xref: /dragonfly/sys/kern/vfs_subr.c (revision 631c21f2)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/fcntl.h>
54 #include <sys/file.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <vm/vm_page2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
90 
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 __read_mostly enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 __read_mostly int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 	   &maxvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void	vfs_free_addrlist (struct netexport *nep);
126 static int	vfs_free_netcred (struct radix_node *rn, void *w);
127 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 	            const struct export_args *argp);
130 static void vclean_vxlocked(struct vnode *vp, int flags);
131 
132 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
133 
134 /*
135  * Red black tree functions
136  */
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
143 {
144 	if (b1->b_loffset < b2->b_loffset)
145 		return(-1);
146 	if (b1->b_loffset > b2->b_loffset)
147 		return(1);
148 	return(0);
149 }
150 
151 /*
152  * Initialize the vnode management data structures.
153  *
154  * Called from vfsinit()
155  */
156 #define MAXVNBREAKMEM	(1L * 1024 * 1024 * 1024)
157 #define MINVNODES	2000
158 #define MAXVNODES	4000000
159 
160 void
161 vfs_subr_init(void)
162 {
163 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
164 	int factor2;	/* Limit based on available KVM */
165 	size_t freemem;
166 
167 	/*
168 	 * Size maxvnodes to available memory.  Size significantly
169 	 * smaller on low-memory systems (calculations for the first
170 	 * 1GB of ram), and pump it up a bit when free memory is
171 	 * above 1GB.
172 	 *
173 	 * The general minimum is maxproc * 8 (we want someone pushing
174 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
175 	 * does not affect this calculation.
176 	 *
177 	 * There isn't much of a point allowing maxvnodes to exceed a
178 	 * few million as our modern filesystems cache pages in the
179 	 * underlying block device and not so much hanging off of VM
180 	 * objects.
181 	 */
182 	factor1 = 50 * (sizeof(struct vm_object) + sizeof(struct vnode));
183 	factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode));
184 
185 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
186 
187 	maxvnodes = freemem / factor1;
188 	if (freemem > MAXVNBREAKMEM)
189 		maxvnodes += (freemem - MAXVNBREAKMEM) / factor1;
190 	maxvnodes = imax(maxvnodes, maxproc * 8);
191 	maxvnodes = imin(maxvnodes, KvaSize / factor2);
192 	maxvnodes = imin(maxvnodes, MAXVNODES);
193 	maxvnodes = imax(maxvnodes, MINVNODES);
194 
195 	lwkt_token_init(&spechash_token, "spechash");
196 }
197 
198 /*
199  * Knob to control the precision of file timestamps:
200  *
201  *   0 = seconds only; nanoseconds zeroed.
202  *   1 = seconds and nanoseconds, accurate within 1/HZ.
203  *   2 = seconds and nanoseconds, truncated to microseconds.
204  * >=3 = seconds and nanoseconds, maximum precision.
205  *
206  * Note that utimes() precision is microseconds because it takes a timeval
207  * structure, so its probably best to default to USEC and not NSEC.
208  */
209 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
210        TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
211 
212 __read_mostly static int timestamp_precision = TSP_USEC;
213 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
214 		&timestamp_precision, 0, "Precision of file timestamps");
215 
216 /*
217  * Get a current timestamp.
218  *
219  * MPSAFE
220  */
221 void
222 vfs_timestamp(struct timespec *tsp)
223 {
224 	switch (timestamp_precision) {
225 	case TSP_SEC:		/* seconds precision */
226 		getnanotime(tsp);
227 		tsp->tv_nsec = 0;
228 		break;
229 	default:
230 	case TSP_HZ:		/* ticks precision (limit to microseconds) */
231 		getnanotime(tsp);
232 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
233 		break;
234 	case TSP_USEC:		/* microseconds (ticks precision) */
235 		getnanotime(tsp);
236 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
237 		break;
238 	case TSP_NSEC:		/* nanoseconds (ticks precision) */
239 		getnanotime(tsp);
240 		break;
241 	case TSP_USEC_PRECISE:	/* microseconds (high preceision) */
242 		nanotime(tsp);
243 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
244 		break;
245 	case TSP_NSEC_PRECISE:	/* nanoseconds (high precision) */
246 		nanotime(tsp);
247 		break;
248 	}
249 }
250 
251 /*
252  * Set vnode attributes to VNOVAL
253  */
254 void
255 vattr_null(struct vattr *vap)
256 {
257 	vap->va_type = VNON;
258 	vap->va_size = VNOVAL;
259 	vap->va_bytes = VNOVAL;
260 	vap->va_mode = VNOVAL;
261 	vap->va_nlink = VNOVAL;
262 	vap->va_uid = VNOVAL;
263 	vap->va_gid = VNOVAL;
264 	vap->va_fsid = VNOVAL;
265 	vap->va_fileid = VNOVAL;
266 	vap->va_blocksize = VNOVAL;
267 	vap->va_rmajor = VNOVAL;
268 	vap->va_rminor = VNOVAL;
269 	vap->va_atime.tv_sec = VNOVAL;
270 	vap->va_atime.tv_nsec = VNOVAL;
271 	vap->va_mtime.tv_sec = VNOVAL;
272 	vap->va_mtime.tv_nsec = VNOVAL;
273 	vap->va_ctime.tv_sec = VNOVAL;
274 	vap->va_ctime.tv_nsec = VNOVAL;
275 	vap->va_flags = VNOVAL;
276 	vap->va_gen = VNOVAL;
277 	vap->va_vaflags = 0;
278 	/* va_*_uuid fields are only valid if related flags are set */
279 }
280 
281 /*
282  * Flush out and invalidate all buffers associated with a vnode.
283  *
284  * vp must be locked.
285  */
286 static int vinvalbuf_bp(struct buf *bp, void *data);
287 
288 struct vinvalbuf_bp_info {
289 	struct vnode *vp;
290 	int slptimeo;
291 	int lkflags;
292 	int flags;
293 	int clean;
294 };
295 
296 int
297 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
298 {
299 	struct vinvalbuf_bp_info info;
300 	vm_object_t object;
301 	int error;
302 
303 	lwkt_gettoken(&vp->v_token);
304 
305 	/*
306 	 * If we are being asked to save, call fsync to ensure that the inode
307 	 * is updated.
308 	 */
309 	if (flags & V_SAVE) {
310 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
311 		if (error)
312 			goto done;
313 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
314 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
315 				goto done;
316 #if 0
317 			/*
318 			 * Dirty bufs may be left or generated via races
319 			 * in circumstances where vinvalbuf() is called on
320 			 * a vnode not undergoing reclamation.   Only
321 			 * panic if we are trying to reclaim the vnode.
322 			 */
323 			if ((vp->v_flag & VRECLAIMED) &&
324 			    (bio_track_active(&vp->v_track_write) ||
325 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
326 				panic("vinvalbuf: dirty bufs");
327 			}
328 #endif
329 		}
330   	}
331 	info.slptimeo = slptimeo;
332 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
333 	if (slpflag & PCATCH)
334 		info.lkflags |= LK_PCATCH;
335 	info.flags = flags;
336 	info.vp = vp;
337 
338 	/*
339 	 * Flush the buffer cache until nothing is left, wait for all I/O
340 	 * to complete.  At least one pass is required.  We might block
341 	 * in the pip code so we have to re-check.  Order is important.
342 	 */
343 	do {
344 		/*
345 		 * Flush buffer cache
346 		 */
347 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
348 			info.clean = 1;
349 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
350 					NULL, vinvalbuf_bp, &info);
351 		}
352 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
353 			info.clean = 0;
354 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
355 					NULL, vinvalbuf_bp, &info);
356 		}
357 
358 		/*
359 		 * Wait for I/O completion.
360 		 */
361 		bio_track_wait(&vp->v_track_write, 0, 0);
362 		if ((object = vp->v_object) != NULL)
363 			refcount_wait(&object->paging_in_progress, "vnvlbx");
364 	} while (bio_track_active(&vp->v_track_write) ||
365 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
366 		 !RB_EMPTY(&vp->v_rbdirty_tree));
367 
368 	/*
369 	 * Destroy the copy in the VM cache, too.
370 	 */
371 	if ((object = vp->v_object) != NULL) {
372 		vm_object_page_remove(object, 0, 0,
373 			(flags & V_SAVE) ? TRUE : FALSE);
374 	}
375 
376 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
377 		panic("vinvalbuf: flush failed");
378 	if (!RB_EMPTY(&vp->v_rbhash_tree))
379 		panic("vinvalbuf: flush failed, buffers still present");
380 	error = 0;
381 done:
382 	lwkt_reltoken(&vp->v_token);
383 	return (error);
384 }
385 
386 static int
387 vinvalbuf_bp(struct buf *bp, void *data)
388 {
389 	struct vinvalbuf_bp_info *info = data;
390 	int error;
391 
392 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
393 		atomic_add_int(&bp->b_refs, 1);
394 		error = BUF_TIMELOCK(bp, info->lkflags,
395 				     "vinvalbuf", info->slptimeo);
396 		atomic_subtract_int(&bp->b_refs, 1);
397 		if (error == 0) {
398 			BUF_UNLOCK(bp);
399 			error = ENOLCK;
400 		}
401 		if (error == ENOLCK)
402 			return(0);
403 		return (-error);
404 	}
405 	KKASSERT(bp->b_vp == info->vp);
406 
407 	/*
408 	 * Must check clean/dirty status after successfully locking as
409 	 * it may race.
410 	 */
411 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
412 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
413 		BUF_UNLOCK(bp);
414 		return(0);
415 	}
416 
417 	/*
418 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
419 	 * check.  This code will write out the buffer, period.
420 	 */
421 	bremfree(bp);
422 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
423 	    (info->flags & V_SAVE)) {
424 		cluster_awrite(bp);
425 	} else if (info->flags & V_SAVE) {
426 		/*
427 		 * Cannot set B_NOCACHE on a clean buffer as this will
428 		 * destroy the VM backing store which might actually
429 		 * be dirty (and unsynchronized).
430 		 */
431 		bp->b_flags |= (B_INVAL | B_RELBUF);
432 		brelse(bp);
433 	} else {
434 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
435 		brelse(bp);
436 	}
437 	return(0);
438 }
439 
440 /*
441  * Truncate a file's buffer and pages to a specified length.  This
442  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
443  * sync activity.
444  *
445  * The vnode must be locked.
446  */
447 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
448 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
449 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
450 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
451 
452 struct vtruncbuf_info {
453 	struct vnode *vp;
454 	off_t	truncloffset;
455 	int	clean;
456 };
457 
458 int
459 vtruncbuf(struct vnode *vp, off_t length, int blksize)
460 {
461 	struct vtruncbuf_info info;
462 	const char *filename;
463 	int count;
464 
465 	/*
466 	 * Round up to the *next* block, then destroy the buffers in question.
467 	 * Since we are only removing some of the buffers we must rely on the
468 	 * scan count to determine whether a loop is necessary.
469 	 */
470 	if ((count = (int)(length % blksize)) != 0)
471 		info.truncloffset = length + (blksize - count);
472 	else
473 		info.truncloffset = length;
474 	info.vp = vp;
475 
476 	lwkt_gettoken(&vp->v_token);
477 	do {
478 		info.clean = 1;
479 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
480 				vtruncbuf_bp_trunc_cmp,
481 				vtruncbuf_bp_trunc, &info);
482 		info.clean = 0;
483 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
484 				vtruncbuf_bp_trunc_cmp,
485 				vtruncbuf_bp_trunc, &info);
486 	} while(count);
487 
488 	/*
489 	 * For safety, fsync any remaining metadata if the file is not being
490 	 * truncated to 0.  Since the metadata does not represent the entire
491 	 * dirty list we have to rely on the hit count to ensure that we get
492 	 * all of it.
493 	 */
494 	if (length > 0) {
495 		do {
496 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
497 					vtruncbuf_bp_metasync_cmp,
498 					vtruncbuf_bp_metasync, &info);
499 		} while (count);
500 	}
501 
502 	/*
503 	 * Clean out any left over VM backing store.
504 	 *
505 	 * It is possible to have in-progress I/O from buffers that were
506 	 * not part of the truncation.  This should not happen if we
507 	 * are truncating to 0-length.
508 	 */
509 	vnode_pager_setsize(vp, length);
510 	bio_track_wait(&vp->v_track_write, 0, 0);
511 
512 	/*
513 	 * Debugging only
514 	 */
515 	spin_lock(&vp->v_spin);
516 	filename = TAILQ_FIRST(&vp->v_namecache) ?
517 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
518 	spin_unlock(&vp->v_spin);
519 
520 	/*
521 	 * Make sure no buffers were instantiated while we were trying
522 	 * to clean out the remaining VM pages.  This could occur due
523 	 * to busy dirty VM pages being flushed out to disk.
524 	 */
525 	do {
526 		info.clean = 1;
527 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
528 				vtruncbuf_bp_trunc_cmp,
529 				vtruncbuf_bp_trunc, &info);
530 		info.clean = 0;
531 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
532 				vtruncbuf_bp_trunc_cmp,
533 				vtruncbuf_bp_trunc, &info);
534 		if (count) {
535 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
536 			       "left over buffers in %s\n", count, filename);
537 		}
538 	} while(count);
539 
540 	lwkt_reltoken(&vp->v_token);
541 
542 	return (0);
543 }
544 
545 /*
546  * The callback buffer is beyond the new file EOF and must be destroyed.
547  * Note that the compare function must conform to the RB_SCAN's requirements.
548  */
549 static
550 int
551 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
552 {
553 	struct vtruncbuf_info *info = data;
554 
555 	if (bp->b_loffset >= info->truncloffset)
556 		return(0);
557 	return(-1);
558 }
559 
560 static
561 int
562 vtruncbuf_bp_trunc(struct buf *bp, void *data)
563 {
564 	struct vtruncbuf_info *info = data;
565 
566 	/*
567 	 * Do not try to use a buffer we cannot immediately lock, but sleep
568 	 * anyway to prevent a livelock.  The code will loop until all buffers
569 	 * can be acted upon.
570 	 *
571 	 * We must always revalidate the buffer after locking it to deal
572 	 * with MP races.
573 	 */
574 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
575 		atomic_add_int(&bp->b_refs, 1);
576 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
577 			BUF_UNLOCK(bp);
578 		atomic_subtract_int(&bp->b_refs, 1);
579 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
580 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
581 		   bp->b_vp != info->vp ||
582 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
583 		BUF_UNLOCK(bp);
584 	} else {
585 		bremfree(bp);
586 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
587 		brelse(bp);
588 	}
589 	return(1);
590 }
591 
592 /*
593  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
594  * blocks (with a negative loffset) are scanned.
595  * Note that the compare function must conform to the RB_SCAN's requirements.
596  */
597 static int
598 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
599 {
600 	if (bp->b_loffset < 0)
601 		return(0);
602 	return(1);
603 }
604 
605 static int
606 vtruncbuf_bp_metasync(struct buf *bp, void *data)
607 {
608 	struct vtruncbuf_info *info = data;
609 
610 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
611 		atomic_add_int(&bp->b_refs, 1);
612 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
613 			BUF_UNLOCK(bp);
614 		atomic_subtract_int(&bp->b_refs, 1);
615 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
616 		   bp->b_vp != info->vp ||
617 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
618 		BUF_UNLOCK(bp);
619 	} else {
620 		bremfree(bp);
621 		if (bp->b_vp == info->vp)
622 			bawrite(bp);
623 		else
624 			bwrite(bp);
625 	}
626 	return(1);
627 }
628 
629 /*
630  * vfsync - implements a multipass fsync on a file which understands
631  * dependancies and meta-data.  The passed vnode must be locked.  The
632  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
633  *
634  * When fsyncing data asynchronously just do one consolidated pass starting
635  * with the most negative block number.  This may not get all the data due
636  * to dependancies.
637  *
638  * When fsyncing data synchronously do a data pass, then a metadata pass,
639  * then do additional data+metadata passes to try to get all the data out.
640  *
641  * Caller must ref the vnode but does not have to lock it.
642  */
643 static int vfsync_wait_output(struct vnode *vp,
644 			    int (*waitoutput)(struct vnode *, struct thread *));
645 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
646 static int vfsync_data_only_cmp(struct buf *bp, void *data);
647 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
648 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
649 static int vfsync_bp(struct buf *bp, void *data);
650 
651 struct vfsync_info {
652 	struct vnode *vp;
653 	int fastpass;
654 	int synchronous;
655 	int syncdeps;
656 	int lazycount;
657 	int lazylimit;
658 	int skippedbufs;
659 	int (*checkdef)(struct buf *);
660 	int (*cmpfunc)(struct buf *, void *);
661 };
662 
663 int
664 vfsync(struct vnode *vp, int waitfor, int passes,
665 	int (*checkdef)(struct buf *),
666 	int (*waitoutput)(struct vnode *, struct thread *))
667 {
668 	struct vfsync_info info;
669 	int error;
670 
671 	bzero(&info, sizeof(info));
672 	info.vp = vp;
673 	if ((info.checkdef = checkdef) == NULL)
674 		info.syncdeps = 1;
675 
676 	lwkt_gettoken(&vp->v_token);
677 
678 	switch(waitfor) {
679 	case MNT_LAZY | MNT_NOWAIT:
680 	case MNT_LAZY:
681 		/*
682 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
683 		 * number of data (not meta) pages we try to flush to 1MB.
684 		 * A non-zero return means that lazy limit was reached.
685 		 */
686 		info.lazylimit = 1024 * 1024;
687 		info.syncdeps = 1;
688 		info.cmpfunc = vfsync_lazy_range_cmp;
689 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
690 				vfsync_lazy_range_cmp, vfsync_bp, &info);
691 		info.cmpfunc = vfsync_meta_only_cmp;
692 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
693 			vfsync_meta_only_cmp, vfsync_bp, &info);
694 		if (error == 0)
695 			vp->v_lazyw = 0;
696 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
697 			vn_syncer_add(vp, 1);
698 		error = 0;
699 		break;
700 	case MNT_NOWAIT:
701 		/*
702 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
703 		 */
704 		info.syncdeps = 1;
705 		info.cmpfunc = vfsync_data_only_cmp;
706 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
707 			vfsync_bp, &info);
708 		info.cmpfunc = vfsync_meta_only_cmp;
709 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
710 			vfsync_bp, &info);
711 		error = 0;
712 		break;
713 	default:
714 		/*
715 		 * Synchronous.  Do a data-only pass, then a meta-data+data
716 		 * pass, then additional integrated passes to try to get
717 		 * all the dependancies flushed.
718 		 */
719 		info.cmpfunc = vfsync_data_only_cmp;
720 		info.fastpass = 1;
721 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
722 			vfsync_bp, &info);
723 		info.fastpass = 0;
724 		error = vfsync_wait_output(vp, waitoutput);
725 		if (error == 0) {
726 			info.skippedbufs = 0;
727 			info.cmpfunc = vfsync_dummy_cmp;
728 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
729 				vfsync_bp, &info);
730 			error = vfsync_wait_output(vp, waitoutput);
731 			if (info.skippedbufs) {
732 				kprintf("Warning: vfsync skipped %d dirty "
733 					"buf%s in pass2!\n",
734 					info.skippedbufs,
735 					((info.skippedbufs > 1) ? "s" : ""));
736 			}
737 		}
738 		while (error == 0 && passes > 0 &&
739 		       !RB_EMPTY(&vp->v_rbdirty_tree)
740 		) {
741 			info.skippedbufs = 0;
742 			if (--passes == 0) {
743 				info.synchronous = 1;
744 				info.syncdeps = 1;
745 			}
746 			info.cmpfunc = vfsync_dummy_cmp;
747 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
748 					vfsync_bp, &info);
749 			if (error < 0)
750 				error = -error;
751 			info.syncdeps = 1;
752 			if (error == 0)
753 				error = vfsync_wait_output(vp, waitoutput);
754 			if (info.skippedbufs && passes == 0) {
755 				kprintf("Warning: vfsync skipped %d dirty "
756 					"buf%s in final pass!\n",
757 					info.skippedbufs,
758 					((info.skippedbufs > 1) ? "s" : ""));
759 			}
760 		}
761 #if 0
762 		/*
763 		 * This case can occur normally because vnode lock might
764 		 * not be held.
765 		 */
766 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
767 			kprintf("dirty bufs left after final pass\n");
768 #endif
769 		break;
770 	}
771 	lwkt_reltoken(&vp->v_token);
772 
773 	return(error);
774 }
775 
776 static int
777 vfsync_wait_output(struct vnode *vp,
778 		   int (*waitoutput)(struct vnode *, struct thread *))
779 {
780 	int error;
781 
782 	error = bio_track_wait(&vp->v_track_write, 0, 0);
783 	if (waitoutput)
784 		error = waitoutput(vp, curthread);
785 	return(error);
786 }
787 
788 static int
789 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
790 {
791 	return(0);
792 }
793 
794 static int
795 vfsync_data_only_cmp(struct buf *bp, void *data)
796 {
797 	if (bp->b_loffset < 0)
798 		return(-1);
799 	return(0);
800 }
801 
802 static int
803 vfsync_meta_only_cmp(struct buf *bp, void *data)
804 {
805 	if (bp->b_loffset < 0)
806 		return(0);
807 	return(1);
808 }
809 
810 static int
811 vfsync_lazy_range_cmp(struct buf *bp, void *data)
812 {
813 	struct vfsync_info *info = data;
814 
815 	if (bp->b_loffset < info->vp->v_lazyw)
816 		return(-1);
817 	return(0);
818 }
819 
820 static int
821 vfsync_bp(struct buf *bp, void *data)
822 {
823 	struct vfsync_info *info = data;
824 	struct vnode *vp = info->vp;
825 	int error;
826 
827 	if (info->fastpass) {
828 		/*
829 		 * Ignore buffers that we cannot immediately lock.
830 		 */
831 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
832 			/*
833 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
834 			 * delay can mess up performance
835 			 *
836 			 * Another reason is that during a dirty-buffer
837 			 * scan a clustered write can start I/O on buffers
838 			 * ahead of the scan, causing the scan to not
839 			 * get a lock here.  Usually this means the write
840 			 * is already in progress so, in fact, we *want*
841 			 * to skip the buffer.
842 			 */
843 			++info->skippedbufs;
844 			return(0);
845 		}
846 	} else if (info->synchronous == 0) {
847 		/*
848 		 * Normal pass, give the buffer a little time to become
849 		 * available to us.
850 		 */
851 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
852 			++info->skippedbufs;
853 			return(0);
854 		}
855 	} else {
856 		/*
857 		 * Synchronous pass, give the buffer a lot of time before
858 		 * giving up.
859 		 */
860 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
861 			++info->skippedbufs;
862 			return(0);
863 		}
864 	}
865 
866 	/*
867 	 * We must revalidate the buffer after locking.
868 	 */
869 	if ((bp->b_flags & B_DELWRI) == 0 ||
870 	    bp->b_vp != info->vp ||
871 	    info->cmpfunc(bp, data)) {
872 		BUF_UNLOCK(bp);
873 		return(0);
874 	}
875 
876 	/*
877 	 * If syncdeps is not set we do not try to write buffers which have
878 	 * dependancies.
879 	 */
880 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
881 		BUF_UNLOCK(bp);
882 		return(0);
883 	}
884 
885 	/*
886 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
887 	 * has been written but an additional handshake with the device
888 	 * is required before we can dispose of the buffer.  We have no idea
889 	 * how to do this so we have to skip these buffers.
890 	 */
891 	if (bp->b_flags & B_NEEDCOMMIT) {
892 		BUF_UNLOCK(bp);
893 		return(0);
894 	}
895 
896 	/*
897 	 * Ask bioops if it is ok to sync.  If not the VFS may have
898 	 * set B_LOCKED so we have to cycle the buffer.
899 	 */
900 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
901 		bremfree(bp);
902 		brelse(bp);
903 		return(0);
904 	}
905 
906 	if (info->synchronous) {
907 		/*
908 		 * Synchronous flush.  An error may be returned and will
909 		 * stop the scan.
910 		 */
911 		bremfree(bp);
912 		error = bwrite(bp);
913 	} else {
914 		/*
915 		 * Asynchronous flush.  We use the error return to support
916 		 * MNT_LAZY flushes.
917 		 *
918 		 * In low-memory situations we revert to synchronous
919 		 * operation.  This should theoretically prevent the I/O
920 		 * path from exhausting memory in a non-recoverable way.
921 		 */
922 		vp->v_lazyw = bp->b_loffset;
923 		bremfree(bp);
924 		if (vm_page_count_min(0)) {
925 			/* low memory */
926 			info->lazycount += bp->b_bufsize;
927 			bwrite(bp);
928 		} else {
929 			/* normal */
930 			info->lazycount += cluster_awrite(bp);
931 			waitrunningbufspace();
932 			/*vm_wait_nominal();*/
933 		}
934 		if (info->lazylimit && info->lazycount >= info->lazylimit)
935 			error = 1;
936 		else
937 			error = 0;
938 	}
939 	return(-error);
940 }
941 
942 /*
943  * Associate a buffer with a vnode.
944  *
945  * MPSAFE
946  */
947 int
948 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
949 {
950 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
951 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
952 
953 	/*
954 	 * Insert onto list for new vnode.
955 	 */
956 	lwkt_gettoken(&vp->v_token);
957 
958 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
959 		lwkt_reltoken(&vp->v_token);
960 		return (EEXIST);
961 	}
962 
963 	/*
964 	 * Diagnostics (mainly for HAMMER debugging).  Check for
965 	 * overlapping buffers.
966 	 */
967 	if (check_buf_overlap) {
968 		struct buf *bx;
969 		bx = buf_rb_hash_RB_PREV(bp);
970 		if (bx) {
971 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
972 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
973 					"bx %p bp %p\n",
974 					(intmax_t)bx->b_loffset,
975 					bx->b_bufsize,
976 					(intmax_t)bp->b_loffset,
977 					bx, bp);
978 				if (check_buf_overlap > 1)
979 					panic("bgetvp - overlapping buffer");
980 			}
981 		}
982 		bx = buf_rb_hash_RB_NEXT(bp);
983 		if (bx) {
984 			if (bp->b_loffset + testsize > bx->b_loffset) {
985 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
986 					"bp %p bx %p\n",
987 					(intmax_t)bp->b_loffset,
988 					testsize,
989 					(intmax_t)bx->b_loffset,
990 					bp, bx);
991 				if (check_buf_overlap > 1)
992 					panic("bgetvp - overlapping buffer");
993 			}
994 		}
995 	}
996 	bp->b_vp = vp;
997 	bp->b_flags |= B_HASHED;
998 	bp->b_flags |= B_VNCLEAN;
999 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1000 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1001 	/*vhold(vp);*/
1002 	lwkt_reltoken(&vp->v_token);
1003 	return(0);
1004 }
1005 
1006 /*
1007  * Disassociate a buffer from a vnode.
1008  *
1009  * MPSAFE
1010  */
1011 void
1012 brelvp(struct buf *bp)
1013 {
1014 	struct vnode *vp;
1015 
1016 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1017 
1018 	/*
1019 	 * Delete from old vnode list, if on one.
1020 	 */
1021 	vp = bp->b_vp;
1022 	lwkt_gettoken(&vp->v_token);
1023 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1024 		if (bp->b_flags & B_VNDIRTY)
1025 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1026 		else
1027 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1028 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1029 	}
1030 	if (bp->b_flags & B_HASHED) {
1031 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1032 		bp->b_flags &= ~B_HASHED;
1033 	}
1034 
1035 	/*
1036 	 * Only remove from synclist when no dirty buffers are left AND
1037 	 * the VFS has not flagged the vnode's inode as being dirty.
1038 	 */
1039 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1040 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1041 		vn_syncer_remove(vp, 0);
1042 	}
1043 	bp->b_vp = NULL;
1044 
1045 	lwkt_reltoken(&vp->v_token);
1046 
1047 	/*vdrop(vp);*/
1048 }
1049 
1050 /*
1051  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1052  * This routine is called when the state of the B_DELWRI bit is changed.
1053  *
1054  * Must be called with vp->v_token held.
1055  * MPSAFE
1056  */
1057 void
1058 reassignbuf(struct buf *bp)
1059 {
1060 	struct vnode *vp = bp->b_vp;
1061 	int delay;
1062 
1063 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1064 	++reassignbufcalls;
1065 
1066 	/*
1067 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1068 	 * is not fully linked in.
1069 	 */
1070 	if (bp->b_flags & B_PAGING)
1071 		panic("cannot reassign paging buffer");
1072 
1073 	if (bp->b_flags & B_DELWRI) {
1074 		/*
1075 		 * Move to the dirty list, add the vnode to the worklist
1076 		 */
1077 		if (bp->b_flags & B_VNCLEAN) {
1078 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1079 			bp->b_flags &= ~B_VNCLEAN;
1080 		}
1081 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1082 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1083 				panic("reassignbuf: dup lblk vp %p bp %p",
1084 				      vp, bp);
1085 			}
1086 			bp->b_flags |= B_VNDIRTY;
1087 		}
1088 		if ((vp->v_flag & VONWORKLST) == 0) {
1089 			switch (vp->v_type) {
1090 			case VDIR:
1091 				delay = dirdelay;
1092 				break;
1093 			case VCHR:
1094 			case VBLK:
1095 				if (vp->v_rdev &&
1096 				    vp->v_rdev->si_mountpoint != NULL) {
1097 					delay = metadelay;
1098 					break;
1099 				}
1100 				/* fall through */
1101 			default:
1102 				delay = filedelay;
1103 			}
1104 			vn_syncer_add(vp, delay);
1105 		}
1106 	} else {
1107 		/*
1108 		 * Move to the clean list, remove the vnode from the worklist
1109 		 * if no dirty blocks remain.
1110 		 */
1111 		if (bp->b_flags & B_VNDIRTY) {
1112 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1113 			bp->b_flags &= ~B_VNDIRTY;
1114 		}
1115 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1116 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1117 				panic("reassignbuf: dup lblk vp %p bp %p",
1118 				      vp, bp);
1119 			}
1120 			bp->b_flags |= B_VNCLEAN;
1121 		}
1122 
1123 		/*
1124 		 * Only remove from synclist when no dirty buffers are left
1125 		 * AND the VFS has not flagged the vnode's inode as being
1126 		 * dirty.
1127 		 */
1128 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1129 		     VONWORKLST &&
1130 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1131 			vn_syncer_remove(vp, 0);
1132 		}
1133 	}
1134 }
1135 
1136 /*
1137  * Create a vnode for a block device.  Used for mounting the root file
1138  * system.
1139  *
1140  * A vref()'d vnode is returned.
1141  */
1142 extern struct vop_ops *devfs_vnode_dev_vops_p;
1143 int
1144 bdevvp(cdev_t dev, struct vnode **vpp)
1145 {
1146 	struct vnode *vp;
1147 	struct vnode *nvp;
1148 	int error;
1149 
1150 	if (dev == NULL) {
1151 		*vpp = NULLVP;
1152 		return (ENXIO);
1153 	}
1154 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1155 				&nvp, 0, 0);
1156 	if (error) {
1157 		*vpp = NULLVP;
1158 		return (error);
1159 	}
1160 	vp = nvp;
1161 	vp->v_type = VCHR;
1162 #if 0
1163 	vp->v_rdev = dev;
1164 #endif
1165 	v_associate_rdev(vp, dev);
1166 	vp->v_umajor = dev->si_umajor;
1167 	vp->v_uminor = dev->si_uminor;
1168 	vx_unlock(vp);
1169 	*vpp = vp;
1170 	return (0);
1171 }
1172 
1173 int
1174 v_associate_rdev(struct vnode *vp, cdev_t dev)
1175 {
1176 	if (dev == NULL)
1177 		return(ENXIO);
1178 	if (dev_is_good(dev) == 0)
1179 		return(ENXIO);
1180 	KKASSERT(vp->v_rdev == NULL);
1181 	vp->v_rdev = reference_dev(dev);
1182 	lwkt_gettoken(&spechash_token);
1183 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1184 	lwkt_reltoken(&spechash_token);
1185 	return(0);
1186 }
1187 
1188 void
1189 v_release_rdev(struct vnode *vp)
1190 {
1191 	cdev_t dev;
1192 
1193 	if ((dev = vp->v_rdev) != NULL) {
1194 		lwkt_gettoken(&spechash_token);
1195 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1196 		vp->v_rdev = NULL;
1197 		release_dev(dev);
1198 		lwkt_reltoken(&spechash_token);
1199 	}
1200 }
1201 
1202 /*
1203  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1204  * the device number with the vnode.  The actual device is not associated
1205  * until the vnode is opened (usually in spec_open()), and will be
1206  * disassociated on last close.
1207  */
1208 void
1209 addaliasu(struct vnode *nvp, int x, int y)
1210 {
1211 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1212 		panic("addaliasu on non-special vnode");
1213 	nvp->v_umajor = x;
1214 	nvp->v_uminor = y;
1215 }
1216 
1217 /*
1218  * Simple call that a filesystem can make to try to get rid of a
1219  * vnode.  It will fail if anyone is referencing the vnode (including
1220  * the caller).
1221  *
1222  * The filesystem can check whether its in-memory inode structure still
1223  * references the vp on return.
1224  *
1225  * May only be called if the vnode is in a known state (i.e. being prevented
1226  * from being deallocated by some other condition such as a vfs inode hold).
1227  *
1228  * This call might not succeed.
1229  */
1230 void
1231 vclean_unlocked(struct vnode *vp)
1232 {
1233 	vx_get(vp);
1234 	if (VREFCNT(vp) <= 1)
1235 		vgone_vxlocked(vp);
1236 	vx_put(vp);
1237 }
1238 
1239 /*
1240  * Disassociate a vnode from its underlying filesystem.
1241  *
1242  * The vnode must be VX locked and referenced.  In all normal situations
1243  * there are no active references.  If vclean_vxlocked() is called while
1244  * there are active references, the vnode is being ripped out and we have
1245  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1246  */
1247 static void
1248 vclean_vxlocked(struct vnode *vp, int flags)
1249 {
1250 	int active;
1251 	int n;
1252 	vm_object_t object;
1253 	struct namecache *ncp;
1254 
1255 	/*
1256 	 * If the vnode has already been reclaimed we have nothing to do.
1257 	 */
1258 	if (vp->v_flag & VRECLAIMED)
1259 		return;
1260 
1261 	/*
1262 	 * Set flag to interlock operation, flag finalization to ensure
1263 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1264 	 */
1265 	vsetflags(vp, VRECLAIMED);
1266 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1267 	vp->v_act = 0;
1268 
1269 	if (verbose_reclaims) {
1270 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1271 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1272 	}
1273 
1274 	/*
1275 	 * Scrap the vfs cache
1276 	 */
1277 	while (cache_inval_vp(vp, 0) != 0) {
1278 		kprintf("Warning: vnode %p clean/cache_resolution "
1279 			"race detected\n", vp);
1280 		tsleep(vp, 0, "vclninv", 2);
1281 	}
1282 
1283 	/*
1284 	 * Check to see if the vnode is in use. If so we have to reference it
1285 	 * before we clean it out so that its count cannot fall to zero and
1286 	 * generate a race against ourselves to recycle it.
1287 	 */
1288 	active = (VREFCNT(vp) > 0);
1289 
1290 	/*
1291 	 * Clean out any buffers associated with the vnode and destroy its
1292 	 * object, if it has one.
1293 	 */
1294 	vinvalbuf(vp, V_SAVE, 0, 0);
1295 
1296 	/*
1297 	 * If purging an active vnode (typically during a forced unmount
1298 	 * or reboot), it must be closed and deactivated before being
1299 	 * reclaimed.  This isn't really all that safe, but what can
1300 	 * we do? XXX.
1301 	 *
1302 	 * Note that neither of these routines unlocks the vnode.
1303 	 */
1304 	if (active && (flags & DOCLOSE)) {
1305 		while ((n = vp->v_opencount) != 0) {
1306 			if (vp->v_writecount)
1307 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1308 			else
1309 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1310 			if (vp->v_opencount == n) {
1311 				kprintf("Warning: unable to force-close"
1312 				       " vnode %p\n", vp);
1313 				break;
1314 			}
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1320 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1321 	 * again to make sure they all get flushed.
1322 	 *
1323 	 * This can occur if a file with a link count of 0 needs to be
1324 	 * truncated.
1325 	 *
1326 	 * If the vnode is already dead don't try to deactivate it.
1327 	 */
1328 	if ((vp->v_flag & VINACTIVE) == 0) {
1329 		vsetflags(vp, VINACTIVE);
1330 		if (vp->v_mount)
1331 			VOP_INACTIVE(vp);
1332 		vinvalbuf(vp, V_SAVE, 0, 0);
1333 	}
1334 
1335 	/*
1336 	 * If the vnode has an object, destroy it.
1337 	 */
1338 	while ((object = vp->v_object) != NULL) {
1339 		vm_object_hold(object);
1340 		if (object == vp->v_object)
1341 			break;
1342 		vm_object_drop(object);
1343 	}
1344 
1345 	if (object != NULL) {
1346 		if (object->ref_count == 0) {
1347 			if ((object->flags & OBJ_DEAD) == 0)
1348 				vm_object_terminate(object);
1349 			vm_object_drop(object);
1350 			vclrflags(vp, VOBJBUF);
1351 		} else {
1352 			vm_pager_deallocate(object);
1353 			vclrflags(vp, VOBJBUF);
1354 			vm_object_drop(object);
1355 		}
1356 	}
1357 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1358 
1359 	if (vp->v_flag & VOBJDIRTY)
1360 		vclrobjdirty(vp);
1361 
1362 	/*
1363 	 * Reclaim the vnode if not already dead.
1364 	 */
1365 	if (vp->v_mount && VOP_RECLAIM(vp))
1366 		panic("vclean: cannot reclaim");
1367 
1368 	/*
1369 	 * Done with purge, notify sleepers of the grim news.
1370 	 */
1371 	vp->v_ops = &dead_vnode_vops_p;
1372 	vn_gone(vp);
1373 	vp->v_tag = VT_NON;
1374 
1375 	/*
1376 	 * If we are destroying an active vnode, reactivate it now that
1377 	 * we have reassociated it with deadfs.  This prevents the system
1378 	 * from crashing on the vnode due to it being unexpectedly marked
1379 	 * as inactive or reclaimed.
1380 	 */
1381 	if (active && (flags & DOCLOSE)) {
1382 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1383 	}
1384 }
1385 
1386 /*
1387  * Eliminate all activity associated with the requested vnode
1388  * and with all vnodes aliased to the requested vnode.
1389  *
1390  * The vnode must be referenced but should not be locked.
1391  */
1392 int
1393 vrevoke(struct vnode *vp, struct ucred *cred)
1394 {
1395 	struct vnode *vq;
1396 	struct vnode *vqn;
1397 	cdev_t dev;
1398 	int error;
1399 
1400 	/*
1401 	 * If the vnode has a device association, scrap all vnodes associated
1402 	 * with the device.  Don't let the device disappear on us while we
1403 	 * are scrapping the vnodes.
1404 	 *
1405 	 * The passed vp will probably show up in the list, do not VX lock
1406 	 * it twice!
1407 	 *
1408 	 * Releasing the vnode's rdev here can mess up specfs's call to
1409 	 * device close, so don't do it.  The vnode has been disassociated
1410 	 * and the device will be closed after the last ref on the related
1411 	 * fp goes away (if not still open by e.g. the kernel).
1412 	 */
1413 	if (vp->v_type != VCHR) {
1414 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1415 		return (error);
1416 	}
1417 	if ((dev = vp->v_rdev) == NULL) {
1418 		return(0);
1419 	}
1420 	reference_dev(dev);
1421 	lwkt_gettoken(&spechash_token);
1422 
1423 restart:
1424 	vqn = SLIST_FIRST(&dev->si_hlist);
1425 	if (vqn)
1426 		vhold(vqn);
1427 	while ((vq = vqn) != NULL) {
1428 		if (VREFCNT(vq) > 0) {
1429 			vref(vq);
1430 			fdrevoke(vq, DTYPE_VNODE, cred);
1431 			/*v_release_rdev(vq);*/
1432 			vrele(vq);
1433 			if (vq->v_rdev != dev) {
1434 				vdrop(vq);
1435 				goto restart;
1436 			}
1437 		}
1438 		vqn = SLIST_NEXT(vq, v_cdevnext);
1439 		if (vqn)
1440 			vhold(vqn);
1441 		vdrop(vq);
1442 	}
1443 	lwkt_reltoken(&spechash_token);
1444 	dev_drevoke(dev);
1445 	release_dev(dev);
1446 	return (0);
1447 }
1448 
1449 /*
1450  * This is called when the object underlying a vnode is being destroyed,
1451  * such as in a remove().  Try to recycle the vnode immediately if the
1452  * only active reference is our reference.
1453  *
1454  * Directory vnodes in the namecache with children cannot be immediately
1455  * recycled because numerous VOP_N*() ops require them to be stable.
1456  *
1457  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1458  * function is a NOP if VRECLAIMED is already set.
1459  */
1460 int
1461 vrecycle(struct vnode *vp)
1462 {
1463 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1464 		if (cache_inval_vp_nonblock(vp))
1465 			return(0);
1466 		vgone_vxlocked(vp);
1467 		return (1);
1468 	}
1469 	return (0);
1470 }
1471 
1472 /*
1473  * Return the maximum I/O size allowed for strategy calls on VP.
1474  *
1475  * If vp is VCHR or VBLK we dive the device, otherwise we use
1476  * the vp's mount info.
1477  *
1478  * The returned value is clamped at MAXPHYS as most callers cannot use
1479  * buffers larger than that size.
1480  */
1481 int
1482 vmaxiosize(struct vnode *vp)
1483 {
1484 	int maxiosize;
1485 
1486 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1487 		maxiosize = vp->v_rdev->si_iosize_max;
1488 	else
1489 		maxiosize = vp->v_mount->mnt_iosize_max;
1490 
1491 	if (maxiosize > MAXPHYS)
1492 		maxiosize = MAXPHYS;
1493 	return (maxiosize);
1494 }
1495 
1496 /*
1497  * Eliminate all activity associated with a vnode in preparation for
1498  * destruction.
1499  *
1500  * The vnode must be VX locked and refd and will remain VX locked and refd
1501  * on return.  This routine may be called with the vnode in any state, as
1502  * long as it is VX locked.  The vnode will be cleaned out and marked
1503  * VRECLAIMED but will not actually be reused until all existing refs and
1504  * holds go away.
1505  *
1506  * NOTE: This routine may be called on a vnode which has not yet been
1507  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1508  * already been reclaimed.
1509  *
1510  * This routine is not responsible for placing us back on the freelist.
1511  * Instead, it happens automatically when the caller releases the VX lock
1512  * (assuming there aren't any other references).
1513  */
1514 void
1515 vgone_vxlocked(struct vnode *vp)
1516 {
1517 	/*
1518 	 * assert that the VX lock is held.  This is an absolute requirement
1519 	 * now for vgone_vxlocked() to be called.
1520 	 */
1521 	KKASSERT(lockinuse(&vp->v_lock));
1522 
1523 	/*
1524 	 * Clean out the filesystem specific data and set the VRECLAIMED
1525 	 * bit.  Also deactivate the vnode if necessary.
1526 	 *
1527 	 * The vnode should have automatically been removed from the syncer
1528 	 * list as syncer/dirty flags cleared during the cleaning.
1529 	 */
1530 	vclean_vxlocked(vp, DOCLOSE);
1531 
1532 	/*
1533 	 * Normally panic if the vnode is still dirty, unless we are doing
1534 	 * a forced unmount (tmpfs typically).
1535 	 */
1536 	if (vp->v_flag & VONWORKLST) {
1537 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1538 			/* force removal */
1539 			vn_syncer_remove(vp, 1);
1540 		} else {
1541 			panic("vp %p still dirty in vgone after flush", vp);
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Delete from old mount point vnode list, if on one.
1547 	 */
1548 	if (vp->v_mount != NULL) {
1549 		KKASSERT(vp->v_data == NULL);
1550 		insmntque(vp, NULL);
1551 	}
1552 
1553 	/*
1554 	 * If special device, remove it from special device alias list
1555 	 * if it is on one.  This should normally only occur if a vnode is
1556 	 * being revoked as the device should otherwise have been released
1557 	 * naturally.
1558 	 */
1559 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1560 		v_release_rdev(vp);
1561 	}
1562 
1563 	/*
1564 	 * Set us to VBAD
1565 	 */
1566 	vp->v_type = VBAD;
1567 }
1568 
1569 /*
1570  * Calculate the total number of references to a special device.  This
1571  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1572  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1573  * have to check for a NULL v_rdev.
1574  */
1575 int
1576 count_dev(cdev_t dev)
1577 {
1578 	struct vnode *vp;
1579 	int count = 0;
1580 
1581 	if (SLIST_FIRST(&dev->si_hlist)) {
1582 		lwkt_gettoken(&spechash_token);
1583 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1584 			count += vp->v_opencount;
1585 		}
1586 		lwkt_reltoken(&spechash_token);
1587 	}
1588 	return(count);
1589 }
1590 
1591 int
1592 vcount(struct vnode *vp)
1593 {
1594 	if (vp->v_rdev == NULL)
1595 		return(0);
1596 	return(count_dev(vp->v_rdev));
1597 }
1598 
1599 /*
1600  * Initialize VMIO for a vnode.  This routine MUST be called before a
1601  * VFS can issue buffer cache ops on a vnode.  It is typically called
1602  * when a vnode is initialized from its inode.
1603  */
1604 int
1605 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1606 {
1607 	vm_object_t object;
1608 	int error = 0;
1609 
1610 	object = vp->v_object;
1611 	if (object) {
1612 		vm_object_hold(object);
1613 		KKASSERT(vp->v_object == object);
1614 	}
1615 
1616 	if (object == NULL) {
1617 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1618 
1619 		/*
1620 		 * Dereference the reference we just created.  This assumes
1621 		 * that the object is associated with the vp.  Allow it to
1622 		 * have zero refs.  It cannot be destroyed as long as it
1623 		 * is associated with the vnode.
1624 		 */
1625 		vm_object_hold(object);
1626 		atomic_add_int(&object->ref_count, -1);
1627 		vrele(vp);
1628 	} else {
1629 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1630 	}
1631 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1632 	vsetflags(vp, VOBJBUF);
1633 	vm_object_drop(object);
1634 
1635 	return (error);
1636 }
1637 
1638 
1639 /*
1640  * Print out a description of a vnode.
1641  */
1642 static char *typename[] =
1643 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1644 
1645 void
1646 vprint(char *label, struct vnode *vp)
1647 {
1648 	char buf[96];
1649 
1650 	if (label != NULL)
1651 		kprintf("%s: %p: ", label, (void *)vp);
1652 	else
1653 		kprintf("%p: ", (void *)vp);
1654 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1655 		typename[vp->v_type],
1656 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1657 	buf[0] = '\0';
1658 	if (vp->v_flag & VROOT)
1659 		strcat(buf, "|VROOT");
1660 	if (vp->v_flag & VPFSROOT)
1661 		strcat(buf, "|VPFSROOT");
1662 	if (vp->v_flag & VTEXT)
1663 		strcat(buf, "|VTEXT");
1664 	if (vp->v_flag & VSYSTEM)
1665 		strcat(buf, "|VSYSTEM");
1666 	if (vp->v_flag & VOBJBUF)
1667 		strcat(buf, "|VOBJBUF");
1668 	if (buf[0] != '\0')
1669 		kprintf(" flags (%s)", &buf[1]);
1670 	if (vp->v_data == NULL) {
1671 		kprintf("\n");
1672 	} else {
1673 		kprintf("\n\t");
1674 		VOP_PRINT(vp);
1675 	}
1676 }
1677 
1678 /*
1679  * Do the usual access checking.
1680  * file_mode, uid and gid are from the vnode in question,
1681  * while acc_mode and cred are from the VOP_ACCESS parameter list
1682  */
1683 int
1684 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1685     mode_t acc_mode, struct ucred *cred)
1686 {
1687 	mode_t mask;
1688 	int ismember;
1689 
1690 	/*
1691 	 * Super-user always gets read/write access, but execute access depends
1692 	 * on at least one execute bit being set.
1693 	 */
1694 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1695 		if ((acc_mode & VEXEC) && type != VDIR &&
1696 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1697 			return (EACCES);
1698 		return (0);
1699 	}
1700 
1701 	mask = 0;
1702 
1703 	/* Otherwise, check the owner. */
1704 	if (cred->cr_uid == uid) {
1705 		if (acc_mode & VEXEC)
1706 			mask |= S_IXUSR;
1707 		if (acc_mode & VREAD)
1708 			mask |= S_IRUSR;
1709 		if (acc_mode & VWRITE)
1710 			mask |= S_IWUSR;
1711 		return ((file_mode & mask) == mask ? 0 : EACCES);
1712 	}
1713 
1714 	/* Otherwise, check the groups. */
1715 	ismember = groupmember(gid, cred);
1716 	if (cred->cr_svgid == gid || ismember) {
1717 		if (acc_mode & VEXEC)
1718 			mask |= S_IXGRP;
1719 		if (acc_mode & VREAD)
1720 			mask |= S_IRGRP;
1721 		if (acc_mode & VWRITE)
1722 			mask |= S_IWGRP;
1723 		return ((file_mode & mask) == mask ? 0 : EACCES);
1724 	}
1725 
1726 	/* Otherwise, check everyone else. */
1727 	if (acc_mode & VEXEC)
1728 		mask |= S_IXOTH;
1729 	if (acc_mode & VREAD)
1730 		mask |= S_IROTH;
1731 	if (acc_mode & VWRITE)
1732 		mask |= S_IWOTH;
1733 	return ((file_mode & mask) == mask ? 0 : EACCES);
1734 }
1735 
1736 #ifdef DDB
1737 #include <ddb/ddb.h>
1738 
1739 static int db_show_locked_vnodes(struct mount *mp, void *data);
1740 
1741 /*
1742  * List all of the locked vnodes in the system.
1743  * Called when debugging the kernel.
1744  */
1745 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1746 {
1747 	kprintf("Locked vnodes\n");
1748 	mountlist_scan(db_show_locked_vnodes, NULL,
1749 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1750 }
1751 
1752 static int
1753 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1754 {
1755 	struct vnode *vp;
1756 
1757 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1758 		if (vn_islocked(vp))
1759 			vprint(NULL, vp);
1760 	}
1761 	return(0);
1762 }
1763 #endif
1764 
1765 /*
1766  * Top level filesystem related information gathering.
1767  */
1768 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1769 
1770 static int
1771 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1772 {
1773 	int *name = (int *)arg1 - 1;	/* XXX */
1774 	u_int namelen = arg2 + 1;	/* XXX */
1775 	struct vfsconf *vfsp;
1776 	int maxtypenum;
1777 
1778 #if 1 || defined(COMPAT_PRELITE2)
1779 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1780 	if (namelen == 1)
1781 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1782 #endif
1783 
1784 #ifdef notyet
1785 	/* all sysctl names at this level are at least name and field */
1786 	if (namelen < 2)
1787 		return (ENOTDIR);		/* overloaded */
1788 	if (name[0] != VFS_GENERIC) {
1789 		vfsp = vfsconf_find_by_typenum(name[0]);
1790 		if (vfsp == NULL)
1791 			return (EOPNOTSUPP);
1792 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1793 		    oldp, oldlenp, newp, newlen, p));
1794 	}
1795 #endif
1796 	switch (name[1]) {
1797 	case VFS_MAXTYPENUM:
1798 		if (namelen != 2)
1799 			return (ENOTDIR);
1800 		maxtypenum = vfsconf_get_maxtypenum();
1801 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1802 	case VFS_CONF:
1803 		if (namelen != 3)
1804 			return (ENOTDIR);	/* overloaded */
1805 		vfsp = vfsconf_find_by_typenum(name[2]);
1806 		if (vfsp == NULL)
1807 			return (EOPNOTSUPP);
1808 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1809 	}
1810 	return (EOPNOTSUPP);
1811 }
1812 
1813 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1814 	"Generic filesystem");
1815 
1816 #if 1 || defined(COMPAT_PRELITE2)
1817 
1818 static int
1819 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1820 {
1821 	int error;
1822 	struct ovfsconf ovfs;
1823 	struct sysctl_req *req = (struct sysctl_req*) data;
1824 
1825 	bzero(&ovfs, sizeof(ovfs));
1826 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1827 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1828 	ovfs.vfc_index = vfsp->vfc_typenum;
1829 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1830 	ovfs.vfc_flags = vfsp->vfc_flags;
1831 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1832 	if (error)
1833 		return error; /* abort iteration with error code */
1834 	else
1835 		return 0; /* continue iterating with next element */
1836 }
1837 
1838 static int
1839 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1840 {
1841 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1842 }
1843 
1844 #endif /* 1 || COMPAT_PRELITE2 */
1845 
1846 /*
1847  * Check to see if a filesystem is mounted on a block device.
1848  */
1849 int
1850 vfs_mountedon(struct vnode *vp)
1851 {
1852 	cdev_t dev;
1853 
1854 	dev = vp->v_rdev;
1855 	if (dev != NULL && dev->si_mountpoint)
1856 		return (EBUSY);
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Unmount all filesystems. The list is traversed in reverse order
1862  * of mounting to avoid dependencies.
1863  *
1864  * We want the umountall to be able to break out of its loop if a
1865  * failure occurs, after scanning all possible mounts, so the callback
1866  * returns 0 on error.
1867  *
1868  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1869  *	 confuse mountlist_scan()'s unbusy check.
1870  */
1871 static int vfs_umountall_callback(struct mount *mp, void *data);
1872 
1873 void
1874 vfs_unmountall(int halting)
1875 {
1876 	int count;
1877 
1878 	do {
1879 		count = mountlist_scan(vfs_umountall_callback, &halting,
1880 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1881 	} while (count);
1882 }
1883 
1884 static
1885 int
1886 vfs_umountall_callback(struct mount *mp, void *data)
1887 {
1888 	int error;
1889 	int halting = *(int *)data;
1890 
1891 	/*
1892 	 * NOTE: When halting, dounmount will disconnect but leave
1893 	 *	 certain mount points intact.  e.g. devfs.
1894 	 */
1895 	error = dounmount(mp, MNT_FORCE, halting);
1896 	if (error) {
1897 		kprintf("unmount of filesystem mounted from %s failed (",
1898 			mp->mnt_stat.f_mntfromname);
1899 		if (error == EBUSY)
1900 			kprintf("BUSY)\n");
1901 		else
1902 			kprintf("%d)\n", error);
1903 		return 0;
1904 	} else {
1905 		return 1;
1906 	}
1907 }
1908 
1909 /*
1910  * Checks the mount flags for parameter mp and put the names comma-separated
1911  * into a string buffer buf with a size limit specified by len.
1912  *
1913  * It returns the number of bytes written into buf, and (*errorp) will be
1914  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1915  * not large enough).  The buffer will be 0-terminated if len was not 0.
1916  */
1917 size_t
1918 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1919 	       char *buf, size_t len, int *errorp)
1920 {
1921 	static const struct mountctl_opt optnames[] = {
1922 		{ MNT_RDONLY,           "read-only" },
1923 		{ MNT_SYNCHRONOUS,      "synchronous" },
1924 		{ MNT_NOEXEC,           "noexec" },
1925 		{ MNT_NOSUID,           "nosuid" },
1926 		{ MNT_NODEV,            "nodev" },
1927 		{ MNT_AUTOMOUNTED,      "automounted" },
1928 		{ MNT_ASYNC,            "asynchronous" },
1929 		{ MNT_SUIDDIR,          "suiddir" },
1930 		{ MNT_SOFTDEP,          "soft-updates" },
1931 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1932 		{ MNT_TRIM,             "trim" },
1933 		{ MNT_NOATIME,          "noatime" },
1934 		{ MNT_NOCLUSTERR,       "noclusterr" },
1935 		{ MNT_NOCLUSTERW,       "noclusterw" },
1936 		{ MNT_EXRDONLY,         "NFS read-only" },
1937 		{ MNT_EXPORTED,         "NFS exported" },
1938 		/* Remaining NFS flags could come here */
1939 		{ MNT_LOCAL,            "local" },
1940 		{ MNT_QUOTA,            "with-quotas" },
1941 		/* { MNT_ROOTFS,           "rootfs" }, */
1942 		/* { MNT_IGNORE,           "ignore" }, */
1943 		{ 0,			NULL}
1944 	};
1945 	int bwritten;
1946 	int bleft;
1947 	int optlen;
1948 	int actsize;
1949 
1950 	*errorp = 0;
1951 	bwritten = 0;
1952 	bleft = len - 1;	/* leave room for trailing \0 */
1953 
1954 	/*
1955 	 * Checks the size of the string. If it contains
1956 	 * any data, then we will append the new flags to
1957 	 * it.
1958 	 */
1959 	actsize = strlen(buf);
1960 	if (actsize > 0)
1961 		buf += actsize;
1962 
1963 	/* Default flags if no flags passed */
1964 	if (optp == NULL)
1965 		optp = optnames;
1966 
1967 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1968 		*errorp = EINVAL;
1969 		return(0);
1970 	}
1971 
1972 	for (; flags && optp->o_opt; ++optp) {
1973 		if ((flags & optp->o_opt) == 0)
1974 			continue;
1975 		optlen = strlen(optp->o_name);
1976 		if (bwritten || actsize > 0) {
1977 			if (bleft < 2) {
1978 				*errorp = ENOSPC;
1979 				break;
1980 			}
1981 			buf[bwritten++] = ',';
1982 			buf[bwritten++] = ' ';
1983 			bleft -= 2;
1984 		}
1985 		if (bleft < optlen) {
1986 			*errorp = ENOSPC;
1987 			break;
1988 		}
1989 		bcopy(optp->o_name, buf + bwritten, optlen);
1990 		bwritten += optlen;
1991 		bleft -= optlen;
1992 		flags &= ~optp->o_opt;
1993 	}
1994 
1995 	/*
1996 	 * Space already reserved for trailing \0
1997 	 */
1998 	buf[bwritten] = 0;
1999 	return (bwritten);
2000 }
2001 
2002 /*
2003  * Build hash lists of net addresses and hang them off the mount point.
2004  * Called by ufs_mount() to set up the lists of export addresses.
2005  */
2006 static int
2007 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2008 		const struct export_args *argp)
2009 {
2010 	struct netcred *np;
2011 	struct radix_node_head *rnh;
2012 	int i;
2013 	struct radix_node *rn;
2014 	struct sockaddr *saddr, *smask = NULL;
2015 	int error;
2016 
2017 	if (argp->ex_addrlen == 0) {
2018 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2019 			return (EPERM);
2020 		np = &nep->ne_defexported;
2021 		np->netc_exflags = argp->ex_flags;
2022 		np->netc_anon = argp->ex_anon;
2023 		np->netc_anon.cr_ref = 1;
2024 		mp->mnt_flag |= MNT_DEFEXPORTED;
2025 		return (0);
2026 	}
2027 
2028 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2029 		return (EINVAL);
2030 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2031 		return (EINVAL);
2032 
2033 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2034 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2035 	saddr = (struct sockaddr *) (np + 1);
2036 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2037 		goto out;
2038 	if (saddr->sa_len > argp->ex_addrlen)
2039 		saddr->sa_len = argp->ex_addrlen;
2040 	if (argp->ex_masklen) {
2041 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2042 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2043 		if (error)
2044 			goto out;
2045 		if (smask->sa_len > argp->ex_masklen)
2046 			smask->sa_len = argp->ex_masklen;
2047 	}
2048 	NE_LOCK(nep);
2049 	if (nep->ne_maskhead == NULL) {
2050 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2051 			error = ENOBUFS;
2052 			goto out;
2053 		}
2054 	}
2055 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2056 		error = ENOBUFS;
2057 		goto out;
2058 	}
2059 	rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2060 				 np->netc_rnodes);
2061 	NE_UNLOCK(nep);
2062 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2063 		error = EPERM;
2064 		goto out;
2065 	}
2066 	np->netc_exflags = argp->ex_flags;
2067 	np->netc_anon = argp->ex_anon;
2068 	np->netc_anon.cr_ref = 1;
2069 	return (0);
2070 
2071 out:
2072 	kfree(np, M_NETCRED);
2073 	return (error);
2074 }
2075 
2076 /*
2077  * Free netcred structures installed in the netexport
2078  */
2079 static int
2080 vfs_free_netcred(struct radix_node *rn, void *w)
2081 {
2082 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2083 
2084 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2085 	kfree(rn, M_NETCRED);
2086 
2087 	return (0);
2088 }
2089 
2090 /*
2091  * callback to free an element of the mask table installed in the
2092  * netexport.  These may be created indirectly and are not netcred
2093  * structures.
2094  */
2095 static int
2096 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2097 {
2098 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2099 
2100 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2101 	kfree(rn, M_RTABLE);
2102 
2103 	return (0);
2104 }
2105 
2106 static struct radix_node_head *
2107 vfs_create_addrlist_af(int af, struct netexport *nep)
2108 {
2109 	struct radix_node_head *rnh = NULL;
2110 #if defined(INET) || defined(INET6)
2111 	struct radix_node_head *maskhead = nep->ne_maskhead;
2112 	int off;
2113 #endif
2114 
2115 	NE_ASSERT_LOCKED(nep);
2116 #if defined(INET) || defined(INET6)
2117 	KKASSERT(maskhead != NULL);
2118 #endif
2119 	switch (af) {
2120 #ifdef INET
2121 	case AF_INET:
2122 		if ((rnh = nep->ne_inethead) == NULL) {
2123 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2124 			if (!rn_inithead((void **)&rnh, maskhead, off))
2125 				return (NULL);
2126 			nep->ne_inethead = rnh;
2127 		}
2128 		break;
2129 #endif
2130 #ifdef INET6
2131 	case AF_INET6:
2132 		if ((rnh = nep->ne_inet6head) == NULL) {
2133 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2134 			if (!rn_inithead((void **)&rnh, maskhead, off))
2135 				return (NULL);
2136 			nep->ne_inet6head = rnh;
2137 		}
2138 		break;
2139 #endif
2140 	}
2141 	return (rnh);
2142 }
2143 
2144 /*
2145  * helper function for freeing netcred elements
2146  */
2147 static void
2148 vfs_free_addrlist_af(struct radix_node_head **prnh)
2149 {
2150 	struct radix_node_head *rnh = *prnh;
2151 
2152 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2153 	kfree(rnh, M_RTABLE);
2154 	*prnh = NULL;
2155 }
2156 
2157 /*
2158  * helper function for freeing mask elements
2159  */
2160 static void
2161 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2162 {
2163 	struct radix_node_head *rnh = *prnh;
2164 
2165 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2166 	kfree(rnh, M_RTABLE);
2167 	*prnh = NULL;
2168 }
2169 
2170 /*
2171  * Free the net address hash lists that are hanging off the mount points.
2172  */
2173 static void
2174 vfs_free_addrlist(struct netexport *nep)
2175 {
2176 	NE_LOCK(nep);
2177 	if (nep->ne_inethead != NULL)
2178 		vfs_free_addrlist_af(&nep->ne_inethead);
2179 	if (nep->ne_inet6head != NULL)
2180 		vfs_free_addrlist_af(&nep->ne_inet6head);
2181 	if (nep->ne_maskhead)
2182 		vfs_free_addrlist_masks(&nep->ne_maskhead);
2183 	NE_UNLOCK(nep);
2184 }
2185 
2186 int
2187 vfs_export(struct mount *mp, struct netexport *nep,
2188 	   const struct export_args *argp)
2189 {
2190 	int error;
2191 
2192 	if (argp->ex_flags & MNT_DELEXPORT) {
2193 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2194 			vfs_setpublicfs(NULL, NULL, NULL);
2195 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2196 		}
2197 		vfs_free_addrlist(nep);
2198 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2199 	}
2200 	if (argp->ex_flags & MNT_EXPORTED) {
2201 		if (argp->ex_flags & MNT_EXPUBLIC) {
2202 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2203 				return (error);
2204 			mp->mnt_flag |= MNT_EXPUBLIC;
2205 		}
2206 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2207 			return (error);
2208 		mp->mnt_flag |= MNT_EXPORTED;
2209 	}
2210 	return (0);
2211 }
2212 
2213 
2214 /*
2215  * Set the publicly exported filesystem (WebNFS). Currently, only
2216  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2217  */
2218 int
2219 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2220 		const struct export_args *argp)
2221 {
2222 	int error;
2223 	struct vnode *rvp;
2224 	char *cp;
2225 
2226 	/*
2227 	 * mp == NULL -> invalidate the current info, the FS is
2228 	 * no longer exported. May be called from either vfs_export
2229 	 * or unmount, so check if it hasn't already been done.
2230 	 */
2231 	if (mp == NULL) {
2232 		if (nfs_pub.np_valid) {
2233 			nfs_pub.np_valid = 0;
2234 			if (nfs_pub.np_index != NULL) {
2235 				kfree(nfs_pub.np_index, M_TEMP);
2236 				nfs_pub.np_index = NULL;
2237 			}
2238 		}
2239 		return (0);
2240 	}
2241 
2242 	/*
2243 	 * Only one allowed at a time.
2244 	 */
2245 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2246 		return (EBUSY);
2247 
2248 	/*
2249 	 * Get real filehandle for root of exported FS.
2250 	 */
2251 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2252 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2253 
2254 	if ((error = VFS_ROOT(mp, &rvp)))
2255 		return (error);
2256 
2257 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2258 		return (error);
2259 
2260 	vput(rvp);
2261 
2262 	/*
2263 	 * If an indexfile was specified, pull it in.
2264 	 */
2265 	if (argp->ex_indexfile != NULL) {
2266 		int namelen;
2267 
2268 		error = vn_get_namelen(rvp, &namelen);
2269 		if (error)
2270 			return (error);
2271 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2272 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2273 		    namelen, NULL);
2274 		if (!error) {
2275 			/*
2276 			 * Check for illegal filenames.
2277 			 */
2278 			for (cp = nfs_pub.np_index; *cp; cp++) {
2279 				if (*cp == '/') {
2280 					error = EINVAL;
2281 					break;
2282 				}
2283 			}
2284 		}
2285 		if (error) {
2286 			kfree(nfs_pub.np_index, M_TEMP);
2287 			return (error);
2288 		}
2289 	}
2290 
2291 	nfs_pub.np_mount = mp;
2292 	nfs_pub.np_valid = 1;
2293 	return (0);
2294 }
2295 
2296 struct netcred *
2297 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2298 		struct sockaddr *nam)
2299 {
2300 	struct netcred *np;
2301 	struct radix_node_head *rnh;
2302 	struct sockaddr *saddr;
2303 
2304 	np = NULL;
2305 	if (mp->mnt_flag & MNT_EXPORTED) {
2306 		/*
2307 		 * Lookup in the export list first.
2308 		 */
2309 		NE_LOCK(nep);
2310 		if (nam != NULL) {
2311 			saddr = nam;
2312 			switch (saddr->sa_family) {
2313 #ifdef INET
2314 			case AF_INET:
2315 				rnh = nep->ne_inethead;
2316 				break;
2317 #endif
2318 #ifdef INET6
2319 			case AF_INET6:
2320 				rnh = nep->ne_inet6head;
2321 				break;
2322 #endif
2323 			default:
2324 				rnh = NULL;
2325 			}
2326 			if (rnh != NULL) {
2327 				np = (struct netcred *)
2328 					(*rnh->rnh_matchaddr)((char *)saddr,
2329 							      rnh);
2330 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2331 					np = NULL;
2332 			}
2333 		}
2334 		NE_UNLOCK(nep);
2335 		/*
2336 		 * If no address match, use the default if it exists.
2337 		 */
2338 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2339 			np = &nep->ne_defexported;
2340 	}
2341 	return (np);
2342 }
2343 
2344 /*
2345  * perform msync on all vnodes under a mount point.  The mount point must
2346  * be locked.  This code is also responsible for lazy-freeing unreferenced
2347  * vnodes whos VM objects no longer contain pages.
2348  *
2349  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2350  *
2351  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2352  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2353  * way up in this high level function.
2354  */
2355 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2356 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2357 
2358 void
2359 vfs_msync(struct mount *mp, int flags)
2360 {
2361 	int vmsc_flags;
2362 
2363 	/*
2364 	 * tmpfs sets this flag to prevent msync(), sync, and the
2365 	 * filesystem periodic syncer from trying to flush VM pages
2366 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2367 	 * to swap.
2368 	 */
2369 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2370 		return;
2371 
2372 	/*
2373 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2374 	 * syncer thread feature we can use vsyncscan() instead of
2375 	 * vmntvnodescan(), which is much faster.
2376 	 */
2377 	vmsc_flags = VMSC_GETVP;
2378 	if (flags != MNT_WAIT)
2379 		vmsc_flags |= VMSC_NOWAIT;
2380 
2381 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2382 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2383 			  (void *)(intptr_t)flags);
2384 	} else {
2385 		vmntvnodescan(mp, vmsc_flags,
2386 			      vfs_msync_scan1, vfs_msync_scan2,
2387 			      (void *)(intptr_t)flags);
2388 	}
2389 }
2390 
2391 /*
2392  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2393  * vnodes, we cannot afford to do anything heavy weight until we have a
2394  * fairly good indication that there is work to do.
2395  *
2396  * The new namecache holds the vnode for each v_namecache association
2397  * so allow these refs.
2398  */
2399 static
2400 int
2401 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2402 {
2403 	int flags = (int)(intptr_t)data;
2404 
2405 	if ((vp->v_flag & VRECLAIMED) == 0) {
2406 		if (vp->v_auxrefs == vp->v_namecache_count &&
2407 		    VREFCNT(vp) <= 0 && vp->v_object) {
2408 			return(0);	/* call scan2 */
2409 		}
2410 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2411 		    (vp->v_flag & VOBJDIRTY) &&
2412 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2413 			return(0);	/* call scan2 */
2414 		}
2415 	}
2416 
2417 	/*
2418 	 * do not call scan2, continue the loop
2419 	 */
2420 	return(-1);
2421 }
2422 
2423 /*
2424  * This callback is handed a locked vnode.
2425  */
2426 static
2427 int
2428 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2429 {
2430 	vm_object_t obj;
2431 	int flags = (int)(intptr_t)data;
2432 	int opcflags;
2433 
2434 	if (vp->v_flag & VRECLAIMED)
2435 		return(0);
2436 
2437 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2438 		if ((obj = vp->v_object) != NULL) {
2439 			if (flags == MNT_WAIT) {
2440 				/*
2441 				 * VFS_MSYNC is called with MNT_WAIT when
2442 				 * unmounting.
2443 				 */
2444 				opcflags = OBJPC_SYNC;
2445 			} else if (vp->v_writecount || obj->ref_count) {
2446 				/*
2447 				 * VFS_MSYNC is otherwise called via the
2448 				 * periodic filesystem sync or the 'sync'
2449 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2450 				 * if the file is open for writing or memory
2451 				 * mapped.  Pages flagged PG_NOSYNC will not
2452 				 * be automatically flushed at this time.
2453 				 *
2454 				 * The obj->ref_count test is not perfect
2455 				 * since temporary refs may be present, but
2456 				 * the periodic filesystem sync will ultimately
2457 				 * catch it if the file is not open and not
2458 				 * mapped.
2459 				 */
2460 				opcflags = OBJPC_NOSYNC;
2461 			} else {
2462 				/*
2463 				 * If the file is no longer open for writing
2464 				 * and also no longer mapped, do not honor
2465 				 * MAP_NOSYNC.  That is, fully synchronize
2466 				 * the file.
2467 				 *
2468 				 * This still occurs on the periodic fs sync,
2469 				 * so frontend programs which turn the file
2470 				 * over quickly enough can still avoid the
2471 				 * sync, but ultimately we do want to flush
2472 				 * even MADV_NOSYNC pages once it is no longer
2473 				 * mapped or open for writing.
2474 				 */
2475 				opcflags = 0;
2476 			}
2477 			vm_object_page_clean(obj, 0, 0, opcflags);
2478 		}
2479 	}
2480 	return(0);
2481 }
2482 
2483 /*
2484  * Wake up anyone interested in vp because it is being revoked.
2485  */
2486 void
2487 vn_gone(struct vnode *vp)
2488 {
2489 	lwkt_gettoken(&vp->v_token);
2490 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2491 	lwkt_reltoken(&vp->v_token);
2492 }
2493 
2494 /*
2495  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2496  * (or v_rdev might be NULL).
2497  */
2498 cdev_t
2499 vn_todev(struct vnode *vp)
2500 {
2501 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2502 		return (NULL);
2503 	KKASSERT(vp->v_rdev != NULL);
2504 	return (vp->v_rdev);
2505 }
2506 
2507 /*
2508  * Check if vnode represents a disk device.  The vnode does not need to be
2509  * opened.
2510  *
2511  * MPALMOSTSAFE
2512  */
2513 int
2514 vn_isdisk(struct vnode *vp, int *errp)
2515 {
2516 	cdev_t dev;
2517 
2518 	if (vp->v_type != VCHR) {
2519 		if (errp != NULL)
2520 			*errp = ENOTBLK;
2521 		return (0);
2522 	}
2523 
2524 	dev = vp->v_rdev;
2525 
2526 	if (dev == NULL) {
2527 		if (errp != NULL)
2528 			*errp = ENXIO;
2529 		return (0);
2530 	}
2531 	if (dev_is_good(dev) == 0) {
2532 		if (errp != NULL)
2533 			*errp = ENXIO;
2534 		return (0);
2535 	}
2536 	if ((dev_dflags(dev) & D_DISK) == 0) {
2537 		if (errp != NULL)
2538 			*errp = ENOTBLK;
2539 		return (0);
2540 	}
2541 	if (errp != NULL)
2542 		*errp = 0;
2543 	return (1);
2544 }
2545 
2546 int
2547 vn_get_namelen(struct vnode *vp, int *namelen)
2548 {
2549 	int error;
2550 	register_t retval[2];
2551 
2552 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2553 	if (error)
2554 		return (error);
2555 	*namelen = (int)retval[0];
2556 	return (0);
2557 }
2558 
2559 int
2560 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2561 		uint16_t d_namlen, const char *d_name)
2562 {
2563 	struct dirent *dp;
2564 	size_t len;
2565 
2566 	len = _DIRENT_RECLEN(d_namlen);
2567 	if (len > uio->uio_resid)
2568 		return(1);
2569 
2570 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2571 
2572 	dp->d_ino = d_ino;
2573 	dp->d_namlen = d_namlen;
2574 	dp->d_type = d_type;
2575 	bcopy(d_name, dp->d_name, d_namlen);
2576 
2577 	*error = uiomove((caddr_t)dp, len, uio);
2578 
2579 	kfree(dp, M_TEMP);
2580 
2581 	return(0);
2582 }
2583 
2584 void
2585 vn_mark_atime(struct vnode *vp, struct thread *td)
2586 {
2587 	struct proc *p = td->td_proc;
2588 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2589 
2590 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2591 		VOP_MARKATIME(vp, cred);
2592 	}
2593 }
2594 
2595 /*
2596  * Calculate the number of entries in an inode-related chained hash table.
2597  * With today's memory sizes, maxvnodes can wind up being a very large
2598  * number.  There is no reason to waste memory, so tolerate some stacking.
2599  */
2600 int
2601 vfs_inodehashsize(void)
2602 {
2603 	int hsize;
2604 
2605 	hsize = 32;
2606 	while (hsize < maxvnodes)
2607 		hsize <<= 1;
2608 	while (hsize > maxvnodes * 2)
2609 		hsize >>= 1;		/* nominal 2x stacking */
2610 
2611 	if (maxvnodes > 1024 * 1024)
2612 		hsize >>= 1;		/* nominal 8x stacking */
2613 
2614 	if (maxvnodes > 128 * 1024)
2615 		hsize >>= 1;		/* nominal 4x stacking */
2616 
2617 	if (hsize < 16)
2618 		hsize = 16;
2619 
2620 	return hsize;
2621 }
2622 
2623 union _qcvt {
2624 	quad_t qcvt;
2625 	int32_t val[2];
2626 };
2627 
2628 #define SETHIGH(q, h) { \
2629 	union _qcvt tmp; \
2630 	tmp.qcvt = (q); \
2631 	tmp.val[_QUAD_HIGHWORD] = (h); \
2632 	(q) = tmp.qcvt; \
2633 }
2634 #define SETLOW(q, l) { \
2635 	union _qcvt tmp; \
2636 	tmp.qcvt = (q); \
2637 	tmp.val[_QUAD_LOWWORD] = (l); \
2638 	(q) = tmp.qcvt; \
2639 }
2640 
2641 u_quad_t
2642 init_va_filerev(void)
2643 {
2644 	struct timeval tv;
2645 	u_quad_t ret = 0;
2646 
2647 	getmicrouptime(&tv);
2648 	SETHIGH(ret, tv.tv_sec);
2649 	SETLOW(ret, tv.tv_usec * 4294);
2650 
2651 	return ret;
2652 }
2653