xref: /dragonfly/sys/kern/vfs_subr.c (revision 2e3ed54d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.65 2005/10/31 21:48:53 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 int numvnodes;
90 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91 int vfs_fastdev = 1;
92 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
93 
94 enum vtype iftovt_tab[16] = {
95 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97 };
98 int vttoif_tab[9] = {
99 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 	S_IFSOCK, S_IFIFO, S_IFMT,
101 };
102 
103 static int reassignbufcalls;
104 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 		&reassignbufcalls, 0, "");
106 static int reassignbufloops;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 		&reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 		&reassignbufsortgood, 0, "");
112 static int reassignbufsortbad;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 		&reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 		&reassignbufmethod, 0, "");
118 
119 int	nfs_mount_type = -1;
120 static struct lwkt_token spechash_token;
121 struct nfs_public nfs_pub;	/* publicly exported FS */
122 
123 int desiredvnodes;
124 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 		&desiredvnodes, 0, "Maximum number of vnodes");
126 
127 static void	vfs_free_addrlist (struct netexport *nep);
128 static int	vfs_free_netcred (struct radix_node *rn, void *w);
129 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 				       struct export_args *argp);
131 
132 extern int dev_ref_debug;
133 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE(buf_rb_tree, buf, b_rbnode, rb_buf_compare);
140 
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
143 {
144 	if (b1->b_lblkno < b2->b_lblkno)
145 		return(-1);
146 	if (b1->b_lblkno > b2->b_lblkno)
147 		return(1);
148 	return(0);
149 }
150 
151 /*
152  * Return 0 if the vnode is already on the free list or cannot be placed
153  * on the free list.  Return 1 if the vnode can be placed on the free list.
154  */
155 static __inline int
156 vshouldfree(struct vnode *vp, int usecount)
157 {
158 	if (vp->v_flag & VFREE)
159 		return (0);		/* already free */
160 	if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
161 		return (0);		/* other holderse */
162 	if (vp->v_object &&
163 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
164 		return (0);
165 	}
166 	return (1);
167 }
168 
169 /*
170  * Initialize the vnode management data structures.
171  *
172  * Called from vfsinit()
173  */
174 void
175 vfs_subr_init(void)
176 {
177 	/*
178 	 * Desired vnodes is a result of the physical page count
179 	 * and the size of kernel's heap.  It scales in proportion
180 	 * to the amount of available physical memory.  This can
181 	 * cause trouble on 64-bit and large memory platforms.
182 	 */
183 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
184 	desiredvnodes =
185 		min(maxproc + vmstats.v_page_count /4,
186 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
187 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
188 
189 	lwkt_token_init(&spechash_token);
190 }
191 
192 /*
193  * Knob to control the precision of file timestamps:
194  *
195  *   0 = seconds only; nanoseconds zeroed.
196  *   1 = seconds and nanoseconds, accurate within 1/HZ.
197  *   2 = seconds and nanoseconds, truncated to microseconds.
198  * >=3 = seconds and nanoseconds, maximum precision.
199  */
200 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
201 
202 static int timestamp_precision = TSP_SEC;
203 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
204 		&timestamp_precision, 0, "");
205 
206 /*
207  * Get a current timestamp.
208  */
209 void
210 vfs_timestamp(struct timespec *tsp)
211 {
212 	struct timeval tv;
213 
214 	switch (timestamp_precision) {
215 	case TSP_SEC:
216 		tsp->tv_sec = time_second;
217 		tsp->tv_nsec = 0;
218 		break;
219 	case TSP_HZ:
220 		getnanotime(tsp);
221 		break;
222 	case TSP_USEC:
223 		microtime(&tv);
224 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
225 		break;
226 	case TSP_NSEC:
227 	default:
228 		nanotime(tsp);
229 		break;
230 	}
231 }
232 
233 /*
234  * Set vnode attributes to VNOVAL
235  */
236 void
237 vattr_null(struct vattr *vap)
238 {
239 	vap->va_type = VNON;
240 	vap->va_size = VNOVAL;
241 	vap->va_bytes = VNOVAL;
242 	vap->va_mode = VNOVAL;
243 	vap->va_nlink = VNOVAL;
244 	vap->va_uid = VNOVAL;
245 	vap->va_gid = VNOVAL;
246 	vap->va_fsid = VNOVAL;
247 	vap->va_fileid = VNOVAL;
248 	vap->va_blocksize = VNOVAL;
249 	vap->va_rdev = VNOVAL;
250 	vap->va_atime.tv_sec = VNOVAL;
251 	vap->va_atime.tv_nsec = VNOVAL;
252 	vap->va_mtime.tv_sec = VNOVAL;
253 	vap->va_mtime.tv_nsec = VNOVAL;
254 	vap->va_ctime.tv_sec = VNOVAL;
255 	vap->va_ctime.tv_nsec = VNOVAL;
256 	vap->va_flags = VNOVAL;
257 	vap->va_gen = VNOVAL;
258 	vap->va_vaflags = 0;
259 	vap->va_fsmid = VNOVAL;
260 }
261 
262 /*
263  * Update outstanding I/O count and do wakeup if requested.
264  */
265 void
266 vwakeup(struct buf *bp)
267 {
268 	struct vnode *vp;
269 
270 	if ((vp = bp->b_vp)) {
271 		vp->v_numoutput--;
272 		if (vp->v_numoutput < 0)
273 			panic("vwakeup: neg numoutput");
274 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
275 			vp->v_flag &= ~VBWAIT;
276 			wakeup((caddr_t) &vp->v_numoutput);
277 		}
278 	}
279 }
280 
281 /*
282  * Flush out and invalidate all buffers associated with a vnode.
283  *
284  * vp must be locked.
285  */
286 static int vinvalbuf_bp(struct buf *bp, void *data);
287 
288 struct vinvalbuf_bp_info {
289 	struct vnode *vp;
290 	int slptimeo;
291 	int slpflag;
292 	int flags;
293 };
294 
295 int
296 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
297 	int slpflag, int slptimeo)
298 {
299 	struct vinvalbuf_bp_info info;
300 	int error;
301 	vm_object_t object;
302 
303 	/*
304 	 * If we are being asked to save, call fsync to ensure that the inode
305 	 * is updated.
306 	 */
307 	if (flags & V_SAVE) {
308 		crit_enter();
309 		while (vp->v_numoutput) {
310 			vp->v_flag |= VBWAIT;
311 			error = tsleep((caddr_t)&vp->v_numoutput,
312 			    slpflag, "vinvlbuf", slptimeo);
313 			if (error) {
314 				crit_exit();
315 				return (error);
316 			}
317 		}
318 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
319 			crit_exit();
320 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
321 				return (error);
322 			crit_enter();
323 			if (vp->v_numoutput > 0 ||
324 			    !RB_EMPTY(&vp->v_rbdirty_tree))
325 				panic("vinvalbuf: dirty bufs");
326 		}
327 		crit_exit();
328   	}
329 	crit_enter();
330 	info.slptimeo = slptimeo;
331 	info.slpflag = slpflag;
332 	info.flags = flags;
333 	info.vp = vp;
334 
335 	/*
336 	 * Flush the buffer cache until nothing is left.
337 	 */
338 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
339 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
340 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
341 			vinvalbuf_bp, &info);
342 		if (error == 0) {
343 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
344 					vinvalbuf_bp, &info);
345 		}
346 	}
347 
348 	/*
349 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
350 	 * have write I/O in-progress but if there is a VM object then the
351 	 * VM object can also have read-I/O in-progress.
352 	 */
353 	do {
354 		while (vp->v_numoutput > 0) {
355 			vp->v_flag |= VBWAIT;
356 			tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
357 		}
358 		if (VOP_GETVOBJECT(vp, &object) == 0) {
359 			while (object->paging_in_progress)
360 				vm_object_pip_sleep(object, "vnvlbx");
361 		}
362 	} while (vp->v_numoutput > 0);
363 
364 	crit_exit();
365 
366 	/*
367 	 * Destroy the copy in the VM cache, too.
368 	 */
369 	if (VOP_GETVOBJECT(vp, &object) == 0) {
370 		vm_object_page_remove(object, 0, 0,
371 			(flags & V_SAVE) ? TRUE : FALSE);
372 	}
373 
374 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
375 		panic("vinvalbuf: flush failed");
376 	return (0);
377 }
378 
379 static int
380 vinvalbuf_bp(struct buf *bp, void *data)
381 {
382 	struct vinvalbuf_bp_info *info = data;
383 	int error;
384 
385 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
386 		error = BUF_TIMELOCK(bp,
387 		    LK_EXCLUSIVE | LK_SLEEPFAIL,
388 		    "vinvalbuf", info->slpflag, info->slptimeo);
389 		if (error == 0) {
390 			BUF_UNLOCK(bp);
391 			error = ENOLCK;
392 		}
393 		if (error == ENOLCK)
394 			return(0);
395 		return (-error);
396 	}
397 	/*
398 	 * XXX Since there are no node locks for NFS, I
399 	 * believe there is a slight chance that a delayed
400 	 * write will occur while sleeping just above, so
401 	 * check for it.  Note that vfs_bio_awrite expects
402 	 * buffers to reside on a queue, while VOP_BWRITE and
403 	 * brelse do not.
404 	 */
405 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
406 	    (info->flags & V_SAVE)) {
407 		if (bp->b_vp == info->vp) {
408 			if (bp->b_flags & B_CLUSTEROK) {
409 				BUF_UNLOCK(bp);
410 				vfs_bio_awrite(bp);
411 			} else {
412 				bremfree(bp);
413 				bp->b_flags |= B_ASYNC;
414 				VOP_BWRITE(bp->b_vp, bp);
415 			}
416 		} else {
417 			bremfree(bp);
418 			VOP_BWRITE(bp->b_vp, bp);
419 		}
420 	} else {
421 		bremfree(bp);
422 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
423 		bp->b_flags &= ~B_ASYNC;
424 		brelse(bp);
425 	}
426 	return(0);
427 }
428 
429 /*
430  * Truncate a file's buffer and pages to a specified length.  This
431  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
432  * sync activity.
433  *
434  * The vnode must be locked.
435  */
436 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
437 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
438 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
439 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
440 
441 int
442 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
443 {
444 	daddr_t trunclbn;
445 	int count;
446 
447 	/*
448 	 * Round up to the *next* lbn, then destroy the buffers in question.
449 	 * Since we are only removing some of the buffers we must rely on the
450 	 * scan count to determine whether a loop is necessary.
451 	 */
452 	trunclbn = (length + blksize - 1) / blksize;
453 
454 	crit_enter();
455 	do {
456 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
457 				vtruncbuf_bp_trunc_cmp,
458 				vtruncbuf_bp_trunc, &trunclbn);
459 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
460 				vtruncbuf_bp_trunc_cmp,
461 				vtruncbuf_bp_trunc, &trunclbn);
462 	} while(count);
463 
464 	/*
465 	 * For safety, fsync any remaining metadata if the file is not being
466 	 * truncated to 0.  Since the metadata does not represent the entire
467 	 * dirty list we have to rely on the hit count to ensure that we get
468 	 * all of it.
469 	 */
470 	if (length > 0) {
471 		do {
472 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
473 					vtruncbuf_bp_metasync_cmp,
474 					vtruncbuf_bp_metasync, vp);
475 		} while (count);
476 	}
477 
478 	/*
479 	 * Wait for any in-progress I/O to complete before returning (why?)
480 	 */
481 	while (vp->v_numoutput > 0) {
482 		vp->v_flag |= VBWAIT;
483 		tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
484 	}
485 
486 	crit_exit();
487 
488 	vnode_pager_setsize(vp, length);
489 
490 	return (0);
491 }
492 
493 /*
494  * The callback buffer is beyond the new file EOF and must be destroyed.
495  * Note that the compare function must conform to the RB_SCAN's requirements.
496  */
497 static
498 int
499 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
500 {
501 	if (bp->b_lblkno >= *(daddr_t *)data)
502 		return(0);
503 	return(-1);
504 }
505 
506 static
507 int
508 vtruncbuf_bp_trunc(struct buf *bp, void *data)
509 {
510 	/*
511 	 * Do not try to use a buffer we cannot immediately lock, but sleep
512 	 * anyway to prevent a livelock.  The code will loop until all buffers
513 	 * can be acted upon.
514 	 */
515 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
516 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
517 			BUF_UNLOCK(bp);
518 	} else {
519 		bremfree(bp);
520 		bp->b_flags |= (B_INVAL | B_RELBUF);
521 		bp->b_flags &= ~B_ASYNC;
522 		brelse(bp);
523 	}
524 	return(1);
525 }
526 
527 /*
528  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
529  * blocks (with a negative lblkno) are scanned.
530  * Note that the compare function must conform to the RB_SCAN's requirements.
531  */
532 static int
533 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
534 {
535 	if (bp->b_lblkno < 0)
536 		return(0);
537 	return(1);
538 }
539 
540 static int
541 vtruncbuf_bp_metasync(struct buf *bp, void *data)
542 {
543 	struct vnode *vp = data;
544 
545 	if (bp->b_flags & B_DELWRI) {
546 		/*
547 		 * Do not try to use a buffer we cannot immediately lock,
548 		 * but sleep anyway to prevent a livelock.  The code will
549 		 * loop until all buffers can be acted upon.
550 		 */
551 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
552 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
553 				BUF_UNLOCK(bp);
554 		} else {
555 			bremfree(bp);
556 			if (bp->b_vp == vp) {
557 				bp->b_flags |= B_ASYNC;
558 			} else {
559 				bp->b_flags &= ~B_ASYNC;
560 			}
561 			VOP_BWRITE(bp->b_vp, bp);
562 		}
563 		return(1);
564 	} else {
565 		return(0);
566 	}
567 }
568 
569 /*
570  * vfsync - implements a multipass fsync on a file which understands
571  * dependancies and meta-data.  The passed vnode must be locked.  The
572  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
573  *
574  * When fsyncing data asynchronously just do one consolidated pass starting
575  * with the most negative block number.  This may not get all the data due
576  * to dependancies.
577  *
578  * When fsyncing data synchronously do a data pass, then a metadata pass,
579  * then do additional data+metadata passes to try to get all the data out.
580  */
581 static int vfsync_wait_output(struct vnode *vp,
582 			    int (*waitoutput)(struct vnode *, struct thread *));
583 static int vfsync_data_only_cmp(struct buf *bp, void *data);
584 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
585 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
586 static int vfsync_bp(struct buf *bp, void *data);
587 
588 struct vfsync_info {
589 	struct vnode *vp;
590 	int synchronous;
591 	int syncdeps;
592 	int lazycount;
593 	int lazylimit;
594 	daddr_t lbn;
595 	int (*checkdef)(struct buf *);
596 };
597 
598 int
599 vfsync(struct vnode *vp, int waitfor, int passes, daddr_t lbn,
600 	int (*checkdef)(struct buf *),
601 	int (*waitoutput)(struct vnode *, struct thread *))
602 {
603 	struct vfsync_info info;
604 	int error;
605 
606 	bzero(&info, sizeof(info));
607 	info.vp = vp;
608 	info.lbn = lbn;
609 	if ((info.checkdef = checkdef) == NULL)
610 		info.syncdeps = 1;
611 
612 	crit_enter();
613 
614 	switch(waitfor) {
615 	case MNT_LAZY:
616 		/*
617 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
618 		 * number of data (not meta) pages we try to flush to 1MB.
619 		 * A non-zero return means that lazy limit was reached.
620 		 */
621 		info.lazylimit = 1024 * 1024;
622 		info.syncdeps = 1;
623 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
624 				vfsync_lazy_range_cmp, vfsync_bp, &info);
625 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
626 				vfsync_meta_only_cmp, vfsync_bp, &info);
627 		if (error == 0)
628 			vp->v_lazyw = 0;
629 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
630 			vn_syncer_add_to_worklist(vp, 1);
631 		error = 0;
632 		break;
633 	case MNT_NOWAIT:
634 		/*
635 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
636 		 */
637 		info.syncdeps = 1;
638 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
639 			vfsync_bp, &info);
640 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
641 			vfsync_bp, &info);
642 		error = 0;
643 		break;
644 	default:
645 		/*
646 		 * Synchronous.  Do a data-only pass, then a meta-data+data
647 		 * pass, then additional integrated passes to try to get
648 		 * all the dependancies flushed.
649 		 */
650 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
651 			vfsync_bp, &info);
652 		error = vfsync_wait_output(vp, waitoutput);
653 		if (error == 0) {
654 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
655 				vfsync_bp, &info);
656 			error = vfsync_wait_output(vp, waitoutput);
657 		}
658 		while (error == 0 && passes > 0 &&
659 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
660 			if (--passes == 0) {
661 				info.synchronous = 1;
662 				info.syncdeps = 1;
663 			}
664 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
665 				vfsync_bp, &info);
666 			if (error < 0)
667 				error = -error;
668 			info.syncdeps = 1;
669 			if (error == 0)
670 				error = vfsync_wait_output(vp, waitoutput);
671 		}
672 		break;
673 	}
674 	crit_exit();
675 	return(error);
676 }
677 
678 static int
679 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
680 {
681 	int error = 0;
682 
683 	while (vp->v_numoutput) {
684 		vp->v_flag |= VBWAIT;
685 		tsleep(&vp->v_numoutput, 0, "fsfsn", 0);
686 	}
687 	if (waitoutput)
688 		error = waitoutput(vp, curthread);
689 	return(error);
690 }
691 
692 static int
693 vfsync_data_only_cmp(struct buf *bp, void *data)
694 {
695 	if (bp->b_lblkno < 0)
696 		return(-1);
697 	return(0);
698 }
699 
700 static int
701 vfsync_meta_only_cmp(struct buf *bp, void *data)
702 {
703 	if (bp->b_lblkno < 0)
704 		return(0);
705 	return(1);
706 }
707 
708 static int
709 vfsync_lazy_range_cmp(struct buf *bp, void *data)
710 {
711 	struct vfsync_info *info = data;
712 	if (bp->b_lblkno < info->vp->v_lazyw)
713 		return(-1);
714 	return(0);
715 }
716 
717 static int
718 vfsync_bp(struct buf *bp, void *data)
719 {
720 	struct vfsync_info *info = data;
721 	struct vnode *vp = info->vp;
722 	int error;
723 
724 	/*
725 	 * if syncdeps is not set we do not try to write buffers which have
726 	 * dependancies.
727 	 */
728 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
729 		return(0);
730 
731 	/*
732 	 * Ignore buffers that we cannot immediately lock.  XXX
733 	 */
734 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
735 		return(0);
736 	if ((bp->b_flags & B_DELWRI) == 0)
737 		panic("vfsync_bp: buffer not dirty");
738 	if (vp != bp->b_vp)
739 		panic("vfsync_bp: buffer vp mismatch");
740 
741 	/*
742 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
743 	 * has been written but an additional handshake with the device
744 	 * is required before we can dispose of the buffer.  We have no idea
745 	 * how to do this so we have to skip these buffers.
746 	 */
747 	if (bp->b_flags & B_NEEDCOMMIT) {
748 		BUF_UNLOCK(bp);
749 		return(0);
750 	}
751 
752 	/*
753 	 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
754 	 * buffers beyond the file EOF.
755 	 */
756 	if (info->lbn != (daddr_t)-1 && vp->v_type == VREG &&
757 	    bp->b_lblkno >= info->lbn) {
758 		bremfree(bp);
759 		bp->b_flags |= B_INVAL | B_NOCACHE;
760 		crit_exit();
761 		brelse(bp);
762 		crit_enter();
763 	}
764 
765 	if (info->synchronous) {
766 		/*
767 		 * Synchronous flushing.  An error may be returned.
768 		 */
769 		bremfree(bp);
770 		crit_exit();
771 		error = bwrite(bp);
772 		crit_enter();
773 	} else {
774 		/*
775 		 * Asynchronous flushing.  A negative return value simply
776 		 * stops the scan and is not considered an error.  We use
777 		 * this to support limited MNT_LAZY flushes.
778 		 */
779 		vp->v_lazyw = bp->b_lblkno;
780 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
781 			BUF_UNLOCK(bp);
782 			info->lazycount += vfs_bio_awrite(bp);
783 		} else {
784 			info->lazycount += bp->b_bufsize;
785 			bremfree(bp);
786 			crit_exit();
787 			bawrite(bp);
788 			crit_enter();
789 		}
790 		if (info->lazylimit && info->lazycount >= info->lazylimit)
791 			error = 1;
792 		else
793 			error = 0;
794 	}
795 	return(-error);
796 }
797 
798 /*
799  * Associate a buffer with a vnode.
800  */
801 void
802 bgetvp(struct vnode *vp, struct buf *bp)
803 {
804 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
805 
806 	vhold(vp);
807 	bp->b_vp = vp;
808 	bp->b_dev = vn_todev(vp);
809 	/*
810 	 * Insert onto list for new vnode.
811 	 */
812 	crit_enter();
813 	bp->b_xflags |= BX_VNCLEAN;
814 	bp->b_xflags &= ~BX_VNDIRTY;
815 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
816 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
817 	crit_exit();
818 }
819 
820 /*
821  * Disassociate a buffer from a vnode.
822  */
823 void
824 brelvp(struct buf *bp)
825 {
826 	struct vnode *vp;
827 
828 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
829 
830 	/*
831 	 * Delete from old vnode list, if on one.
832 	 */
833 	vp = bp->b_vp;
834 	crit_enter();
835 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
836 		if (bp->b_xflags & BX_VNDIRTY)
837 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
838 		else
839 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
840 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
841 	}
842 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
843 		vp->v_flag &= ~VONWORKLST;
844 		LIST_REMOVE(vp, v_synclist);
845 	}
846 	crit_exit();
847 	bp->b_vp = NULL;
848 	vdrop(vp);
849 }
850 
851 /*
852  * Associate a p-buffer with a vnode.
853  *
854  * Also sets B_PAGING flag to indicate that vnode is not fully associated
855  * with the buffer.  i.e. the bp has not been linked into the vnode or
856  * ref-counted.
857  */
858 void
859 pbgetvp(struct vnode *vp, struct buf *bp)
860 {
861 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
862 
863 	bp->b_vp = vp;
864 	bp->b_flags |= B_PAGING;
865 	bp->b_dev = vn_todev(vp);
866 }
867 
868 /*
869  * Disassociate a p-buffer from a vnode.
870  */
871 void
872 pbrelvp(struct buf *bp)
873 {
874 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
875 
876 	bp->b_vp = NULL;
877 	bp->b_flags &= ~B_PAGING;
878 }
879 
880 void
881 pbreassignbuf(struct buf *bp, struct vnode *newvp)
882 {
883 	if ((bp->b_flags & B_PAGING) == 0) {
884 		panic(
885 		    "pbreassignbuf() on non phys bp %p",
886 		    bp
887 		);
888 	}
889 	bp->b_vp = newvp;
890 }
891 
892 /*
893  * Reassign a buffer from one vnode to another.
894  * Used to assign file specific control information
895  * (indirect blocks) to the vnode to which they belong.
896  */
897 void
898 reassignbuf(struct buf *bp, struct vnode *newvp)
899 {
900 	int delay;
901 
902 	if (newvp == NULL) {
903 		printf("reassignbuf: NULL");
904 		return;
905 	}
906 	++reassignbufcalls;
907 
908 	/*
909 	 * B_PAGING flagged buffers cannot be reassigned because their vp
910 	 * is not fully linked in.
911 	 */
912 	if (bp->b_flags & B_PAGING)
913 		panic("cannot reassign paging buffer");
914 
915 	crit_enter();
916 	/*
917 	 * Delete from old vnode list, if on one.
918 	 */
919 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
920 		if (bp->b_xflags & BX_VNDIRTY)
921 			buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbdirty_tree, bp);
922 		else
923 			buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbclean_tree, bp);
924 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
925 		if (bp->b_vp != newvp) {
926 			vdrop(bp->b_vp);
927 			bp->b_vp = NULL;	/* for clarification */
928 		}
929 	}
930 	/*
931 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
932 	 * of clean buffers.
933 	 */
934 	if (bp->b_flags & B_DELWRI) {
935 		if ((newvp->v_flag & VONWORKLST) == 0) {
936 			switch (newvp->v_type) {
937 			case VDIR:
938 				delay = dirdelay;
939 				break;
940 			case VCHR:
941 			case VBLK:
942 				if (newvp->v_rdev &&
943 				    newvp->v_rdev->si_mountpoint != NULL) {
944 					delay = metadelay;
945 					break;
946 				}
947 				/* fall through */
948 			default:
949 				delay = filedelay;
950 			}
951 			vn_syncer_add_to_worklist(newvp, delay);
952 		}
953 		bp->b_xflags |= BX_VNDIRTY;
954 		if (buf_rb_tree_RB_INSERT(&newvp->v_rbdirty_tree, bp))
955 			panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
956 	} else {
957 		bp->b_xflags |= BX_VNCLEAN;
958 		if (buf_rb_tree_RB_INSERT(&newvp->v_rbclean_tree, bp))
959 			panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
960 		if ((newvp->v_flag & VONWORKLST) &&
961 		    RB_EMPTY(&newvp->v_rbdirty_tree)) {
962 			newvp->v_flag &= ~VONWORKLST;
963 			LIST_REMOVE(newvp, v_synclist);
964 		}
965 	}
966 	if (bp->b_vp != newvp) {
967 		bp->b_vp = newvp;
968 		vhold(bp->b_vp);
969 	}
970 	crit_exit();
971 }
972 
973 /*
974  * Create a vnode for a block device.
975  * Used for mounting the root file system.
976  */
977 int
978 bdevvp(dev_t dev, struct vnode **vpp)
979 {
980 	struct vnode *vp;
981 	struct vnode *nvp;
982 	int error;
983 
984 	if (dev == NODEV) {
985 		*vpp = NULLVP;
986 		return (ENXIO);
987 	}
988 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
989 	if (error) {
990 		*vpp = NULLVP;
991 		return (error);
992 	}
993 	vp = nvp;
994 	vp->v_type = VCHR;
995 	vp->v_udev = dev->si_udev;
996 	vx_unlock(vp);
997 	*vpp = vp;
998 	return (0);
999 }
1000 
1001 int
1002 v_associate_rdev(struct vnode *vp, dev_t dev)
1003 {
1004 	lwkt_tokref ilock;
1005 
1006 	if (dev == NULL || dev == NODEV)
1007 		return(ENXIO);
1008 	if (dev_is_good(dev) == 0)
1009 		return(ENXIO);
1010 	KKASSERT(vp->v_rdev == NULL);
1011 	if (dev_ref_debug)
1012 		printf("Z1");
1013 	vp->v_rdev = reference_dev(dev);
1014 	lwkt_gettoken(&ilock, &spechash_token);
1015 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1016 	lwkt_reltoken(&ilock);
1017 	return(0);
1018 }
1019 
1020 void
1021 v_release_rdev(struct vnode *vp)
1022 {
1023 	lwkt_tokref ilock;
1024 	dev_t dev;
1025 
1026 	if ((dev = vp->v_rdev) != NULL) {
1027 		lwkt_gettoken(&ilock, &spechash_token);
1028 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1029 		if (dev_ref_debug && vp->v_opencount != 0) {
1030 			printf("releasing rdev with non-0 "
1031 				"v_opencount(%d) (revoked?)\n",
1032 				vp->v_opencount);
1033 		}
1034 		vp->v_rdev = NULL;
1035 		vp->v_opencount = 0;
1036 		release_dev(dev);
1037 		lwkt_reltoken(&ilock);
1038 	}
1039 }
1040 
1041 /*
1042  * Add a vnode to the alias list hung off the dev_t.  We only associate
1043  * the device number with the vnode.  The actual device is not associated
1044  * until the vnode is opened (usually in spec_open()), and will be
1045  * disassociated on last close.
1046  */
1047 void
1048 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1049 {
1050 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1051 		panic("addaliasu on non-special vnode");
1052 	nvp->v_udev = nvp_udev;
1053 }
1054 
1055 /*
1056  * Disassociate a vnode from its underlying filesystem.
1057  *
1058  * The vnode must be VX locked and refd
1059  *
1060  * If there are v_usecount references to the vnode other then ours we have
1061  * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1062  */
1063 void
1064 vclean(struct vnode *vp, int flags, struct thread *td)
1065 {
1066 	int active;
1067 	int retflags = 0;
1068 
1069 	/*
1070 	 * If the vnode has already been reclaimed we have nothing to do.
1071 	 */
1072 	if (vp->v_flag & VRECLAIMED)
1073 		return;
1074 	vp->v_flag |= VRECLAIMED;
1075 
1076 	/*
1077 	 * Scrap the vfs cache
1078 	 */
1079 	while (cache_inval_vp(vp, 0, &retflags) != 0) {
1080 		printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1081 		tsleep(vp, 0, "vclninv", 2);
1082 	}
1083 
1084 	/*
1085 	 * Check to see if the vnode is in use. If so we have to reference it
1086 	 * before we clean it out so that its count cannot fall to zero and
1087 	 * generate a race against ourselves to recycle it.
1088 	 */
1089 	active = (vp->v_usecount > 1);
1090 
1091 	/*
1092 	 * Clean out any buffers associated with the vnode and destroy its
1093 	 * object, if it has one.
1094 	 */
1095 	vinvalbuf(vp, V_SAVE, td, 0, 0);
1096 	VOP_DESTROYVOBJECT(vp);
1097 
1098 	/*
1099 	 * If purging an active vnode, it must be closed and
1100 	 * deactivated before being reclaimed.   XXX
1101 	 *
1102 	 * Note that neither of these routines unlocks the vnode.
1103 	 */
1104 	if (active) {
1105 		if (flags & DOCLOSE)
1106 			VOP_CLOSE(vp, FNONBLOCK, td);
1107 	}
1108 
1109 	/*
1110 	 * If the vnode has not be deactivated, deactivated it.
1111 	 */
1112 	if ((vp->v_flag & VINACTIVE) == 0) {
1113 		vp->v_flag |= VINACTIVE;
1114 		VOP_INACTIVE(vp, td);
1115 	}
1116 
1117 	/*
1118 	 * Reclaim the vnode.
1119 	 */
1120 	if (VOP_RECLAIM(vp, retflags, td))
1121 		panic("vclean: cannot reclaim");
1122 
1123 	/*
1124 	 * Done with purge, notify sleepers of the grim news.
1125 	 */
1126 	vp->v_ops = &dead_vnode_vops;
1127 	vn_pollgone(vp);
1128 	vp->v_tag = VT_NON;
1129 }
1130 
1131 /*
1132  * Eliminate all activity associated with the requested vnode
1133  * and with all vnodes aliased to the requested vnode.
1134  *
1135  * The vnode must be referenced and vx_lock()'d
1136  *
1137  * revoke { struct vnode *a_vp, int a_flags }
1138  */
1139 int
1140 vop_stdrevoke(struct vop_revoke_args *ap)
1141 {
1142 	struct vnode *vp, *vq;
1143 	lwkt_tokref ilock;
1144 	dev_t dev;
1145 
1146 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1147 
1148 	vp = ap->a_vp;
1149 
1150 	/*
1151 	 * If the vnode is already dead don't try to revoke it
1152 	 */
1153 	if (vp->v_flag & VRECLAIMED)
1154 		return (0);
1155 
1156 	/*
1157 	 * If the vnode has a device association, scrap all vnodes associated
1158 	 * with the device.  Don't let the device disappear on us while we
1159 	 * are scrapping the vnodes.
1160 	 *
1161 	 * The passed vp will probably show up in the list, do not VX lock
1162 	 * it twice!
1163 	 */
1164 	if (vp->v_type != VCHR && vp->v_type != VBLK)
1165 		return(0);
1166 	if ((dev = vp->v_rdev) == NULL) {
1167 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1168 			return(0);
1169 	}
1170 	reference_dev(dev);
1171 	lwkt_gettoken(&ilock, &spechash_token);
1172 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1173 		if (vp == vq || vx_get(vq) == 0) {
1174 			if (vq == SLIST_FIRST(&dev->si_hlist))
1175 				vgone(vq);
1176 			if (vp != vq)
1177 				vx_put(vq);
1178 		}
1179 	}
1180 	lwkt_reltoken(&ilock);
1181 	release_dev(dev);
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Recycle an unused vnode to the front of the free list.
1187  *
1188  * Returns 1 if we were successfully able to recycle the vnode,
1189  * 0 otherwise.
1190  */
1191 int
1192 vrecycle(struct vnode *vp, struct thread *td)
1193 {
1194 	if (vp->v_usecount == 1) {
1195 		vgone(vp);
1196 		return (1);
1197 	}
1198 	return (0);
1199 }
1200 
1201 /*
1202  * Eliminate all activity associated with a vnode in preparation for reuse.
1203  *
1204  * The vnode must be VX locked and refd and will remain VX locked and refd
1205  * on return.  This routine may be called with the vnode in any state, as
1206  * long as it is VX locked.  The vnode will be cleaned out and marked
1207  * VRECLAIMED but will not actually be reused until all existing refs and
1208  * holds go away.
1209  *
1210  * NOTE: This routine may be called on a vnode which has not yet been
1211  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1212  * already been reclaimed.
1213  *
1214  * This routine is not responsible for placing us back on the freelist.
1215  * Instead, it happens automatically when the caller releases the VX lock
1216  * (assuming there aren't any other references).
1217  */
1218 void
1219 vgone(struct vnode *vp)
1220 {
1221 	/*
1222 	 * assert that the VX lock is held.  This is an absolute requirement
1223 	 * now for vgone() to be called.
1224 	 */
1225 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1226 
1227 	/*
1228 	 * Clean out the filesystem specific data and set the VRECLAIMED
1229 	 * bit.  Also deactivate the vnode if necessary.
1230 	 */
1231 	vclean(vp, DOCLOSE, curthread);
1232 
1233 	/*
1234 	 * Delete from old mount point vnode list, if on one.
1235 	 */
1236 	if (vp->v_mount != NULL)
1237 		insmntque(vp, NULL);
1238 
1239 	/*
1240 	 * If special device, remove it from special device alias list
1241 	 * if it is on one.  This should normally only occur if a vnode is
1242 	 * being revoked as the device should otherwise have been released
1243 	 * naturally.
1244 	 */
1245 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1246 		v_release_rdev(vp);
1247 	}
1248 
1249 	/*
1250 	 * Set us to VBAD
1251 	 */
1252 	vp->v_type = VBAD;
1253 }
1254 
1255 /*
1256  * Lookup a vnode by device number.
1257  */
1258 int
1259 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1260 {
1261 	lwkt_tokref ilock;
1262 	struct vnode *vp;
1263 
1264 	lwkt_gettoken(&ilock, &spechash_token);
1265 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1266 		if (type == vp->v_type) {
1267 			*vpp = vp;
1268 			lwkt_reltoken(&ilock);
1269 			return (1);
1270 		}
1271 	}
1272 	lwkt_reltoken(&ilock);
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Calculate the total number of references to a special device.  This
1278  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1279  * an overloaded field.  Since udev2dev can now return NODEV, we have
1280  * to check for a NULL v_rdev.
1281  */
1282 int
1283 count_dev(dev_t dev)
1284 {
1285 	lwkt_tokref ilock;
1286 	struct vnode *vp;
1287 	int count = 0;
1288 
1289 	if (SLIST_FIRST(&dev->si_hlist)) {
1290 		lwkt_gettoken(&ilock, &spechash_token);
1291 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1292 			count += vp->v_usecount;
1293 		}
1294 		lwkt_reltoken(&ilock);
1295 	}
1296 	return(count);
1297 }
1298 
1299 int
1300 count_udev(udev_t udev)
1301 {
1302 	dev_t dev;
1303 
1304 	if ((dev = udev2dev(udev, 0)) == NODEV)
1305 		return(0);
1306 	return(count_dev(dev));
1307 }
1308 
1309 int
1310 vcount(struct vnode *vp)
1311 {
1312 	if (vp->v_rdev == NULL)
1313 		return(0);
1314 	return(count_dev(vp->v_rdev));
1315 }
1316 
1317 /*
1318  * Print out a description of a vnode.
1319  */
1320 static char *typename[] =
1321 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1322 
1323 void
1324 vprint(char *label, struct vnode *vp)
1325 {
1326 	char buf[96];
1327 
1328 	if (label != NULL)
1329 		printf("%s: %p: ", label, (void *)vp);
1330 	else
1331 		printf("%p: ", (void *)vp);
1332 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1333 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1334 	    vp->v_holdcnt);
1335 	buf[0] = '\0';
1336 	if (vp->v_flag & VROOT)
1337 		strcat(buf, "|VROOT");
1338 	if (vp->v_flag & VTEXT)
1339 		strcat(buf, "|VTEXT");
1340 	if (vp->v_flag & VSYSTEM)
1341 		strcat(buf, "|VSYSTEM");
1342 	if (vp->v_flag & VBWAIT)
1343 		strcat(buf, "|VBWAIT");
1344 	if (vp->v_flag & VFREE)
1345 		strcat(buf, "|VFREE");
1346 	if (vp->v_flag & VOBJBUF)
1347 		strcat(buf, "|VOBJBUF");
1348 	if (buf[0] != '\0')
1349 		printf(" flags (%s)", &buf[1]);
1350 	if (vp->v_data == NULL) {
1351 		printf("\n");
1352 	} else {
1353 		printf("\n\t");
1354 		VOP_PRINT(vp);
1355 	}
1356 }
1357 
1358 #ifdef DDB
1359 #include <ddb/ddb.h>
1360 
1361 static int db_show_locked_vnodes(struct mount *mp, void *data);
1362 
1363 /*
1364  * List all of the locked vnodes in the system.
1365  * Called when debugging the kernel.
1366  */
1367 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1368 {
1369 	printf("Locked vnodes\n");
1370 	mountlist_scan(db_show_locked_vnodes, NULL,
1371 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1372 }
1373 
1374 static int
1375 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1376 {
1377 	struct vnode *vp;
1378 
1379 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1380 		if (VOP_ISLOCKED(vp, NULL))
1381 			vprint((char *)0, vp);
1382 	}
1383 	return(0);
1384 }
1385 #endif
1386 
1387 /*
1388  * Top level filesystem related information gathering.
1389  */
1390 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1391 
1392 static int
1393 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1394 {
1395 	int *name = (int *)arg1 - 1;	/* XXX */
1396 	u_int namelen = arg2 + 1;	/* XXX */
1397 	struct vfsconf *vfsp;
1398 
1399 #if 1 || defined(COMPAT_PRELITE2)
1400 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1401 	if (namelen == 1)
1402 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1403 #endif
1404 
1405 #ifdef notyet
1406 	/* all sysctl names at this level are at least name and field */
1407 	if (namelen < 2)
1408 		return (ENOTDIR);		/* overloaded */
1409 	if (name[0] != VFS_GENERIC) {
1410 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1411 			if (vfsp->vfc_typenum == name[0])
1412 				break;
1413 		if (vfsp == NULL)
1414 			return (EOPNOTSUPP);
1415 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1416 		    oldp, oldlenp, newp, newlen, p));
1417 	}
1418 #endif
1419 	switch (name[1]) {
1420 	case VFS_MAXTYPENUM:
1421 		if (namelen != 2)
1422 			return (ENOTDIR);
1423 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1424 	case VFS_CONF:
1425 		if (namelen != 3)
1426 			return (ENOTDIR);	/* overloaded */
1427 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1428 			if (vfsp->vfc_typenum == name[2])
1429 				break;
1430 		if (vfsp == NULL)
1431 			return (EOPNOTSUPP);
1432 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1433 	}
1434 	return (EOPNOTSUPP);
1435 }
1436 
1437 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1438 	"Generic filesystem");
1439 
1440 #if 1 || defined(COMPAT_PRELITE2)
1441 
1442 static int
1443 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1444 {
1445 	int error;
1446 	struct vfsconf *vfsp;
1447 	struct ovfsconf ovfs;
1448 
1449 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1450 		bzero(&ovfs, sizeof(ovfs));
1451 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1452 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1453 		ovfs.vfc_index = vfsp->vfc_typenum;
1454 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1455 		ovfs.vfc_flags = vfsp->vfc_flags;
1456 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1457 		if (error)
1458 			return error;
1459 	}
1460 	return 0;
1461 }
1462 
1463 #endif /* 1 || COMPAT_PRELITE2 */
1464 
1465 /*
1466  * Check to see if a filesystem is mounted on a block device.
1467  */
1468 int
1469 vfs_mountedon(struct vnode *vp)
1470 {
1471 	dev_t dev;
1472 
1473 	if ((dev = vp->v_rdev) == NULL)
1474 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1475 	if (dev != NODEV && dev->si_mountpoint)
1476 		return (EBUSY);
1477 	return (0);
1478 }
1479 
1480 /*
1481  * Unmount all filesystems. The list is traversed in reverse order
1482  * of mounting to avoid dependencies.
1483  */
1484 
1485 static int vfs_umountall_callback(struct mount *mp, void *data);
1486 
1487 void
1488 vfs_unmountall(void)
1489 {
1490 	struct thread *td = curthread;
1491 	int count;
1492 
1493 	if (td->td_proc == NULL)
1494 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
1495 
1496 	do {
1497 		count = mountlist_scan(vfs_umountall_callback,
1498 					&td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1499 	} while (count);
1500 }
1501 
1502 static
1503 int
1504 vfs_umountall_callback(struct mount *mp, void *data)
1505 {
1506 	struct thread *td = *(struct thread **)data;
1507 	int error;
1508 
1509 	error = dounmount(mp, MNT_FORCE, td);
1510 	if (error) {
1511 		mountlist_remove(mp);
1512 		printf("unmount of filesystem mounted from %s failed (",
1513 			mp->mnt_stat.f_mntfromname);
1514 		if (error == EBUSY)
1515 			printf("BUSY)\n");
1516 		else
1517 			printf("%d)\n", error);
1518 	}
1519 	return(1);
1520 }
1521 
1522 /*
1523  * Build hash lists of net addresses and hang them off the mount point.
1524  * Called by ufs_mount() to set up the lists of export addresses.
1525  */
1526 static int
1527 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1528 		struct export_args *argp)
1529 {
1530 	struct netcred *np;
1531 	struct radix_node_head *rnh;
1532 	int i;
1533 	struct radix_node *rn;
1534 	struct sockaddr *saddr, *smask = 0;
1535 	struct domain *dom;
1536 	int error;
1537 
1538 	if (argp->ex_addrlen == 0) {
1539 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1540 			return (EPERM);
1541 		np = &nep->ne_defexported;
1542 		np->netc_exflags = argp->ex_flags;
1543 		np->netc_anon = argp->ex_anon;
1544 		np->netc_anon.cr_ref = 1;
1545 		mp->mnt_flag |= MNT_DEFEXPORTED;
1546 		return (0);
1547 	}
1548 
1549 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1550 		return (EINVAL);
1551 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1552 		return (EINVAL);
1553 
1554 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1555 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1556 	bzero((caddr_t) np, i);
1557 	saddr = (struct sockaddr *) (np + 1);
1558 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1559 		goto out;
1560 	if (saddr->sa_len > argp->ex_addrlen)
1561 		saddr->sa_len = argp->ex_addrlen;
1562 	if (argp->ex_masklen) {
1563 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1564 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1565 		if (error)
1566 			goto out;
1567 		if (smask->sa_len > argp->ex_masklen)
1568 			smask->sa_len = argp->ex_masklen;
1569 	}
1570 	i = saddr->sa_family;
1571 	if ((rnh = nep->ne_rtable[i]) == 0) {
1572 		/*
1573 		 * Seems silly to initialize every AF when most are not used,
1574 		 * do so on demand here
1575 		 */
1576 		SLIST_FOREACH(dom, &domains, dom_next)
1577 			if (dom->dom_family == i && dom->dom_rtattach) {
1578 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1579 				    dom->dom_rtoffset);
1580 				break;
1581 			}
1582 		if ((rnh = nep->ne_rtable[i]) == 0) {
1583 			error = ENOBUFS;
1584 			goto out;
1585 		}
1586 	}
1587 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1588 	    np->netc_rnodes);
1589 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1590 		error = EPERM;
1591 		goto out;
1592 	}
1593 	np->netc_exflags = argp->ex_flags;
1594 	np->netc_anon = argp->ex_anon;
1595 	np->netc_anon.cr_ref = 1;
1596 	return (0);
1597 out:
1598 	free(np, M_NETADDR);
1599 	return (error);
1600 }
1601 
1602 /* ARGSUSED */
1603 static int
1604 vfs_free_netcred(struct radix_node *rn, void *w)
1605 {
1606 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1607 
1608 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1609 	free((caddr_t) rn, M_NETADDR);
1610 	return (0);
1611 }
1612 
1613 /*
1614  * Free the net address hash lists that are hanging off the mount points.
1615  */
1616 static void
1617 vfs_free_addrlist(struct netexport *nep)
1618 {
1619 	int i;
1620 	struct radix_node_head *rnh;
1621 
1622 	for (i = 0; i <= AF_MAX; i++)
1623 		if ((rnh = nep->ne_rtable[i])) {
1624 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1625 			    (caddr_t) rnh);
1626 			free((caddr_t) rnh, M_RTABLE);
1627 			nep->ne_rtable[i] = 0;
1628 		}
1629 }
1630 
1631 int
1632 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1633 {
1634 	int error;
1635 
1636 	if (argp->ex_flags & MNT_DELEXPORT) {
1637 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1638 			vfs_setpublicfs(NULL, NULL, NULL);
1639 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1640 		}
1641 		vfs_free_addrlist(nep);
1642 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1643 	}
1644 	if (argp->ex_flags & MNT_EXPORTED) {
1645 		if (argp->ex_flags & MNT_EXPUBLIC) {
1646 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1647 				return (error);
1648 			mp->mnt_flag |= MNT_EXPUBLIC;
1649 		}
1650 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1651 			return (error);
1652 		mp->mnt_flag |= MNT_EXPORTED;
1653 	}
1654 	return (0);
1655 }
1656 
1657 
1658 /*
1659  * Set the publicly exported filesystem (WebNFS). Currently, only
1660  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1661  */
1662 int
1663 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1664 		struct export_args *argp)
1665 {
1666 	int error;
1667 	struct vnode *rvp;
1668 	char *cp;
1669 
1670 	/*
1671 	 * mp == NULL -> invalidate the current info, the FS is
1672 	 * no longer exported. May be called from either vfs_export
1673 	 * or unmount, so check if it hasn't already been done.
1674 	 */
1675 	if (mp == NULL) {
1676 		if (nfs_pub.np_valid) {
1677 			nfs_pub.np_valid = 0;
1678 			if (nfs_pub.np_index != NULL) {
1679 				FREE(nfs_pub.np_index, M_TEMP);
1680 				nfs_pub.np_index = NULL;
1681 			}
1682 		}
1683 		return (0);
1684 	}
1685 
1686 	/*
1687 	 * Only one allowed at a time.
1688 	 */
1689 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1690 		return (EBUSY);
1691 
1692 	/*
1693 	 * Get real filehandle for root of exported FS.
1694 	 */
1695 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1696 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1697 
1698 	if ((error = VFS_ROOT(mp, &rvp)))
1699 		return (error);
1700 
1701 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1702 		return (error);
1703 
1704 	vput(rvp);
1705 
1706 	/*
1707 	 * If an indexfile was specified, pull it in.
1708 	 */
1709 	if (argp->ex_indexfile != NULL) {
1710 		int namelen;
1711 
1712 		error = vn_get_namelen(rvp, &namelen);
1713 		if (error)
1714 			return (error);
1715 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1716 		    M_WAITOK);
1717 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1718 		    namelen, (size_t *)0);
1719 		if (!error) {
1720 			/*
1721 			 * Check for illegal filenames.
1722 			 */
1723 			for (cp = nfs_pub.np_index; *cp; cp++) {
1724 				if (*cp == '/') {
1725 					error = EINVAL;
1726 					break;
1727 				}
1728 			}
1729 		}
1730 		if (error) {
1731 			FREE(nfs_pub.np_index, M_TEMP);
1732 			return (error);
1733 		}
1734 	}
1735 
1736 	nfs_pub.np_mount = mp;
1737 	nfs_pub.np_valid = 1;
1738 	return (0);
1739 }
1740 
1741 struct netcred *
1742 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1743 		struct sockaddr *nam)
1744 {
1745 	struct netcred *np;
1746 	struct radix_node_head *rnh;
1747 	struct sockaddr *saddr;
1748 
1749 	np = NULL;
1750 	if (mp->mnt_flag & MNT_EXPORTED) {
1751 		/*
1752 		 * Lookup in the export list first.
1753 		 */
1754 		if (nam != NULL) {
1755 			saddr = nam;
1756 			rnh = nep->ne_rtable[saddr->sa_family];
1757 			if (rnh != NULL) {
1758 				np = (struct netcred *)
1759 					(*rnh->rnh_matchaddr)((char *)saddr,
1760 							      rnh);
1761 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1762 					np = NULL;
1763 			}
1764 		}
1765 		/*
1766 		 * If no address match, use the default if it exists.
1767 		 */
1768 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1769 			np = &nep->ne_defexported;
1770 	}
1771 	return (np);
1772 }
1773 
1774 /*
1775  * perform msync on all vnodes under a mount point.  The mount point must
1776  * be locked.  This code is also responsible for lazy-freeing unreferenced
1777  * vnodes whos VM objects no longer contain pages.
1778  *
1779  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1780  *
1781  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1782  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1783  * way up in this high level function.
1784  */
1785 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1786 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1787 
1788 void
1789 vfs_msync(struct mount *mp, int flags)
1790 {
1791 	int vmsc_flags;
1792 
1793 	vmsc_flags = VMSC_GETVP;
1794 	if (flags != MNT_WAIT)
1795 		vmsc_flags |= VMSC_NOWAIT;
1796 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1797 			(void *)flags);
1798 }
1799 
1800 /*
1801  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1802  * vnodes, we cannot afford to do anything heavy weight until we have a
1803  * fairly good indication that there is work to do.
1804  */
1805 static
1806 int
1807 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1808 {
1809 	int flags = (int)data;
1810 
1811 	if ((vp->v_flag & VRECLAIMED) == 0) {
1812 		if (vshouldfree(vp, 0))
1813 			return(0);	/* call scan2 */
1814 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1815 		    (vp->v_flag & VOBJDIRTY) &&
1816 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1817 			return(0);	/* call scan2 */
1818 		}
1819 	}
1820 
1821 	/*
1822 	 * do not call scan2, continue the loop
1823 	 */
1824 	return(-1);
1825 }
1826 
1827 /*
1828  * This callback is handed a locked vnode.
1829  */
1830 static
1831 int
1832 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1833 {
1834 	vm_object_t obj;
1835 	int flags = (int)data;
1836 
1837 	if (vp->v_flag & VRECLAIMED)
1838 		return(0);
1839 
1840 	if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1841 	    (vp->v_flag & VOBJDIRTY)) {
1842 		if (VOP_GETVOBJECT(vp, &obj) == 0) {
1843 			vm_object_page_clean(obj, 0, 0,
1844 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1845 		}
1846 	}
1847 	return(0);
1848 }
1849 
1850 /*
1851  * Create the VM object needed for VMIO and mmap support.  This
1852  * is done for all VREG files in the system.  Some filesystems might
1853  * afford the additional metadata buffering capability of the
1854  * VMIO code by making the device node be VMIO mode also.
1855  *
1856  * vp must be locked when vfs_object_create is called.
1857  */
1858 int
1859 vfs_object_create(struct vnode *vp, struct thread *td)
1860 {
1861 	return (VOP_CREATEVOBJECT(vp, td));
1862 }
1863 
1864 /*
1865  * Record a process's interest in events which might happen to
1866  * a vnode.  Because poll uses the historic select-style interface
1867  * internally, this routine serves as both the ``check for any
1868  * pending events'' and the ``record my interest in future events''
1869  * functions.  (These are done together, while the lock is held,
1870  * to avoid race conditions.)
1871  */
1872 int
1873 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1874 {
1875 	lwkt_tokref ilock;
1876 
1877 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1878 	if (vp->v_pollinfo.vpi_revents & events) {
1879 		/*
1880 		 * This leaves events we are not interested
1881 		 * in available for the other process which
1882 		 * which presumably had requested them
1883 		 * (otherwise they would never have been
1884 		 * recorded).
1885 		 */
1886 		events &= vp->v_pollinfo.vpi_revents;
1887 		vp->v_pollinfo.vpi_revents &= ~events;
1888 
1889 		lwkt_reltoken(&ilock);
1890 		return events;
1891 	}
1892 	vp->v_pollinfo.vpi_events |= events;
1893 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1894 	lwkt_reltoken(&ilock);
1895 	return 0;
1896 }
1897 
1898 /*
1899  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1900  * it is possible for us to miss an event due to race conditions, but
1901  * that condition is expected to be rare, so for the moment it is the
1902  * preferred interface.
1903  */
1904 void
1905 vn_pollevent(struct vnode *vp, int events)
1906 {
1907 	lwkt_tokref ilock;
1908 
1909 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1910 	if (vp->v_pollinfo.vpi_events & events) {
1911 		/*
1912 		 * We clear vpi_events so that we don't
1913 		 * call selwakeup() twice if two events are
1914 		 * posted before the polling process(es) is
1915 		 * awakened.  This also ensures that we take at
1916 		 * most one selwakeup() if the polling process
1917 		 * is no longer interested.  However, it does
1918 		 * mean that only one event can be noticed at
1919 		 * a time.  (Perhaps we should only clear those
1920 		 * event bits which we note?) XXX
1921 		 */
1922 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1923 		vp->v_pollinfo.vpi_revents |= events;
1924 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1925 	}
1926 	lwkt_reltoken(&ilock);
1927 }
1928 
1929 /*
1930  * Wake up anyone polling on vp because it is being revoked.
1931  * This depends on dead_poll() returning POLLHUP for correct
1932  * behavior.
1933  */
1934 void
1935 vn_pollgone(struct vnode *vp)
1936 {
1937 	lwkt_tokref ilock;
1938 
1939 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1940 	if (vp->v_pollinfo.vpi_events) {
1941 		vp->v_pollinfo.vpi_events = 0;
1942 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1943 	}
1944 	lwkt_reltoken(&ilock);
1945 }
1946 
1947 /*
1948  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
1949  * (or v_rdev might be NULL).
1950  */
1951 dev_t
1952 vn_todev(struct vnode *vp)
1953 {
1954 	if (vp->v_type != VBLK && vp->v_type != VCHR)
1955 		return (NODEV);
1956 	KKASSERT(vp->v_rdev != NULL);
1957 	return (vp->v_rdev);
1958 }
1959 
1960 /*
1961  * Check if vnode represents a disk device.  The vnode does not need to be
1962  * opened.
1963  */
1964 int
1965 vn_isdisk(struct vnode *vp, int *errp)
1966 {
1967 	dev_t dev;
1968 
1969 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
1970 		if (errp != NULL)
1971 			*errp = ENOTBLK;
1972 		return (0);
1973 	}
1974 
1975 	if ((dev = vp->v_rdev) == NULL)
1976 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1977 	if (dev == NULL || dev == NODEV) {
1978 		if (errp != NULL)
1979 			*errp = ENXIO;
1980 		return (0);
1981 	}
1982 	if (dev_is_good(dev) == 0) {
1983 		if (errp != NULL)
1984 			*errp = ENXIO;
1985 		return (0);
1986 	}
1987 	if ((dev_dflags(dev) & D_DISK) == 0) {
1988 		if (errp != NULL)
1989 			*errp = ENOTBLK;
1990 		return (0);
1991 	}
1992 	if (errp != NULL)
1993 		*errp = 0;
1994 	return (1);
1995 }
1996 
1997 #ifdef DEBUG_VFS_LOCKS
1998 
1999 void
2000 assert_vop_locked(struct vnode *vp, const char *str)
2001 {
2002 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
2003 		panic("%s: %p is not locked shared but should be", str, vp);
2004 	}
2005 }
2006 
2007 void
2008 assert_vop_unlocked(struct vnode *vp, const char *str)
2009 {
2010 	if (vp && IS_LOCKING_VFS(vp)) {
2011 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
2012 			panic("%s: %p is locked but should not be", str, vp);
2013 		}
2014 	}
2015 }
2016 
2017 #endif
2018 
2019 int
2020 vn_get_namelen(struct vnode *vp, int *namelen)
2021 {
2022 	int error, retval[2];
2023 
2024 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2025 	if (error)
2026 		return (error);
2027 	*namelen = *retval;
2028 	return (0);
2029 }
2030 
2031 int
2032 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2033 		uint16_t d_namlen, const char *d_name)
2034 {
2035 	struct dirent *dp;
2036 	size_t len;
2037 
2038 	len = _DIRENT_RECLEN(d_namlen);
2039 	if (len > uio->uio_resid)
2040 		return(1);
2041 
2042 	dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2043 
2044 	dp->d_ino = d_ino;
2045 	dp->d_namlen = d_namlen;
2046 	dp->d_type = d_type;
2047 	bcopy(d_name, dp->d_name, d_namlen);
2048 
2049 	*error = uiomove((caddr_t)dp, len, uio);
2050 
2051 	free(dp, M_TEMP);
2052 
2053 	return(0);
2054 }
2055