xref: /dragonfly/sys/kern/vfs_subr.c (revision 2cd2d2b5)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.40 2004/09/23 01:55:15 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 static void	insmntque (struct vnode *vp, struct mount *mp);
90 static void	vclean (struct vnode *vp, lwkt_tokref_t vlock,
91 			int flags, struct thread *td);
92 
93 static unsigned long numvnodes;
94 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95 
96 enum vtype iftovt_tab[16] = {
97 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 };
100 int vttoif_tab[9] = {
101 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 	S_IFSOCK, S_IFIFO, S_IFMT,
103 };
104 
105 static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
106 
107 static u_long wantfreevnodes = 25;
108 SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
109 		&wantfreevnodes, 0, "");
110 static u_long freevnodes = 0;
111 SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
112 		&freevnodes, 0, "");
113 
114 static int reassignbufcalls;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
116 		&reassignbufcalls, 0, "");
117 static int reassignbufloops;
118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
119 		&reassignbufloops, 0, "");
120 static int reassignbufsortgood;
121 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
122 		&reassignbufsortgood, 0, "");
123 static int reassignbufsortbad;
124 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
125 		&reassignbufsortbad, 0, "");
126 static int reassignbufmethod = 1;
127 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
128 		&reassignbufmethod, 0, "");
129 
130 #ifdef ENABLE_VFS_IOOPT
131 int vfs_ioopt = 0;
132 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
133 #endif
134 
135 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
136 struct lwkt_token mountlist_token;
137 struct lwkt_token mntvnode_token;
138 int	nfs_mount_type = -1;
139 static struct lwkt_token mntid_token;
140 static struct lwkt_token vnode_free_list_token;
141 static struct lwkt_token spechash_token;
142 struct nfs_public nfs_pub;	/* publicly exported FS */
143 static vm_zone_t vnode_zone;
144 
145 /*
146  * The workitem queue.
147  */
148 #define SYNCER_MAXDELAY		32
149 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
150 time_t syncdelay = 30;		/* max time to delay syncing data */
151 SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
152 		&syncdelay, 0, "VFS data synchronization delay");
153 time_t filedelay = 30;		/* time to delay syncing files */
154 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
155 		&filedelay, 0, "File synchronization delay");
156 time_t dirdelay = 29;		/* time to delay syncing directories */
157 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
158 		&dirdelay, 0, "Directory synchronization delay");
159 time_t metadelay = 28;		/* time to delay syncing metadata */
160 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
161 		&metadelay, 0, "VFS metadata synchronization delay");
162 static int rushjob;			/* number of slots to run ASAP */
163 static int stat_rush_requests;	/* number of times I/O speeded up */
164 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
165 		&stat_rush_requests, 0, "");
166 
167 static int syncer_delayno = 0;
168 static long syncer_mask;
169 LIST_HEAD(synclist, vnode);
170 static struct synclist *syncer_workitem_pending;
171 
172 int desiredvnodes;
173 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
174 		&desiredvnodes, 0, "Maximum number of vnodes");
175 static int minvnodes;
176 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
177 		&minvnodes, 0, "Minimum number of vnodes");
178 static int vnlru_nowhere = 0;
179 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
180 		&vnlru_nowhere, 0,
181 		"Number of times the vnlru process ran without success");
182 
183 static void	vfs_free_addrlist (struct netexport *nep);
184 static int	vfs_free_netcred (struct radix_node *rn, void *w);
185 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
186 				       struct export_args *argp);
187 
188 #define VSHOULDFREE(vp) \
189 	(!((vp)->v_flag & (VFREE|VDOOMED)) && \
190 	 !(vp)->v_holdcnt && !(vp)->v_usecount && \
191 	 (!(vp)->v_object || \
192 	  !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
193 
194 #define VMIGHTFREE(vp) \
195 	(((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 &&   \
196 	 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
197 
198 #define VSHOULDBUSY(vp) \
199 	(((vp)->v_flag & VFREE) && \
200 	 ((vp)->v_holdcnt || (vp)->v_usecount))
201 
202 static void vbusy(struct vnode *vp);
203 static void vfree(struct vnode *vp);
204 static void vmaybefree(struct vnode *vp);
205 
206 extern int dev_ref_debug;
207 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
208 
209 /*
210  * NOTE: the vnode interlock must be held on call.
211  */
212 static __inline void
213 vmaybefree(struct vnode *vp)
214 {
215 	if (VSHOULDFREE(vp))
216 		vfree(vp);
217 }
218 
219 /*
220  * Initialize the vnode management data structures.
221  */
222 void
223 vntblinit(void)
224 {
225 	/*
226 	 * Desired vnodes is a result of the physical page count
227 	 * and the size of kernel's heap.  It scales in proportion
228 	 * to the amount of available physical memory.  This can
229 	 * cause trouble on 64-bit and large memory platforms.
230 	 */
231 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
232 	desiredvnodes =
233 		min(maxproc + vmstats.v_page_count /4,
234 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
235 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
236 
237 	minvnodes = desiredvnodes / 4;
238 	lwkt_token_init(&mountlist_token);
239 	lwkt_token_init(&mntvnode_token);
240 	lwkt_token_init(&mntid_token);
241 	lwkt_token_init(&spechash_token);
242 	TAILQ_INIT(&vnode_free_list);
243 	lwkt_token_init(&vnode_free_list_token);
244 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
245 	/*
246 	 * Initialize the filesystem syncer.
247 	 */
248 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
249 		&syncer_mask);
250 	syncer_maxdelay = syncer_mask + 1;
251 }
252 
253 /*
254  * Mark a mount point as busy. Used to synchronize access and to delay
255  * unmounting. Interlock is not released on failure.
256  */
257 int
258 vfs_busy(struct mount *mp, int flags,
259 	lwkt_tokref_t interlkp, struct thread *td)
260 {
261 	int lkflags;
262 
263 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
264 		if (flags & LK_NOWAIT)
265 			return (ENOENT);
266 		mp->mnt_kern_flag |= MNTK_MWAIT;
267 		/*
268 		 * Since all busy locks are shared except the exclusive
269 		 * lock granted when unmounting, the only place that a
270 		 * wakeup needs to be done is at the release of the
271 		 * exclusive lock at the end of dounmount.
272 		 *
273 		 * note: interlkp is a serializer and thus can be safely
274 		 * held through any sleep
275 		 */
276 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
277 		return (ENOENT);
278 	}
279 	lkflags = LK_SHARED | LK_NOPAUSE;
280 	if (interlkp)
281 		lkflags |= LK_INTERLOCK;
282 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
283 		panic("vfs_busy: unexpected lock failure");
284 	return (0);
285 }
286 
287 /*
288  * Free a busy filesystem.
289  */
290 void
291 vfs_unbusy(struct mount *mp, struct thread *td)
292 {
293 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
294 }
295 
296 /*
297  * Lookup a filesystem type, and if found allocate and initialize
298  * a mount structure for it.
299  *
300  * Devname is usually updated by mount(8) after booting.
301  */
302 int
303 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
304 {
305 	struct thread *td = curthread;	/* XXX */
306 	struct vfsconf *vfsp;
307 	struct mount *mp;
308 
309 	if (fstypename == NULL)
310 		return (ENODEV);
311 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
312 		if (!strcmp(vfsp->vfc_name, fstypename))
313 			break;
314 	}
315 	if (vfsp == NULL)
316 		return (ENODEV);
317 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
318 	bzero((char *)mp, (u_long)sizeof(struct mount));
319 	lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
320 	vfs_busy(mp, LK_NOWAIT, NULL, td);
321 	TAILQ_INIT(&mp->mnt_nvnodelist);
322 	TAILQ_INIT(&mp->mnt_reservedvnlist);
323 	mp->mnt_nvnodelistsize = 0;
324 	mp->mnt_vfc = vfsp;
325 	mp->mnt_op = vfsp->vfc_vfsops;
326 	mp->mnt_flag = MNT_RDONLY;
327 	mp->mnt_vnodecovered = NULLVP;
328 	vfsp->vfc_refcount++;
329 	mp->mnt_iosize_max = DFLTPHYS;
330 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
331 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
332 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
333 	mp->mnt_stat.f_mntonname[0] = '/';
334 	mp->mnt_stat.f_mntonname[1] = 0;
335 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
336 	*mpp = mp;
337 	return (0);
338 }
339 
340 /*
341  * Lookup a mount point by filesystem identifier.
342  */
343 struct mount *
344 vfs_getvfs(fsid_t *fsid)
345 {
346 	struct mount *mp;
347 	lwkt_tokref ilock;
348 
349 	lwkt_gettoken(&ilock, &mountlist_token);
350 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
351 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
352 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
353 			break;
354 	    }
355 	}
356 	lwkt_reltoken(&ilock);
357 	return (mp);
358 }
359 
360 /*
361  * Get a new unique fsid.  Try to make its val[0] unique, since this value
362  * will be used to create fake device numbers for stat().  Also try (but
363  * not so hard) make its val[0] unique mod 2^16, since some emulators only
364  * support 16-bit device numbers.  We end up with unique val[0]'s for the
365  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
366  *
367  * Keep in mind that several mounts may be running in parallel.  Starting
368  * the search one past where the previous search terminated is both a
369  * micro-optimization and a defense against returning the same fsid to
370  * different mounts.
371  */
372 void
373 vfs_getnewfsid(struct mount *mp)
374 {
375 	static u_int16_t mntid_base;
376 	lwkt_tokref ilock;
377 	fsid_t tfsid;
378 	int mtype;
379 
380 	lwkt_gettoken(&ilock, &mntid_token);
381 	mtype = mp->mnt_vfc->vfc_typenum;
382 	tfsid.val[1] = mtype;
383 	mtype = (mtype & 0xFF) << 24;
384 	for (;;) {
385 		tfsid.val[0] = makeudev(255,
386 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
387 		mntid_base++;
388 		if (vfs_getvfs(&tfsid) == NULL)
389 			break;
390 	}
391 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
392 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
393 	lwkt_reltoken(&ilock);
394 }
395 
396 /*
397  * Knob to control the precision of file timestamps:
398  *
399  *   0 = seconds only; nanoseconds zeroed.
400  *   1 = seconds and nanoseconds, accurate within 1/HZ.
401  *   2 = seconds and nanoseconds, truncated to microseconds.
402  * >=3 = seconds and nanoseconds, maximum precision.
403  */
404 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
405 
406 static int timestamp_precision = TSP_SEC;
407 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
408 		&timestamp_precision, 0, "");
409 
410 /*
411  * Get a current timestamp.
412  */
413 void
414 vfs_timestamp(struct timespec *tsp)
415 {
416 	struct timeval tv;
417 
418 	switch (timestamp_precision) {
419 	case TSP_SEC:
420 		tsp->tv_sec = time_second;
421 		tsp->tv_nsec = 0;
422 		break;
423 	case TSP_HZ:
424 		getnanotime(tsp);
425 		break;
426 	case TSP_USEC:
427 		microtime(&tv);
428 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
429 		break;
430 	case TSP_NSEC:
431 	default:
432 		nanotime(tsp);
433 		break;
434 	}
435 }
436 
437 /*
438  * Set vnode attributes to VNOVAL
439  */
440 void
441 vattr_null(struct vattr *vap)
442 {
443 	vap->va_type = VNON;
444 	vap->va_size = VNOVAL;
445 	vap->va_bytes = VNOVAL;
446 	vap->va_mode = VNOVAL;
447 	vap->va_nlink = VNOVAL;
448 	vap->va_uid = VNOVAL;
449 	vap->va_gid = VNOVAL;
450 	vap->va_fsid = VNOVAL;
451 	vap->va_fileid = VNOVAL;
452 	vap->va_blocksize = VNOVAL;
453 	vap->va_rdev = VNOVAL;
454 	vap->va_atime.tv_sec = VNOVAL;
455 	vap->va_atime.tv_nsec = VNOVAL;
456 	vap->va_mtime.tv_sec = VNOVAL;
457 	vap->va_mtime.tv_nsec = VNOVAL;
458 	vap->va_ctime.tv_sec = VNOVAL;
459 	vap->va_ctime.tv_nsec = VNOVAL;
460 	vap->va_flags = VNOVAL;
461 	vap->va_gen = VNOVAL;
462 	vap->va_vaflags = 0;
463 }
464 
465 /*
466  * This routine is called when we have too many vnodes.  It attempts
467  * to free <count> vnodes and will potentially free vnodes that still
468  * have VM backing store (VM backing store is typically the cause
469  * of a vnode blowout so we want to do this).  Therefore, this operation
470  * is not considered cheap.
471  *
472  * A number of conditions may prevent a vnode from being reclaimed.
473  * the buffer cache may have references on the vnode, a directory
474  * vnode may still have references due to the namei cache representing
475  * underlying files, or the vnode may be in active use.   It is not
476  * desireable to reuse such vnodes.  These conditions may cause the
477  * number of vnodes to reach some minimum value regardless of what
478  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
479  */
480 static int
481 vlrureclaim(struct mount *mp)
482 {
483 	struct vnode *vp;
484 	lwkt_tokref ilock;
485 	lwkt_tokref vlock;
486 	int done;
487 	int trigger;
488 	int usevnodes;
489 	int count;
490 
491 	/*
492 	 * Calculate the trigger point, don't allow user
493 	 * screwups to blow us up.   This prevents us from
494 	 * recycling vnodes with lots of resident pages.  We
495 	 * aren't trying to free memory, we are trying to
496 	 * free vnodes.
497 	 */
498 	usevnodes = desiredvnodes;
499 	if (usevnodes <= 0)
500 		usevnodes = 1;
501 	trigger = vmstats.v_page_count * 2 / usevnodes;
502 
503 	done = 0;
504 	lwkt_gettoken(&ilock, &mntvnode_token);
505 	count = mp->mnt_nvnodelistsize / 10 + 1;
506 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
507 		/*
508 		 * __VNODESCAN__
509 		 *
510 		 * The VP will stick around while we hold mntvnode_token,
511 		 * at least until we block, so we can safely do an initial
512 		 * check.  But we have to check again after obtaining
513 		 * the vnode interlock.  vp->v_interlock points to stable
514 		 * storage so it's ok if the vp gets ripped out from
515 		 * under us while we are blocked.
516 		 */
517 		if (vp->v_type == VNON ||
518 		    vp->v_type == VBAD ||
519 		    !VMIGHTFREE(vp) ||		/* critical path opt */
520 		    (vp->v_object &&
521 		     vp->v_object->resident_page_count >= trigger)
522 		) {
523 			TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
524 			TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
525 			--count;
526 			continue;
527 		}
528 
529 		/*
530 		 * Get the interlock, delay moving the node to the tail so
531 		 * we don't race against new additions to the mountlist.
532 		 */
533 		lwkt_gettoken(&vlock, vp->v_interlock);
534 		if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
535 			lwkt_reltoken(&vlock);
536 			continue;
537 		}
538 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
539 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
540 
541 		/*
542 		 * Must check again
543 		 */
544 		if (vp->v_type == VNON ||
545 		    vp->v_type == VBAD ||
546 		    !VMIGHTFREE(vp) ||		/* critical path opt */
547 		    (vp->v_object &&
548 		     vp->v_object->resident_page_count >= trigger)
549 		) {
550 			lwkt_reltoken(&vlock);
551 			--count;
552 			continue;
553 		}
554 		vgonel(vp, &vlock, curthread);
555 		++done;
556 		--count;
557 	}
558 	lwkt_reltoken(&ilock);
559 	return done;
560 }
561 
562 /*
563  * Attempt to recycle vnodes in a context that is always safe to block.
564  * Calling vlrurecycle() from the bowels of file system code has some
565  * interesting deadlock problems.
566  */
567 static struct thread *vnlruthread;
568 static int vnlruproc_sig;
569 
570 static void
571 vnlru_proc(void)
572 {
573 	struct mount *mp, *nmp;
574 	lwkt_tokref ilock;
575 	int s;
576 	int done;
577 	struct thread *td = curthread;
578 
579 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
580 	    SHUTDOWN_PRI_FIRST);
581 
582 	s = splbio();
583 	for (;;) {
584 		kproc_suspend_loop();
585 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
586 			vnlruproc_sig = 0;
587 			wakeup(&vnlruproc_sig);
588 			tsleep(td, 0, "vlruwt", hz);
589 			continue;
590 		}
591 		done = 0;
592 		lwkt_gettoken(&ilock, &mountlist_token);
593 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
594 			if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
595 				nmp = TAILQ_NEXT(mp, mnt_list);
596 				continue;
597 			}
598 			done += vlrureclaim(mp);
599 			lwkt_gettokref(&ilock);
600 			nmp = TAILQ_NEXT(mp, mnt_list);
601 			vfs_unbusy(mp, td);
602 		}
603 		lwkt_reltoken(&ilock);
604 		if (done == 0) {
605 			vnlru_nowhere++;
606 			tsleep(td, 0, "vlrup", hz * 3);
607 		}
608 	}
609 	splx(s);
610 }
611 
612 static struct kproc_desc vnlru_kp = {
613 	"vnlru",
614 	vnlru_proc,
615 	&vnlruthread
616 };
617 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
618 
619 /*
620  * Routines having to do with the management of the vnode table.
621  */
622 
623 /*
624  * Return the next vnode from the free list.
625  */
626 int
627 getnewvnode(enum vtagtype tag, struct mount *mp, struct vop_ops *ops,
628 		struct vnode **vpp, int lktimeout, int lkflags)
629 {
630 	int s;
631 	struct thread *td = curthread;	/* XXX */
632 	struct vnode *vp = NULL;
633 	struct vnode *xvp;
634 	vm_object_t object;
635 	lwkt_tokref ilock;
636 	lwkt_tokref vlock;
637 
638 	s = splbio();	/* YYY remove me */
639 
640 	/*
641 	 * Try to reuse vnodes if we hit the max.  This situation only
642 	 * occurs in certain large-memory (2G+) situations.  We cannot
643 	 * attempt to directly reclaim vnodes due to nasty recursion
644 	 * problems.
645 	 */
646 	while (numvnodes - freevnodes > desiredvnodes) {
647 		if (vnlruproc_sig == 0) {
648 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
649 			wakeup(vnlruthread);
650 		}
651 		tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
652 	}
653 
654 
655 	/*
656 	 * Attempt to reuse a vnode already on the free list, allocating
657 	 * a new vnode if we can't find one or if we have not reached a
658 	 * good minimum for good LRU performance.
659 	 */
660 	lwkt_gettoken(&ilock, &vnode_free_list_token);
661 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
662 		int count;
663 
664 		for (count = 0; count < freevnodes; count++) {
665 			/*
666 			 * __VNODESCAN__
667 			 *
668 			 * Pull the next vnode off the free list and do some
669 			 * sanity checks.  Note that regardless of how we
670 			 * block, if freevnodes is non-zero there had better
671 			 * be something on the list.
672 			 */
673 			vp = TAILQ_FIRST(&vnode_free_list);
674 			if (vp == NULL)
675 				panic("getnewvnode: free vnode isn't");
676 
677 			/*
678 			 * Move the vnode to the end of the list so other
679 			 * processes do not double-block trying to recycle
680 			 * the same vnode (as an optimization), then get
681 			 * the interlock.
682 			 */
683 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
685 
686 			/*
687 			 * Skip vnodes that are in the process of being
688 			 * held or referenced.  Since the act of adding or
689 			 * removing a vnode on the freelist requires a token
690 			 * and may block, the ref count may be adjusted
691 			 * prior to its addition or removal.
692 			 */
693 			if (VSHOULDBUSY(vp)) {
694 				vp = NULL;
695 				continue;
696 			}
697 
698 
699 			/*
700 			 * Obtain the vnode interlock and check that the
701 			 * vnode is still on the free list.
702 			 *
703 			 * This normally devolves into a degenerate case so
704 			 * it is optimal.   Loop up if it isn't.  Note that
705 			 * the vnode could be in the middle of being moved
706 			 * off the free list (the VSHOULDBUSY() check) and
707 			 * must be skipped if so.
708 			 */
709 			lwkt_gettoken(&vlock, vp->v_interlock);
710 			TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
711 			    freelst, v_freelist) {
712 				if (vp == xvp)
713 					break;
714 			}
715 			if (vp != xvp || VSHOULDBUSY(vp)) {
716 				vp = NULL;
717 				continue;
718 			}
719 
720 			/*
721 			 * We now safely own the vnode.  If the vnode has
722 			 * an object do not recycle it if its VM object
723 			 * has resident pages or references.
724 			 */
725 			if ((VOP_GETVOBJECT(vp, &object) == 0 &&
726 			    (object->resident_page_count || object->ref_count))
727 			) {
728 				lwkt_reltoken(&vlock);
729 				vp = NULL;
730 				continue;
731 			}
732 
733 			/*
734 			 * We can almost reuse this vnode.  But we don't want
735 			 * to recycle it if the vnode has children in the
736 			 * namecache because that breaks the namecache's
737 			 * path element chain.  (YYY use nc_refs for the
738 			 * check?)
739 			 */
740 			KKASSERT(vp->v_flag & VFREE);
741 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
742 
743 			if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
744 			    cache_leaf_test(vp) >= 0) {
745 				/* ok, we can reuse this vnode */
746 				break;
747 			}
748 			lwkt_reltoken(&vlock);
749 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
750 			vp = NULL;
751 		}
752 	}
753 
754 	/*
755 	 * If vp is non-NULL we hold it's interlock.
756 	 */
757 	if (vp) {
758 		vp->v_flag |= VDOOMED;
759 		vp->v_flag &= ~VFREE;
760 		freevnodes--;
761 		lwkt_reltoken(&ilock);
762 		cache_purge(vp);	/* YYY may block */
763 		vp->v_lease = NULL;
764 		if (vp->v_type != VBAD) {
765 			vgonel(vp, &vlock, td);
766 		} else {
767 			lwkt_reltoken(&vlock);
768 		}
769 
770 #ifdef INVARIANTS
771 		{
772 			int s;
773 
774 			if (vp->v_data)
775 				panic("cleaned vnode isn't");
776 			s = splbio();
777 			if (vp->v_numoutput)
778 				panic("Clean vnode has pending I/O's");
779 			splx(s);
780 		}
781 #endif
782 		vp->v_flag = 0;
783 		vp->v_lastw = 0;
784 		vp->v_lasta = 0;
785 		vp->v_cstart = 0;
786 		vp->v_clen = 0;
787 		vp->v_socket = 0;
788 		vp->v_writecount = 0;	/* XXX */
789 		lockreinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
790 	} else {
791 		/*
792 		 * A brand-new vnode (we could use malloc() here I think) XXX
793 		 */
794 		lwkt_reltoken(&ilock);
795 		vp = zalloc(vnode_zone);
796 		bzero(vp, sizeof(*vp));
797 		vp->v_interlock = lwkt_token_pool_get(vp);
798 		lwkt_token_init(&vp->v_pollinfo.vpi_token);
799 		lockinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
800 		cache_purge(vp);
801 		TAILQ_INIT(&vp->v_namecache);
802 		numvnodes++;
803 	}
804 
805 	TAILQ_INIT(&vp->v_cleanblkhd);
806 	TAILQ_INIT(&vp->v_dirtyblkhd);
807 	vp->v_type = VNON;
808 	vp->v_tag = tag;
809 	vp->v_ops = ops;
810 	*vpp = vp;
811 	vp->v_usecount = 1;
812 	vp->v_data = NULL;
813 	splx(s);
814 
815 	/*
816 	 * Placing the vnode on the mount point's queue makes it visible.
817 	 * We had better already have a ref on it.
818 	 */
819 	insmntque(vp, mp);
820 
821 	vfs_object_create(vp, td);
822 	return (0);
823 }
824 
825 /*
826  * Move a vnode from one mount queue to another.
827  */
828 static void
829 insmntque(struct vnode *vp, struct mount *mp)
830 {
831 	lwkt_tokref ilock;
832 
833 	lwkt_gettoken(&ilock, &mntvnode_token);
834 	/*
835 	 * Delete from old mount point vnode list, if on one.
836 	 */
837 	if (vp->v_mount != NULL) {
838 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
839 			("bad mount point vnode list size"));
840 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
841 		vp->v_mount->mnt_nvnodelistsize--;
842 	}
843 	/*
844 	 * Insert into list of vnodes for the new mount point, if available.
845 	 */
846 	if ((vp->v_mount = mp) == NULL) {
847 		lwkt_reltoken(&ilock);
848 		return;
849 	}
850 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
851 	mp->mnt_nvnodelistsize++;
852 	lwkt_reltoken(&ilock);
853 }
854 
855 /*
856  * Update outstanding I/O count and do wakeup if requested.
857  */
858 void
859 vwakeup(struct buf *bp)
860 {
861 	struct vnode *vp;
862 
863 	bp->b_flags &= ~B_WRITEINPROG;
864 	if ((vp = bp->b_vp)) {
865 		vp->v_numoutput--;
866 		if (vp->v_numoutput < 0)
867 			panic("vwakeup: neg numoutput");
868 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
869 			vp->v_flag &= ~VBWAIT;
870 			wakeup((caddr_t) &vp->v_numoutput);
871 		}
872 	}
873 }
874 
875 /*
876  * Flush out and invalidate all buffers associated with a vnode.
877  * Called with the underlying object locked.
878  */
879 int
880 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
881 	int slpflag, int slptimeo)
882 {
883 	struct buf *bp;
884 	struct buf *nbp, *blist;
885 	int s, error;
886 	vm_object_t object;
887 	lwkt_tokref vlock;
888 
889 	if (flags & V_SAVE) {
890 		s = splbio();
891 		while (vp->v_numoutput) {
892 			vp->v_flag |= VBWAIT;
893 			error = tsleep((caddr_t)&vp->v_numoutput,
894 			    slpflag, "vinvlbuf", slptimeo);
895 			if (error) {
896 				splx(s);
897 				return (error);
898 			}
899 		}
900 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
901 			splx(s);
902 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
903 				return (error);
904 			s = splbio();
905 			if (vp->v_numoutput > 0 ||
906 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
907 				panic("vinvalbuf: dirty bufs");
908 		}
909 		splx(s);
910   	}
911 	s = splbio();
912 	for (;;) {
913 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
914 		if (!blist)
915 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
916 		if (!blist)
917 			break;
918 
919 		for (bp = blist; bp; bp = nbp) {
920 			nbp = TAILQ_NEXT(bp, b_vnbufs);
921 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
922 				error = BUF_TIMELOCK(bp,
923 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
924 				    "vinvalbuf", slpflag, slptimeo);
925 				if (error == ENOLCK)
926 					break;
927 				splx(s);
928 				return (error);
929 			}
930 			/*
931 			 * XXX Since there are no node locks for NFS, I
932 			 * believe there is a slight chance that a delayed
933 			 * write will occur while sleeping just above, so
934 			 * check for it.  Note that vfs_bio_awrite expects
935 			 * buffers to reside on a queue, while VOP_BWRITE and
936 			 * brelse do not.
937 			 */
938 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
939 				(flags & V_SAVE)) {
940 
941 				if (bp->b_vp == vp) {
942 					if (bp->b_flags & B_CLUSTEROK) {
943 						BUF_UNLOCK(bp);
944 						vfs_bio_awrite(bp);
945 					} else {
946 						bremfree(bp);
947 						bp->b_flags |= B_ASYNC;
948 						VOP_BWRITE(bp->b_vp, bp);
949 					}
950 				} else {
951 					bremfree(bp);
952 					(void) VOP_BWRITE(bp->b_vp, bp);
953 				}
954 				break;
955 			}
956 			bremfree(bp);
957 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
958 			bp->b_flags &= ~B_ASYNC;
959 			brelse(bp);
960 		}
961 	}
962 
963 	/*
964 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
965 	 * have write I/O in-progress but if there is a VM object then the
966 	 * VM object can also have read-I/O in-progress.
967 	 */
968 	do {
969 		while (vp->v_numoutput > 0) {
970 			vp->v_flag |= VBWAIT;
971 			tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
972 		}
973 		if (VOP_GETVOBJECT(vp, &object) == 0) {
974 			while (object->paging_in_progress)
975 				vm_object_pip_sleep(object, "vnvlbx");
976 		}
977 	} while (vp->v_numoutput > 0);
978 
979 	splx(s);
980 
981 	/*
982 	 * Destroy the copy in the VM cache, too.
983 	 */
984 	lwkt_gettoken(&vlock, vp->v_interlock);
985 	if (VOP_GETVOBJECT(vp, &object) == 0) {
986 		vm_object_page_remove(object, 0, 0,
987 			(flags & V_SAVE) ? TRUE : FALSE);
988 	}
989 	lwkt_reltoken(&vlock);
990 
991 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
992 		panic("vinvalbuf: flush failed");
993 	return (0);
994 }
995 
996 /*
997  * Truncate a file's buffer and pages to a specified length.  This
998  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
999  * sync activity.
1000  */
1001 int
1002 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
1003 {
1004 	struct buf *bp;
1005 	struct buf *nbp;
1006 	int s, anyfreed;
1007 	int trunclbn;
1008 
1009 	/*
1010 	 * Round up to the *next* lbn.
1011 	 */
1012 	trunclbn = (length + blksize - 1) / blksize;
1013 
1014 	s = splbio();
1015 restart:
1016 	anyfreed = 1;
1017 	for (;anyfreed;) {
1018 		anyfreed = 0;
1019 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1020 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1021 			if (bp->b_lblkno >= trunclbn) {
1022 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1023 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1024 					goto restart;
1025 				} else {
1026 					bremfree(bp);
1027 					bp->b_flags |= (B_INVAL | B_RELBUF);
1028 					bp->b_flags &= ~B_ASYNC;
1029 					brelse(bp);
1030 					anyfreed = 1;
1031 				}
1032 				if (nbp &&
1033 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1034 				    (nbp->b_vp != vp) ||
1035 				    (nbp->b_flags & B_DELWRI))) {
1036 					goto restart;
1037 				}
1038 			}
1039 		}
1040 
1041 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1042 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1043 			if (bp->b_lblkno >= trunclbn) {
1044 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1045 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1046 					goto restart;
1047 				} else {
1048 					bremfree(bp);
1049 					bp->b_flags |= (B_INVAL | B_RELBUF);
1050 					bp->b_flags &= ~B_ASYNC;
1051 					brelse(bp);
1052 					anyfreed = 1;
1053 				}
1054 				if (nbp &&
1055 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1056 				    (nbp->b_vp != vp) ||
1057 				    (nbp->b_flags & B_DELWRI) == 0)) {
1058 					goto restart;
1059 				}
1060 			}
1061 		}
1062 	}
1063 
1064 	if (length > 0) {
1065 restartsync:
1066 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1067 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1068 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1069 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1070 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1071 					goto restart;
1072 				} else {
1073 					bremfree(bp);
1074 					if (bp->b_vp == vp) {
1075 						bp->b_flags |= B_ASYNC;
1076 					} else {
1077 						bp->b_flags &= ~B_ASYNC;
1078 					}
1079 					VOP_BWRITE(bp->b_vp, bp);
1080 				}
1081 				goto restartsync;
1082 			}
1083 
1084 		}
1085 	}
1086 
1087 	while (vp->v_numoutput > 0) {
1088 		vp->v_flag |= VBWAIT;
1089 		tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
1090 	}
1091 
1092 	splx(s);
1093 
1094 	vnode_pager_setsize(vp, length);
1095 
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Associate a buffer with a vnode.
1101  */
1102 void
1103 bgetvp(struct vnode *vp, struct buf *bp)
1104 {
1105 	int s;
1106 
1107 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1108 
1109 	vhold(vp);
1110 	bp->b_vp = vp;
1111 	bp->b_dev = vn_todev(vp);
1112 	/*
1113 	 * Insert onto list for new vnode.
1114 	 */
1115 	s = splbio();
1116 	bp->b_xflags |= BX_VNCLEAN;
1117 	bp->b_xflags &= ~BX_VNDIRTY;
1118 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1119 	splx(s);
1120 }
1121 
1122 /*
1123  * Disassociate a buffer from a vnode.
1124  */
1125 void
1126 brelvp(struct buf *bp)
1127 {
1128 	struct vnode *vp;
1129 	struct buflists *listheadp;
1130 	int s;
1131 
1132 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1133 
1134 	/*
1135 	 * Delete from old vnode list, if on one.
1136 	 */
1137 	vp = bp->b_vp;
1138 	s = splbio();
1139 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1140 		if (bp->b_xflags & BX_VNDIRTY)
1141 			listheadp = &vp->v_dirtyblkhd;
1142 		else
1143 			listheadp = &vp->v_cleanblkhd;
1144 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1145 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1146 	}
1147 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1148 		vp->v_flag &= ~VONWORKLST;
1149 		LIST_REMOVE(vp, v_synclist);
1150 	}
1151 	splx(s);
1152 	bp->b_vp = (struct vnode *) 0;
1153 	vdrop(vp);
1154 }
1155 
1156 /*
1157  * The workitem queue.
1158  *
1159  * It is useful to delay writes of file data and filesystem metadata
1160  * for tens of seconds so that quickly created and deleted files need
1161  * not waste disk bandwidth being created and removed. To realize this,
1162  * we append vnodes to a "workitem" queue. When running with a soft
1163  * updates implementation, most pending metadata dependencies should
1164  * not wait for more than a few seconds. Thus, mounted on block devices
1165  * are delayed only about a half the time that file data is delayed.
1166  * Similarly, directory updates are more critical, so are only delayed
1167  * about a third the time that file data is delayed. Thus, there are
1168  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1169  * one each second (driven off the filesystem syncer process). The
1170  * syncer_delayno variable indicates the next queue that is to be processed.
1171  * Items that need to be processed soon are placed in this queue:
1172  *
1173  *	syncer_workitem_pending[syncer_delayno]
1174  *
1175  * A delay of fifteen seconds is done by placing the request fifteen
1176  * entries later in the queue:
1177  *
1178  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1179  *
1180  */
1181 
1182 /*
1183  * Add an item to the syncer work queue.
1184  */
1185 static void
1186 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1187 {
1188 	int s, slot;
1189 
1190 	s = splbio();
1191 
1192 	if (vp->v_flag & VONWORKLST) {
1193 		LIST_REMOVE(vp, v_synclist);
1194 	}
1195 
1196 	if (delay > syncer_maxdelay - 2)
1197 		delay = syncer_maxdelay - 2;
1198 	slot = (syncer_delayno + delay) & syncer_mask;
1199 
1200 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1201 	vp->v_flag |= VONWORKLST;
1202 	splx(s);
1203 }
1204 
1205 struct  thread *updatethread;
1206 static void sched_sync (void);
1207 static struct kproc_desc up_kp = {
1208 	"syncer",
1209 	sched_sync,
1210 	&updatethread
1211 };
1212 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1213 
1214 /*
1215  * System filesystem synchronizer daemon.
1216  */
1217 void
1218 sched_sync(void)
1219 {
1220 	struct synclist *slp;
1221 	struct vnode *vp;
1222 	long starttime;
1223 	int s;
1224 	struct thread *td = curthread;
1225 
1226 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
1227 	    SHUTDOWN_PRI_LAST);
1228 
1229 	for (;;) {
1230 		kproc_suspend_loop();
1231 
1232 		starttime = time_second;
1233 
1234 		/*
1235 		 * Push files whose dirty time has expired.  Be careful
1236 		 * of interrupt race on slp queue.
1237 		 */
1238 		s = splbio();
1239 		slp = &syncer_workitem_pending[syncer_delayno];
1240 		syncer_delayno += 1;
1241 		if (syncer_delayno == syncer_maxdelay)
1242 			syncer_delayno = 0;
1243 		splx(s);
1244 
1245 		while ((vp = LIST_FIRST(slp)) != NULL) {
1246 			if (VOP_ISLOCKED(vp, NULL) == 0) {
1247 				vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
1248 				(void) VOP_FSYNC(vp, MNT_LAZY, td);
1249 				VOP_UNLOCK(vp, NULL, 0, td);
1250 			}
1251 			s = splbio();
1252 			if (LIST_FIRST(slp) == vp) {
1253 				/*
1254 				 * Note: v_tag VT_VFS vps can remain on the
1255 				 * worklist too with no dirty blocks, but
1256 				 * since sync_fsync() moves it to a different
1257 				 * slot we are safe.
1258 				 */
1259 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1260 				    !vn_isdisk(vp, NULL))
1261 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1262 				/*
1263 				 * Put us back on the worklist.  The worklist
1264 				 * routine will remove us from our current
1265 				 * position and then add us back in at a later
1266 				 * position.
1267 				 */
1268 				vn_syncer_add_to_worklist(vp, syncdelay);
1269 			}
1270 			splx(s);
1271 		}
1272 
1273 		/*
1274 		 * Do soft update processing.
1275 		 */
1276 		if (bioops.io_sync)
1277 			(*bioops.io_sync)(NULL);
1278 
1279 		/*
1280 		 * The variable rushjob allows the kernel to speed up the
1281 		 * processing of the filesystem syncer process. A rushjob
1282 		 * value of N tells the filesystem syncer to process the next
1283 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1284 		 * is used by the soft update code to speed up the filesystem
1285 		 * syncer process when the incore state is getting so far
1286 		 * ahead of the disk that the kernel memory pool is being
1287 		 * threatened with exhaustion.
1288 		 */
1289 		if (rushjob > 0) {
1290 			rushjob -= 1;
1291 			continue;
1292 		}
1293 		/*
1294 		 * If it has taken us less than a second to process the
1295 		 * current work, then wait. Otherwise start right over
1296 		 * again. We can still lose time if any single round
1297 		 * takes more than two seconds, but it does not really
1298 		 * matter as we are just trying to generally pace the
1299 		 * filesystem activity.
1300 		 */
1301 		if (time_second == starttime)
1302 			tsleep(&lbolt, 0, "syncer", 0);
1303 	}
1304 }
1305 
1306 /*
1307  * Request the syncer daemon to speed up its work.
1308  * We never push it to speed up more than half of its
1309  * normal turn time, otherwise it could take over the cpu.
1310  *
1311  * YYY wchan field protected by the BGL.
1312  */
1313 int
1314 speedup_syncer(void)
1315 {
1316 	crit_enter();
1317 	if (updatethread->td_wchan == &lbolt) { /* YYY */
1318 		unsleep(updatethread);
1319 		lwkt_schedule(updatethread);
1320 	}
1321 	crit_exit();
1322 	if (rushjob < syncdelay / 2) {
1323 		rushjob += 1;
1324 		stat_rush_requests += 1;
1325 		return (1);
1326 	}
1327 	return(0);
1328 }
1329 
1330 /*
1331  * Associate a p-buffer with a vnode.
1332  *
1333  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1334  * with the buffer.  i.e. the bp has not been linked into the vnode or
1335  * ref-counted.
1336  */
1337 void
1338 pbgetvp(struct vnode *vp, struct buf *bp)
1339 {
1340 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1341 
1342 	bp->b_vp = vp;
1343 	bp->b_flags |= B_PAGING;
1344 	bp->b_dev = vn_todev(vp);
1345 }
1346 
1347 /*
1348  * Disassociate a p-buffer from a vnode.
1349  */
1350 void
1351 pbrelvp(struct buf *bp)
1352 {
1353 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1354 
1355 	/* XXX REMOVE ME */
1356 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1357 		panic(
1358 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1359 		    bp,
1360 		    (int)bp->b_flags
1361 		);
1362 	}
1363 	bp->b_vp = (struct vnode *) 0;
1364 	bp->b_flags &= ~B_PAGING;
1365 }
1366 
1367 void
1368 pbreassignbuf(struct buf *bp, struct vnode *newvp)
1369 {
1370 	if ((bp->b_flags & B_PAGING) == 0) {
1371 		panic(
1372 		    "pbreassignbuf() on non phys bp %p",
1373 		    bp
1374 		);
1375 	}
1376 	bp->b_vp = newvp;
1377 }
1378 
1379 /*
1380  * Reassign a buffer from one vnode to another.
1381  * Used to assign file specific control information
1382  * (indirect blocks) to the vnode to which they belong.
1383  */
1384 void
1385 reassignbuf(struct buf *bp, struct vnode *newvp)
1386 {
1387 	struct buflists *listheadp;
1388 	int delay;
1389 	int s;
1390 
1391 	if (newvp == NULL) {
1392 		printf("reassignbuf: NULL");
1393 		return;
1394 	}
1395 	++reassignbufcalls;
1396 
1397 	/*
1398 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1399 	 * is not fully linked in.
1400 	 */
1401 	if (bp->b_flags & B_PAGING)
1402 		panic("cannot reassign paging buffer");
1403 
1404 	s = splbio();
1405 	/*
1406 	 * Delete from old vnode list, if on one.
1407 	 */
1408 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1409 		if (bp->b_xflags & BX_VNDIRTY)
1410 			listheadp = &bp->b_vp->v_dirtyblkhd;
1411 		else
1412 			listheadp = &bp->b_vp->v_cleanblkhd;
1413 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1414 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1415 		if (bp->b_vp != newvp) {
1416 			vdrop(bp->b_vp);
1417 			bp->b_vp = NULL;	/* for clarification */
1418 		}
1419 	}
1420 	/*
1421 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1422 	 * of clean buffers.
1423 	 */
1424 	if (bp->b_flags & B_DELWRI) {
1425 		struct buf *tbp;
1426 
1427 		listheadp = &newvp->v_dirtyblkhd;
1428 		if ((newvp->v_flag & VONWORKLST) == 0) {
1429 			switch (newvp->v_type) {
1430 			case VDIR:
1431 				delay = dirdelay;
1432 				break;
1433 			case VCHR:
1434 			case VBLK:
1435 				if (newvp->v_rdev &&
1436 				    newvp->v_rdev->si_mountpoint != NULL) {
1437 					delay = metadelay;
1438 					break;
1439 				}
1440 				/* fall through */
1441 			default:
1442 				delay = filedelay;
1443 			}
1444 			vn_syncer_add_to_worklist(newvp, delay);
1445 		}
1446 		bp->b_xflags |= BX_VNDIRTY;
1447 		tbp = TAILQ_FIRST(listheadp);
1448 		if (tbp == NULL ||
1449 		    bp->b_lblkno == 0 ||
1450 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1451 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1452 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1453 			++reassignbufsortgood;
1454 		} else if (bp->b_lblkno < 0) {
1455 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1456 			++reassignbufsortgood;
1457 		} else if (reassignbufmethod == 1) {
1458 			/*
1459 			 * New sorting algorithm, only handle sequential case,
1460 			 * otherwise append to end (but before metadata)
1461 			 */
1462 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1463 			    (tbp->b_xflags & BX_VNDIRTY)) {
1464 				/*
1465 				 * Found the best place to insert the buffer
1466 				 */
1467 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1468 				++reassignbufsortgood;
1469 			} else {
1470 				/*
1471 				 * Missed, append to end, but before meta-data.
1472 				 * We know that the head buffer in the list is
1473 				 * not meta-data due to prior conditionals.
1474 				 *
1475 				 * Indirect effects:  NFS second stage write
1476 				 * tends to wind up here, giving maximum
1477 				 * distance between the unstable write and the
1478 				 * commit rpc.
1479 				 */
1480 				tbp = TAILQ_LAST(listheadp, buflists);
1481 				while (tbp && tbp->b_lblkno < 0)
1482 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1483 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1484 				++reassignbufsortbad;
1485 			}
1486 		} else {
1487 			/*
1488 			 * Old sorting algorithm, scan queue and insert
1489 			 */
1490 			struct buf *ttbp;
1491 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1492 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1493 				++reassignbufloops;
1494 				tbp = ttbp;
1495 			}
1496 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1497 		}
1498 	} else {
1499 		bp->b_xflags |= BX_VNCLEAN;
1500 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1501 		if ((newvp->v_flag & VONWORKLST) &&
1502 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1503 			newvp->v_flag &= ~VONWORKLST;
1504 			LIST_REMOVE(newvp, v_synclist);
1505 		}
1506 	}
1507 	if (bp->b_vp != newvp) {
1508 		bp->b_vp = newvp;
1509 		vhold(bp->b_vp);
1510 	}
1511 	splx(s);
1512 }
1513 
1514 /*
1515  * Create a vnode for a block device.
1516  * Used for mounting the root file system.
1517  */
1518 int
1519 bdevvp(dev_t dev, struct vnode **vpp)
1520 {
1521 	struct vnode *vp;
1522 	struct vnode *nvp;
1523 	int error;
1524 
1525 	if (dev == NODEV) {
1526 		*vpp = NULLVP;
1527 		return (ENXIO);
1528 	}
1529 	error = getnewvnode(VT_NON, NULL, spec_vnode_vops, &nvp, 0, 0);
1530 	if (error) {
1531 		*vpp = NULLVP;
1532 		return (error);
1533 	}
1534 	vp = nvp;
1535 	vp->v_type = VCHR;
1536 	vp->v_udev = dev->si_udev;
1537 	*vpp = vp;
1538 	return (0);
1539 }
1540 
1541 int
1542 v_associate_rdev(struct vnode *vp, dev_t dev)
1543 {
1544 	lwkt_tokref ilock;
1545 
1546 	if (dev == NULL || dev == NODEV)
1547 		return(ENXIO);
1548 	if (dev_is_good(dev) == 0)
1549 		return(ENXIO);
1550 	KKASSERT(vp->v_rdev == NULL);
1551 	if (dev_ref_debug)
1552 		printf("Z1");
1553 	vp->v_rdev = reference_dev(dev);
1554 	lwkt_gettoken(&ilock, &spechash_token);
1555 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1556 	lwkt_reltoken(&ilock);
1557 	return(0);
1558 }
1559 
1560 void
1561 v_release_rdev(struct vnode *vp)
1562 {
1563 	lwkt_tokref ilock;
1564 	dev_t dev;
1565 
1566 	if ((dev = vp->v_rdev) != NULL) {
1567 		lwkt_gettoken(&ilock, &spechash_token);
1568 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1569 		if (dev_ref_debug && vp->v_opencount != 0) {
1570 			printf("releasing rdev with non-0 "
1571 				"v_opencount(%d) (revoked?)\n",
1572 				vp->v_opencount);
1573 		}
1574 		vp->v_rdev = NULL;
1575 		vp->v_opencount = 0;
1576 		release_dev(dev);
1577 		lwkt_reltoken(&ilock);
1578 	}
1579 }
1580 
1581 /*
1582  * Add a vnode to the alias list hung off the dev_t.  We only associate
1583  * the device number with the vnode.  The actual device is not associated
1584  * until the vnode is opened (usually in spec_open()), and will be
1585  * disassociated on last close.
1586  */
1587 void
1588 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1589 {
1590 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1591 		panic("addaliasu on non-special vnode");
1592 	nvp->v_udev = nvp_udev;
1593 }
1594 
1595 /*
1596  * Grab a particular vnode from the free list, increment its
1597  * reference count and lock it. The vnode lock bit is set if the
1598  * vnode is being eliminated in vgone. The process is awakened
1599  * when the transition is completed, and an error returned to
1600  * indicate that the vnode is no longer usable (possibly having
1601  * been changed to a new file system type).
1602  *
1603  * This code is very sensitive.  We are depending on the vnode interlock
1604  * to be maintained through to the vn_lock() call, which means that we
1605  * cannot block which means that we cannot call vbusy() until after vn_lock().
1606  * If the interlock is not maintained, the VXLOCK check will not properly
1607  * interlock against a vclean()'s LK_DRAIN operation on the lock.
1608  */
1609 int
1610 vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
1611 {
1612 	int error;
1613 	lwkt_tokref vvlock;
1614 
1615 	/*
1616 	 * We need the interlock to safely modify the v_ fields.  ZZZ it is
1617 	 * only legal to pass (1) the vnode's interlock and (2) only pass
1618 	 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1619 	 * held.
1620 	 */
1621 	if ((flags & LK_INTERLOCK) == 0) {
1622 		lwkt_gettoken(&vvlock, vp->v_interlock);
1623 		vlock = &vvlock;
1624 	}
1625 
1626 	/*
1627 	 * If the vnode is in the process of being cleaned out for
1628 	 * another use, we wait for the cleaning to finish and then
1629 	 * return failure. Cleaning is determined by checking that
1630 	 * the VXLOCK flag is set.  It is possible for the vnode to be
1631 	 * self-referenced during the cleaning operation.
1632 	 */
1633 	if (vp->v_flag & VXLOCK) {
1634 		if (vp->v_vxthread == curthread) {
1635 #if 0
1636 			/* this can now occur in normal operation */
1637 			log(LOG_INFO, "VXLOCK interlock avoided\n");
1638 #endif
1639 		} else {
1640 			vp->v_flag |= VXWANT;
1641 			lwkt_reltoken(vlock);
1642 			tsleep((caddr_t)vp, 0, "vget", 0);
1643 			return (ENOENT);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Bump v_usecount to prevent the vnode from being recycled.  The
1649 	 * usecount needs to be bumped before we successfully get our lock.
1650 	 */
1651 	vp->v_usecount++;
1652 	if (flags & LK_TYPE_MASK) {
1653 		if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
1654 			/*
1655 			 * must expand vrele here because we do not want
1656 			 * to call VOP_INACTIVE if the reference count
1657 			 * drops back to zero since it was never really
1658 			 * active. We must remove it from the free list
1659 			 * before sleeping so that multiple processes do
1660 			 * not try to recycle it.
1661 			 */
1662 			lwkt_gettokref(vlock);
1663 			vp->v_usecount--;
1664 			vmaybefree(vp);
1665 			lwkt_reltoken(vlock);
1666 		}
1667 		return (error);
1668 	}
1669 	if (VSHOULDBUSY(vp))
1670 		vbusy(vp);	/* interlock must be held on call */
1671 	lwkt_reltoken(vlock);
1672 	return (0);
1673 }
1674 
1675 void
1676 vref(struct vnode *vp)
1677 {
1678 	crit_enter();	/* YYY use crit section for moment / BGL protected */
1679 	vp->v_usecount++;
1680 	crit_exit();
1681 }
1682 
1683 /*
1684  * Release a usecount on a vnode.  This routine does not call unlock on the
1685  * vnode.
1686  *
1687  * If the usecount drops to zero, call the inactive routine and return the
1688  * vnode to the freelist.
1689  */
1690 void
1691 vrele(struct vnode *vp)
1692 {
1693 	struct thread *td = curthread;	/* XXX */
1694 	lwkt_tokref vlock;
1695 
1696 	KASSERT(vp != NULL && vp->v_usecount >= 0,
1697 	    ("vrele: null vp or <=0 v_usecount"));
1698 
1699 	lwkt_gettoken(&vlock, vp->v_interlock);
1700 
1701 	if (vp->v_usecount > 1) {
1702 		vp->v_usecount--;
1703 		lwkt_reltoken(&vlock);
1704 		return;
1705 	}
1706 
1707 	if (vp->v_usecount == 1) {
1708 		vp->v_usecount--;
1709 		/*
1710 		 * We must call VOP_INACTIVE with the node locked and the
1711 		 * usecount 0.  If we are doing a vpu, the node is already
1712 		 * locked, but, in the case of vrele, we must explicitly lock
1713 		 * the vnode before calling VOP_INACTIVE.
1714 		 */
1715 
1716 		if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
1717 			VOP_INACTIVE(vp, td);
1718 		vmaybefree(vp);
1719 		lwkt_reltoken(&vlock);
1720 	} else {
1721 #ifdef DIAGNOSTIC
1722 		vprint("vrele: negative ref count", vp);
1723 #endif
1724 		lwkt_reltoken(&vlock);
1725 		panic("vrele: negative ref cnt");
1726 	}
1727 }
1728 
1729 /*
1730  * Release a usecount on a vnode.  This routine does not call unlock on the
1731  * vnode.   No action is taken if the usecount drops to zero.  This routine
1732  * is typically called only from within a *_inactive() procedure to avoid
1733  * recursing the procedure.
1734  */
1735 void
1736 vrele_noinactive(struct vnode *vp)
1737 {
1738 	lwkt_tokref vlock;
1739 
1740 	KASSERT(vp != NULL && vp->v_usecount >= 0,
1741 	    ("vrele: null vp or <=0 v_usecount"));
1742 
1743 	lwkt_gettoken(&vlock, vp->v_interlock);
1744 	vp->v_usecount--;
1745 	lwkt_reltoken(&vlock);
1746 }
1747 
1748 /*
1749  * Unlock a vnode and release a usecount on it, inactivating the vnode if
1750  * the count drops to 0.
1751  */
1752 void
1753 vput(struct vnode *vp)
1754 {
1755 	struct thread *td = curthread;	/* XXX */
1756 	lwkt_tokref vlock;
1757 
1758 	KASSERT(vp != NULL, ("vput: null vp"));
1759 
1760 	lwkt_gettoken(&vlock, vp->v_interlock);
1761 
1762 	if (vp->v_usecount > 1) {
1763 		vp->v_usecount--;
1764 		VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
1765 		return;
1766 	}
1767 
1768 	if (vp->v_usecount == 1) {
1769 		vp->v_usecount--;
1770 		/*
1771 		 * We must call VOP_INACTIVE with the node locked.
1772 		 * If we are doing a vpu, the node is already locked,
1773 		 * so we just need to release the vnode mutex.
1774 		 */
1775 		VOP_INACTIVE(vp, td);
1776 		vmaybefree(vp);
1777 		lwkt_reltoken(&vlock);
1778 	} else {
1779 #ifdef DIAGNOSTIC
1780 		vprint("vput: negative ref count", vp);
1781 #endif
1782 		lwkt_reltoken(&vlock);
1783 		panic("vput: negative ref cnt");
1784 	}
1785 }
1786 
1787 /*
1788  * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1789  * be held but isn't.
1790  */
1791 void
1792 vhold(struct vnode *vp)
1793 {
1794 	int s;
1795 
1796   	s = splbio();
1797 	vp->v_holdcnt++;
1798 	if (VSHOULDBUSY(vp))
1799 		vbusy(vp);	/* interlock must be held on call */
1800 	splx(s);
1801 }
1802 
1803 /*
1804  * One less who cares about this vnode.
1805  */
1806 void
1807 vdrop(struct vnode *vp)
1808 {
1809 	lwkt_tokref vlock;
1810 
1811 	lwkt_gettoken(&vlock, vp->v_interlock);
1812 	if (vp->v_holdcnt <= 0)
1813 		panic("vdrop: holdcnt");
1814 	vp->v_holdcnt--;
1815 	vmaybefree(vp);
1816 	lwkt_reltoken(&vlock);
1817 }
1818 
1819 int
1820 vmntvnodescan(
1821     struct mount *mp,
1822     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1823     int (*slowfunc)(struct mount *mp, struct vnode *vp,
1824 		    lwkt_tokref_t vlock, void *data),
1825     void *data
1826 ) {
1827 	lwkt_tokref ilock;
1828 	lwkt_tokref vlock;
1829 	struct vnode *pvp;
1830 	struct vnode *vp;
1831 	int r = 0;
1832 
1833 	/*
1834 	 * Scan the vnodes on the mount's vnode list.  Use a placemarker
1835 	 */
1836 	pvp = zalloc(vnode_zone);
1837 	pvp->v_flag |= VPLACEMARKER;
1838 
1839 	lwkt_gettoken(&ilock, &mntvnode_token);
1840 	TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1841 
1842 	while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1843 		/*
1844 		 * Move the placemarker and skip other placemarkers we
1845 		 * encounter.  The nothing can get in our way so the
1846 		 * mount point on the vp must be valid.
1847 		 */
1848 		TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1849 		TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1850 		if (vp->v_flag & VPLACEMARKER)
1851 			continue;
1852 		KKASSERT(vp->v_mount == mp);
1853 
1854 		/*
1855 		 * Quick test
1856 		 */
1857 		if (fastfunc) {
1858 			if ((r = fastfunc(mp, vp, data)) < 0)
1859 				continue;
1860 			if (r)
1861 				break;
1862 		}
1863 
1864 		/*
1865 		 * Get the vnodes interlock and make sure it is still on the
1866 		 * mount list.  Skip it if it has moved (we may encounter it
1867 		 * later).  Then do the with-interlock test.  The callback
1868 		 * is responsible for releasing the vnode interlock.
1869 		 *
1870 		 * The interlock is type-stable.
1871 		 */
1872 		if (slowfunc) {
1873 			lwkt_gettoken(&vlock, vp->v_interlock);
1874 			if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1875 				printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1876 				lwkt_reltoken(&vlock);
1877 				continue;
1878 			}
1879 			if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1880 				KKASSERT(lwkt_havetokref(&vlock) == 0);
1881 				break;
1882 			}
1883 			KKASSERT(lwkt_havetokref(&vlock) == 0);
1884 		}
1885 	}
1886 	TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1887 	zfree(vnode_zone, pvp);
1888 	lwkt_reltoken(&ilock);
1889 	return(r);
1890 }
1891 
1892 /*
1893  * Remove any vnodes in the vnode table belonging to mount point mp.
1894  *
1895  * If FORCECLOSE is not specified, there should not be any active ones,
1896  * return error if any are found (nb: this is a user error, not a
1897  * system error). If FORCECLOSE is specified, detach any active vnodes
1898  * that are found.
1899  *
1900  * If WRITECLOSE is set, only flush out regular file vnodes open for
1901  * writing.
1902  *
1903  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1904  *
1905  * `rootrefs' specifies the base reference count for the root vnode
1906  * of this filesystem. The root vnode is considered busy if its
1907  * v_usecount exceeds this value. On a successful return, vflush()
1908  * will call vrele() on the root vnode exactly rootrefs times.
1909  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1910  * be zero.
1911  */
1912 #ifdef DIAGNOSTIC
1913 static int busyprt = 0;		/* print out busy vnodes */
1914 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1915 #endif
1916 
1917 static int vflush_scan(struct mount *mp, struct vnode *vp,
1918 			lwkt_tokref_t vlock, void *data);
1919 
1920 struct vflush_info {
1921 	int flags;
1922 	int busy;
1923 	thread_t td;
1924 };
1925 
1926 int
1927 vflush(struct mount *mp, int rootrefs, int flags)
1928 {
1929 	struct thread *td = curthread;	/* XXX */
1930 	struct vnode *rootvp = NULL;
1931 	int error;
1932 	lwkt_tokref vlock;
1933 	struct vflush_info vflush_info;
1934 
1935 	if (rootrefs > 0) {
1936 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1937 		    ("vflush: bad args"));
1938 		/*
1939 		 * Get the filesystem root vnode. We can vput() it
1940 		 * immediately, since with rootrefs > 0, it won't go away.
1941 		 */
1942 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1943 			return (error);
1944 		vput(rootvp);
1945 	}
1946 
1947 	vflush_info.busy = 0;
1948 	vflush_info.flags = flags;
1949 	vflush_info.td = td;
1950 	vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
1951 
1952 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1953 		/*
1954 		 * If just the root vnode is busy, and if its refcount
1955 		 * is equal to `rootrefs', then go ahead and kill it.
1956 		 */
1957 		lwkt_gettoken(&vlock, rootvp->v_interlock);
1958 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1959 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1960 		if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1961 			vgonel(rootvp, &vlock, td);
1962 			vflush_info.busy = 0;
1963 		} else {
1964 			lwkt_reltoken(&vlock);
1965 		}
1966 	}
1967 	if (vflush_info.busy)
1968 		return (EBUSY);
1969 	for (; rootrefs > 0; rootrefs--)
1970 		vrele(rootvp);
1971 	return (0);
1972 }
1973 
1974 /*
1975  * The scan callback is made with an interlocked vnode.
1976  */
1977 static int
1978 vflush_scan(struct mount *mp, struct vnode *vp,
1979 	    lwkt_tokref_t vlock, void *data)
1980 {
1981 	struct vflush_info *info = data;
1982 	struct vattr vattr;
1983 
1984 	/*
1985 	 * Skip over a vnodes marked VSYSTEM.
1986 	 */
1987 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1988 		lwkt_reltoken(vlock);
1989 		return(0);
1990 	}
1991 
1992 	/*
1993 	 * If WRITECLOSE is set, flush out unlinked but still open
1994 	 * files (even if open only for reading) and regular file
1995 	 * vnodes open for writing.
1996 	 */
1997 	if ((info->flags & WRITECLOSE) &&
1998 	    (vp->v_type == VNON ||
1999 	    (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
2000 	    vattr.va_nlink > 0)) &&
2001 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2002 		lwkt_reltoken(vlock);
2003 		return(0);
2004 	}
2005 
2006 	/*
2007 	 * With v_usecount == 0, all we need to do is clear out the
2008 	 * vnode data structures and we are done.
2009 	 */
2010 	if (vp->v_usecount == 0) {
2011 		vgonel(vp, vlock, info->td);
2012 		return(0);
2013 	}
2014 
2015 	/*
2016 	 * If FORCECLOSE is set, forcibly close the vnode. For block
2017 	 * or character devices, revert to an anonymous device. For
2018 	 * all other files, just kill them.
2019 	 */
2020 	if (info->flags & FORCECLOSE) {
2021 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
2022 			vgonel(vp, vlock, info->td);
2023 		} else {
2024 			vclean(vp, vlock, 0, info->td);
2025 			vp->v_ops = spec_vnode_vops;
2026 			insmntque(vp, (struct mount *) 0);
2027 		}
2028 		return(0);
2029 	}
2030 #ifdef DIAGNOSTIC
2031 	if (busyprt)
2032 		vprint("vflush: busy vnode", vp);
2033 #endif
2034 	lwkt_reltoken(vlock);
2035 	++info->busy;
2036 	return(0);
2037 }
2038 
2039 /*
2040  * Disassociate the underlying file system from a vnode.
2041  */
2042 static void
2043 vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
2044 {
2045 	int active;
2046 
2047 	/*
2048 	 * Check to see if the vnode is in use. If so we have to reference it
2049 	 * before we clean it out so that its count cannot fall to zero and
2050 	 * generate a race against ourselves to recycle it.
2051 	 */
2052 	if ((active = vp->v_usecount))
2053 		vp->v_usecount++;
2054 
2055 	/*
2056 	 * Prevent the vnode from being recycled or brought into use while we
2057 	 * clean it out.
2058 	 */
2059 	if (vp->v_flag & VXLOCK)
2060 		panic("vclean: deadlock");
2061 	vp->v_flag |= VXLOCK;
2062 	vp->v_vxthread = curthread;
2063 
2064 	/*
2065 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2066 	 * have the object locked while it cleans it out. The VOP_LOCK
2067 	 * ensures that the VOP_INACTIVE routine is done with its work.
2068 	 * For active vnodes, it ensures that no other activity can
2069 	 * occur while the underlying object is being cleaned out.
2070 	 *
2071 	 * NOTE: we continue to hold the vnode interlock through to the
2072 	 * end of vclean().
2073 	 */
2074 	VOP_LOCK(vp, NULL, LK_DRAIN, td);
2075 
2076 	/*
2077 	 * Clean out any buffers associated with the vnode.
2078 	 */
2079 	vinvalbuf(vp, V_SAVE, td, 0, 0);
2080 	VOP_DESTROYVOBJECT(vp);
2081 
2082 	/*
2083 	 * If purging an active vnode, it must be closed and
2084 	 * deactivated before being reclaimed. Note that the
2085 	 * VOP_INACTIVE will unlock the vnode.
2086 	 */
2087 	if (active) {
2088 		if (flags & DOCLOSE)
2089 			VOP_CLOSE(vp, FNONBLOCK, td);
2090 		VOP_INACTIVE(vp, td);
2091 	} else {
2092 		/*
2093 		 * Any other processes trying to obtain this lock must first
2094 		 * wait for VXLOCK to clear, then call the new lock operation.
2095 		 */
2096 		VOP_UNLOCK(vp, NULL, 0, td);
2097 	}
2098 	/*
2099 	 * Reclaim the vnode.
2100 	 */
2101 	if (VOP_RECLAIM(vp, td))
2102 		panic("vclean: cannot reclaim");
2103 
2104 	if (active) {
2105 		/*
2106 		 * Inline copy of vrele() since VOP_INACTIVE
2107 		 * has already been called.
2108 		 */
2109 		if (--vp->v_usecount <= 0) {
2110 #ifdef DIAGNOSTIC
2111 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2112 				vprint("vclean: bad ref count", vp);
2113 				panic("vclean: ref cnt");
2114 			}
2115 #endif
2116 			vfree(vp);
2117 		}
2118 	}
2119 
2120 	cache_purge(vp);
2121 	vmaybefree(vp);
2122 
2123 	/*
2124 	 * Done with purge, notify sleepers of the grim news.
2125 	 */
2126 	vp->v_ops = dead_vnode_vops;
2127 	vn_pollgone(vp);
2128 	vp->v_tag = VT_NON;
2129 	vp->v_flag &= ~VXLOCK;
2130 	vp->v_vxthread = NULL;
2131 	if (vp->v_flag & VXWANT) {
2132 		vp->v_flag &= ~VXWANT;
2133 		wakeup((caddr_t) vp);
2134 	}
2135 	lwkt_reltoken(vlock);
2136 }
2137 
2138 /*
2139  * Eliminate all activity associated with the requested vnode
2140  * and with all vnodes aliased to the requested vnode.
2141  *
2142  * revoke { struct vnode *a_vp, int a_flags }
2143  */
2144 int
2145 vop_stdrevoke(struct vop_revoke_args *ap)
2146 {
2147 	struct vnode *vp, *vq;
2148 	lwkt_tokref ilock;
2149 	dev_t dev;
2150 
2151 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2152 
2153 	vp = ap->a_vp;
2154 	/*
2155 	 * If a vgone (or vclean) is already in progress,
2156 	 * wait until it is done and return.
2157 	 */
2158 	if (vp->v_flag & VXLOCK) {
2159 		vp->v_flag |= VXWANT;
2160 		/*lwkt_reltoken(vlock); ZZZ */
2161 		tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
2162 		return (0);
2163 	}
2164 
2165 	/*
2166 	 * If the vnode has a device association, scrap all vnodes associated
2167 	 * with the device.  Don't let the device disappear on us while we
2168 	 * are scrapping the vnodes.
2169 	 */
2170 	if (vp->v_type != VCHR && vp->v_type != VBLK)
2171 		return(0);
2172 	if ((dev = vp->v_rdev) == NULL) {
2173 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
2174 			return(0);
2175 	}
2176 	reference_dev(dev);
2177 	for (;;) {
2178 		lwkt_gettoken(&ilock, &spechash_token);
2179 		vq = SLIST_FIRST(&dev->si_hlist);
2180 		lwkt_reltoken(&ilock);
2181 		if (vq == NULL)
2182 			break;
2183 		vgone(vq);
2184 	}
2185 	release_dev(dev);
2186 	return (0);
2187 }
2188 
2189 /*
2190  * Recycle an unused vnode to the front of the free list.
2191  * Release the passed interlock if the vnode will be recycled.
2192  */
2193 int
2194 vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
2195 {
2196 	lwkt_tokref vlock;
2197 
2198 	lwkt_gettoken(&vlock, vp->v_interlock);
2199 	if (vp->v_usecount == 0) {
2200 		if (inter_lkp)
2201 			lwkt_reltoken(inter_lkp);
2202 		vgonel(vp, &vlock, td);
2203 		return (1);
2204 	}
2205 	lwkt_reltoken(&vlock);
2206 	return (0);
2207 }
2208 
2209 /*
2210  * Eliminate all activity associated with a vnode
2211  * in preparation for reuse.
2212  */
2213 void
2214 vgone(struct vnode *vp)
2215 {
2216 	struct thread *td = curthread;	/* XXX */
2217 	lwkt_tokref vlock;
2218 
2219 	lwkt_gettoken(&vlock, vp->v_interlock);
2220 	vgonel(vp, &vlock, td);
2221 }
2222 
2223 /*
2224  * vgone, with the vp interlock held.
2225  */
2226 void
2227 vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
2228 {
2229 	lwkt_tokref ilock;
2230 	int s;
2231 
2232 	/*
2233 	 * If a vgone (or vclean) is already in progress,
2234 	 * wait until it is done and return.
2235 	 */
2236 	if (vp->v_flag & VXLOCK) {
2237 		vp->v_flag |= VXWANT;
2238 		lwkt_reltoken(vlock);
2239 		tsleep((caddr_t)vp, 0, "vgone", 0);
2240 		return;
2241 	}
2242 
2243 	/*
2244 	 * Clean out the filesystem specific data.
2245 	 */
2246 	vclean(vp, vlock, DOCLOSE, td);
2247 	lwkt_gettokref(vlock);
2248 
2249 	/*
2250 	 * Delete from old mount point vnode list, if on one.
2251 	 */
2252 	if (vp->v_mount != NULL)
2253 		insmntque(vp, (struct mount *)0);
2254 
2255 	/*
2256 	 * If special device, remove it from special device alias list
2257 	 * if it is on one.  This should normally only occur if a vnode is
2258 	 * being revoked as the device should otherwise have been released
2259 	 * naturally.
2260 	 */
2261 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2262 		v_release_rdev(vp);
2263 	}
2264 
2265 	/*
2266 	 * If it is on the freelist and not already at the head,
2267 	 * move it to the head of the list. The test of the
2268 	 * VDOOMED flag and the reference count of zero is because
2269 	 * it will be removed from the free list by getnewvnode,
2270 	 * but will not have its reference count incremented until
2271 	 * after calling vgone. If the reference count were
2272 	 * incremented first, vgone would (incorrectly) try to
2273 	 * close the previous instance of the underlying object.
2274 	 */
2275 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2276 		s = splbio();
2277 		lwkt_gettoken(&ilock, &vnode_free_list_token);
2278 		if (vp->v_flag & VFREE)
2279 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2280 		else
2281 			freevnodes++;
2282 		vp->v_flag |= VFREE;
2283 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2284 		lwkt_reltoken(&ilock);
2285 		splx(s);
2286 	}
2287 	vp->v_type = VBAD;
2288 	lwkt_reltoken(vlock);
2289 }
2290 
2291 /*
2292  * Lookup a vnode by device number.
2293  */
2294 int
2295 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
2296 {
2297 	lwkt_tokref ilock;
2298 	struct vnode *vp;
2299 
2300 	lwkt_gettoken(&ilock, &spechash_token);
2301 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2302 		if (type == vp->v_type) {
2303 			*vpp = vp;
2304 			lwkt_reltoken(&ilock);
2305 			return (1);
2306 		}
2307 	}
2308 	lwkt_reltoken(&ilock);
2309 	return (0);
2310 }
2311 
2312 /*
2313  * Calculate the total number of references to a special device.  This
2314  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
2315  * an overloaded field.  Since udev2dev can now return NODEV, we have
2316  * to check for a NULL v_rdev.
2317  */
2318 int
2319 count_dev(dev_t dev)
2320 {
2321 	lwkt_tokref ilock;
2322 	struct vnode *vp;
2323 	int count = 0;
2324 
2325 	if (SLIST_FIRST(&dev->si_hlist)) {
2326 		lwkt_gettoken(&ilock, &spechash_token);
2327 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2328 			count += vp->v_usecount;
2329 		}
2330 		lwkt_reltoken(&ilock);
2331 	}
2332 	return(count);
2333 }
2334 
2335 int
2336 count_udev(udev_t udev)
2337 {
2338 	dev_t dev;
2339 
2340 	if ((dev = udev2dev(udev, 0)) == NODEV)
2341 		return(0);
2342 	return(count_dev(dev));
2343 }
2344 
2345 int
2346 vcount(struct vnode *vp)
2347 {
2348 	if (vp->v_rdev == NULL)
2349 		return(0);
2350 	return(count_dev(vp->v_rdev));
2351 }
2352 
2353 /*
2354  * Print out a description of a vnode.
2355  */
2356 static char *typename[] =
2357 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2358 
2359 void
2360 vprint(char *label, struct vnode *vp)
2361 {
2362 	char buf[96];
2363 
2364 	if (label != NULL)
2365 		printf("%s: %p: ", label, (void *)vp);
2366 	else
2367 		printf("%p: ", (void *)vp);
2368 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2369 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2370 	    vp->v_holdcnt);
2371 	buf[0] = '\0';
2372 	if (vp->v_flag & VROOT)
2373 		strcat(buf, "|VROOT");
2374 	if (vp->v_flag & VTEXT)
2375 		strcat(buf, "|VTEXT");
2376 	if (vp->v_flag & VSYSTEM)
2377 		strcat(buf, "|VSYSTEM");
2378 	if (vp->v_flag & VXLOCK)
2379 		strcat(buf, "|VXLOCK");
2380 	if (vp->v_flag & VXWANT)
2381 		strcat(buf, "|VXWANT");
2382 	if (vp->v_flag & VBWAIT)
2383 		strcat(buf, "|VBWAIT");
2384 	if (vp->v_flag & VDOOMED)
2385 		strcat(buf, "|VDOOMED");
2386 	if (vp->v_flag & VFREE)
2387 		strcat(buf, "|VFREE");
2388 	if (vp->v_flag & VOBJBUF)
2389 		strcat(buf, "|VOBJBUF");
2390 	if (buf[0] != '\0')
2391 		printf(" flags (%s)", &buf[1]);
2392 	if (vp->v_data == NULL) {
2393 		printf("\n");
2394 	} else {
2395 		printf("\n\t");
2396 		VOP_PRINT(vp);
2397 	}
2398 }
2399 
2400 #ifdef DDB
2401 #include <ddb/ddb.h>
2402 /*
2403  * List all of the locked vnodes in the system.
2404  * Called when debugging the kernel.
2405  */
2406 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2407 {
2408 	struct thread *td = curthread;	/* XXX */
2409 	lwkt_tokref ilock;
2410 	struct mount *mp, *nmp;
2411 	struct vnode *vp;
2412 
2413 	printf("Locked vnodes\n");
2414 	lwkt_gettoken(&ilock, &mountlist_token);
2415 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2416 		if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
2417 			nmp = TAILQ_NEXT(mp, mnt_list);
2418 			continue;
2419 		}
2420 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2421 			if (VOP_ISLOCKED(vp, NULL))
2422 				vprint((char *)0, vp);
2423 		}
2424 		lwkt_gettokref(&ilock);
2425 		nmp = TAILQ_NEXT(mp, mnt_list);
2426 		vfs_unbusy(mp, td);
2427 	}
2428 	lwkt_reltoken(&ilock);
2429 }
2430 #endif
2431 
2432 /*
2433  * Top level filesystem related information gathering.
2434  */
2435 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
2436 
2437 static int
2438 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2439 {
2440 	int *name = (int *)arg1 - 1;	/* XXX */
2441 	u_int namelen = arg2 + 1;	/* XXX */
2442 	struct vfsconf *vfsp;
2443 
2444 #if 1 || defined(COMPAT_PRELITE2)
2445 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2446 	if (namelen == 1)
2447 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2448 #endif
2449 
2450 #ifdef notyet
2451 	/* all sysctl names at this level are at least name and field */
2452 	if (namelen < 2)
2453 		return (ENOTDIR);		/* overloaded */
2454 	if (name[0] != VFS_GENERIC) {
2455 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2456 			if (vfsp->vfc_typenum == name[0])
2457 				break;
2458 		if (vfsp == NULL)
2459 			return (EOPNOTSUPP);
2460 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2461 		    oldp, oldlenp, newp, newlen, p));
2462 	}
2463 #endif
2464 	switch (name[1]) {
2465 	case VFS_MAXTYPENUM:
2466 		if (namelen != 2)
2467 			return (ENOTDIR);
2468 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2469 	case VFS_CONF:
2470 		if (namelen != 3)
2471 			return (ENOTDIR);	/* overloaded */
2472 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2473 			if (vfsp->vfc_typenum == name[2])
2474 				break;
2475 		if (vfsp == NULL)
2476 			return (EOPNOTSUPP);
2477 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2478 	}
2479 	return (EOPNOTSUPP);
2480 }
2481 
2482 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2483 	"Generic filesystem");
2484 
2485 #if 1 || defined(COMPAT_PRELITE2)
2486 
2487 static int
2488 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2489 {
2490 	int error;
2491 	struct vfsconf *vfsp;
2492 	struct ovfsconf ovfs;
2493 
2494 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2495 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2496 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2497 		ovfs.vfc_index = vfsp->vfc_typenum;
2498 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2499 		ovfs.vfc_flags = vfsp->vfc_flags;
2500 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2501 		if (error)
2502 			return error;
2503 	}
2504 	return 0;
2505 }
2506 
2507 #endif /* 1 || COMPAT_PRELITE2 */
2508 
2509 #if 0
2510 #define KINFO_VNODESLOP	10
2511 /*
2512  * Dump vnode list (via sysctl).
2513  * Copyout address of vnode followed by vnode.
2514  */
2515 /* ARGSUSED */
2516 static int
2517 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2518 {
2519 	struct proc *p = curproc;	/* XXX */
2520 	struct mount *mp, *nmp;
2521 	struct vnode *nvp, *vp;
2522 	lwkt_tokref ilock;
2523 	lwkt_tokref jlock;
2524 	int error;
2525 
2526 #define VPTRSZ	sizeof (struct vnode *)
2527 #define VNODESZ	sizeof (struct vnode)
2528 
2529 	req->lock = 0;
2530 	if (!req->oldptr) /* Make an estimate */
2531 		return (SYSCTL_OUT(req, 0,
2532 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2533 
2534 	lwkt_gettoken(&ilock, &mountlist_token);
2535 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2536 		if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
2537 			nmp = TAILQ_NEXT(mp, mnt_list);
2538 			continue;
2539 		}
2540 		lwkt_gettoken(&jlock, &mntvnode_token);
2541 again:
2542 		for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2543 		     vp != NULL;
2544 		     vp = nvp) {
2545 			/*
2546 			 * Check that the vp is still associated with
2547 			 * this filesystem.  RACE: could have been
2548 			 * recycled onto the same filesystem.
2549 			 */
2550 			if (vp->v_mount != mp)
2551 				goto again;
2552 			nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2553 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2554 			    (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2555 				lwkt_reltoken(&jlock);
2556 				return (error);
2557 			}
2558 		}
2559 		lwkt_reltoken(&jlock);
2560 		lwkt_gettokref(&ilock);
2561 		nmp = TAILQ_NEXT(mp, mnt_list);	/* ZZZ */
2562 		vfs_unbusy(mp, p);
2563 	}
2564 	lwkt_reltoken(&ilock);
2565 
2566 	return (0);
2567 }
2568 #endif
2569 
2570 /*
2571  * XXX
2572  * Exporting the vnode list on large systems causes them to crash.
2573  * Exporting the vnode list on medium systems causes sysctl to coredump.
2574  */
2575 #if 0
2576 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2577 	0, 0, sysctl_vnode, "S,vnode", "");
2578 #endif
2579 
2580 /*
2581  * Check to see if a filesystem is mounted on a block device.
2582  */
2583 int
2584 vfs_mountedon(struct vnode *vp)
2585 {
2586 	dev_t dev;
2587 
2588 	if ((dev = vp->v_rdev) == NULL)
2589 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2590 	if (dev != NODEV && dev->si_mountpoint)
2591 		return (EBUSY);
2592 	return (0);
2593 }
2594 
2595 /*
2596  * Unmount all filesystems. The list is traversed in reverse order
2597  * of mounting to avoid dependencies.
2598  */
2599 void
2600 vfs_unmountall(void)
2601 {
2602 	struct mount *mp;
2603 	struct thread *td = curthread;
2604 	int error;
2605 
2606 	if (td->td_proc == NULL)
2607 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
2608 
2609 	/*
2610 	 * Since this only runs when rebooting, it is not interlocked.
2611 	 */
2612 	while(!TAILQ_EMPTY(&mountlist)) {
2613 		mp = TAILQ_LAST(&mountlist, mntlist);
2614 		error = dounmount(mp, MNT_FORCE, td);
2615 		if (error) {
2616 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2617 			printf("unmount of %s failed (",
2618 			    mp->mnt_stat.f_mntonname);
2619 			if (error == EBUSY)
2620 				printf("BUSY)\n");
2621 			else
2622 				printf("%d)\n", error);
2623 		} else {
2624 			/* The unmount has removed mp from the mountlist */
2625 		}
2626 	}
2627 }
2628 
2629 /*
2630  * Build hash lists of net addresses and hang them off the mount point.
2631  * Called by ufs_mount() to set up the lists of export addresses.
2632  */
2633 static int
2634 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2635 		struct export_args *argp)
2636 {
2637 	struct netcred *np;
2638 	struct radix_node_head *rnh;
2639 	int i;
2640 	struct radix_node *rn;
2641 	struct sockaddr *saddr, *smask = 0;
2642 	struct domain *dom;
2643 	int error;
2644 
2645 	if (argp->ex_addrlen == 0) {
2646 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2647 			return (EPERM);
2648 		np = &nep->ne_defexported;
2649 		np->netc_exflags = argp->ex_flags;
2650 		np->netc_anon = argp->ex_anon;
2651 		np->netc_anon.cr_ref = 1;
2652 		mp->mnt_flag |= MNT_DEFEXPORTED;
2653 		return (0);
2654 	}
2655 
2656 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2657 		return (EINVAL);
2658 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2659 		return (EINVAL);
2660 
2661 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2662 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2663 	bzero((caddr_t) np, i);
2664 	saddr = (struct sockaddr *) (np + 1);
2665 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2666 		goto out;
2667 	if (saddr->sa_len > argp->ex_addrlen)
2668 		saddr->sa_len = argp->ex_addrlen;
2669 	if (argp->ex_masklen) {
2670 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2671 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2672 		if (error)
2673 			goto out;
2674 		if (smask->sa_len > argp->ex_masklen)
2675 			smask->sa_len = argp->ex_masklen;
2676 	}
2677 	i = saddr->sa_family;
2678 	if ((rnh = nep->ne_rtable[i]) == 0) {
2679 		/*
2680 		 * Seems silly to initialize every AF when most are not used,
2681 		 * do so on demand here
2682 		 */
2683 		for (dom = domains; dom; dom = dom->dom_next)
2684 			if (dom->dom_family == i && dom->dom_rtattach) {
2685 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2686 				    dom->dom_rtoffset);
2687 				break;
2688 			}
2689 		if ((rnh = nep->ne_rtable[i]) == 0) {
2690 			error = ENOBUFS;
2691 			goto out;
2692 		}
2693 	}
2694 	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2695 	    np->netc_rnodes);
2696 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2697 		error = EPERM;
2698 		goto out;
2699 	}
2700 	np->netc_exflags = argp->ex_flags;
2701 	np->netc_anon = argp->ex_anon;
2702 	np->netc_anon.cr_ref = 1;
2703 	return (0);
2704 out:
2705 	free(np, M_NETADDR);
2706 	return (error);
2707 }
2708 
2709 /* ARGSUSED */
2710 static int
2711 vfs_free_netcred(struct radix_node *rn, void *w)
2712 {
2713 	struct radix_node_head *rnh = (struct radix_node_head *) w;
2714 
2715 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2716 	free((caddr_t) rn, M_NETADDR);
2717 	return (0);
2718 }
2719 
2720 /*
2721  * Free the net address hash lists that are hanging off the mount points.
2722  */
2723 static void
2724 vfs_free_addrlist(struct netexport *nep)
2725 {
2726 	int i;
2727 	struct radix_node_head *rnh;
2728 
2729 	for (i = 0; i <= AF_MAX; i++)
2730 		if ((rnh = nep->ne_rtable[i])) {
2731 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2732 			    (caddr_t) rnh);
2733 			free((caddr_t) rnh, M_RTABLE);
2734 			nep->ne_rtable[i] = 0;
2735 		}
2736 }
2737 
2738 int
2739 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
2740 {
2741 	int error;
2742 
2743 	if (argp->ex_flags & MNT_DELEXPORT) {
2744 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2745 			vfs_setpublicfs(NULL, NULL, NULL);
2746 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2747 		}
2748 		vfs_free_addrlist(nep);
2749 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2750 	}
2751 	if (argp->ex_flags & MNT_EXPORTED) {
2752 		if (argp->ex_flags & MNT_EXPUBLIC) {
2753 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2754 				return (error);
2755 			mp->mnt_flag |= MNT_EXPUBLIC;
2756 		}
2757 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2758 			return (error);
2759 		mp->mnt_flag |= MNT_EXPORTED;
2760 	}
2761 	return (0);
2762 }
2763 
2764 
2765 /*
2766  * Set the publicly exported filesystem (WebNFS). Currently, only
2767  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2768  */
2769 int
2770 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2771 		struct export_args *argp)
2772 {
2773 	int error;
2774 	struct vnode *rvp;
2775 	char *cp;
2776 
2777 	/*
2778 	 * mp == NULL -> invalidate the current info, the FS is
2779 	 * no longer exported. May be called from either vfs_export
2780 	 * or unmount, so check if it hasn't already been done.
2781 	 */
2782 	if (mp == NULL) {
2783 		if (nfs_pub.np_valid) {
2784 			nfs_pub.np_valid = 0;
2785 			if (nfs_pub.np_index != NULL) {
2786 				FREE(nfs_pub.np_index, M_TEMP);
2787 				nfs_pub.np_index = NULL;
2788 			}
2789 		}
2790 		return (0);
2791 	}
2792 
2793 	/*
2794 	 * Only one allowed at a time.
2795 	 */
2796 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2797 		return (EBUSY);
2798 
2799 	/*
2800 	 * Get real filehandle for root of exported FS.
2801 	 */
2802 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2803 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2804 
2805 	if ((error = VFS_ROOT(mp, &rvp)))
2806 		return (error);
2807 
2808 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2809 		return (error);
2810 
2811 	vput(rvp);
2812 
2813 	/*
2814 	 * If an indexfile was specified, pull it in.
2815 	 */
2816 	if (argp->ex_indexfile != NULL) {
2817 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2818 		    M_WAITOK);
2819 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2820 		    MAXNAMLEN, (size_t *)0);
2821 		if (!error) {
2822 			/*
2823 			 * Check for illegal filenames.
2824 			 */
2825 			for (cp = nfs_pub.np_index; *cp; cp++) {
2826 				if (*cp == '/') {
2827 					error = EINVAL;
2828 					break;
2829 				}
2830 			}
2831 		}
2832 		if (error) {
2833 			FREE(nfs_pub.np_index, M_TEMP);
2834 			return (error);
2835 		}
2836 	}
2837 
2838 	nfs_pub.np_mount = mp;
2839 	nfs_pub.np_valid = 1;
2840 	return (0);
2841 }
2842 
2843 struct netcred *
2844 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2845 		struct sockaddr *nam)
2846 {
2847 	struct netcred *np;
2848 	struct radix_node_head *rnh;
2849 	struct sockaddr *saddr;
2850 
2851 	np = NULL;
2852 	if (mp->mnt_flag & MNT_EXPORTED) {
2853 		/*
2854 		 * Lookup in the export list first.
2855 		 */
2856 		if (nam != NULL) {
2857 			saddr = nam;
2858 			rnh = nep->ne_rtable[saddr->sa_family];
2859 			if (rnh != NULL) {
2860 				np = (struct netcred *)
2861 					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2862 							      rnh);
2863 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2864 					np = NULL;
2865 			}
2866 		}
2867 		/*
2868 		 * If no address match, use the default if it exists.
2869 		 */
2870 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2871 			np = &nep->ne_defexported;
2872 	}
2873 	return (np);
2874 }
2875 
2876 /*
2877  * perform msync on all vnodes under a mount point.  The mount point must
2878  * be locked.  This code is also responsible for lazy-freeing unreferenced
2879  * vnodes whos VM objects no longer contain pages.
2880  *
2881  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2882  */
2883 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2884 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2885 			    lwkt_tokref_t vlock, void *data);
2886 
2887 void
2888 vfs_msync(struct mount *mp, int flags)
2889 {
2890 	vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2891 }
2892 
2893 /*
2894  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2895  * vnodes, we cannot afford to do anything heavy weight until we have a
2896  * fairly good indication that there is work to do.
2897  */
2898 static
2899 int
2900 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2901 {
2902 	int flags = (int)data;
2903 
2904 	if ((vp->v_flag & VXLOCK) == 0) {
2905 		if (VSHOULDFREE(vp))
2906 			return(0);
2907 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2908 		    (vp->v_flag & VOBJDIRTY) &&
2909 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2910 			return(0);
2911 		}
2912 	}
2913 	return(-1);
2914 }
2915 
2916 static
2917 int
2918 vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2919 		lwkt_tokref_t vlock, void *data)
2920 {
2921 	vm_object_t obj;
2922 	int error;
2923 	int flags = (int)data;
2924 
2925 	if (vp->v_flag & VXLOCK)
2926 		return(0);
2927 
2928 	if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2929 	    (vp->v_flag & VOBJDIRTY) &&
2930 	    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2931 		error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2932 		if (error == 0) {
2933 			if (VOP_GETVOBJECT(vp, &obj) == 0) {
2934 				vm_object_page_clean(obj, 0, 0,
2935 				 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2936 			}
2937 			vput(vp);
2938 		}
2939 		return(0);
2940 	}
2941 	vmaybefree(vp);
2942 	lwkt_reltoken(vlock);
2943 	return(0);
2944 }
2945 
2946 /*
2947  * Create the VM object needed for VMIO and mmap support.  This
2948  * is done for all VREG files in the system.  Some filesystems might
2949  * afford the additional metadata buffering capability of the
2950  * VMIO code by making the device node be VMIO mode also.
2951  *
2952  * vp must be locked when vfs_object_create is called.
2953  */
2954 int
2955 vfs_object_create(struct vnode *vp, struct thread *td)
2956 {
2957 	return (VOP_CREATEVOBJECT(vp, td));
2958 }
2959 
2960 /*
2961  * NOTE: the vnode interlock must be held during the call.  We have to recheck
2962  * the VFREE flag since the vnode may have been removed from the free list
2963  * while we were blocked on vnode_free_list_token.  The use or hold count
2964  * must have already been bumped by the caller.
2965  */
2966 static void
2967 vbusy(struct vnode *vp)
2968 {
2969 	lwkt_tokref ilock;
2970 
2971 	lwkt_gettoken(&ilock, &vnode_free_list_token);
2972 	if ((vp->v_flag & VFREE) != 0) {
2973 	    TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2974 	    freevnodes--;
2975 	    vp->v_flag &= ~(VFREE|VAGE);
2976 	}
2977 	lwkt_reltoken(&ilock);
2978 }
2979 
2980 /*
2981  * NOTE: the vnode interlock must be held during the call.  The use or hold
2982  * count must have already been bumped by the caller.  We use a VINFREE to
2983  * interlock against other calls to vfree() which might occur while we
2984  * are blocked.  The vnode cannot be reused until it has actually been
2985  * placed on the free list, so there are no other races even though the
2986  * use and hold counts are 0.
2987  */
2988 static void
2989 vfree(struct vnode *vp)
2990 {
2991 	lwkt_tokref ilock;
2992 
2993 	if ((vp->v_flag & VINFREE) == 0) {
2994 		vp->v_flag |= VINFREE;
2995 		lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2996 		KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2997 		if (vp->v_flag & VAGE) {
2998 			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2999 		} else {
3000 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3001 		}
3002 		freevnodes++;
3003 		vp->v_flag &= ~(VAGE|VINFREE);
3004 		vp->v_flag |= VFREE;
3005 		lwkt_reltoken(&ilock);	/* can block */
3006 	}
3007 }
3008 
3009 
3010 /*
3011  * Record a process's interest in events which might happen to
3012  * a vnode.  Because poll uses the historic select-style interface
3013  * internally, this routine serves as both the ``check for any
3014  * pending events'' and the ``record my interest in future events''
3015  * functions.  (These are done together, while the lock is held,
3016  * to avoid race conditions.)
3017  */
3018 int
3019 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3020 {
3021 	lwkt_tokref ilock;
3022 
3023 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3024 	if (vp->v_pollinfo.vpi_revents & events) {
3025 		/*
3026 		 * This leaves events we are not interested
3027 		 * in available for the other process which
3028 		 * which presumably had requested them
3029 		 * (otherwise they would never have been
3030 		 * recorded).
3031 		 */
3032 		events &= vp->v_pollinfo.vpi_revents;
3033 		vp->v_pollinfo.vpi_revents &= ~events;
3034 
3035 		lwkt_reltoken(&ilock);
3036 		return events;
3037 	}
3038 	vp->v_pollinfo.vpi_events |= events;
3039 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
3040 	lwkt_reltoken(&ilock);
3041 	return 0;
3042 }
3043 
3044 /*
3045  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3046  * it is possible for us to miss an event due to race conditions, but
3047  * that condition is expected to be rare, so for the moment it is the
3048  * preferred interface.
3049  */
3050 void
3051 vn_pollevent(struct vnode *vp, int events)
3052 {
3053 	lwkt_tokref ilock;
3054 
3055 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3056 	if (vp->v_pollinfo.vpi_events & events) {
3057 		/*
3058 		 * We clear vpi_events so that we don't
3059 		 * call selwakeup() twice if two events are
3060 		 * posted before the polling process(es) is
3061 		 * awakened.  This also ensures that we take at
3062 		 * most one selwakeup() if the polling process
3063 		 * is no longer interested.  However, it does
3064 		 * mean that only one event can be noticed at
3065 		 * a time.  (Perhaps we should only clear those
3066 		 * event bits which we note?) XXX
3067 		 */
3068 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
3069 		vp->v_pollinfo.vpi_revents |= events;
3070 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
3071 	}
3072 	lwkt_reltoken(&ilock);
3073 }
3074 
3075 /*
3076  * Wake up anyone polling on vp because it is being revoked.
3077  * This depends on dead_poll() returning POLLHUP for correct
3078  * behavior.
3079  */
3080 void
3081 vn_pollgone(struct vnode *vp)
3082 {
3083 	lwkt_tokref ilock;
3084 
3085 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3086 	if (vp->v_pollinfo.vpi_events) {
3087 		vp->v_pollinfo.vpi_events = 0;
3088 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
3089 	}
3090 	lwkt_reltoken(&ilock);
3091 }
3092 
3093 
3094 
3095 /*
3096  * Routine to create and manage a filesystem syncer vnode.
3097  */
3098 #define sync_close ((int (*) (struct  vop_close_args *))nullop)
3099 static int	sync_fsync (struct  vop_fsync_args *);
3100 static int	sync_inactive (struct  vop_inactive_args *);
3101 static int	sync_reclaim  (struct  vop_reclaim_args *);
3102 #define sync_lock ((int (*) (struct  vop_lock_args *))vop_stdlock)
3103 #define sync_unlock ((int (*) (struct  vop_unlock_args *))vop_stdunlock)
3104 static int	sync_print (struct vop_print_args *);
3105 #define sync_islocked ((int(*) (struct vop_islocked_args *))vop_stdislocked)
3106 
3107 static struct vop_ops *sync_vnode_vops;
3108 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3109 	{ &vop_default_desc,	vop_eopnotsupp },
3110 	{ &vop_close_desc,	(void *) sync_close },		/* close */
3111 	{ &vop_fsync_desc,	(void *) sync_fsync },		/* fsync */
3112 	{ &vop_inactive_desc,	(void *) sync_inactive },	/* inactive */
3113 	{ &vop_reclaim_desc,	(void *) sync_reclaim },	/* reclaim */
3114 	{ &vop_lock_desc,	(void *) sync_lock },		/* lock */
3115 	{ &vop_unlock_desc,	(void *) sync_unlock },		/* unlock */
3116 	{ &vop_print_desc,	(void *) sync_print },		/* print */
3117 	{ &vop_islocked_desc,	(void *) sync_islocked },	/* islocked */
3118 	{ NULL, NULL }
3119 };
3120 
3121 static struct vnodeopv_desc sync_vnodeop_opv_desc =
3122 	{ &sync_vnode_vops, sync_vnodeop_entries };
3123 
3124 VNODEOP_SET(sync_vnodeop_opv_desc);
3125 
3126 /*
3127  * Create a new filesystem syncer vnode for the specified mount point.
3128  * This vnode is placed on the worklist and is responsible for sync'ing
3129  * the filesystem.
3130  *
3131  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
3132  * sync code is also responsible for cleaning up vnodes.
3133  */
3134 int
3135 vfs_allocate_syncvnode(struct mount *mp)
3136 {
3137 	struct vnode *vp;
3138 	static long start, incr, next;
3139 	int error;
3140 
3141 	/* Allocate a new vnode */
3142 	error = getnewvnode(VT_VFS, mp, sync_vnode_vops, &vp, 0, 0);
3143 	if (error) {
3144 		mp->mnt_syncer = NULL;
3145 		return (error);
3146 	}
3147 	vp->v_type = VNON;
3148 	/*
3149 	 * Place the vnode onto the syncer worklist. We attempt to
3150 	 * scatter them about on the list so that they will go off
3151 	 * at evenly distributed times even if all the filesystems
3152 	 * are mounted at once.
3153 	 */
3154 	next += incr;
3155 	if (next == 0 || next > syncer_maxdelay) {
3156 		start /= 2;
3157 		incr /= 2;
3158 		if (start == 0) {
3159 			start = syncer_maxdelay / 2;
3160 			incr = syncer_maxdelay;
3161 		}
3162 		next = start;
3163 	}
3164 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3165 	mp->mnt_syncer = vp;
3166 	return (0);
3167 }
3168 
3169 /*
3170  * Do a lazy sync of the filesystem.
3171  *
3172  * sync_fsync { struct vnode *a_vp, struct ucred *a_cred, int a_waitfor,
3173  *		struct thread *a_td }
3174  */
3175 static int
3176 sync_fsync(struct vop_fsync_args *ap)
3177 {
3178 	struct vnode *syncvp = ap->a_vp;
3179 	struct mount *mp = syncvp->v_mount;
3180 	struct thread *td = ap->a_td;
3181 	lwkt_tokref ilock;
3182 	int asyncflag;
3183 
3184 	/*
3185 	 * We only need to do something if this is a lazy evaluation.
3186 	 */
3187 	if (ap->a_waitfor != MNT_LAZY)
3188 		return (0);
3189 
3190 	/*
3191 	 * Move ourselves to the back of the sync list.
3192 	 */
3193 	vn_syncer_add_to_worklist(syncvp, syncdelay);
3194 
3195 	/*
3196 	 * Walk the list of vnodes pushing all that are dirty and
3197 	 * not already on the sync list, and freeing vnodes which have
3198 	 * no refs and whos VM objects are empty.  vfs_msync() handles
3199 	 * the VM issues and must be called whether the mount is readonly
3200 	 * or not.
3201 	 */
3202 	lwkt_gettoken(&ilock, &mountlist_token);
3203 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3204 		lwkt_reltoken(&ilock);
3205 		return (0);
3206 	}
3207 	if (mp->mnt_flag & MNT_RDONLY) {
3208 		vfs_msync(mp, MNT_NOWAIT);
3209 	} else {
3210 		asyncflag = mp->mnt_flag & MNT_ASYNC;
3211 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
3212 		vfs_msync(mp, MNT_NOWAIT);
3213 		VFS_SYNC(mp, MNT_LAZY, td);
3214 		if (asyncflag)
3215 			mp->mnt_flag |= MNT_ASYNC;
3216 	}
3217 	vfs_unbusy(mp, td);
3218 	return (0);
3219 }
3220 
3221 /*
3222  * The syncer vnode is no referenced.
3223  *
3224  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
3225  */
3226 static int
3227 sync_inactive(struct vop_inactive_args *ap)
3228 {
3229 	VOP_UNLOCK(ap->a_vp, NULL, 0, ap->a_td);
3230 	vgone(ap->a_vp);
3231 	return (0);
3232 }
3233 
3234 /*
3235  * The syncer vnode is no longer needed and is being decommissioned.
3236  *
3237  * Modifications to the worklist must be protected at splbio().
3238  *
3239  *	sync_reclaim { struct vnode *a_vp }
3240  */
3241 static int
3242 sync_reclaim(struct vop_reclaim_args *ap)
3243 {
3244 	struct vnode *vp = ap->a_vp;
3245 	int s;
3246 
3247 	s = splbio();
3248 	vp->v_mount->mnt_syncer = NULL;
3249 	if (vp->v_flag & VONWORKLST) {
3250 		LIST_REMOVE(vp, v_synclist);
3251 		vp->v_flag &= ~VONWORKLST;
3252 	}
3253 	splx(s);
3254 
3255 	return (0);
3256 }
3257 
3258 /*
3259  * Print out a syncer vnode.
3260  *
3261  *	sync_print { struct vnode *a_vp }
3262  */
3263 static int
3264 sync_print(struct vop_print_args *ap)
3265 {
3266 	struct vnode *vp = ap->a_vp;
3267 
3268 	printf("syncer vnode");
3269 	lockmgr_printinfo(&vp->v_lock);
3270 	printf("\n");
3271 	return (0);
3272 }
3273 
3274 /*
3275  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
3276  * (or v_rdev might be NULL).
3277  */
3278 dev_t
3279 vn_todev(struct vnode *vp)
3280 {
3281 	if (vp->v_type != VBLK && vp->v_type != VCHR)
3282 		return (NODEV);
3283 	KKASSERT(vp->v_rdev != NULL);
3284 	return (vp->v_rdev);
3285 }
3286 
3287 /*
3288  * Check if vnode represents a disk device.  The vnode does not need to be
3289  * opened.
3290  */
3291 int
3292 vn_isdisk(struct vnode *vp, int *errp)
3293 {
3294 	dev_t dev;
3295 
3296 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
3297 		if (errp != NULL)
3298 			*errp = ENOTBLK;
3299 		return (0);
3300 	}
3301 
3302 	if ((dev = vp->v_rdev) == NULL)
3303 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
3304 	if (dev == NULL || dev == NODEV) {
3305 		if (errp != NULL)
3306 			*errp = ENXIO;
3307 		return (0);
3308 	}
3309 	if (dev_is_good(dev) == 0) {
3310 		if (errp != NULL)
3311 			*errp = ENXIO;
3312 		return (0);
3313 	}
3314 	if ((dev_dflags(dev) & D_DISK) == 0) {
3315 		if (errp != NULL)
3316 			*errp = ENOTBLK;
3317 		return (0);
3318 	}
3319 	if (errp != NULL)
3320 		*errp = 0;
3321 	return (1);
3322 }
3323 
3324 void
3325 NDFREE(struct nameidata *ndp, const uint flags)
3326 {
3327 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3328 	    (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
3329 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3330 		ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
3331 	}
3332 	if (!(flags & NDF_NO_DNCP_RELE) &&
3333 	    (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3334 	    ndp->ni_dncp) {
3335 		cache_drop(ndp->ni_dncp);
3336 		ndp->ni_dncp = NULL;
3337 	}
3338 	if (!(flags & NDF_NO_NCP_RELE) &&
3339 	    (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3340 	    ndp->ni_ncp) {
3341 		cache_drop(ndp->ni_ncp);
3342 		ndp->ni_ncp = NULL;
3343 	}
3344 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3345 	    (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
3346 	    ndp->ni_dvp != ndp->ni_vp) {
3347 		VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
3348 	}
3349 	if (!(flags & NDF_NO_DVP_RELE) &&
3350 	    (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
3351 		vrele(ndp->ni_dvp);
3352 		ndp->ni_dvp = NULL;
3353 	}
3354 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3355 	    (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
3356 		VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
3357 	}
3358 	if (!(flags & NDF_NO_VP_RELE) &&
3359 	    ndp->ni_vp) {
3360 		vrele(ndp->ni_vp);
3361 		ndp->ni_vp = NULL;
3362 	}
3363 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3364 	    (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
3365 		vrele(ndp->ni_startdir);
3366 		ndp->ni_startdir = NULL;
3367 	}
3368 }
3369 
3370 #ifdef DEBUG_VFS_LOCKS
3371 
3372 void
3373 assert_vop_locked(struct vnode *vp, const char *str)
3374 {
3375 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3376 		panic("%s: %p is not locked shared but should be", str, vp);
3377 	}
3378 }
3379 
3380 void
3381 assert_vop_unlocked(struct vnode *vp, const char *str)
3382 {
3383 	if (vp && IS_LOCKING_VFS(vp)) {
3384 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3385 			panic("%s: %p is locked but should not be", str, vp);
3386 		}
3387 	}
3388 }
3389 
3390 #endif
3391