xref: /dragonfly/sys/kern/vfs_subr.c (revision 52a88097)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/eventhandler.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kernel.h>
55 #include <sys/kthread.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/mount.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/reboot.h>
62 #include <sys/socket.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/unistd.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 
70 #include <machine/limits.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vnode_pager.h>
81 #include <vm/vm_zone.h>
82 
83 #include <sys/buf2.h>
84 #include <vm/vm_page2.h>
85 
86 #include <netinet/in.h>
87 
88 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
89 
90 __read_mostly int numvnodes;
91 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
92     "Number of vnodes allocated");
93 __read_mostly int verbose_reclaims;
94 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
95     "Output filename of reclaimed vnode(s)");
96 
97 __read_mostly enum vtype iftovt_tab[16] = {
98 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
99 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
100 };
101 __read_mostly int vttoif_tab[9] = {
102 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
103 	S_IFSOCK, S_IFIFO, S_IFMT,
104 };
105 
106 static int reassignbufcalls;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
108     0, "Number of times buffers have been reassigned to the proper list");
109 
110 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
111 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
112     0, "Enable overlapping buffer checks");
113 
114 int	nfs_mount_type = -1;
115 static struct lwkt_token spechash_token;
116 struct nfs_public nfs_pub;	/* publicly exported FS */
117 
118 __read_mostly int maxvnodes;
119 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
120 	   &maxvnodes, 0, "Maximum number of vnodes");
121 
122 static struct radix_node_head *vfs_create_addrlist_af(int af,
123 		    struct netexport *nep);
124 static void	vfs_free_addrlist (struct netexport *nep);
125 static int	vfs_free_netcred (struct radix_node *rn, void *w);
126 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
127 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
128 	            const struct export_args *argp);
129 static void vclean_vxlocked(struct vnode *vp, int flags);
130 
131 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
132 
133 /*
134  * Red black tree functions
135  */
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
139 
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
142 {
143 	if (b1->b_loffset < b2->b_loffset)
144 		return(-1);
145 	if (b1->b_loffset > b2->b_loffset)
146 		return(1);
147 	return(0);
148 }
149 
150 /*
151  * Initialize the vnode management data structures.
152  *
153  * Called from vfsinit()
154  */
155 #define MAXVNBREAKMEM	(1L * 1024 * 1024 * 1024)
156 #define MINVNODES	2000
157 #define MAXVNODES	4000000
158 
159 void
160 vfs_subr_init(void)
161 {
162 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
163 	int factor2;	/* Limit based on available KVM */
164 	size_t freemem;
165 
166 	/*
167 	 * Size maxvnodes to available memory.  Size significantly
168 	 * smaller on low-memory systems (calculations for the first
169 	 * 1GB of ram), and pump it up a bit when free memory is
170 	 * above 1GB.
171 	 *
172 	 * The general minimum is maxproc * 8 (we want someone pushing
173 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
174 	 * does not affect this calculation.
175 	 *
176 	 * There isn't much of a point allowing maxvnodes to exceed a
177 	 * few million as our modern filesystems cache pages in the
178 	 * underlying block device and not so much hanging off of VM
179 	 * objects.
180 	 */
181 	factor1 = 50 * (sizeof(struct vm_object) + sizeof(struct vnode));
182 	factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode));
183 
184 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
185 
186 	maxvnodes = freemem / factor1;
187 	if (freemem > MAXVNBREAKMEM)
188 		maxvnodes += (freemem - MAXVNBREAKMEM) / factor1;
189 	maxvnodes = imax(maxvnodes, maxproc * 8);
190 	maxvnodes = imin(maxvnodes, KvaSize / factor2);
191 	maxvnodes = imin(maxvnodes, MAXVNODES);
192 	maxvnodes = imax(maxvnodes, MINVNODES);
193 
194 	lwkt_token_init(&spechash_token, "spechash");
195 }
196 
197 /*
198  * Knob to control the precision of file timestamps:
199  *
200  *   0 = seconds only; nanoseconds zeroed.
201  *   1 = seconds and nanoseconds, accurate within 1/HZ.
202  *   2 = seconds and nanoseconds, truncated to microseconds.
203  * >=3 = seconds and nanoseconds, maximum precision.
204  *
205  * Note that utimes() precision is microseconds because it takes a timeval
206  * structure, so its probably best to default to USEC and not NSEC.
207  */
208 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
209        TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
210 
211 __read_mostly static int timestamp_precision = TSP_USEC;
212 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
213 		&timestamp_precision, 0, "Precision of file timestamps");
214 
215 /*
216  * Get a current timestamp.
217  *
218  * MPSAFE
219  */
220 void
221 vfs_timestamp(struct timespec *tsp)
222 {
223 	switch (timestamp_precision) {
224 	case TSP_SEC:		/* seconds precision */
225 		getnanotime(tsp);
226 		tsp->tv_nsec = 0;
227 		break;
228 	default:
229 	case TSP_HZ:		/* ticks precision (limit to microseconds) */
230 		getnanotime(tsp);
231 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
232 		break;
233 	case TSP_USEC:		/* microseconds (ticks precision) */
234 		getnanotime(tsp);
235 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
236 		break;
237 	case TSP_NSEC:		/* nanoseconds (ticks precision) */
238 		getnanotime(tsp);
239 		break;
240 	case TSP_USEC_PRECISE:	/* microseconds (high preceision) */
241 		nanotime(tsp);
242 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
243 		break;
244 	case TSP_NSEC_PRECISE:	/* nanoseconds (high precision) */
245 		nanotime(tsp);
246 		break;
247 	}
248 }
249 
250 /*
251  * Set vnode attributes to VNOVAL
252  */
253 void
254 vattr_null(struct vattr *vap)
255 {
256 	vap->va_type = VNON;
257 	vap->va_size = VNOVAL;
258 	vap->va_bytes = VNOVAL;
259 	vap->va_mode = VNOVAL;
260 	vap->va_nlink = VNOVAL;
261 	vap->va_uid = VNOVAL;
262 	vap->va_gid = VNOVAL;
263 	vap->va_fsid = VNOVAL;
264 	vap->va_fileid = VNOVAL;
265 	vap->va_blocksize = VNOVAL;
266 	vap->va_rmajor = VNOVAL;
267 	vap->va_rminor = VNOVAL;
268 	vap->va_atime.tv_sec = VNOVAL;
269 	vap->va_atime.tv_nsec = VNOVAL;
270 	vap->va_mtime.tv_sec = VNOVAL;
271 	vap->va_mtime.tv_nsec = VNOVAL;
272 	vap->va_ctime.tv_sec = VNOVAL;
273 	vap->va_ctime.tv_nsec = VNOVAL;
274 	vap->va_flags = VNOVAL;
275 	vap->va_gen = VNOVAL;
276 	vap->va_vaflags = 0;
277 	/* va_*_uuid fields are only valid if related flags are set */
278 }
279 
280 /*
281  * Flush out and invalidate all buffers associated with a vnode.
282  *
283  * vp must be locked.
284  */
285 static int vinvalbuf_bp(struct buf *bp, void *data);
286 
287 struct vinvalbuf_bp_info {
288 	struct vnode *vp;
289 	int slptimeo;
290 	int lkflags;
291 	int flags;
292 	int clean;
293 };
294 
295 int
296 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
297 {
298 	struct vinvalbuf_bp_info info;
299 	vm_object_t object;
300 	int error;
301 
302 	lwkt_gettoken(&vp->v_token);
303 
304 	/*
305 	 * If we are being asked to save, call fsync to ensure that the inode
306 	 * is updated.
307 	 */
308 	if (flags & V_SAVE) {
309 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
310 		if (error)
311 			goto done;
312 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
313 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
314 				goto done;
315 #if 0
316 			/*
317 			 * Dirty bufs may be left or generated via races
318 			 * in circumstances where vinvalbuf() is called on
319 			 * a vnode not undergoing reclamation.   Only
320 			 * panic if we are trying to reclaim the vnode.
321 			 */
322 			if ((vp->v_flag & VRECLAIMED) &&
323 			    (bio_track_active(&vp->v_track_write) ||
324 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
325 				panic("vinvalbuf: dirty bufs");
326 			}
327 #endif
328 		}
329   	}
330 	info.slptimeo = slptimeo;
331 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
332 	if (slpflag & PCATCH)
333 		info.lkflags |= LK_PCATCH;
334 	info.flags = flags;
335 	info.vp = vp;
336 
337 	/*
338 	 * Flush the buffer cache until nothing is left, wait for all I/O
339 	 * to complete.  At least one pass is required.  We might block
340 	 * in the pip code so we have to re-check.  Order is important.
341 	 */
342 	do {
343 		/*
344 		 * Flush buffer cache
345 		 */
346 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
347 			info.clean = 1;
348 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
349 					NULL, vinvalbuf_bp, &info);
350 		}
351 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
352 			info.clean = 0;
353 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
354 					NULL, vinvalbuf_bp, &info);
355 		}
356 
357 		/*
358 		 * Wait for I/O completion.
359 		 */
360 		bio_track_wait(&vp->v_track_write, 0, 0);
361 		if ((object = vp->v_object) != NULL)
362 			refcount_wait(&object->paging_in_progress, "vnvlbx");
363 	} while (bio_track_active(&vp->v_track_write) ||
364 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
365 		 !RB_EMPTY(&vp->v_rbdirty_tree));
366 
367 	/*
368 	 * Destroy the copy in the VM cache, too.
369 	 */
370 	if ((object = vp->v_object) != NULL) {
371 		vm_object_page_remove(object, 0, 0,
372 			(flags & V_SAVE) ? TRUE : FALSE);
373 	}
374 
375 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
376 		panic("vinvalbuf: flush failed");
377 	if (!RB_EMPTY(&vp->v_rbhash_tree))
378 		panic("vinvalbuf: flush failed, buffers still present");
379 	error = 0;
380 done:
381 	lwkt_reltoken(&vp->v_token);
382 	return (error);
383 }
384 
385 static int
386 vinvalbuf_bp(struct buf *bp, void *data)
387 {
388 	struct vinvalbuf_bp_info *info = data;
389 	int error;
390 
391 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
392 		atomic_add_int(&bp->b_refs, 1);
393 		error = BUF_TIMELOCK(bp, info->lkflags,
394 				     "vinvalbuf", info->slptimeo);
395 		atomic_subtract_int(&bp->b_refs, 1);
396 		if (error == 0) {
397 			BUF_UNLOCK(bp);
398 			error = ENOLCK;
399 		}
400 		if (error == ENOLCK)
401 			return(0);
402 		return (-error);
403 	}
404 	KKASSERT(bp->b_vp == info->vp);
405 
406 	/*
407 	 * Must check clean/dirty status after successfully locking as
408 	 * it may race.
409 	 */
410 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
411 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
412 		BUF_UNLOCK(bp);
413 		return(0);
414 	}
415 
416 	/*
417 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
418 	 * check.  This code will write out the buffer, period.
419 	 */
420 	bremfree(bp);
421 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
422 	    (info->flags & V_SAVE)) {
423 		cluster_awrite(bp);
424 	} else if (info->flags & V_SAVE) {
425 		/*
426 		 * Cannot set B_NOCACHE on a clean buffer as this will
427 		 * destroy the VM backing store which might actually
428 		 * be dirty (and unsynchronized).
429 		 */
430 		bp->b_flags |= (B_INVAL | B_RELBUF);
431 		brelse(bp);
432 	} else {
433 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
434 		brelse(bp);
435 	}
436 	return(0);
437 }
438 
439 /*
440  * Truncate a file's buffer and pages to a specified length.  This
441  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
442  * sync activity.
443  *
444  * The vnode must be locked.
445  */
446 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
447 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
448 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
449 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
450 
451 struct vtruncbuf_info {
452 	struct vnode *vp;
453 	off_t	truncloffset;
454 	int	clean;
455 };
456 
457 int
458 vtruncbuf(struct vnode *vp, off_t length, int blksize)
459 {
460 	struct vtruncbuf_info info;
461 	const char *filename;
462 	int count;
463 
464 	/*
465 	 * Round up to the *next* block, then destroy the buffers in question.
466 	 * Since we are only removing some of the buffers we must rely on the
467 	 * scan count to determine whether a loop is necessary.
468 	 */
469 	if ((count = (int)(length % blksize)) != 0)
470 		info.truncloffset = length + (blksize - count);
471 	else
472 		info.truncloffset = length;
473 	info.vp = vp;
474 
475 	lwkt_gettoken(&vp->v_token);
476 	do {
477 		info.clean = 1;
478 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
479 				vtruncbuf_bp_trunc_cmp,
480 				vtruncbuf_bp_trunc, &info);
481 		info.clean = 0;
482 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
483 				vtruncbuf_bp_trunc_cmp,
484 				vtruncbuf_bp_trunc, &info);
485 	} while(count);
486 
487 	/*
488 	 * For safety, fsync any remaining metadata if the file is not being
489 	 * truncated to 0.  Since the metadata does not represent the entire
490 	 * dirty list we have to rely on the hit count to ensure that we get
491 	 * all of it.
492 	 */
493 	if (length > 0) {
494 		do {
495 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
496 					vtruncbuf_bp_metasync_cmp,
497 					vtruncbuf_bp_metasync, &info);
498 		} while (count);
499 	}
500 
501 	/*
502 	 * Clean out any left over VM backing store.
503 	 *
504 	 * It is possible to have in-progress I/O from buffers that were
505 	 * not part of the truncation.  This should not happen if we
506 	 * are truncating to 0-length.
507 	 */
508 	vnode_pager_setsize(vp, length);
509 	bio_track_wait(&vp->v_track_write, 0, 0);
510 
511 	/*
512 	 * Debugging only
513 	 */
514 	spin_lock(&vp->v_spin);
515 	filename = TAILQ_FIRST(&vp->v_namecache) ?
516 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
517 	spin_unlock(&vp->v_spin);
518 
519 	/*
520 	 * Make sure no buffers were instantiated while we were trying
521 	 * to clean out the remaining VM pages.  This could occur due
522 	 * to busy dirty VM pages being flushed out to disk.
523 	 */
524 	do {
525 		info.clean = 1;
526 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
527 				vtruncbuf_bp_trunc_cmp,
528 				vtruncbuf_bp_trunc, &info);
529 		info.clean = 0;
530 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
531 				vtruncbuf_bp_trunc_cmp,
532 				vtruncbuf_bp_trunc, &info);
533 		if (count) {
534 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
535 			       "left over buffers in %s\n", count, filename);
536 		}
537 	} while(count);
538 
539 	lwkt_reltoken(&vp->v_token);
540 
541 	return (0);
542 }
543 
544 /*
545  * The callback buffer is beyond the new file EOF and must be destroyed.
546  * Note that the compare function must conform to the RB_SCAN's requirements.
547  */
548 static
549 int
550 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
551 {
552 	struct vtruncbuf_info *info = data;
553 
554 	if (bp->b_loffset >= info->truncloffset)
555 		return(0);
556 	return(-1);
557 }
558 
559 static
560 int
561 vtruncbuf_bp_trunc(struct buf *bp, void *data)
562 {
563 	struct vtruncbuf_info *info = data;
564 
565 	/*
566 	 * Do not try to use a buffer we cannot immediately lock, but sleep
567 	 * anyway to prevent a livelock.  The code will loop until all buffers
568 	 * can be acted upon.
569 	 *
570 	 * We must always revalidate the buffer after locking it to deal
571 	 * with MP races.
572 	 */
573 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
574 		atomic_add_int(&bp->b_refs, 1);
575 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
576 			BUF_UNLOCK(bp);
577 		atomic_subtract_int(&bp->b_refs, 1);
578 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
579 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
580 		   bp->b_vp != info->vp ||
581 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
582 		BUF_UNLOCK(bp);
583 	} else {
584 		bremfree(bp);
585 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
586 		brelse(bp);
587 	}
588 	return(1);
589 }
590 
591 /*
592  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
593  * blocks (with a negative loffset) are scanned.
594  * Note that the compare function must conform to the RB_SCAN's requirements.
595  */
596 static int
597 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
598 {
599 	if (bp->b_loffset < 0)
600 		return(0);
601 	return(1);
602 }
603 
604 static int
605 vtruncbuf_bp_metasync(struct buf *bp, void *data)
606 {
607 	struct vtruncbuf_info *info = data;
608 
609 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
610 		atomic_add_int(&bp->b_refs, 1);
611 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
612 			BUF_UNLOCK(bp);
613 		atomic_subtract_int(&bp->b_refs, 1);
614 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
615 		   bp->b_vp != info->vp ||
616 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
617 		BUF_UNLOCK(bp);
618 	} else {
619 		bremfree(bp);
620 		if (bp->b_vp == info->vp)
621 			bawrite(bp);
622 		else
623 			bwrite(bp);
624 	}
625 	return(1);
626 }
627 
628 /*
629  * vfsync - implements a multipass fsync on a file which understands
630  * dependancies and meta-data.  The passed vnode must be locked.  The
631  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
632  *
633  * When fsyncing data asynchronously just do one consolidated pass starting
634  * with the most negative block number.  This may not get all the data due
635  * to dependancies.
636  *
637  * When fsyncing data synchronously do a data pass, then a metadata pass,
638  * then do additional data+metadata passes to try to get all the data out.
639  *
640  * Caller must ref the vnode but does not have to lock it.
641  */
642 static int vfsync_wait_output(struct vnode *vp,
643 			    int (*waitoutput)(struct vnode *, struct thread *));
644 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
645 static int vfsync_data_only_cmp(struct buf *bp, void *data);
646 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
647 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
648 static int vfsync_bp(struct buf *bp, void *data);
649 
650 struct vfsync_info {
651 	struct vnode *vp;
652 	int fastpass;
653 	int synchronous;
654 	int syncdeps;
655 	int lazycount;
656 	int lazylimit;
657 	int skippedbufs;
658 	int (*checkdef)(struct buf *);
659 	int (*cmpfunc)(struct buf *, void *);
660 };
661 
662 int
663 vfsync(struct vnode *vp, int waitfor, int passes,
664 	int (*checkdef)(struct buf *),
665 	int (*waitoutput)(struct vnode *, struct thread *))
666 {
667 	struct vfsync_info info;
668 	int error;
669 
670 	bzero(&info, sizeof(info));
671 	info.vp = vp;
672 	if ((info.checkdef = checkdef) == NULL)
673 		info.syncdeps = 1;
674 
675 	lwkt_gettoken(&vp->v_token);
676 
677 	switch(waitfor) {
678 	case MNT_LAZY | MNT_NOWAIT:
679 	case MNT_LAZY:
680 		/*
681 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
682 		 * number of data (not meta) pages we try to flush to 1MB.
683 		 * A non-zero return means that lazy limit was reached.
684 		 */
685 		info.lazylimit = 1024 * 1024;
686 		info.syncdeps = 1;
687 		info.cmpfunc = vfsync_lazy_range_cmp;
688 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
689 				vfsync_lazy_range_cmp, vfsync_bp, &info);
690 		info.cmpfunc = vfsync_meta_only_cmp;
691 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
692 			vfsync_meta_only_cmp, vfsync_bp, &info);
693 		if (error == 0)
694 			vp->v_lazyw = 0;
695 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
696 			vn_syncer_add(vp, 1);
697 		error = 0;
698 		break;
699 	case MNT_NOWAIT:
700 		/*
701 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
702 		 */
703 		info.syncdeps = 1;
704 		info.cmpfunc = vfsync_data_only_cmp;
705 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
706 			vfsync_bp, &info);
707 		info.cmpfunc = vfsync_meta_only_cmp;
708 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
709 			vfsync_bp, &info);
710 		error = 0;
711 		break;
712 	default:
713 		/*
714 		 * Synchronous.  Do a data-only pass, then a meta-data+data
715 		 * pass, then additional integrated passes to try to get
716 		 * all the dependancies flushed.
717 		 */
718 		info.cmpfunc = vfsync_data_only_cmp;
719 		info.fastpass = 1;
720 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
721 			vfsync_bp, &info);
722 		info.fastpass = 0;
723 		error = vfsync_wait_output(vp, waitoutput);
724 		if (error == 0) {
725 			info.skippedbufs = 0;
726 			info.cmpfunc = vfsync_dummy_cmp;
727 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
728 				vfsync_bp, &info);
729 			error = vfsync_wait_output(vp, waitoutput);
730 			if (info.skippedbufs) {
731 				kprintf("Warning: vfsync skipped %d dirty "
732 					"buf%s in pass2!\n",
733 					info.skippedbufs,
734 					((info.skippedbufs > 1) ? "s" : ""));
735 			}
736 		}
737 		while (error == 0 && passes > 0 &&
738 		       !RB_EMPTY(&vp->v_rbdirty_tree)
739 		) {
740 			info.skippedbufs = 0;
741 			if (--passes == 0) {
742 				info.synchronous = 1;
743 				info.syncdeps = 1;
744 			}
745 			info.cmpfunc = vfsync_dummy_cmp;
746 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
747 					vfsync_bp, &info);
748 			if (error < 0)
749 				error = -error;
750 			info.syncdeps = 1;
751 			if (error == 0)
752 				error = vfsync_wait_output(vp, waitoutput);
753 			if (info.skippedbufs && passes == 0) {
754 				kprintf("Warning: vfsync skipped %d dirty "
755 					"buf%s in final pass!\n",
756 					info.skippedbufs,
757 					((info.skippedbufs > 1) ? "s" : ""));
758 			}
759 		}
760 #if 0
761 		/*
762 		 * This case can occur normally because vnode lock might
763 		 * not be held.
764 		 */
765 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
766 			kprintf("dirty bufs left after final pass\n");
767 #endif
768 		break;
769 	}
770 	lwkt_reltoken(&vp->v_token);
771 
772 	return(error);
773 }
774 
775 static int
776 vfsync_wait_output(struct vnode *vp,
777 		   int (*waitoutput)(struct vnode *, struct thread *))
778 {
779 	int error;
780 
781 	error = bio_track_wait(&vp->v_track_write, 0, 0);
782 	if (waitoutput)
783 		error = waitoutput(vp, curthread);
784 	return(error);
785 }
786 
787 static int
788 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
789 {
790 	return(0);
791 }
792 
793 static int
794 vfsync_data_only_cmp(struct buf *bp, void *data)
795 {
796 	if (bp->b_loffset < 0)
797 		return(-1);
798 	return(0);
799 }
800 
801 static int
802 vfsync_meta_only_cmp(struct buf *bp, void *data)
803 {
804 	if (bp->b_loffset < 0)
805 		return(0);
806 	return(1);
807 }
808 
809 static int
810 vfsync_lazy_range_cmp(struct buf *bp, void *data)
811 {
812 	struct vfsync_info *info = data;
813 
814 	if (bp->b_loffset < info->vp->v_lazyw)
815 		return(-1);
816 	return(0);
817 }
818 
819 static int
820 vfsync_bp(struct buf *bp, void *data)
821 {
822 	struct vfsync_info *info = data;
823 	struct vnode *vp = info->vp;
824 	int error;
825 
826 	if (info->fastpass) {
827 		/*
828 		 * Ignore buffers that we cannot immediately lock.
829 		 */
830 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
831 			/*
832 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
833 			 * delay can mess up performance
834 			 *
835 			 * Another reason is that during a dirty-buffer
836 			 * scan a clustered write can start I/O on buffers
837 			 * ahead of the scan, causing the scan to not
838 			 * get a lock here.  Usually this means the write
839 			 * is already in progress so, in fact, we *want*
840 			 * to skip the buffer.
841 			 */
842 			++info->skippedbufs;
843 			return(0);
844 		}
845 	} else if (info->synchronous == 0) {
846 		/*
847 		 * Normal pass, give the buffer a little time to become
848 		 * available to us.
849 		 */
850 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
851 			++info->skippedbufs;
852 			return(0);
853 		}
854 	} else {
855 		/*
856 		 * Synchronous pass, give the buffer a lot of time before
857 		 * giving up.
858 		 */
859 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
860 			++info->skippedbufs;
861 			return(0);
862 		}
863 	}
864 
865 	/*
866 	 * We must revalidate the buffer after locking.
867 	 */
868 	if ((bp->b_flags & B_DELWRI) == 0 ||
869 	    bp->b_vp != info->vp ||
870 	    info->cmpfunc(bp, data)) {
871 		BUF_UNLOCK(bp);
872 		return(0);
873 	}
874 
875 	/*
876 	 * If syncdeps is not set we do not try to write buffers which have
877 	 * dependancies.
878 	 */
879 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
880 		BUF_UNLOCK(bp);
881 		return(0);
882 	}
883 
884 	/*
885 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
886 	 * has been written but an additional handshake with the device
887 	 * is required before we can dispose of the buffer.  We have no idea
888 	 * how to do this so we have to skip these buffers.
889 	 */
890 	if (bp->b_flags & B_NEEDCOMMIT) {
891 		BUF_UNLOCK(bp);
892 		return(0);
893 	}
894 
895 	/*
896 	 * Ask bioops if it is ok to sync.  If not the VFS may have
897 	 * set B_LOCKED so we have to cycle the buffer.
898 	 */
899 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
900 		bremfree(bp);
901 		brelse(bp);
902 		return(0);
903 	}
904 
905 	if (info->synchronous) {
906 		/*
907 		 * Synchronous flush.  An error may be returned and will
908 		 * stop the scan.
909 		 */
910 		bremfree(bp);
911 		error = bwrite(bp);
912 	} else {
913 		/*
914 		 * Asynchronous flush.  We use the error return to support
915 		 * MNT_LAZY flushes.
916 		 *
917 		 * In low-memory situations we revert to synchronous
918 		 * operation.  This should theoretically prevent the I/O
919 		 * path from exhausting memory in a non-recoverable way.
920 		 */
921 		vp->v_lazyw = bp->b_loffset;
922 		bremfree(bp);
923 		if (vm_page_count_min(0)) {
924 			/* low memory */
925 			info->lazycount += bp->b_bufsize;
926 			bwrite(bp);
927 		} else {
928 			/* normal */
929 			info->lazycount += cluster_awrite(bp);
930 			waitrunningbufspace();
931 			/*vm_wait_nominal();*/
932 		}
933 		if (info->lazylimit && info->lazycount >= info->lazylimit)
934 			error = 1;
935 		else
936 			error = 0;
937 	}
938 	return(-error);
939 }
940 
941 /*
942  * Associate a buffer with a vnode.
943  *
944  * MPSAFE
945  */
946 int
947 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
948 {
949 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
950 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
951 
952 	/*
953 	 * Insert onto list for new vnode.
954 	 */
955 	lwkt_gettoken(&vp->v_token);
956 
957 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
958 		lwkt_reltoken(&vp->v_token);
959 		return (EEXIST);
960 	}
961 
962 	/*
963 	 * Diagnostics (mainly for HAMMER debugging).  Check for
964 	 * overlapping buffers.
965 	 */
966 	if (check_buf_overlap) {
967 		struct buf *bx;
968 		bx = buf_rb_hash_RB_PREV(bp);
969 		if (bx) {
970 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
971 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
972 					"bx %p bp %p\n",
973 					(intmax_t)bx->b_loffset,
974 					bx->b_bufsize,
975 					(intmax_t)bp->b_loffset,
976 					bx, bp);
977 				if (check_buf_overlap > 1)
978 					panic("bgetvp - overlapping buffer");
979 			}
980 		}
981 		bx = buf_rb_hash_RB_NEXT(bp);
982 		if (bx) {
983 			if (bp->b_loffset + testsize > bx->b_loffset) {
984 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
985 					"bp %p bx %p\n",
986 					(intmax_t)bp->b_loffset,
987 					testsize,
988 					(intmax_t)bx->b_loffset,
989 					bp, bx);
990 				if (check_buf_overlap > 1)
991 					panic("bgetvp - overlapping buffer");
992 			}
993 		}
994 	}
995 	bp->b_vp = vp;
996 	bp->b_flags |= B_HASHED;
997 	bp->b_flags |= B_VNCLEAN;
998 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
999 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1000 	/*vhold(vp);*/
1001 	lwkt_reltoken(&vp->v_token);
1002 	return(0);
1003 }
1004 
1005 /*
1006  * Disassociate a buffer from a vnode.
1007  *
1008  * MPSAFE
1009  */
1010 void
1011 brelvp(struct buf *bp)
1012 {
1013 	struct vnode *vp;
1014 
1015 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1016 
1017 	/*
1018 	 * Delete from old vnode list, if on one.
1019 	 */
1020 	vp = bp->b_vp;
1021 	lwkt_gettoken(&vp->v_token);
1022 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1023 		if (bp->b_flags & B_VNDIRTY)
1024 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1025 		else
1026 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1027 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1028 	}
1029 	if (bp->b_flags & B_HASHED) {
1030 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1031 		bp->b_flags &= ~B_HASHED;
1032 	}
1033 
1034 	/*
1035 	 * Only remove from synclist when no dirty buffers are left AND
1036 	 * the VFS has not flagged the vnode's inode as being dirty.
1037 	 */
1038 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1039 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1040 		vn_syncer_remove(vp, 0);
1041 	}
1042 	bp->b_vp = NULL;
1043 
1044 	lwkt_reltoken(&vp->v_token);
1045 
1046 	/*vdrop(vp);*/
1047 }
1048 
1049 /*
1050  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1051  * This routine is called when the state of the B_DELWRI bit is changed.
1052  *
1053  * Must be called with vp->v_token held.
1054  * MPSAFE
1055  */
1056 void
1057 reassignbuf(struct buf *bp)
1058 {
1059 	struct vnode *vp = bp->b_vp;
1060 	int delay;
1061 
1062 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1063 	++reassignbufcalls;
1064 
1065 	/*
1066 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1067 	 * is not fully linked in.
1068 	 */
1069 	if (bp->b_flags & B_PAGING)
1070 		panic("cannot reassign paging buffer");
1071 
1072 	if (bp->b_flags & B_DELWRI) {
1073 		/*
1074 		 * Move to the dirty list, add the vnode to the worklist
1075 		 */
1076 		if (bp->b_flags & B_VNCLEAN) {
1077 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1078 			bp->b_flags &= ~B_VNCLEAN;
1079 		}
1080 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1081 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1082 				panic("reassignbuf: dup lblk vp %p bp %p",
1083 				      vp, bp);
1084 			}
1085 			bp->b_flags |= B_VNDIRTY;
1086 		}
1087 		if ((vp->v_flag & VONWORKLST) == 0) {
1088 			switch (vp->v_type) {
1089 			case VDIR:
1090 				delay = dirdelay;
1091 				break;
1092 			case VCHR:
1093 			case VBLK:
1094 				if (vp->v_rdev &&
1095 				    vp->v_rdev->si_mountpoint != NULL) {
1096 					delay = metadelay;
1097 					break;
1098 				}
1099 				/* fall through */
1100 			default:
1101 				delay = filedelay;
1102 			}
1103 			vn_syncer_add(vp, delay);
1104 		}
1105 	} else {
1106 		/*
1107 		 * Move to the clean list, remove the vnode from the worklist
1108 		 * if no dirty blocks remain.
1109 		 */
1110 		if (bp->b_flags & B_VNDIRTY) {
1111 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1112 			bp->b_flags &= ~B_VNDIRTY;
1113 		}
1114 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1115 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1116 				panic("reassignbuf: dup lblk vp %p bp %p",
1117 				      vp, bp);
1118 			}
1119 			bp->b_flags |= B_VNCLEAN;
1120 		}
1121 
1122 		/*
1123 		 * Only remove from synclist when no dirty buffers are left
1124 		 * AND the VFS has not flagged the vnode's inode as being
1125 		 * dirty.
1126 		 */
1127 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1128 		     VONWORKLST &&
1129 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1130 			vn_syncer_remove(vp, 0);
1131 		}
1132 	}
1133 }
1134 
1135 /*
1136  * Create a vnode for a block device.  Used for mounting the root file
1137  * system.
1138  *
1139  * A vref()'d vnode is returned.
1140  */
1141 extern struct vop_ops *devfs_vnode_dev_vops_p;
1142 int
1143 bdevvp(cdev_t dev, struct vnode **vpp)
1144 {
1145 	struct vnode *vp;
1146 	struct vnode *nvp;
1147 	int error;
1148 
1149 	if (dev == NULL) {
1150 		*vpp = NULLVP;
1151 		return (ENXIO);
1152 	}
1153 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1154 				&nvp, 0, 0);
1155 	if (error) {
1156 		*vpp = NULLVP;
1157 		return (error);
1158 	}
1159 	vp = nvp;
1160 	vp->v_type = VCHR;
1161 #if 0
1162 	vp->v_rdev = dev;
1163 #endif
1164 	v_associate_rdev(vp, dev);
1165 	vp->v_umajor = dev->si_umajor;
1166 	vp->v_uminor = dev->si_uminor;
1167 	vx_unlock(vp);
1168 	*vpp = vp;
1169 	return (0);
1170 }
1171 
1172 int
1173 v_associate_rdev(struct vnode *vp, cdev_t dev)
1174 {
1175 	if (dev == NULL)
1176 		return(ENXIO);
1177 	if (dev_is_good(dev) == 0)
1178 		return(ENXIO);
1179 	KKASSERT(vp->v_rdev == NULL);
1180 	vp->v_rdev = reference_dev(dev);
1181 	lwkt_gettoken(&spechash_token);
1182 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1183 	lwkt_reltoken(&spechash_token);
1184 	return(0);
1185 }
1186 
1187 void
1188 v_release_rdev(struct vnode *vp)
1189 {
1190 	cdev_t dev;
1191 
1192 	if ((dev = vp->v_rdev) != NULL) {
1193 		lwkt_gettoken(&spechash_token);
1194 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1195 		vp->v_rdev = NULL;
1196 		release_dev(dev);
1197 		lwkt_reltoken(&spechash_token);
1198 	}
1199 }
1200 
1201 /*
1202  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1203  * the device number with the vnode.  The actual device is not associated
1204  * until the vnode is opened (usually in spec_open()), and will be
1205  * disassociated on last close.
1206  */
1207 void
1208 addaliasu(struct vnode *nvp, int x, int y)
1209 {
1210 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1211 		panic("addaliasu on non-special vnode");
1212 	nvp->v_umajor = x;
1213 	nvp->v_uminor = y;
1214 }
1215 
1216 /*
1217  * Simple call that a filesystem can make to try to get rid of a
1218  * vnode.  It will fail if anyone is referencing the vnode (including
1219  * the caller).
1220  *
1221  * The filesystem can check whether its in-memory inode structure still
1222  * references the vp on return.
1223  *
1224  * May only be called if the vnode is in a known state (i.e. being prevented
1225  * from being deallocated by some other condition such as a vfs inode hold).
1226  *
1227  * This call might not succeed.
1228  */
1229 void
1230 vclean_unlocked(struct vnode *vp)
1231 {
1232 	vx_get(vp);
1233 	if (VREFCNT(vp) <= 1)
1234 		vgone_vxlocked(vp);
1235 	vx_put(vp);
1236 }
1237 
1238 /*
1239  * Disassociate a vnode from its underlying filesystem.
1240  *
1241  * The vnode must be VX locked and referenced.  In all normal situations
1242  * there are no active references.  If vclean_vxlocked() is called while
1243  * there are active references, the vnode is being ripped out and we have
1244  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1245  */
1246 static void
1247 vclean_vxlocked(struct vnode *vp, int flags)
1248 {
1249 	int active;
1250 	int n;
1251 	vm_object_t object;
1252 	struct namecache *ncp;
1253 
1254 	/*
1255 	 * If the vnode has already been reclaimed we have nothing to do.
1256 	 */
1257 	if (vp->v_flag & VRECLAIMED)
1258 		return;
1259 
1260 	/*
1261 	 * Set flag to interlock operation, flag finalization to ensure
1262 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1263 	 */
1264 	vsetflags(vp, VRECLAIMED);
1265 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1266 	vp->v_act = 0;
1267 
1268 	if (verbose_reclaims) {
1269 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1270 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1271 	}
1272 
1273 	/*
1274 	 * Scrap the vfs cache
1275 	 */
1276 	while (cache_inval_vp(vp, 0) != 0) {
1277 		kprintf("Warning: vnode %p clean/cache_resolution "
1278 			"race detected\n", vp);
1279 		tsleep(vp, 0, "vclninv", 2);
1280 	}
1281 
1282 	/*
1283 	 * Check to see if the vnode is in use. If so we have to reference it
1284 	 * before we clean it out so that its count cannot fall to zero and
1285 	 * generate a race against ourselves to recycle it.
1286 	 */
1287 	active = (VREFCNT(vp) > 0);
1288 
1289 	/*
1290 	 * Clean out any buffers associated with the vnode and destroy its
1291 	 * object, if it has one.
1292 	 */
1293 	vinvalbuf(vp, V_SAVE, 0, 0);
1294 
1295 	/*
1296 	 * If purging an active vnode (typically during a forced unmount
1297 	 * or reboot), it must be closed and deactivated before being
1298 	 * reclaimed.  This isn't really all that safe, but what can
1299 	 * we do? XXX.
1300 	 *
1301 	 * Note that neither of these routines unlocks the vnode.
1302 	 */
1303 	if (active && (flags & DOCLOSE)) {
1304 		while ((n = vp->v_opencount) != 0) {
1305 			if (vp->v_writecount)
1306 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1307 			else
1308 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1309 			if (vp->v_opencount == n) {
1310 				kprintf("Warning: unable to force-close"
1311 				       " vnode %p\n", vp);
1312 				break;
1313 			}
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1319 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1320 	 * again to make sure they all get flushed.
1321 	 *
1322 	 * This can occur if a file with a link count of 0 needs to be
1323 	 * truncated.
1324 	 *
1325 	 * If the vnode is already dead don't try to deactivate it.
1326 	 */
1327 	if ((vp->v_flag & VINACTIVE) == 0) {
1328 		vsetflags(vp, VINACTIVE);
1329 		if (vp->v_mount)
1330 			VOP_INACTIVE(vp);
1331 		vinvalbuf(vp, V_SAVE, 0, 0);
1332 	}
1333 
1334 	/*
1335 	 * If the vnode has an object, destroy it.
1336 	 */
1337 	while ((object = vp->v_object) != NULL) {
1338 		vm_object_hold(object);
1339 		if (object == vp->v_object)
1340 			break;
1341 		vm_object_drop(object);
1342 	}
1343 
1344 	if (object != NULL) {
1345 		if (object->ref_count == 0) {
1346 			if ((object->flags & OBJ_DEAD) == 0)
1347 				vm_object_terminate(object);
1348 			vm_object_drop(object);
1349 			vclrflags(vp, VOBJBUF);
1350 		} else {
1351 			vm_pager_deallocate(object);
1352 			vclrflags(vp, VOBJBUF);
1353 			vm_object_drop(object);
1354 		}
1355 	}
1356 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1357 
1358 	if (vp->v_flag & VOBJDIRTY)
1359 		vclrobjdirty(vp);
1360 
1361 	/*
1362 	 * Reclaim the vnode if not already dead.
1363 	 */
1364 	if (vp->v_mount && VOP_RECLAIM(vp))
1365 		panic("vclean: cannot reclaim");
1366 
1367 	/*
1368 	 * Done with purge, notify sleepers of the grim news.
1369 	 */
1370 	vp->v_ops = &dead_vnode_vops_p;
1371 	vn_gone(vp);
1372 	vp->v_tag = VT_NON;
1373 
1374 	/*
1375 	 * If we are destroying an active vnode, reactivate it now that
1376 	 * we have reassociated it with deadfs.  This prevents the system
1377 	 * from crashing on the vnode due to it being unexpectedly marked
1378 	 * as inactive or reclaimed.
1379 	 */
1380 	if (active && (flags & DOCLOSE)) {
1381 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1382 	}
1383 }
1384 
1385 /*
1386  * Eliminate all activity associated with the requested vnode
1387  * and with all vnodes aliased to the requested vnode.
1388  *
1389  * The vnode must be referenced but should not be locked.
1390  */
1391 int
1392 vrevoke(struct vnode *vp, struct ucred *cred)
1393 {
1394 	struct vnode *vq;
1395 	struct vnode *vqn;
1396 	cdev_t dev;
1397 	int error;
1398 
1399 	/*
1400 	 * If the vnode has a device association, scrap all vnodes associated
1401 	 * with the device.  Don't let the device disappear on us while we
1402 	 * are scrapping the vnodes.
1403 	 *
1404 	 * The passed vp will probably show up in the list, do not VX lock
1405 	 * it twice!
1406 	 *
1407 	 * Releasing the vnode's rdev here can mess up specfs's call to
1408 	 * device close, so don't do it.  The vnode has been disassociated
1409 	 * and the device will be closed after the last ref on the related
1410 	 * fp goes away (if not still open by e.g. the kernel).
1411 	 */
1412 	if (vp->v_type != VCHR) {
1413 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1414 		return (error);
1415 	}
1416 	if ((dev = vp->v_rdev) == NULL) {
1417 		return(0);
1418 	}
1419 	reference_dev(dev);
1420 	lwkt_gettoken(&spechash_token);
1421 
1422 restart:
1423 	vqn = SLIST_FIRST(&dev->si_hlist);
1424 	if (vqn)
1425 		vhold(vqn);
1426 	while ((vq = vqn) != NULL) {
1427 		if (VREFCNT(vq) > 0) {
1428 			vref(vq);
1429 			fdrevoke(vq, DTYPE_VNODE, cred);
1430 			/*v_release_rdev(vq);*/
1431 			vrele(vq);
1432 			if (vq->v_rdev != dev) {
1433 				vdrop(vq);
1434 				goto restart;
1435 			}
1436 		}
1437 		vqn = SLIST_NEXT(vq, v_cdevnext);
1438 		if (vqn)
1439 			vhold(vqn);
1440 		vdrop(vq);
1441 	}
1442 	lwkt_reltoken(&spechash_token);
1443 	dev_drevoke(dev);
1444 	release_dev(dev);
1445 	return (0);
1446 }
1447 
1448 /*
1449  * This is called when the object underlying a vnode is being destroyed,
1450  * such as in a remove().  Try to recycle the vnode immediately if the
1451  * only active reference is our reference.
1452  *
1453  * Directory vnodes in the namecache with children cannot be immediately
1454  * recycled because numerous VOP_N*() ops require them to be stable.
1455  *
1456  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1457  * function is a NOP if VRECLAIMED is already set.
1458  */
1459 int
1460 vrecycle(struct vnode *vp)
1461 {
1462 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1463 		if (cache_inval_vp_nonblock(vp))
1464 			return(0);
1465 		vgone_vxlocked(vp);
1466 		return (1);
1467 	}
1468 	return (0);
1469 }
1470 
1471 /*
1472  * Return the maximum I/O size allowed for strategy calls on VP.
1473  *
1474  * If vp is VCHR or VBLK we dive the device, otherwise we use
1475  * the vp's mount info.
1476  *
1477  * The returned value is clamped at MAXPHYS as most callers cannot use
1478  * buffers larger than that size.
1479  */
1480 int
1481 vmaxiosize(struct vnode *vp)
1482 {
1483 	int maxiosize;
1484 
1485 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1486 		maxiosize = vp->v_rdev->si_iosize_max;
1487 	else
1488 		maxiosize = vp->v_mount->mnt_iosize_max;
1489 
1490 	if (maxiosize > MAXPHYS)
1491 		maxiosize = MAXPHYS;
1492 	return (maxiosize);
1493 }
1494 
1495 /*
1496  * Eliminate all activity associated with a vnode in preparation for
1497  * destruction.
1498  *
1499  * The vnode must be VX locked and refd and will remain VX locked and refd
1500  * on return.  This routine may be called with the vnode in any state, as
1501  * long as it is VX locked.  The vnode will be cleaned out and marked
1502  * VRECLAIMED but will not actually be reused until all existing refs and
1503  * holds go away.
1504  *
1505  * NOTE: This routine may be called on a vnode which has not yet been
1506  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1507  * already been reclaimed.
1508  *
1509  * This routine is not responsible for placing us back on the freelist.
1510  * Instead, it happens automatically when the caller releases the VX lock
1511  * (assuming there aren't any other references).
1512  */
1513 void
1514 vgone_vxlocked(struct vnode *vp)
1515 {
1516 	/*
1517 	 * assert that the VX lock is held.  This is an absolute requirement
1518 	 * now for vgone_vxlocked() to be called.
1519 	 */
1520 	KKASSERT(lockinuse(&vp->v_lock));
1521 
1522 	/*
1523 	 * Clean out the filesystem specific data and set the VRECLAIMED
1524 	 * bit.  Also deactivate the vnode if necessary.
1525 	 *
1526 	 * The vnode should have automatically been removed from the syncer
1527 	 * list as syncer/dirty flags cleared during the cleaning.
1528 	 */
1529 	vclean_vxlocked(vp, DOCLOSE);
1530 
1531 	/*
1532 	 * Normally panic if the vnode is still dirty, unless we are doing
1533 	 * a forced unmount (tmpfs typically).
1534 	 */
1535 	if (vp->v_flag & VONWORKLST) {
1536 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1537 			/* force removal */
1538 			vn_syncer_remove(vp, 1);
1539 		} else {
1540 			panic("vp %p still dirty in vgone after flush", vp);
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Delete from old mount point vnode list, if on one.
1546 	 */
1547 	if (vp->v_mount != NULL) {
1548 		KKASSERT(vp->v_data == NULL);
1549 		insmntque(vp, NULL);
1550 	}
1551 
1552 	/*
1553 	 * If special device, remove it from special device alias list
1554 	 * if it is on one.  This should normally only occur if a vnode is
1555 	 * being revoked as the device should otherwise have been released
1556 	 * naturally.
1557 	 */
1558 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1559 		v_release_rdev(vp);
1560 	}
1561 
1562 	/*
1563 	 * Set us to VBAD
1564 	 */
1565 	vp->v_type = VBAD;
1566 }
1567 
1568 /*
1569  * Calculate the total number of references to a special device.  This
1570  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1571  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1572  * have to check for a NULL v_rdev.
1573  */
1574 int
1575 count_dev(cdev_t dev)
1576 {
1577 	struct vnode *vp;
1578 	int count = 0;
1579 
1580 	if (SLIST_FIRST(&dev->si_hlist)) {
1581 		lwkt_gettoken(&spechash_token);
1582 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1583 			count += vp->v_opencount;
1584 		}
1585 		lwkt_reltoken(&spechash_token);
1586 	}
1587 	return(count);
1588 }
1589 
1590 int
1591 vcount(struct vnode *vp)
1592 {
1593 	if (vp->v_rdev == NULL)
1594 		return(0);
1595 	return(count_dev(vp->v_rdev));
1596 }
1597 
1598 /*
1599  * Initialize VMIO for a vnode.  This routine MUST be called before a
1600  * VFS can issue buffer cache ops on a vnode.  It is typically called
1601  * when a vnode is initialized from its inode.
1602  */
1603 int
1604 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1605 {
1606 	vm_object_t object;
1607 	int error = 0;
1608 
1609 	object = vp->v_object;
1610 	if (object) {
1611 		vm_object_hold(object);
1612 		KKASSERT(vp->v_object == object);
1613 	}
1614 
1615 	if (object == NULL) {
1616 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1617 
1618 		/*
1619 		 * Dereference the reference we just created.  This assumes
1620 		 * that the object is associated with the vp.  Allow it to
1621 		 * have zero refs.  It cannot be destroyed as long as it
1622 		 * is associated with the vnode.
1623 		 */
1624 		vm_object_hold(object);
1625 		atomic_add_int(&object->ref_count, -1);
1626 		vrele(vp);
1627 	} else {
1628 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1629 	}
1630 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1631 	vsetflags(vp, VOBJBUF);
1632 	vm_object_drop(object);
1633 
1634 	return (error);
1635 }
1636 
1637 
1638 /*
1639  * Print out a description of a vnode.
1640  */
1641 static char *typename[] =
1642 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1643 
1644 void
1645 vprint(char *label, struct vnode *vp)
1646 {
1647 	char buf[96];
1648 
1649 	if (label != NULL)
1650 		kprintf("%s: %p: ", label, (void *)vp);
1651 	else
1652 		kprintf("%p: ", (void *)vp);
1653 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1654 		typename[vp->v_type],
1655 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1656 	buf[0] = '\0';
1657 	if (vp->v_flag & VROOT)
1658 		strcat(buf, "|VROOT");
1659 	if (vp->v_flag & VPFSROOT)
1660 		strcat(buf, "|VPFSROOT");
1661 	if (vp->v_flag & VTEXT)
1662 		strcat(buf, "|VTEXT");
1663 	if (vp->v_flag & VSYSTEM)
1664 		strcat(buf, "|VSYSTEM");
1665 	if (vp->v_flag & VOBJBUF)
1666 		strcat(buf, "|VOBJBUF");
1667 	if (buf[0] != '\0')
1668 		kprintf(" flags (%s)", &buf[1]);
1669 	if (vp->v_data == NULL) {
1670 		kprintf("\n");
1671 	} else {
1672 		kprintf("\n\t");
1673 		VOP_PRINT(vp);
1674 	}
1675 }
1676 
1677 /*
1678  * Do the usual access checking.
1679  * file_mode, uid and gid are from the vnode in question,
1680  * while acc_mode and cred are from the VOP_ACCESS parameter list
1681  */
1682 int
1683 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1684     mode_t acc_mode, struct ucred *cred)
1685 {
1686 	mode_t mask;
1687 	int ismember;
1688 
1689 	/*
1690 	 * Super-user always gets read/write access, but execute access depends
1691 	 * on at least one execute bit being set.
1692 	 */
1693 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1694 		if ((acc_mode & VEXEC) && type != VDIR &&
1695 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1696 			return (EACCES);
1697 		return (0);
1698 	}
1699 
1700 	mask = 0;
1701 
1702 	/* Otherwise, check the owner. */
1703 	if (cred->cr_uid == uid) {
1704 		if (acc_mode & VEXEC)
1705 			mask |= S_IXUSR;
1706 		if (acc_mode & VREAD)
1707 			mask |= S_IRUSR;
1708 		if (acc_mode & VWRITE)
1709 			mask |= S_IWUSR;
1710 		return ((file_mode & mask) == mask ? 0 : EACCES);
1711 	}
1712 
1713 	/* Otherwise, check the groups. */
1714 	ismember = groupmember(gid, cred);
1715 	if (cred->cr_svgid == gid || ismember) {
1716 		if (acc_mode & VEXEC)
1717 			mask |= S_IXGRP;
1718 		if (acc_mode & VREAD)
1719 			mask |= S_IRGRP;
1720 		if (acc_mode & VWRITE)
1721 			mask |= S_IWGRP;
1722 		return ((file_mode & mask) == mask ? 0 : EACCES);
1723 	}
1724 
1725 	/* Otherwise, check everyone else. */
1726 	if (acc_mode & VEXEC)
1727 		mask |= S_IXOTH;
1728 	if (acc_mode & VREAD)
1729 		mask |= S_IROTH;
1730 	if (acc_mode & VWRITE)
1731 		mask |= S_IWOTH;
1732 	return ((file_mode & mask) == mask ? 0 : EACCES);
1733 }
1734 
1735 #ifdef DDB
1736 #include <ddb/ddb.h>
1737 
1738 static int db_show_locked_vnodes(struct mount *mp, void *data);
1739 
1740 /*
1741  * List all of the locked vnodes in the system.
1742  * Called when debugging the kernel.
1743  */
1744 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1745 {
1746 	kprintf("Locked vnodes\n");
1747 	mountlist_scan(db_show_locked_vnodes, NULL,
1748 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1749 }
1750 
1751 static int
1752 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1753 {
1754 	struct vnode *vp;
1755 
1756 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1757 		if (vn_islocked(vp))
1758 			vprint(NULL, vp);
1759 	}
1760 	return(0);
1761 }
1762 #endif
1763 
1764 /*
1765  * Top level filesystem related information gathering.
1766  */
1767 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1768 
1769 static int
1770 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1771 {
1772 	int *name = (int *)arg1 - 1;	/* XXX */
1773 	u_int namelen = arg2 + 1;	/* XXX */
1774 	struct vfsconf *vfsp;
1775 	int maxtypenum;
1776 
1777 #if 1 || defined(COMPAT_PRELITE2)
1778 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1779 	if (namelen == 1)
1780 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1781 #endif
1782 
1783 #ifdef notyet
1784 	/* all sysctl names at this level are at least name and field */
1785 	if (namelen < 2)
1786 		return (ENOTDIR);		/* overloaded */
1787 	if (name[0] != VFS_GENERIC) {
1788 		vfsp = vfsconf_find_by_typenum(name[0]);
1789 		if (vfsp == NULL)
1790 			return (EOPNOTSUPP);
1791 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1792 		    oldp, oldlenp, newp, newlen, p));
1793 	}
1794 #endif
1795 	switch (name[1]) {
1796 	case VFS_MAXTYPENUM:
1797 		if (namelen != 2)
1798 			return (ENOTDIR);
1799 		maxtypenum = vfsconf_get_maxtypenum();
1800 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1801 	case VFS_CONF:
1802 		if (namelen != 3)
1803 			return (ENOTDIR);	/* overloaded */
1804 		vfsp = vfsconf_find_by_typenum(name[2]);
1805 		if (vfsp == NULL)
1806 			return (EOPNOTSUPP);
1807 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1808 	}
1809 	return (EOPNOTSUPP);
1810 }
1811 
1812 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1813 	"Generic filesystem");
1814 
1815 #if 1 || defined(COMPAT_PRELITE2)
1816 
1817 static int
1818 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1819 {
1820 	int error;
1821 	struct ovfsconf ovfs;
1822 	struct sysctl_req *req = (struct sysctl_req*) data;
1823 
1824 	bzero(&ovfs, sizeof(ovfs));
1825 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1826 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1827 	ovfs.vfc_index = vfsp->vfc_typenum;
1828 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1829 	ovfs.vfc_flags = vfsp->vfc_flags;
1830 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1831 	if (error)
1832 		return error; /* abort iteration with error code */
1833 	else
1834 		return 0; /* continue iterating with next element */
1835 }
1836 
1837 static int
1838 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1839 {
1840 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1841 }
1842 
1843 #endif /* 1 || COMPAT_PRELITE2 */
1844 
1845 /*
1846  * Check to see if a filesystem is mounted on a block device.
1847  */
1848 int
1849 vfs_mountedon(struct vnode *vp)
1850 {
1851 	cdev_t dev;
1852 
1853 	dev = vp->v_rdev;
1854 	if (dev != NULL && dev->si_mountpoint)
1855 		return (EBUSY);
1856 	return (0);
1857 }
1858 
1859 /*
1860  * Unmount all filesystems. The list is traversed in reverse order
1861  * of mounting to avoid dependencies.
1862  *
1863  * We want the umountall to be able to break out of its loop if a
1864  * failure occurs, after scanning all possible mounts, so the callback
1865  * returns 0 on error.
1866  *
1867  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1868  *	 confuse mountlist_scan()'s unbusy check.
1869  */
1870 static int vfs_umountall_callback(struct mount *mp, void *data);
1871 
1872 void
1873 vfs_unmountall(int halting)
1874 {
1875 	int count;
1876 
1877 	do {
1878 		count = mountlist_scan(vfs_umountall_callback, &halting,
1879 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1880 	} while (count);
1881 }
1882 
1883 static
1884 int
1885 vfs_umountall_callback(struct mount *mp, void *data)
1886 {
1887 	int error;
1888 	int halting = *(int *)data;
1889 
1890 	/*
1891 	 * NOTE: When halting, dounmount will disconnect but leave
1892 	 *	 certain mount points intact.  e.g. devfs.
1893 	 */
1894 	error = dounmount(mp, MNT_FORCE, halting);
1895 	if (error) {
1896 		kprintf("unmount of filesystem mounted from %s failed (",
1897 			mp->mnt_stat.f_mntfromname);
1898 		if (error == EBUSY)
1899 			kprintf("BUSY)\n");
1900 		else
1901 			kprintf("%d)\n", error);
1902 		return 0;
1903 	} else {
1904 		return 1;
1905 	}
1906 }
1907 
1908 /*
1909  * Checks the mount flags for parameter mp and put the names comma-separated
1910  * into a string buffer buf with a size limit specified by len.
1911  *
1912  * It returns the number of bytes written into buf, and (*errorp) will be
1913  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1914  * not large enough).  The buffer will be 0-terminated if len was not 0.
1915  */
1916 size_t
1917 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1918 	       char *buf, size_t len, int *errorp)
1919 {
1920 	static const struct mountctl_opt optnames[] = {
1921 		{ MNT_RDONLY,           "read-only" },
1922 		{ MNT_SYNCHRONOUS,      "synchronous" },
1923 		{ MNT_NOEXEC,           "noexec" },
1924 		{ MNT_NOSUID,           "nosuid" },
1925 		{ MNT_NODEV,            "nodev" },
1926 		{ MNT_AUTOMOUNTED,      "automounted" },
1927 		{ MNT_ASYNC,            "asynchronous" },
1928 		{ MNT_SUIDDIR,          "suiddir" },
1929 		{ MNT_SOFTDEP,          "soft-updates" },
1930 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1931 		{ MNT_TRIM,             "trim" },
1932 		{ MNT_NOATIME,          "noatime" },
1933 		{ MNT_NOCLUSTERR,       "noclusterr" },
1934 		{ MNT_NOCLUSTERW,       "noclusterw" },
1935 		{ MNT_EXRDONLY,         "NFS read-only" },
1936 		{ MNT_EXPORTED,         "NFS exported" },
1937 		/* Remaining NFS flags could come here */
1938 		{ MNT_LOCAL,            "local" },
1939 		{ MNT_QUOTA,            "with-quotas" },
1940 		/* { MNT_ROOTFS,           "rootfs" }, */
1941 		/* { MNT_IGNORE,           "ignore" }, */
1942 		{ 0,			NULL}
1943 	};
1944 	int bwritten;
1945 	int bleft;
1946 	int optlen;
1947 	int actsize;
1948 
1949 	*errorp = 0;
1950 	bwritten = 0;
1951 	bleft = len - 1;	/* leave room for trailing \0 */
1952 
1953 	/*
1954 	 * Checks the size of the string. If it contains
1955 	 * any data, then we will append the new flags to
1956 	 * it.
1957 	 */
1958 	actsize = strlen(buf);
1959 	if (actsize > 0)
1960 		buf += actsize;
1961 
1962 	/* Default flags if no flags passed */
1963 	if (optp == NULL)
1964 		optp = optnames;
1965 
1966 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1967 		*errorp = EINVAL;
1968 		return(0);
1969 	}
1970 
1971 	for (; flags && optp->o_opt; ++optp) {
1972 		if ((flags & optp->o_opt) == 0)
1973 			continue;
1974 		optlen = strlen(optp->o_name);
1975 		if (bwritten || actsize > 0) {
1976 			if (bleft < 2) {
1977 				*errorp = ENOSPC;
1978 				break;
1979 			}
1980 			buf[bwritten++] = ',';
1981 			buf[bwritten++] = ' ';
1982 			bleft -= 2;
1983 		}
1984 		if (bleft < optlen) {
1985 			*errorp = ENOSPC;
1986 			break;
1987 		}
1988 		bcopy(optp->o_name, buf + bwritten, optlen);
1989 		bwritten += optlen;
1990 		bleft -= optlen;
1991 		flags &= ~optp->o_opt;
1992 	}
1993 
1994 	/*
1995 	 * Space already reserved for trailing \0
1996 	 */
1997 	buf[bwritten] = 0;
1998 	return (bwritten);
1999 }
2000 
2001 /*
2002  * Build hash lists of net addresses and hang them off the mount point.
2003  * Called by ufs_mount() to set up the lists of export addresses.
2004  */
2005 static int
2006 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2007 		const struct export_args *argp)
2008 {
2009 	struct netcred *np;
2010 	struct radix_node_head *rnh;
2011 	int i;
2012 	struct radix_node *rn;
2013 	struct sockaddr *saddr, *smask = NULL;
2014 	int error;
2015 
2016 	if (argp->ex_addrlen == 0) {
2017 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2018 			return (EPERM);
2019 		np = &nep->ne_defexported;
2020 		np->netc_exflags = argp->ex_flags;
2021 		np->netc_anon = argp->ex_anon;
2022 		np->netc_anon.cr_ref = 1;
2023 		mp->mnt_flag |= MNT_DEFEXPORTED;
2024 		return (0);
2025 	}
2026 
2027 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2028 		return (EINVAL);
2029 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2030 		return (EINVAL);
2031 
2032 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2033 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2034 	saddr = (struct sockaddr *) (np + 1);
2035 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2036 		goto out;
2037 	if (saddr->sa_len > argp->ex_addrlen)
2038 		saddr->sa_len = argp->ex_addrlen;
2039 	if (argp->ex_masklen) {
2040 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2041 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2042 		if (error)
2043 			goto out;
2044 		if (smask->sa_len > argp->ex_masklen)
2045 			smask->sa_len = argp->ex_masklen;
2046 	}
2047 	NE_LOCK(nep);
2048 	if (nep->ne_maskhead == NULL) {
2049 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2050 			error = ENOBUFS;
2051 			goto out;
2052 		}
2053 	}
2054 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2055 		error = ENOBUFS;
2056 		goto out;
2057 	}
2058 	rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2059 				 np->netc_rnodes);
2060 	NE_UNLOCK(nep);
2061 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2062 		error = EPERM;
2063 		goto out;
2064 	}
2065 	np->netc_exflags = argp->ex_flags;
2066 	np->netc_anon = argp->ex_anon;
2067 	np->netc_anon.cr_ref = 1;
2068 	return (0);
2069 
2070 out:
2071 	kfree(np, M_NETCRED);
2072 	return (error);
2073 }
2074 
2075 /*
2076  * Free netcred structures installed in the netexport
2077  */
2078 static int
2079 vfs_free_netcred(struct radix_node *rn, void *w)
2080 {
2081 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2082 
2083 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2084 	kfree(rn, M_NETCRED);
2085 
2086 	return (0);
2087 }
2088 
2089 /*
2090  * callback to free an element of the mask table installed in the
2091  * netexport.  These may be created indirectly and are not netcred
2092  * structures.
2093  */
2094 static int
2095 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2096 {
2097 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2098 
2099 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2100 	kfree(rn, M_RTABLE);
2101 
2102 	return (0);
2103 }
2104 
2105 static struct radix_node_head *
2106 vfs_create_addrlist_af(int af, struct netexport *nep)
2107 {
2108 	struct radix_node_head *rnh = NULL;
2109 #if defined(INET) || defined(INET6)
2110 	struct radix_node_head *maskhead = nep->ne_maskhead;
2111 	int off;
2112 #endif
2113 
2114 	NE_ASSERT_LOCKED(nep);
2115 #if defined(INET) || defined(INET6)
2116 	KKASSERT(maskhead != NULL);
2117 #endif
2118 	switch (af) {
2119 #ifdef INET
2120 	case AF_INET:
2121 		if ((rnh = nep->ne_inethead) == NULL) {
2122 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2123 			if (!rn_inithead((void **)&rnh, maskhead, off))
2124 				return (NULL);
2125 			nep->ne_inethead = rnh;
2126 		}
2127 		break;
2128 #endif
2129 #ifdef INET6
2130 	case AF_INET6:
2131 		if ((rnh = nep->ne_inet6head) == NULL) {
2132 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2133 			if (!rn_inithead((void **)&rnh, maskhead, off))
2134 				return (NULL);
2135 			nep->ne_inet6head = rnh;
2136 		}
2137 		break;
2138 #endif
2139 	}
2140 	return (rnh);
2141 }
2142 
2143 /*
2144  * helper function for freeing netcred elements
2145  */
2146 static void
2147 vfs_free_addrlist_af(struct radix_node_head **prnh)
2148 {
2149 	struct radix_node_head *rnh = *prnh;
2150 
2151 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2152 	kfree(rnh, M_RTABLE);
2153 	*prnh = NULL;
2154 }
2155 
2156 /*
2157  * helper function for freeing mask elements
2158  */
2159 static void
2160 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2161 {
2162 	struct radix_node_head *rnh = *prnh;
2163 
2164 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2165 	kfree(rnh, M_RTABLE);
2166 	*prnh = NULL;
2167 }
2168 
2169 /*
2170  * Free the net address hash lists that are hanging off the mount points.
2171  */
2172 static void
2173 vfs_free_addrlist(struct netexport *nep)
2174 {
2175 	NE_LOCK(nep);
2176 	if (nep->ne_inethead != NULL)
2177 		vfs_free_addrlist_af(&nep->ne_inethead);
2178 	if (nep->ne_inet6head != NULL)
2179 		vfs_free_addrlist_af(&nep->ne_inet6head);
2180 	if (nep->ne_maskhead)
2181 		vfs_free_addrlist_masks(&nep->ne_maskhead);
2182 	NE_UNLOCK(nep);
2183 }
2184 
2185 int
2186 vfs_export(struct mount *mp, struct netexport *nep,
2187 	   const struct export_args *argp)
2188 {
2189 	int error;
2190 
2191 	if (argp->ex_flags & MNT_DELEXPORT) {
2192 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2193 			vfs_setpublicfs(NULL, NULL, NULL);
2194 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2195 		}
2196 		vfs_free_addrlist(nep);
2197 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2198 	}
2199 	if (argp->ex_flags & MNT_EXPORTED) {
2200 		if (argp->ex_flags & MNT_EXPUBLIC) {
2201 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2202 				return (error);
2203 			mp->mnt_flag |= MNT_EXPUBLIC;
2204 		}
2205 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2206 			return (error);
2207 		mp->mnt_flag |= MNT_EXPORTED;
2208 	}
2209 	return (0);
2210 }
2211 
2212 
2213 /*
2214  * Set the publicly exported filesystem (WebNFS). Currently, only
2215  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2216  */
2217 int
2218 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2219 		const struct export_args *argp)
2220 {
2221 	int error;
2222 	struct vnode *rvp;
2223 	char *cp;
2224 
2225 	/*
2226 	 * mp == NULL -> invalidate the current info, the FS is
2227 	 * no longer exported. May be called from either vfs_export
2228 	 * or unmount, so check if it hasn't already been done.
2229 	 */
2230 	if (mp == NULL) {
2231 		if (nfs_pub.np_valid) {
2232 			nfs_pub.np_valid = 0;
2233 			if (nfs_pub.np_index != NULL) {
2234 				kfree(nfs_pub.np_index, M_TEMP);
2235 				nfs_pub.np_index = NULL;
2236 			}
2237 		}
2238 		return (0);
2239 	}
2240 
2241 	/*
2242 	 * Only one allowed at a time.
2243 	 */
2244 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2245 		return (EBUSY);
2246 
2247 	/*
2248 	 * Get real filehandle for root of exported FS.
2249 	 */
2250 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2251 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2252 
2253 	if ((error = VFS_ROOT(mp, &rvp)))
2254 		return (error);
2255 
2256 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2257 		return (error);
2258 
2259 	vput(rvp);
2260 
2261 	/*
2262 	 * If an indexfile was specified, pull it in.
2263 	 */
2264 	if (argp->ex_indexfile != NULL) {
2265 		int namelen;
2266 
2267 		error = vn_get_namelen(rvp, &namelen);
2268 		if (error)
2269 			return (error);
2270 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2271 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2272 		    namelen, NULL);
2273 		if (!error) {
2274 			/*
2275 			 * Check for illegal filenames.
2276 			 */
2277 			for (cp = nfs_pub.np_index; *cp; cp++) {
2278 				if (*cp == '/') {
2279 					error = EINVAL;
2280 					break;
2281 				}
2282 			}
2283 		}
2284 		if (error) {
2285 			kfree(nfs_pub.np_index, M_TEMP);
2286 			return (error);
2287 		}
2288 	}
2289 
2290 	nfs_pub.np_mount = mp;
2291 	nfs_pub.np_valid = 1;
2292 	return (0);
2293 }
2294 
2295 struct netcred *
2296 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2297 		struct sockaddr *nam)
2298 {
2299 	struct netcred *np;
2300 	struct radix_node_head *rnh;
2301 	struct sockaddr *saddr;
2302 
2303 	np = NULL;
2304 	if (mp->mnt_flag & MNT_EXPORTED) {
2305 		/*
2306 		 * Lookup in the export list first.
2307 		 */
2308 		NE_LOCK(nep);
2309 		if (nam != NULL) {
2310 			saddr = nam;
2311 			switch (saddr->sa_family) {
2312 #ifdef INET
2313 			case AF_INET:
2314 				rnh = nep->ne_inethead;
2315 				break;
2316 #endif
2317 #ifdef INET6
2318 			case AF_INET6:
2319 				rnh = nep->ne_inet6head;
2320 				break;
2321 #endif
2322 			default:
2323 				rnh = NULL;
2324 			}
2325 			if (rnh != NULL) {
2326 				np = (struct netcred *)
2327 					(*rnh->rnh_matchaddr)((char *)saddr,
2328 							      rnh);
2329 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2330 					np = NULL;
2331 			}
2332 		}
2333 		NE_UNLOCK(nep);
2334 		/*
2335 		 * If no address match, use the default if it exists.
2336 		 */
2337 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2338 			np = &nep->ne_defexported;
2339 	}
2340 	return (np);
2341 }
2342 
2343 /*
2344  * perform msync on all vnodes under a mount point.  The mount point must
2345  * be locked.  This code is also responsible for lazy-freeing unreferenced
2346  * vnodes whos VM objects no longer contain pages.
2347  *
2348  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2349  *
2350  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2351  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2352  * way up in this high level function.
2353  */
2354 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2355 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2356 
2357 void
2358 vfs_msync(struct mount *mp, int flags)
2359 {
2360 	int vmsc_flags;
2361 
2362 	/*
2363 	 * tmpfs sets this flag to prevent msync(), sync, and the
2364 	 * filesystem periodic syncer from trying to flush VM pages
2365 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2366 	 * to swap.
2367 	 */
2368 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2369 		return;
2370 
2371 	/*
2372 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2373 	 * syncer thread feature we can use vsyncscan() instead of
2374 	 * vmntvnodescan(), which is much faster.
2375 	 */
2376 	vmsc_flags = VMSC_GETVP;
2377 	if (flags != MNT_WAIT)
2378 		vmsc_flags |= VMSC_NOWAIT;
2379 
2380 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2381 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2382 			  (void *)(intptr_t)flags);
2383 	} else {
2384 		vmntvnodescan(mp, vmsc_flags,
2385 			      vfs_msync_scan1, vfs_msync_scan2,
2386 			      (void *)(intptr_t)flags);
2387 	}
2388 }
2389 
2390 /*
2391  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2392  * vnodes, we cannot afford to do anything heavy weight until we have a
2393  * fairly good indication that there is work to do.
2394  *
2395  * The new namecache holds the vnode for each v_namecache association
2396  * so allow these refs.
2397  */
2398 static
2399 int
2400 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2401 {
2402 	int flags = (int)(intptr_t)data;
2403 
2404 	if ((vp->v_flag & VRECLAIMED) == 0) {
2405 		if (vp->v_auxrefs == vp->v_namecache_count &&
2406 		    VREFCNT(vp) <= 0 && vp->v_object) {
2407 			return(0);	/* call scan2 */
2408 		}
2409 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2410 		    (vp->v_flag & VOBJDIRTY) &&
2411 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2412 			return(0);	/* call scan2 */
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * do not call scan2, continue the loop
2418 	 */
2419 	return(-1);
2420 }
2421 
2422 /*
2423  * This callback is handed a locked vnode.
2424  */
2425 static
2426 int
2427 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2428 {
2429 	vm_object_t obj;
2430 	int flags = (int)(intptr_t)data;
2431 	int opcflags;
2432 
2433 	if (vp->v_flag & VRECLAIMED)
2434 		return(0);
2435 
2436 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2437 		if ((obj = vp->v_object) != NULL) {
2438 			if (flags == MNT_WAIT) {
2439 				/*
2440 				 * VFS_MSYNC is called with MNT_WAIT when
2441 				 * unmounting.
2442 				 */
2443 				opcflags = OBJPC_SYNC;
2444 			} else if (vp->v_writecount || obj->ref_count) {
2445 				/*
2446 				 * VFS_MSYNC is otherwise called via the
2447 				 * periodic filesystem sync or the 'sync'
2448 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2449 				 * if the file is open for writing or memory
2450 				 * mapped.  Pages flagged PG_NOSYNC will not
2451 				 * be automatically flushed at this time.
2452 				 *
2453 				 * The obj->ref_count test is not perfect
2454 				 * since temporary refs may be present, but
2455 				 * the periodic filesystem sync will ultimately
2456 				 * catch it if the file is not open and not
2457 				 * mapped.
2458 				 */
2459 				opcflags = OBJPC_NOSYNC;
2460 			} else {
2461 				/*
2462 				 * If the file is no longer open for writing
2463 				 * and also no longer mapped, do not honor
2464 				 * MAP_NOSYNC.  That is, fully synchronize
2465 				 * the file.
2466 				 *
2467 				 * This still occurs on the periodic fs sync,
2468 				 * so frontend programs which turn the file
2469 				 * over quickly enough can still avoid the
2470 				 * sync, but ultimately we do want to flush
2471 				 * even MADV_NOSYNC pages once it is no longer
2472 				 * mapped or open for writing.
2473 				 */
2474 				opcflags = 0;
2475 			}
2476 			vm_object_page_clean(obj, 0, 0, opcflags);
2477 		}
2478 	}
2479 	return(0);
2480 }
2481 
2482 /*
2483  * Wake up anyone interested in vp because it is being revoked.
2484  */
2485 void
2486 vn_gone(struct vnode *vp)
2487 {
2488 	lwkt_gettoken(&vp->v_token);
2489 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2490 	lwkt_reltoken(&vp->v_token);
2491 }
2492 
2493 /*
2494  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2495  * (or v_rdev might be NULL).
2496  */
2497 cdev_t
2498 vn_todev(struct vnode *vp)
2499 {
2500 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2501 		return (NULL);
2502 	KKASSERT(vp->v_rdev != NULL);
2503 	return (vp->v_rdev);
2504 }
2505 
2506 /*
2507  * Check if vnode represents a disk device.  The vnode does not need to be
2508  * opened.
2509  *
2510  * MPALMOSTSAFE
2511  */
2512 int
2513 vn_isdisk(struct vnode *vp, int *errp)
2514 {
2515 	cdev_t dev;
2516 
2517 	if (vp->v_type != VCHR) {
2518 		if (errp != NULL)
2519 			*errp = ENOTBLK;
2520 		return (0);
2521 	}
2522 
2523 	dev = vp->v_rdev;
2524 
2525 	if (dev == NULL) {
2526 		if (errp != NULL)
2527 			*errp = ENXIO;
2528 		return (0);
2529 	}
2530 	if (dev_is_good(dev) == 0) {
2531 		if (errp != NULL)
2532 			*errp = ENXIO;
2533 		return (0);
2534 	}
2535 	if ((dev_dflags(dev) & D_DISK) == 0) {
2536 		if (errp != NULL)
2537 			*errp = ENOTBLK;
2538 		return (0);
2539 	}
2540 	if (errp != NULL)
2541 		*errp = 0;
2542 	return (1);
2543 }
2544 
2545 int
2546 vn_get_namelen(struct vnode *vp, int *namelen)
2547 {
2548 	int error;
2549 	register_t retval[2];
2550 
2551 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2552 	if (error)
2553 		return (error);
2554 	*namelen = (int)retval[0];
2555 	return (0);
2556 }
2557 
2558 int
2559 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2560 		uint16_t d_namlen, const char *d_name)
2561 {
2562 	struct dirent *dp;
2563 	size_t len;
2564 
2565 	len = _DIRENT_RECLEN(d_namlen);
2566 	if (len > uio->uio_resid)
2567 		return(1);
2568 
2569 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2570 
2571 	dp->d_ino = d_ino;
2572 	dp->d_namlen = d_namlen;
2573 	dp->d_type = d_type;
2574 	bcopy(d_name, dp->d_name, d_namlen);
2575 
2576 	*error = uiomove((caddr_t)dp, len, uio);
2577 
2578 	kfree(dp, M_TEMP);
2579 
2580 	return(0);
2581 }
2582 
2583 void
2584 vn_mark_atime(struct vnode *vp, struct thread *td)
2585 {
2586 	struct proc *p = td->td_proc;
2587 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2588 
2589 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2590 		VOP_MARKATIME(vp, cred);
2591 	}
2592 }
2593 
2594 /*
2595  * Calculate the number of entries in an inode-related chained hash table.
2596  * With today's memory sizes, maxvnodes can wind up being a very large
2597  * number.  There is no reason to waste memory, so tolerate some stacking.
2598  */
2599 int
2600 vfs_inodehashsize(void)
2601 {
2602 	int hsize;
2603 
2604 	hsize = 32;
2605 	while (hsize < maxvnodes)
2606 		hsize <<= 1;
2607 	while (hsize > maxvnodes * 2)
2608 		hsize >>= 1;		/* nominal 2x stacking */
2609 
2610 	if (maxvnodes > 1024 * 1024)
2611 		hsize >>= 1;		/* nominal 8x stacking */
2612 
2613 	if (maxvnodes > 128 * 1024)
2614 		hsize >>= 1;		/* nominal 4x stacking */
2615 
2616 	if (hsize < 16)
2617 		hsize = 16;
2618 
2619 	return hsize;
2620 }
2621 
2622 union _qcvt {
2623 	quad_t qcvt;
2624 	int32_t val[2];
2625 };
2626 
2627 #define SETHIGH(q, h) { \
2628 	union _qcvt tmp; \
2629 	tmp.qcvt = (q); \
2630 	tmp.val[_QUAD_HIGHWORD] = (h); \
2631 	(q) = tmp.qcvt; \
2632 }
2633 #define SETLOW(q, l) { \
2634 	union _qcvt tmp; \
2635 	tmp.qcvt = (q); \
2636 	tmp.val[_QUAD_LOWWORD] = (l); \
2637 	(q) = tmp.qcvt; \
2638 }
2639 
2640 u_quad_t
2641 init_va_filerev(void)
2642 {
2643 	struct timeval tv;
2644 	u_quad_t ret = 0;
2645 
2646 	getmicrouptime(&tv);
2647 	SETHIGH(ret, tv.tv_sec);
2648 	SETLOW(ret, tv.tv_usec * 4294);
2649 
2650 	return ret;
2651 }
2652