsops;
308 	mp->mnt_flag = MNT_RDONLY;
309 	mp->mnt_vnodecovered = NULLVP;
310 	vfsp->vfc_refcount++;
311 	mp->mnt_iosize_max = DFLTPHYS;
312 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
313 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
314 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
315 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
316 	*mpp = mp;
317 	return (0);
318 }
319 
320 /*
321  * Lookup a mount point by filesystem identifier.
322  */
323 struct mount *
324 vfs_getvfs(fsid_t *fsid)
325 {
326 	struct mount *mp;
327 	lwkt_tokref ilock;
328 
329 	lwkt_gettoken(&ilock, &mountlist_token);
330 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
331 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
332 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
333 			break;
334 	    }
335 	}
336 	lwkt_reltoken(&ilock);
337 	return (mp);
338 }
339 
340 /*
341  * Get a new unique fsid.  Try to make its val[0] unique, since this value
342  * will be used to create fake device numbers for stat().  Also try (but
343  * not so hard) make its val[0] unique mod 2^16, since some emulators only
344  * support 16-bit device numbers.  We end up with unique val[0]'s for the
345  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
346  *
347  * Keep in mind that several mounts may be running in parallel.  Starting
348  * the search one past where the previous search terminated is both a
349  * micro-optimization and a defense against returning the same fsid to
350  * different mounts.
351  */
352 void
353 vfs_getnewfsid(struct mount *mp)
354 {
355 	static u_int16_t mntid_base;
356 	lwkt_tokref ilock;
357 	fsid_t tfsid;
358 	int mtype;
359 
360 	lwkt_gettoken(&ilock, &mntid_token);
361 	mtype = mp->mnt_vfc->vfc_typenum;
362 	tfsid.val[1] = mtype;
363 	mtype = (mtype & 0xFF) << 24;
364 	for (;;) {
365 		tfsid.val[0] = makeudev(255,
366 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
367 		mntid_base++;
368 		if (vfs_getvfs(&tfsid) == NULL)
369 			break;
370 	}
371 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
372 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
373 	lwkt_reltoken(&ilock);
374 }
375 
376 /*
377  * This routine is called when we have too many vnodes.  It attempts
378  * to free <count> vnodes and will potentially free vnodes that still
379  * have VM backing store (VM backing store is typically the cause
380  * of a vnode blowout so we want to do this).  Therefore, this operation
381  * is not considered cheap.
382  *
383  * A number of conditions may prevent a vnode from being reclaimed.
384  * the buffer cache may have references on the vnode, a directory
385  * vnode may still have references due to the namei cache representing
386  * underlying files, or the vnode may be in active use.   It is not
387  * desireable to reuse such vnodes.  These conditions may cause the
388  * number of vnodes to reach some minimum value regardless of what
389  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
390  */
391 
392 /*
393  * This is a quick non-blocking check to determine if the vnode is a good
394  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
395  * not a good candidate, 1 if it is.
396  *
397  * vnodes marked VFREE are already on the free list, but may still need
398  * to be recycled due to eating namecache resources and potentially blocking
399  * the namecache directory chain and related vnodes from being freed.
400  */
401 static __inline int
402 vmightfree(struct vnode *vp, int page_count)
403 {
404 	if (vp->v_flag & VRECLAIMED)
405 		return (0);
406 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
407 		return (0);
408 	if (vp->v_usecount != 0)
409 		return (0);
410 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
411 		return (0);
412 	return (1);
413 }
414 
415 /*
416  * The vnode was found to be possibly vgone()able and the caller has locked it
417  * (thus the usecount should be 1 now).  Determine if the vnode is actually
418  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
419  * can be vgone()'d, 0 otherwise.
420  *
421  * Note that v_holdcnt may be non-zero because (A) this vnode is not a leaf
422  * in the namecache topology and (B) this vnode has buffer cache bufs.
423  * We cannot remove vnodes with non-leaf namecache associations.  We do a
424  * tentitive leaf check prior to attempting to flush out any buffers but the
425  * 'real' test when all is said in done is that v_holdcnt must become 0 for
426  * the vnode to be freeable.
427  *
428  * We could theoretically just unconditionally flush when v_holdcnt != 0,
429  * but flushing data associated with non-leaf nodes (which are always
430  * directories), just throws it away for no benefit.  It is the buffer
431  * cache's responsibility to choose buffers to recycle from the cached
432  * data point of view.
433  */
434 static int
435 visleaf(struct vnode *vp)
436 {
437 	struct namecache *ncp;
438 
439 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
440 		if (!TAILQ_EMPTY(&ncp->nc_list))
441 			return(0);
442 	}
443 	return(1);
444 }
445 
446 /*
447  * Try to clean up the vnode to the point where it can be vgone()'d, returning
448  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
449  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
450  * VFREE are still candidates for vgone()ing because they may hold namecache
451  * resources and could be blocking the namecache directory hierarchy (and
452  * related vnodes) from being freed.
453  */
454 static int
455 vtrytomakegoneable(struct vnode *vp, int page_count)
456 {
457 	if (vp->v_flag & VRECLAIMED)
458 		return (0);
459 	if (vp->v_usecount != 1)
460 		return (0);
461 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
462 		return (0);
463 	if (vp->v_holdcnt && visleaf(vp)) {
464 		vinvalbuf(vp, V_SAVE, 0, 0);
465 #if 0	/* DEBUG */
466 		printf((vp->v_holdcnt ? "vrecycle: vp %p failed: %s\n" :
467 			"vrecycle: vp %p succeeded: %s\n"), vp,
468 			(TAILQ_FIRST(&vp->v_namecache) ?
469 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
470 #endif
471 	}
472 	return(vp->v_usecount == 1 && vp->v_holdcnt == 0);
473 }
474 
475 /*
476  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
477  * to avoid vnodes which have lots of resident pages (we are trying to free
478  * vnodes, not memory).
479  *
480  * This routine is a callback from the mountlist scan.  The mount point
481  * in question will be busied.
482  */
483 static int
484 vlrureclaim(struct mount *mp, void *data)
485 {
486 	struct vnode *vp;
487 	lwkt_tokref ilock;
488 	int done;
489 	int trigger;
490 	int usevnodes;
491 	int count;
492 	int trigger_mult = vnlru_nowhere;
493 
494 	/*
495 	 * Calculate the trigger point for the resident pages check.  The
496 	 * minimum trigger value is approximately the number of pages in
497 	 * the system divded by the number of vnodes.  However, due to
498 	 * various other system memory overheads unrelated to data caching
499 	 * it is a good idea to double the trigger (at least).
500 	 *
501 	 * trigger_mult starts at 0.  If the recycler is having problems
502 	 * finding enough freeable vnodes it will increase trigger_mult.
503 	 * This should not happen in normal operation, even on machines with
504 	 * low amounts of memory, but extraordinary memory use by the system
505 	 * verses the amount of cached data can trigger it.
506 	 */
507 	usevnodes = desiredvnodes;
508 	if (usevnodes <= 0)
509 		usevnodes = 1;
510 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
511 
512 	done = 0;
513 	lwkt_gettoken(&ilock, &mntvnode_token);
514 	count = mp->mnt_nvnodelistsize / 10 + 1;
515 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
516 		/*
517 		 * __VNODESCAN__
518 		 *
519 		 * The VP will stick around while we hold mntvnode_token,
520 		 * at least until we block, so we can safely do an initial
521 		 * check, and then must check again after we lock the vnode.
522 		 */
523 		if (vp->v_type == VNON ||	/* XXX */
524 		    vp->v_type == VBAD ||	/* XXX */
525 		    !vmightfree(vp, trigger)	/* critical path opt */
526 		) {
527 			vmovevnodetoend(mp, vp);
528 			--count;
529 			continue;
530 		}
531 
532 		/*
533 		 * VX get the candidate vnode.  If the VX get fails the
534 		 * vnode might still be on the mountlist.  Our loop depends
535 		 * on us at least cycling the vnode to the end of the
536 		 * mountlist.
537 		 */
538 		if (vx_get_nonblock(vp) != 0) {
539 			if (vp->v_mount == mp)
540 				vmovevnodetoend(mp, vp);
541 			--count;
542 			continue;
543 		}
544 
545 		/*
546 		 * Since we blocked locking the vp, make sure it is still
547 		 * a candidate for reclamation.  That is, it has not already
548 		 * been reclaimed and only has our VX reference associated
549 		 * with it.
550 		 */
551 		if (vp->v_type == VNON ||	/* XXX */
552 		    vp->v_type == VBAD ||	/* XXX */
553 		    (vp->v_flag & VRECLAIMED) ||
554 		    vp->v_mount != mp ||
555 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
556 		) {
557 			if (vp->v_mount == mp)
558 				vmovevnodetoend(mp, vp);
559 			--count;
560 			vx_put(vp);
561 			continue;
562 		}
563 
564 		/*
565 		 * All right, we are good, move the vp to the end of the
566 		 * mountlist and clean it out.  The vget will have returned
567 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
568 		 * do not have to check again.  The vput() will move the
569 		 * vnode to the free list if the vgone() was successful.
570 		 */
571 		KKASSERT(vp->v_mount == mp);
572 		vmovevnodetoend(mp, vp);
573 		vgone(vp);
574 		vx_put(vp);
575 		++done;
576 		--count;
577 	}
578 	lwkt_reltoken(&ilock);
579 	return (done);
580 }
581 
582 /*
583  * Attempt to recycle vnodes in a context that is always safe to block.
584  * Calling vlrurecycle() from the bowels of file system code has some
585  * interesting deadlock problems.
586  */
587 static struct thread *vnlruthread;
588 static int vnlruproc_sig;
589 
590 void
591 vnlru_proc_wait(void)
592 {
593 	if (vnlruproc_sig == 0) {
594 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
595 		wakeup(vnlruthread);
596 	}
597 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
598 }
599 
600 static void
601 vnlru_proc(void)
602 {
603 	struct thread *td = curthread;
604 	int done;
605 
606 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
607 	    SHUTDOWN_PRI_FIRST);
608 
609 	crit_enter();
610 	for (;;) {
611 		kproc_suspend_loop();
612 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
613 			vnlruproc_sig = 0;
614 			wakeup(&vnlruproc_sig);
615 			tsleep(td, 0, "vlruwt", hz);
616 			continue;
617 		}
618 		cache_cleanneg(0);
619 		done = mountlist_scan(vlrureclaim, NULL, MNTSCAN_FORWARD);
620 
621 		/*
622 		 * The vlrureclaim() call only processes 1/10 of the vnodes
623 		 * on each mount.  If we couldn't find any repeat the loop
624 		 * at least enough times to cover all available vnodes before
625 		 * we start sleeping.  Complain if the failure extends past
626 		 * 30 second, every 30 seconds.
627 		 */
628 		if (done == 0) {
629 			++vnlru_nowhere;
630 			if (vnlru_nowhere % 10 == 0)
631 				tsleep(td, 0, "vlrup", hz * 3);
632 			if (vnlru_nowhere % 100 == 0)
633 				printf("vnlru_proc: vnode recycler stopped working!\n");
634 			if (vnlru_nowhere == 1000)
635 				vnlru_nowhere = 900;
636 		} else {
637 			vnlru_nowhere = 0;
638 		}
639 	}
640 	crit_exit();
641 }
642 
643 /*
644  * MOUNTLIST FUNCTIONS
645  */
646 
647 /*
648  * mountlist_insert (MP SAFE)
649  *
650  * Add a new mount point to the mount list.
651  */
652 void
653 mountlist_insert(struct mount *mp, int how)
654 {
655 	lwkt_tokref ilock;
656 
657 	lwkt_gettoken(&ilock, &mountlist_token);
658 	if (how == MNTINS_FIRST)
659 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
660 	else
661 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
662 	lwkt_reltoken(&ilock);
663 }
664 
665 /*
666  * mountlist_interlock (MP SAFE)
667  *
668  * Execute the specified interlock function with the mountlist token
669  * held.  The function will be called in a serialized fashion verses
670  * other functions called through this mechanism.
671  */
672 int
673 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
674 {
675 	lwkt_tokref ilock;
676 	int error;
677 
678 	lwkt_gettoken(&ilock, &mountlist_token);
679 	error = callback(mp);
680 	lwkt_reltoken(&ilock);
681 	return (error);
682 }
683 
684 /*
685  * mountlist_boot_getfirst (DURING BOOT ONLY)
686  *
687  * This function returns the first mount on the mountlist, which is
688  * expected to be the root mount.  Since no interlocks are obtained
689  * this function is only safe to use during booting.
690  */
691 
692 struct mount *
693 mountlist_boot_getfirst(void)
694 {
695 	return(TAILQ_FIRST(&mountlist));
696 }
697 
698 /*
699  * mountlist_remove (MP SAFE)
700  *
701  * Remove a node from the mountlist.  If this node is the next scan node
702  * for any active mountlist scans, the active mountlist scan will be
703  * adjusted to skip the node, thus allowing removals during mountlist
704  * scans.
705  */
706 void
707 mountlist_remove(struct mount *mp)
708 {
709 	struct mountscan_info *msi;
710 	lwkt_tokref ilock;
711 
712 	lwkt_gettoken(&ilock, &mountlist_token);
713 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
714 		if (msi->msi_node == mp) {
715 			if (msi->msi_how & MNTSCAN_FORWARD)
716 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
717 			else
718 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
719 		}
720 	}
721 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
722 	lwkt_reltoken(&ilock);
723 }
724 
725 /*
726  * mountlist_scan (MP SAFE)
727  *
728  * Safely scan the mount points on the mount list.  Unless otherwise
729  * specified each mount point will be busied prior to the callback and
730  * unbusied afterwords.  The callback may safely remove any mount point
731  * without interfering with the scan.  If the current callback
732  * mount is removed the scanner will not attempt to unbusy it.
733  *
734  * If a mount node cannot be busied it is silently skipped.
735  *
736  * The callback return value is aggregated and a total is returned.  A return
737  * value of < 0 is not aggregated and will terminate the scan.
738  *
739  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
740  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
741  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
742  *			  the mount node.
743  */
744 int
745 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
746 {
747 	struct mountscan_info info;
748 	lwkt_tokref ilock;
749 	struct mount *mp;
750 	thread_t td;
751 	int count;
752 	int res;
753 
754 	lwkt_gettoken(&ilock, &mountlist_token);
755 
756 	info.msi_how = how;
757 	info.msi_node = NULL;	/* paranoia */
758 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
759 
760 	res = 0;
761 	td = curthread;
762 
763 	if (how & MNTSCAN_FORWARD) {
764 		info.msi_node = TAILQ_FIRST(&mountlist);
765 		while ((mp = info.msi_node) != NULL) {
766 			if (how & MNTSCAN_NOBUSY) {
767 				count = callback(mp, data);
768 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
769 				count = callback(mp, data);
770 				if (mp == info.msi_node)
771 					vfs_unbusy(mp);
772 			} else {
773 				count = 0;
774 			}
775 			if (count < 0)
776 				break;
777 			res += count;
778 			if (mp == info.msi_node)
779 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
780 		}
781 	} else if (how & MNTSCAN_REVERSE) {
782 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
783 		while ((mp = info.msi_node) != NULL) {
784 			if (how & MNTSCAN_NOBUSY) {
785 				count = callback(mp, data);
786 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
787 				count = callback(mp, data);
788 				if (mp == info.msi_node)
789 					vfs_unbusy(mp);
790 			} else {
791 				count = 0;
792 			}
793 			if (count < 0)
794 				break;
795 			res += count;
796 			if (mp == info.msi_node)
797 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
798 		}
799 	}
800 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
801 	lwkt_reltoken(&ilock);
802 	return(res);
803 }
804 
805 /*
806  * MOUNT RELATED VNODE FUNCTIONS
807  */
808 
809 static struct kproc_desc vnlru_kp = {
810 	"vnlru",
811 	vnlru_proc,
812 	&vnlruthread
813 };
814 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
815 
816 /*
817  * Move a vnode from one mount queue to another.
818  */
819 void
820 insmntque(struct vnode *vp, struct mount *mp)
821 {
822 	lwkt_tokref ilock;
823 
824 	lwkt_gettoken(&ilock, &mntvnode_token);
825 	/*
826 	 * Delete from old mount point vnode list, if on one.
827 	 */
828 	if (vp->v_mount != NULL) {
829 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
830 			("bad mount point vnode list size"));
831 		vremovevnodemnt(vp);
832 		vp->v_mount->mnt_nvnodelistsize--;
833 	}
834 	/*
835 	 * Insert into list of vnodes for the new mount point, if available.
836 	 */
837 	if ((vp->v_mount = mp) == NULL) {
838 		lwkt_reltoken(&ilock);
839 		return;
840 	}
841 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
842 	mp->mnt_nvnodelistsize++;
843 	lwkt_reltoken(&ilock);
844 }
845 
846 
847 /*
848  * Scan the vnodes under a mount point and issue appropriate callbacks.
849  *
850  * The fastfunc() callback is called with just the mountlist token held
851  * (no vnode lock).  It may not block and the vnode may be undergoing
852  * modifications while the caller is processing it.  The vnode will
853  * not be entirely destroyed, however, due to the fact that the mountlist
854  * token is held.  A return value < 0 skips to the next vnode without calling
855  * the slowfunc(), a return value > 0 terminates the loop.
856  *
857  * The slowfunc() callback is called after the vnode has been successfully
858  * locked based on passed flags.  The vnode is skipped if it gets rearranged
859  * or destroyed while blocking on the lock.  A non-zero return value from
860  * the slow function terminates the loop.  The slow function is allowed to
861  * arbitrarily block.  The scanning code guarentees consistency of operation
862  * even if the slow function deletes or moves the node, or blocks and some
863  * other thread deletes or moves the node.
864  */
865 int
866 vmntvnodescan(
867     struct mount *mp,
868     int flags,
869     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
870     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
871     void *data
872 ) {
873 	struct vmntvnodescan_info info;
874 	lwkt_tokref ilock;
875 	struct vnode *vp;
876 	int r = 0;
877 	int maxcount = 1000000;
878 
879 	lwkt_gettoken(&ilock, &mntvnode_token);
880 
881 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
882 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
883 	while ((vp = info.vp) != NULL) {
884 		if (--maxcount == 0)
885 			panic("maxcount reached during vmntvnodescan");
886 
887 		if (vp->v_type == VNON)		/* visible but not ready */
888 			goto next;
889 		KKASSERT(vp->v_mount == mp);
890 
891 		/*
892 		 * Quick test.  A negative return continues the loop without
893 		 * calling the slow test.  0 continues onto the slow test.
894 		 * A positive number aborts the loop.
895 		 */
896 		if (fastfunc) {
897 			if ((r = fastfunc(mp, vp, data)) < 0)
898 				goto next;
899 			if (r)
900 				break;
901 		}
902 
903 		/*
904 		 * Get a vxlock on the vnode, retry if it has moved or isn't
905 		 * in the mountlist where we expect it.
906 		 */
907 		if (slowfunc) {
908 			int error;
909 
910 			switch(flags) {
911 			case VMSC_GETVP:
912 				error = vget(vp, LK_EXCLUSIVE);
913 				break;
914 			case VMSC_GETVP|VMSC_NOWAIT:
915 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
916 				break;
917 			case VMSC_GETVX:
918 				error = vx_get(vp);
919 				break;
920 			case VMSC_REFVP:
921 				vref(vp);
922 				/* fall through */
923 			default:
924 				error = 0;
925 				break;
926 			}
927 			if (error)
928 				goto next;
929 			/*
930 			 * Do not call the slow function if the vnode is
931 			 * invalid or if it was ripped out from under us
932 			 * while we (potentially) blocked.
933 			 */
934 			if (info.vp == vp && vp->v_type != VNON)
935 				r = slowfunc(mp, vp, data);
936 
937 			/*
938 			 * Cleanup
939 			 */
940 			switch(flags) {
941 			case VMSC_GETVP:
942 			case VMSC_GETVP|VMSC_NOWAIT:
943 				vput(vp);
944 				break;
945 			case VMSC_GETVX:
946 				vx_put(vp);
947 				break;
948 			case VMSC_REFVP:
949 				vrele(vp);
950 				/* fall through */
951 			default:
952 				break;
953 			}
954 			if (r != 0)
955 				break;
956 		}
957 
958 		/*
959 		 * Iterate.  If the vnode was ripped out from under us
960 		 * info.vp will already point to the next vnode, otherwise
961 		 * we have to obtain the next valid vnode ourselves.
962 		 */
963 next:
964 		if (info.vp == vp)
965 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
966 	}
967 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
968 	lwkt_reltoken(&ilock);
969 	return(r);
970 }
971 
972 /*
973  * Remove any vnodes in the vnode table belonging to mount point mp.
974  *
975  * If FORCECLOSE is not specified, there should not be any active ones,
976  * return error if any are found (nb: this is a user error, not a
977  * system error). If FORCECLOSE is specified, detach any active vnodes
978  * that are found.
979  *
980  * If WRITECLOSE is set, only flush out regular file vnodes open for
981  * writing.
982  *
983  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
984  *
985  * `rootrefs' specifies the base reference count for the root vnode
986  * of this filesystem. The root vnode is considered busy if its
987  * v_usecount exceeds this value. On a successful return, vflush()
988  * will call vrele() on the root vnode exactly rootrefs times.
989  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
990  * be zero.
991  */
992 #ifdef DIAGNOSTIC
993 static int busyprt = 0;		/* print out busy vnodes */
994 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
995 #endif
996 
997 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
998 
999 struct vflush_info {
1000 	int flags;
1001 	int busy;
1002 	thread_t td;
1003 };
1004 
1005 int
1006 vflush(struct mount *mp, int rootrefs, int flags)
1007 {
1008 	struct thread *td = curthread;	/* XXX */
1009 	struct vnode *rootvp = NULL;
1010 	int error;
1011 	struct vflush_info vflush_info;
1012 
1013 	if (rootrefs > 0) {
1014 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1015 		    ("vflush: bad args"));
1016 		/*
1017 		 * Get the filesystem root vnode. We can vput() it
1018 		 * immediately, since with rootrefs > 0, it won't go away.
1019 		 */
1020 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1021 			return (error);
1022 		vput(rootvp);
1023 	}
1024 
1025 	vflush_info.busy = 0;
1026 	vflush_info.flags = flags;
1027 	vflush_info.td = td;
1028 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1029 
1030 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1031 		/*
1032 		 * If just the root vnode is busy, and if its refcount
1033 		 * is equal to `rootrefs', then go ahead and kill it.
1034 		 */
1035 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1036 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1037 		if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1038 			if (vx_lock(rootvp) == 0) {
1039 				vgone(rootvp);
1040 				vx_unlock(rootvp);
1041 				vflush_info.busy = 0;
1042 			}
1043 		}
1044 	}
1045 	if (vflush_info.busy)
1046 		return (EBUSY);
1047 	for (; rootrefs > 0; rootrefs--)
1048 		vrele(rootvp);
1049 	return (0);
1050 }
1051 
1052 /*
1053  * The scan callback is made with an VX locked vnode.
1054  */
1055 static int
1056 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1057 {
1058 	struct vflush_info *info = data;
1059 	struct vattr vattr;
1060 
1061 	/*
1062 	 * Skip over a vnodes marked VSYSTEM.
1063 	 */
1064 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1065 		return(0);
1066 	}
1067 
1068 	/*
1069 	 * If WRITECLOSE is set, flush out unlinked but still open
1070 	 * files (even if open only for reading) and regular file
1071 	 * vnodes open for writing.
1072 	 */
1073 	if ((info->flags & WRITECLOSE) &&
1074 	    (vp->v_type == VNON ||
1075 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1076 	    vattr.va_nlink > 0)) &&
1077 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1078 		return(0);
1079 	}
1080 
1081 	/*
1082 	 * With v_usecount == 0, all we need to do is clear out the
1083 	 * vnode data structures and we are done.
1084 	 */
1085 	if (vp->v_usecount == 1) {
1086 		vgone(vp);
1087 		return(0);
1088 	}
1089 
1090 	/*
1091 	 * If FORCECLOSE is set, forcibly close the vnode. For block
1092 	 * or character devices, revert to an anonymous device. For
1093 	 * all other files, just kill them.
1094 	 */
1095 	if (info->flags & FORCECLOSE) {
1096 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
1097 			vgone(vp);
1098 		} else {
1099 			vclean(vp, 0);
1100 			vp->v_ops = &spec_vnode_vops;
1101 			insmntque(vp, NULL);
1102 		}
1103 		return(0);
1104 	}
1105 #ifdef DIAGNOSTIC
1106 	if (busyprt)
1107 		vprint("vflush: busy vnode", vp);
1108 #endif
1109 	++info->busy;
1110 	return(0);
1111 }
1112 
1113