xref: /dragonfly/sys/kern/vfs_subr.c (revision 6bd457ed)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.57 2005/06/06 15:02:28 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 
70 #include <machine/limits.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vnode_pager.h>
81 #include <vm/vm_zone.h>
82 
83 #include <sys/buf2.h>
84 #include <sys/thread2.h>
85 
86 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
87 
88 int numvnodes;
89 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
90 int vfs_fastdev = 1;
91 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
92 
93 enum vtype iftovt_tab[16] = {
94 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
95 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
96 };
97 int vttoif_tab[9] = {
98 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
99 	S_IFSOCK, S_IFIFO, S_IFMT,
100 };
101 
102 static int reassignbufcalls;
103 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
104 		&reassignbufcalls, 0, "");
105 static int reassignbufloops;
106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
107 		&reassignbufloops, 0, "");
108 static int reassignbufsortgood;
109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
110 		&reassignbufsortgood, 0, "");
111 static int reassignbufsortbad;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
113 		&reassignbufsortbad, 0, "");
114 static int reassignbufmethod = 1;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
116 		&reassignbufmethod, 0, "");
117 
118 int	nfs_mount_type = -1;
119 static struct lwkt_token spechash_token;
120 struct nfs_public nfs_pub;	/* publicly exported FS */
121 
122 int desiredvnodes;
123 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
124 		&desiredvnodes, 0, "Maximum number of vnodes");
125 
126 static void	vfs_free_addrlist (struct netexport *nep);
127 static int	vfs_free_netcred (struct radix_node *rn, void *w);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 				       struct export_args *argp);
130 
131 extern int dev_ref_debug;
132 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
133 
134 /*
135  * Red black tree functions
136  */
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE(buf_rb_tree, buf, b_rbnode, rb_buf_compare);
139 
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
142 {
143 	if (b1->b_lblkno < b2->b_lblkno)
144 		return(-1);
145 	if (b1->b_lblkno > b2->b_lblkno)
146 		return(1);
147 	return(0);
148 }
149 
150 /*
151  * Return 0 if the vnode is already on the free list or cannot be placed
152  * on the free list.  Return 1 if the vnode can be placed on the free list.
153  */
154 static __inline int
155 vshouldfree(struct vnode *vp, int usecount)
156 {
157 	if (vp->v_flag & VFREE)
158 		return (0);		/* already free */
159 	if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
160 		return (0);		/* other holderse */
161 	if (vp->v_object &&
162 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
163 		return (0);
164 	}
165 	return (1);
166 }
167 
168 /*
169  * Initialize the vnode management data structures.
170  *
171  * Called from vfsinit()
172  */
173 void
174 vfs_subr_init(void)
175 {
176 	/*
177 	 * Desired vnodes is a result of the physical page count
178 	 * and the size of kernel's heap.  It scales in proportion
179 	 * to the amount of available physical memory.  This can
180 	 * cause trouble on 64-bit and large memory platforms.
181 	 */
182 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
183 	desiredvnodes =
184 		min(maxproc + vmstats.v_page_count /4,
185 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
186 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
187 
188 	lwkt_token_init(&spechash_token);
189 }
190 
191 /*
192  * Knob to control the precision of file timestamps:
193  *
194  *   0 = seconds only; nanoseconds zeroed.
195  *   1 = seconds and nanoseconds, accurate within 1/HZ.
196  *   2 = seconds and nanoseconds, truncated to microseconds.
197  * >=3 = seconds and nanoseconds, maximum precision.
198  */
199 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
200 
201 static int timestamp_precision = TSP_SEC;
202 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
203 		&timestamp_precision, 0, "");
204 
205 /*
206  * Get a current timestamp.
207  */
208 void
209 vfs_timestamp(struct timespec *tsp)
210 {
211 	struct timeval tv;
212 
213 	switch (timestamp_precision) {
214 	case TSP_SEC:
215 		tsp->tv_sec = time_second;
216 		tsp->tv_nsec = 0;
217 		break;
218 	case TSP_HZ:
219 		getnanotime(tsp);
220 		break;
221 	case TSP_USEC:
222 		microtime(&tv);
223 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
224 		break;
225 	case TSP_NSEC:
226 	default:
227 		nanotime(tsp);
228 		break;
229 	}
230 }
231 
232 /*
233  * Set vnode attributes to VNOVAL
234  */
235 void
236 vattr_null(struct vattr *vap)
237 {
238 	vap->va_type = VNON;
239 	vap->va_size = VNOVAL;
240 	vap->va_bytes = VNOVAL;
241 	vap->va_mode = VNOVAL;
242 	vap->va_nlink = VNOVAL;
243 	vap->va_uid = VNOVAL;
244 	vap->va_gid = VNOVAL;
245 	vap->va_fsid = VNOVAL;
246 	vap->va_fileid = VNOVAL;
247 	vap->va_blocksize = VNOVAL;
248 	vap->va_rdev = VNOVAL;
249 	vap->va_atime.tv_sec = VNOVAL;
250 	vap->va_atime.tv_nsec = VNOVAL;
251 	vap->va_mtime.tv_sec = VNOVAL;
252 	vap->va_mtime.tv_nsec = VNOVAL;
253 	vap->va_ctime.tv_sec = VNOVAL;
254 	vap->va_ctime.tv_nsec = VNOVAL;
255 	vap->va_flags = VNOVAL;
256 	vap->va_gen = VNOVAL;
257 	vap->va_vaflags = 0;
258 }
259 
260 /*
261  * Update outstanding I/O count and do wakeup if requested.
262  */
263 void
264 vwakeup(struct buf *bp)
265 {
266 	struct vnode *vp;
267 
268 	if ((vp = bp->b_vp)) {
269 		vp->v_numoutput--;
270 		if (vp->v_numoutput < 0)
271 			panic("vwakeup: neg numoutput");
272 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
273 			vp->v_flag &= ~VBWAIT;
274 			wakeup((caddr_t) &vp->v_numoutput);
275 		}
276 	}
277 }
278 
279 /*
280  * Flush out and invalidate all buffers associated with a vnode.
281  *
282  * vp must be locked.
283  */
284 static int vinvalbuf_bp(struct buf *bp, void *data);
285 
286 struct vinvalbuf_bp_info {
287 	struct vnode *vp;
288 	int slptimeo;
289 	int slpflag;
290 	int flags;
291 };
292 
293 int
294 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
295 	int slpflag, int slptimeo)
296 {
297 	struct vinvalbuf_bp_info info;
298 	int error;
299 	vm_object_t object;
300 
301 	/*
302 	 * If we are being asked to save, call fsync to ensure that the inode
303 	 * is updated.
304 	 */
305 	if (flags & V_SAVE) {
306 		crit_enter();
307 		while (vp->v_numoutput) {
308 			vp->v_flag |= VBWAIT;
309 			error = tsleep((caddr_t)&vp->v_numoutput,
310 			    slpflag, "vinvlbuf", slptimeo);
311 			if (error) {
312 				crit_exit();
313 				return (error);
314 			}
315 		}
316 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
317 			crit_exit();
318 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
319 				return (error);
320 			crit_enter();
321 			if (vp->v_numoutput > 0 ||
322 			    !RB_EMPTY(&vp->v_rbdirty_tree))
323 				panic("vinvalbuf: dirty bufs");
324 		}
325 		crit_exit();
326   	}
327 	crit_enter();
328 	info.slptimeo = slptimeo;
329 	info.slpflag = slpflag;
330 	info.flags = flags;
331 	info.vp = vp;
332 
333 	/*
334 	 * Flush the buffer cache until nothing is left.
335 	 */
336 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
337 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
338 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
339 			vinvalbuf_bp, &info);
340 		if (error == 0) {
341 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
342 					vinvalbuf_bp, &info);
343 		}
344 	}
345 
346 	/*
347 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
348 	 * have write I/O in-progress but if there is a VM object then the
349 	 * VM object can also have read-I/O in-progress.
350 	 */
351 	do {
352 		while (vp->v_numoutput > 0) {
353 			vp->v_flag |= VBWAIT;
354 			tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
355 		}
356 		if (VOP_GETVOBJECT(vp, &object) == 0) {
357 			while (object->paging_in_progress)
358 				vm_object_pip_sleep(object, "vnvlbx");
359 		}
360 	} while (vp->v_numoutput > 0);
361 
362 	crit_exit();
363 
364 	/*
365 	 * Destroy the copy in the VM cache, too.
366 	 */
367 	if (VOP_GETVOBJECT(vp, &object) == 0) {
368 		vm_object_page_remove(object, 0, 0,
369 			(flags & V_SAVE) ? TRUE : FALSE);
370 	}
371 
372 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
373 		panic("vinvalbuf: flush failed");
374 	return (0);
375 }
376 
377 static int
378 vinvalbuf_bp(struct buf *bp, void *data)
379 {
380 	struct vinvalbuf_bp_info *info = data;
381 	int error;
382 
383 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
384 		error = BUF_TIMELOCK(bp,
385 		    LK_EXCLUSIVE | LK_SLEEPFAIL,
386 		    "vinvalbuf", info->slpflag, info->slptimeo);
387 		if (error == 0) {
388 			BUF_UNLOCK(bp);
389 			error = ENOLCK;
390 		}
391 		if (error == ENOLCK)
392 			return(0);
393 		return (-error);
394 	}
395 	/*
396 	 * XXX Since there are no node locks for NFS, I
397 	 * believe there is a slight chance that a delayed
398 	 * write will occur while sleeping just above, so
399 	 * check for it.  Note that vfs_bio_awrite expects
400 	 * buffers to reside on a queue, while VOP_BWRITE and
401 	 * brelse do not.
402 	 */
403 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
404 	    (info->flags & V_SAVE)) {
405 		if (bp->b_vp == info->vp) {
406 			if (bp->b_flags & B_CLUSTEROK) {
407 				BUF_UNLOCK(bp);
408 				vfs_bio_awrite(bp);
409 			} else {
410 				bremfree(bp);
411 				bp->b_flags |= B_ASYNC;
412 				VOP_BWRITE(bp->b_vp, bp);
413 			}
414 		} else {
415 			bremfree(bp);
416 			VOP_BWRITE(bp->b_vp, bp);
417 		}
418 	} else {
419 		bremfree(bp);
420 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
421 		bp->b_flags &= ~B_ASYNC;
422 		brelse(bp);
423 	}
424 	return(0);
425 }
426 
427 /*
428  * Truncate a file's buffer and pages to a specified length.  This
429  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
430  * sync activity.
431  *
432  * The vnode must be locked.
433  */
434 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
435 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
436 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
437 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
438 
439 int
440 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
441 {
442 	daddr_t trunclbn;
443 	int count;
444 
445 	/*
446 	 * Round up to the *next* lbn, then destroy the buffers in question.
447 	 * Since we are only removing some of the buffers we must rely on the
448 	 * scan count to determine whether a loop is necessary.
449 	 */
450 	trunclbn = (length + blksize - 1) / blksize;
451 
452 	crit_enter();
453 	do {
454 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
455 				vtruncbuf_bp_trunc_cmp,
456 				vtruncbuf_bp_trunc, &trunclbn);
457 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
458 				vtruncbuf_bp_trunc_cmp,
459 				vtruncbuf_bp_trunc, &trunclbn);
460 	} while(count);
461 
462 	/*
463 	 * For safety, fsync any remaining metadata if the file is not being
464 	 * truncated to 0.  Since the metadata does not represent the entire
465 	 * dirty list we have to rely on the hit count to ensure that we get
466 	 * all of it.
467 	 */
468 	if (length > 0) {
469 		do {
470 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
471 					vtruncbuf_bp_metasync_cmp,
472 					vtruncbuf_bp_metasync, vp);
473 		} while (count);
474 	}
475 
476 	/*
477 	 * Wait for any in-progress I/O to complete before returning (why?)
478 	 */
479 	while (vp->v_numoutput > 0) {
480 		vp->v_flag |= VBWAIT;
481 		tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
482 	}
483 
484 	crit_exit();
485 
486 	vnode_pager_setsize(vp, length);
487 
488 	return (0);
489 }
490 
491 /*
492  * The callback buffer is beyond the new file EOF and must be destroyed.
493  * Note that the compare function must conform to the RB_SCAN's requirements.
494  */
495 static
496 int
497 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
498 {
499 	if (bp->b_lblkno >= *(daddr_t *)data)
500 		return(0);
501 	return(-1);
502 }
503 
504 static
505 int
506 vtruncbuf_bp_trunc(struct buf *bp, void *data)
507 {
508 	/*
509 	 * Do not try to use a buffer we cannot immediately lock, but sleep
510 	 * anyway to prevent a livelock.  The code will loop until all buffers
511 	 * can be acted upon.
512 	 */
513 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
514 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
515 			BUF_UNLOCK(bp);
516 	} else {
517 		bremfree(bp);
518 		bp->b_flags |= (B_INVAL | B_RELBUF);
519 		bp->b_flags &= ~B_ASYNC;
520 		brelse(bp);
521 	}
522 	return(1);
523 }
524 
525 /*
526  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
527  * blocks (with a negative lblkno) are scanned.
528  * Note that the compare function must conform to the RB_SCAN's requirements.
529  */
530 static int
531 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
532 {
533 	if (bp->b_lblkno < 0)
534 		return(0);
535 	return(1);
536 }
537 
538 static int
539 vtruncbuf_bp_metasync(struct buf *bp, void *data)
540 {
541 	struct vnode *vp = data;
542 
543 	if (bp->b_flags & B_DELWRI) {
544 		/*
545 		 * Do not try to use a buffer we cannot immediately lock,
546 		 * but sleep anyway to prevent a livelock.  The code will
547 		 * loop until all buffers can be acted upon.
548 		 */
549 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
550 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
551 				BUF_UNLOCK(bp);
552 		} else {
553 			bremfree(bp);
554 			if (bp->b_vp == vp) {
555 				bp->b_flags |= B_ASYNC;
556 			} else {
557 				bp->b_flags &= ~B_ASYNC;
558 			}
559 			VOP_BWRITE(bp->b_vp, bp);
560 		}
561 		return(1);
562 	} else {
563 		return(0);
564 	}
565 }
566 
567 /*
568  * vfsync - implements a multipass fsync on a file which understands
569  * dependancies and meta-data.  The passed vnode must be locked.  The
570  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
571  *
572  * When fsyncing data asynchronously just do one consolidated pass starting
573  * with the most negative block number.  This may not get all the data due
574  * to dependancies.
575  *
576  * When fsyncing data synchronously do a data pass, then a metadata pass,
577  * then do additional data+metadata passes to try to get all the data out.
578  */
579 static int vfsync_wait_output(struct vnode *vp,
580 			    int (*waitoutput)(struct vnode *, struct thread *));
581 static int vfsync_data_only_cmp(struct buf *bp, void *data);
582 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
583 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
584 static int vfsync_bp(struct buf *bp, void *data);
585 
586 struct vfsync_info {
587 	struct vnode *vp;
588 	int synchronous;
589 	int syncdeps;
590 	int lazycount;
591 	int lazylimit;
592 	daddr_t lbn;
593 	int (*checkdef)(struct buf *);
594 };
595 
596 int
597 vfsync(struct vnode *vp, int waitfor, int passes, daddr_t lbn,
598 	int (*checkdef)(struct buf *),
599 	int (*waitoutput)(struct vnode *, struct thread *))
600 {
601 	struct vfsync_info info;
602 	int error;
603 
604 	bzero(&info, sizeof(info));
605 	info.vp = vp;
606 	info.lbn = lbn;
607 	if ((info.checkdef = checkdef) == NULL)
608 		info.syncdeps = 1;
609 
610 	crit_enter();
611 
612 	switch(waitfor) {
613 	case MNT_LAZY:
614 		/*
615 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
616 		 * number of data (not meta) pages we try to flush to 1MB.
617 		 * A non-zero return means that lazy limit was reached.
618 		 */
619 		info.lazylimit = 1024 * 1024;
620 		info.syncdeps = 1;
621 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
622 				vfsync_lazy_range_cmp, vfsync_bp, &info);
623 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
624 				vfsync_meta_only_cmp, vfsync_bp, &info);
625 		if (error == 0)
626 			vp->v_lazyw = 0;
627 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
628 			vn_syncer_add_to_worklist(vp, 1);
629 		error = 0;
630 		break;
631 	case MNT_NOWAIT:
632 		/*
633 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
634 		 */
635 		info.syncdeps = 1;
636 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
637 			vfsync_bp, &info);
638 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
639 			vfsync_bp, &info);
640 		error = 0;
641 		break;
642 	default:
643 		/*
644 		 * Synchronous.  Do a data-only pass, then a meta-data+data
645 		 * pass, then additional integrated passes to try to get
646 		 * all the dependancies flushed.
647 		 */
648 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
649 			vfsync_bp, &info);
650 		error = vfsync_wait_output(vp, waitoutput);
651 		if (error == 0) {
652 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
653 				vfsync_bp, &info);
654 			error = vfsync_wait_output(vp, waitoutput);
655 		}
656 		while (error == 0 && passes > 0 &&
657 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
658 			if (--passes == 0) {
659 				info.synchronous = 1;
660 				info.syncdeps = 1;
661 			}
662 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
663 				vfsync_bp, &info);
664 			if (error < 0)
665 				error = -error;
666 			info.syncdeps = 1;
667 			if (error == 0)
668 				error = vfsync_wait_output(vp, waitoutput);
669 		}
670 		break;
671 	}
672 	crit_exit();
673 	return(error);
674 }
675 
676 static int
677 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
678 {
679 	int error = 0;
680 
681 	while (vp->v_numoutput) {
682 		vp->v_flag |= VBWAIT;
683 		tsleep(&vp->v_numoutput, 0, "fsfsn", 0);
684 	}
685 	if (waitoutput)
686 		error = waitoutput(vp, curthread);
687 	return(error);
688 }
689 
690 static int
691 vfsync_data_only_cmp(struct buf *bp, void *data)
692 {
693 	if (bp->b_lblkno < 0)
694 		return(-1);
695 	return(0);
696 }
697 
698 static int
699 vfsync_meta_only_cmp(struct buf *bp, void *data)
700 {
701 	if (bp->b_lblkno < 0)
702 		return(0);
703 	return(1);
704 }
705 
706 static int
707 vfsync_lazy_range_cmp(struct buf *bp, void *data)
708 {
709 	struct vfsync_info *info = data;
710 	if (bp->b_lblkno < info->vp->v_lazyw)
711 		return(-1);
712 	return(0);
713 }
714 
715 static int
716 vfsync_bp(struct buf *bp, void *data)
717 {
718 	struct vfsync_info *info = data;
719 	struct vnode *vp = info->vp;
720 	int error;
721 
722 	/*
723 	 * if syncdeps is not set we do not try to write buffers which have
724 	 * dependancies.
725 	 */
726 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
727 		return(0);
728 
729 	/*
730 	 * Ignore buffers that we cannot immediately lock.  XXX
731 	 */
732 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
733 		return(0);
734 	if ((bp->b_flags & B_DELWRI) == 0)
735 		panic("vfsync_bp: buffer not dirty");
736 	if (vp != bp->b_vp)
737 		panic("vfsync_bp: buffer vp mismatch");
738 
739 	/*
740 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
741 	 * has been written but an additional handshake with the device
742 	 * is required before we can dispose of the buffer.  We have no idea
743 	 * how to do this so we have to skip these buffers.
744 	 */
745 	if (bp->b_flags & B_NEEDCOMMIT) {
746 		BUF_UNLOCK(bp);
747 		return(0);
748 	}
749 
750 	/*
751 	 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
752 	 * buffers beyond the file EOF.
753 	 */
754 	if (info->lbn != (daddr_t)-1 && vp->v_type == VREG &&
755 	    bp->b_lblkno >= info->lbn) {
756 		bremfree(bp);
757 		bp->b_flags |= B_INVAL | B_NOCACHE;
758 		crit_exit();
759 		brelse(bp);
760 		crit_enter();
761 	}
762 
763 	if (info->synchronous) {
764 		/*
765 		 * Synchronous flushing.  An error may be returned.
766 		 */
767 		bremfree(bp);
768 		crit_exit();
769 		error = bwrite(bp);
770 		crit_enter();
771 	} else {
772 		/*
773 		 * Asynchronous flushing.  A negative return value simply
774 		 * stops the scan and is not considered an error.  We use
775 		 * this to support limited MNT_LAZY flushes.
776 		 */
777 		vp->v_lazyw = bp->b_lblkno;
778 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
779 			BUF_UNLOCK(bp);
780 			info->lazycount += vfs_bio_awrite(bp);
781 		} else {
782 			info->lazycount += bp->b_bufsize;
783 			bremfree(bp);
784 			crit_exit();
785 			bawrite(bp);
786 			crit_enter();
787 		}
788 		if (info->lazylimit && info->lazycount >= info->lazylimit)
789 			error = 1;
790 		else
791 			error = 0;
792 	}
793 	return(-error);
794 }
795 
796 /*
797  * Associate a buffer with a vnode.
798  */
799 void
800 bgetvp(struct vnode *vp, struct buf *bp)
801 {
802 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
803 
804 	vhold(vp);
805 	bp->b_vp = vp;
806 	bp->b_dev = vn_todev(vp);
807 	/*
808 	 * Insert onto list for new vnode.
809 	 */
810 	crit_enter();
811 	bp->b_xflags |= BX_VNCLEAN;
812 	bp->b_xflags &= ~BX_VNDIRTY;
813 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
814 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
815 	crit_exit();
816 }
817 
818 /*
819  * Disassociate a buffer from a vnode.
820  */
821 void
822 brelvp(struct buf *bp)
823 {
824 	struct vnode *vp;
825 
826 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
827 
828 	/*
829 	 * Delete from old vnode list, if on one.
830 	 */
831 	vp = bp->b_vp;
832 	crit_enter();
833 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
834 		if (bp->b_xflags & BX_VNDIRTY)
835 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
836 		else
837 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
838 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
839 	}
840 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
841 		vp->v_flag &= ~VONWORKLST;
842 		LIST_REMOVE(vp, v_synclist);
843 	}
844 	crit_exit();
845 	bp->b_vp = NULL;
846 	vdrop(vp);
847 }
848 
849 /*
850  * Associate a p-buffer with a vnode.
851  *
852  * Also sets B_PAGING flag to indicate that vnode is not fully associated
853  * with the buffer.  i.e. the bp has not been linked into the vnode or
854  * ref-counted.
855  */
856 void
857 pbgetvp(struct vnode *vp, struct buf *bp)
858 {
859 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
860 
861 	bp->b_vp = vp;
862 	bp->b_flags |= B_PAGING;
863 	bp->b_dev = vn_todev(vp);
864 }
865 
866 /*
867  * Disassociate a p-buffer from a vnode.
868  */
869 void
870 pbrelvp(struct buf *bp)
871 {
872 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
873 
874 	bp->b_vp = NULL;
875 	bp->b_flags &= ~B_PAGING;
876 }
877 
878 void
879 pbreassignbuf(struct buf *bp, struct vnode *newvp)
880 {
881 	if ((bp->b_flags & B_PAGING) == 0) {
882 		panic(
883 		    "pbreassignbuf() on non phys bp %p",
884 		    bp
885 		);
886 	}
887 	bp->b_vp = newvp;
888 }
889 
890 /*
891  * Reassign a buffer from one vnode to another.
892  * Used to assign file specific control information
893  * (indirect blocks) to the vnode to which they belong.
894  */
895 void
896 reassignbuf(struct buf *bp, struct vnode *newvp)
897 {
898 	int delay;
899 
900 	if (newvp == NULL) {
901 		printf("reassignbuf: NULL");
902 		return;
903 	}
904 	++reassignbufcalls;
905 
906 	/*
907 	 * B_PAGING flagged buffers cannot be reassigned because their vp
908 	 * is not fully linked in.
909 	 */
910 	if (bp->b_flags & B_PAGING)
911 		panic("cannot reassign paging buffer");
912 
913 	crit_enter();
914 	/*
915 	 * Delete from old vnode list, if on one.
916 	 */
917 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
918 		if (bp->b_xflags & BX_VNDIRTY)
919 			buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbdirty_tree, bp);
920 		else
921 			buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbclean_tree, bp);
922 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
923 		if (bp->b_vp != newvp) {
924 			vdrop(bp->b_vp);
925 			bp->b_vp = NULL;	/* for clarification */
926 		}
927 	}
928 	/*
929 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
930 	 * of clean buffers.
931 	 */
932 	if (bp->b_flags & B_DELWRI) {
933 		if ((newvp->v_flag & VONWORKLST) == 0) {
934 			switch (newvp->v_type) {
935 			case VDIR:
936 				delay = dirdelay;
937 				break;
938 			case VCHR:
939 			case VBLK:
940 				if (newvp->v_rdev &&
941 				    newvp->v_rdev->si_mountpoint != NULL) {
942 					delay = metadelay;
943 					break;
944 				}
945 				/* fall through */
946 			default:
947 				delay = filedelay;
948 			}
949 			vn_syncer_add_to_worklist(newvp, delay);
950 		}
951 		bp->b_xflags |= BX_VNDIRTY;
952 		if (buf_rb_tree_RB_INSERT(&newvp->v_rbdirty_tree, bp))
953 			panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
954 	} else {
955 		bp->b_xflags |= BX_VNCLEAN;
956 		if (buf_rb_tree_RB_INSERT(&newvp->v_rbclean_tree, bp))
957 			panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
958 		if ((newvp->v_flag & VONWORKLST) &&
959 		    RB_EMPTY(&newvp->v_rbdirty_tree)) {
960 			newvp->v_flag &= ~VONWORKLST;
961 			LIST_REMOVE(newvp, v_synclist);
962 		}
963 	}
964 	if (bp->b_vp != newvp) {
965 		bp->b_vp = newvp;
966 		vhold(bp->b_vp);
967 	}
968 	crit_exit();
969 }
970 
971 /*
972  * Create a vnode for a block device.
973  * Used for mounting the root file system.
974  */
975 int
976 bdevvp(dev_t dev, struct vnode **vpp)
977 {
978 	struct vnode *vp;
979 	struct vnode *nvp;
980 	int error;
981 
982 	if (dev == NODEV) {
983 		*vpp = NULLVP;
984 		return (ENXIO);
985 	}
986 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
987 	if (error) {
988 		*vpp = NULLVP;
989 		return (error);
990 	}
991 	vp = nvp;
992 	vp->v_type = VCHR;
993 	vp->v_udev = dev->si_udev;
994 	vx_unlock(vp);
995 	*vpp = vp;
996 	return (0);
997 }
998 
999 int
1000 v_associate_rdev(struct vnode *vp, dev_t dev)
1001 {
1002 	lwkt_tokref ilock;
1003 
1004 	if (dev == NULL || dev == NODEV)
1005 		return(ENXIO);
1006 	if (dev_is_good(dev) == 0)
1007 		return(ENXIO);
1008 	KKASSERT(vp->v_rdev == NULL);
1009 	if (dev_ref_debug)
1010 		printf("Z1");
1011 	vp->v_rdev = reference_dev(dev);
1012 	lwkt_gettoken(&ilock, &spechash_token);
1013 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1014 	lwkt_reltoken(&ilock);
1015 	return(0);
1016 }
1017 
1018 void
1019 v_release_rdev(struct vnode *vp)
1020 {
1021 	lwkt_tokref ilock;
1022 	dev_t dev;
1023 
1024 	if ((dev = vp->v_rdev) != NULL) {
1025 		lwkt_gettoken(&ilock, &spechash_token);
1026 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1027 		if (dev_ref_debug && vp->v_opencount != 0) {
1028 			printf("releasing rdev with non-0 "
1029 				"v_opencount(%d) (revoked?)\n",
1030 				vp->v_opencount);
1031 		}
1032 		vp->v_rdev = NULL;
1033 		vp->v_opencount = 0;
1034 		release_dev(dev);
1035 		lwkt_reltoken(&ilock);
1036 	}
1037 }
1038 
1039 /*
1040  * Add a vnode to the alias list hung off the dev_t.  We only associate
1041  * the device number with the vnode.  The actual device is not associated
1042  * until the vnode is opened (usually in spec_open()), and will be
1043  * disassociated on last close.
1044  */
1045 void
1046 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1047 {
1048 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1049 		panic("addaliasu on non-special vnode");
1050 	nvp->v_udev = nvp_udev;
1051 }
1052 
1053 /*
1054  * Disassociate a vnode from its underlying filesystem.
1055  *
1056  * The vnode must be VX locked and refd
1057  *
1058  * If there are v_usecount references to the vnode other then ours we have
1059  * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1060  */
1061 void
1062 vclean(struct vnode *vp, int flags, struct thread *td)
1063 {
1064 	int active;
1065 
1066 	/*
1067 	 * If the vnode has already been reclaimed we have nothing to do.
1068 	 */
1069 	if (vp->v_flag & VRECLAIMED)
1070 		return;
1071 	vp->v_flag |= VRECLAIMED;
1072 
1073 	/*
1074 	 * Scrap the vfs cache
1075 	 */
1076 	while (cache_inval_vp(vp, 0) != 0) {
1077 		printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1078 		tsleep(vp, 0, "vclninv", 2);
1079 	}
1080 
1081 	/*
1082 	 * Check to see if the vnode is in use. If so we have to reference it
1083 	 * before we clean it out so that its count cannot fall to zero and
1084 	 * generate a race against ourselves to recycle it.
1085 	 */
1086 	active = (vp->v_usecount > 1);
1087 
1088 	/*
1089 	 * Clean out any buffers associated with the vnode and destroy its
1090 	 * object, if it has one.
1091 	 */
1092 	vinvalbuf(vp, V_SAVE, td, 0, 0);
1093 	VOP_DESTROYVOBJECT(vp);
1094 
1095 	/*
1096 	 * If purging an active vnode, it must be closed and
1097 	 * deactivated before being reclaimed.   XXX
1098 	 *
1099 	 * Note that neither of these routines unlocks the vnode.
1100 	 */
1101 	if (active) {
1102 		if (flags & DOCLOSE)
1103 			VOP_CLOSE(vp, FNONBLOCK, td);
1104 	}
1105 
1106 	/*
1107 	 * If the vnode has not be deactivated, deactivated it.
1108 	 */
1109 	if ((vp->v_flag & VINACTIVE) == 0) {
1110 		vp->v_flag |= VINACTIVE;
1111 		VOP_INACTIVE(vp, td);
1112 	}
1113 
1114 	/*
1115 	 * Reclaim the vnode.
1116 	 */
1117 	if (VOP_RECLAIM(vp, td))
1118 		panic("vclean: cannot reclaim");
1119 
1120 	/*
1121 	 * Done with purge, notify sleepers of the grim news.
1122 	 */
1123 	vp->v_ops = &dead_vnode_vops;
1124 	vn_pollgone(vp);
1125 	vp->v_tag = VT_NON;
1126 }
1127 
1128 /*
1129  * Eliminate all activity associated with the requested vnode
1130  * and with all vnodes aliased to the requested vnode.
1131  *
1132  * The vnode must be referenced and vx_lock()'d
1133  *
1134  * revoke { struct vnode *a_vp, int a_flags }
1135  */
1136 int
1137 vop_stdrevoke(struct vop_revoke_args *ap)
1138 {
1139 	struct vnode *vp, *vq;
1140 	lwkt_tokref ilock;
1141 	dev_t dev;
1142 
1143 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1144 
1145 	vp = ap->a_vp;
1146 
1147 	/*
1148 	 * If the vnode is already dead don't try to revoke it
1149 	 */
1150 	if (vp->v_flag & VRECLAIMED)
1151 		return (0);
1152 
1153 	/*
1154 	 * If the vnode has a device association, scrap all vnodes associated
1155 	 * with the device.  Don't let the device disappear on us while we
1156 	 * are scrapping the vnodes.
1157 	 *
1158 	 * The passed vp will probably show up in the list, do not VX lock
1159 	 * it twice!
1160 	 */
1161 	if (vp->v_type != VCHR && vp->v_type != VBLK)
1162 		return(0);
1163 	if ((dev = vp->v_rdev) == NULL) {
1164 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1165 			return(0);
1166 	}
1167 	reference_dev(dev);
1168 	lwkt_gettoken(&ilock, &spechash_token);
1169 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1170 		if (vp == vq || vx_get(vq) == 0) {
1171 			if (vq == SLIST_FIRST(&dev->si_hlist))
1172 				vgone(vq);
1173 			if (vp != vq)
1174 				vx_put(vq);
1175 		}
1176 	}
1177 	lwkt_reltoken(&ilock);
1178 	release_dev(dev);
1179 	return (0);
1180 }
1181 
1182 /*
1183  * Recycle an unused vnode to the front of the free list.
1184  *
1185  * Returns 1 if we were successfully able to recycle the vnode,
1186  * 0 otherwise.
1187  */
1188 int
1189 vrecycle(struct vnode *vp, struct thread *td)
1190 {
1191 	if (vp->v_usecount == 1) {
1192 		vgone(vp);
1193 		return (1);
1194 	}
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Eliminate all activity associated with a vnode in preparation for reuse.
1200  *
1201  * The vnode must be VX locked and refd and will remain VX locked and refd
1202  * on return.  This routine may be called with the vnode in any state, as
1203  * long as it is VX locked.  The vnode will be cleaned out and marked
1204  * VRECLAIMED but will not actually be reused until all existing refs and
1205  * holds go away.
1206  *
1207  * NOTE: This routine may be called on a vnode which has not yet been
1208  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1209  * already been reclaimed.
1210  *
1211  * This routine is not responsible for placing us back on the freelist.
1212  * Instead, it happens automatically when the caller releases the VX lock
1213  * (assuming there aren't any other references).
1214  */
1215 void
1216 vgone(struct vnode *vp)
1217 {
1218 	/*
1219 	 * assert that the VX lock is held.  This is an absolute requirement
1220 	 * now for vgone() to be called.
1221 	 */
1222 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1223 
1224 	/*
1225 	 * Clean out the filesystem specific data and set the VRECLAIMED
1226 	 * bit.  Also deactivate the vnode if necessary.
1227 	 */
1228 	vclean(vp, DOCLOSE, curthread);
1229 
1230 	/*
1231 	 * Delete from old mount point vnode list, if on one.
1232 	 */
1233 	if (vp->v_mount != NULL)
1234 		insmntque(vp, NULL);
1235 
1236 	/*
1237 	 * If special device, remove it from special device alias list
1238 	 * if it is on one.  This should normally only occur if a vnode is
1239 	 * being revoked as the device should otherwise have been released
1240 	 * naturally.
1241 	 */
1242 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1243 		v_release_rdev(vp);
1244 	}
1245 
1246 	/*
1247 	 * Set us to VBAD
1248 	 */
1249 	vp->v_type = VBAD;
1250 }
1251 
1252 /*
1253  * Lookup a vnode by device number.
1254  */
1255 int
1256 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1257 {
1258 	lwkt_tokref ilock;
1259 	struct vnode *vp;
1260 
1261 	lwkt_gettoken(&ilock, &spechash_token);
1262 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1263 		if (type == vp->v_type) {
1264 			*vpp = vp;
1265 			lwkt_reltoken(&ilock);
1266 			return (1);
1267 		}
1268 	}
1269 	lwkt_reltoken(&ilock);
1270 	return (0);
1271 }
1272 
1273 /*
1274  * Calculate the total number of references to a special device.  This
1275  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1276  * an overloaded field.  Since udev2dev can now return NODEV, we have
1277  * to check for a NULL v_rdev.
1278  */
1279 int
1280 count_dev(dev_t dev)
1281 {
1282 	lwkt_tokref ilock;
1283 	struct vnode *vp;
1284 	int count = 0;
1285 
1286 	if (SLIST_FIRST(&dev->si_hlist)) {
1287 		lwkt_gettoken(&ilock, &spechash_token);
1288 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1289 			count += vp->v_usecount;
1290 		}
1291 		lwkt_reltoken(&ilock);
1292 	}
1293 	return(count);
1294 }
1295 
1296 int
1297 count_udev(udev_t udev)
1298 {
1299 	dev_t dev;
1300 
1301 	if ((dev = udev2dev(udev, 0)) == NODEV)
1302 		return(0);
1303 	return(count_dev(dev));
1304 }
1305 
1306 int
1307 vcount(struct vnode *vp)
1308 {
1309 	if (vp->v_rdev == NULL)
1310 		return(0);
1311 	return(count_dev(vp->v_rdev));
1312 }
1313 
1314 /*
1315  * Print out a description of a vnode.
1316  */
1317 static char *typename[] =
1318 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1319 
1320 void
1321 vprint(char *label, struct vnode *vp)
1322 {
1323 	char buf[96];
1324 
1325 	if (label != NULL)
1326 		printf("%s: %p: ", label, (void *)vp);
1327 	else
1328 		printf("%p: ", (void *)vp);
1329 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1330 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1331 	    vp->v_holdcnt);
1332 	buf[0] = '\0';
1333 	if (vp->v_flag & VROOT)
1334 		strcat(buf, "|VROOT");
1335 	if (vp->v_flag & VTEXT)
1336 		strcat(buf, "|VTEXT");
1337 	if (vp->v_flag & VSYSTEM)
1338 		strcat(buf, "|VSYSTEM");
1339 	if (vp->v_flag & VBWAIT)
1340 		strcat(buf, "|VBWAIT");
1341 	if (vp->v_flag & VFREE)
1342 		strcat(buf, "|VFREE");
1343 	if (vp->v_flag & VOBJBUF)
1344 		strcat(buf, "|VOBJBUF");
1345 	if (buf[0] != '\0')
1346 		printf(" flags (%s)", &buf[1]);
1347 	if (vp->v_data == NULL) {
1348 		printf("\n");
1349 	} else {
1350 		printf("\n\t");
1351 		VOP_PRINT(vp);
1352 	}
1353 }
1354 
1355 #ifdef DDB
1356 #include <ddb/ddb.h>
1357 
1358 static int db_show_locked_vnodes(struct mount *mp, void *data);
1359 
1360 /*
1361  * List all of the locked vnodes in the system.
1362  * Called when debugging the kernel.
1363  */
1364 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1365 {
1366 	printf("Locked vnodes\n");
1367 	mountlist_scan(db_show_locked_vnodes, NULL,
1368 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1369 }
1370 
1371 static int
1372 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1373 {
1374 	struct vnode *vp;
1375 
1376 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1377 		if (VOP_ISLOCKED(vp, NULL))
1378 			vprint((char *)0, vp);
1379 	}
1380 	return(0);
1381 }
1382 #endif
1383 
1384 /*
1385  * Top level filesystem related information gathering.
1386  */
1387 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1388 
1389 static int
1390 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1391 {
1392 	int *name = (int *)arg1 - 1;	/* XXX */
1393 	u_int namelen = arg2 + 1;	/* XXX */
1394 	struct vfsconf *vfsp;
1395 
1396 #if 1 || defined(COMPAT_PRELITE2)
1397 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1398 	if (namelen == 1)
1399 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1400 #endif
1401 
1402 #ifdef notyet
1403 	/* all sysctl names at this level are at least name and field */
1404 	if (namelen < 2)
1405 		return (ENOTDIR);		/* overloaded */
1406 	if (name[0] != VFS_GENERIC) {
1407 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1408 			if (vfsp->vfc_typenum == name[0])
1409 				break;
1410 		if (vfsp == NULL)
1411 			return (EOPNOTSUPP);
1412 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1413 		    oldp, oldlenp, newp, newlen, p));
1414 	}
1415 #endif
1416 	switch (name[1]) {
1417 	case VFS_MAXTYPENUM:
1418 		if (namelen != 2)
1419 			return (ENOTDIR);
1420 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1421 	case VFS_CONF:
1422 		if (namelen != 3)
1423 			return (ENOTDIR);	/* overloaded */
1424 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1425 			if (vfsp->vfc_typenum == name[2])
1426 				break;
1427 		if (vfsp == NULL)
1428 			return (EOPNOTSUPP);
1429 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1430 	}
1431 	return (EOPNOTSUPP);
1432 }
1433 
1434 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1435 	"Generic filesystem");
1436 
1437 #if 1 || defined(COMPAT_PRELITE2)
1438 
1439 static int
1440 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1441 {
1442 	int error;
1443 	struct vfsconf *vfsp;
1444 	struct ovfsconf ovfs;
1445 
1446 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1447 		bzero(&ovfs, sizeof(ovfs));
1448 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1449 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1450 		ovfs.vfc_index = vfsp->vfc_typenum;
1451 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1452 		ovfs.vfc_flags = vfsp->vfc_flags;
1453 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1454 		if (error)
1455 			return error;
1456 	}
1457 	return 0;
1458 }
1459 
1460 #endif /* 1 || COMPAT_PRELITE2 */
1461 
1462 /*
1463  * Check to see if a filesystem is mounted on a block device.
1464  */
1465 int
1466 vfs_mountedon(struct vnode *vp)
1467 {
1468 	dev_t dev;
1469 
1470 	if ((dev = vp->v_rdev) == NULL)
1471 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1472 	if (dev != NODEV && dev->si_mountpoint)
1473 		return (EBUSY);
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Unmount all filesystems. The list is traversed in reverse order
1479  * of mounting to avoid dependencies.
1480  */
1481 
1482 static int vfs_umountall_callback(struct mount *mp, void *data);
1483 
1484 void
1485 vfs_unmountall(void)
1486 {
1487 	struct thread *td = curthread;
1488 	int count;
1489 
1490 	if (td->td_proc == NULL)
1491 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
1492 
1493 	do {
1494 		count = mountlist_scan(vfs_umountall_callback,
1495 					&td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1496 	} while (count);
1497 }
1498 
1499 static
1500 int
1501 vfs_umountall_callback(struct mount *mp, void *data)
1502 {
1503 	struct thread *td = *(struct thread **)data;
1504 	int error;
1505 
1506 	error = dounmount(mp, MNT_FORCE, td);
1507 	if (error) {
1508 		mountlist_remove(mp);
1509 		printf("unmount of filesystem mounted from %s failed (",
1510 			mp->mnt_stat.f_mntfromname);
1511 		if (error == EBUSY)
1512 			printf("BUSY)\n");
1513 		else
1514 			printf("%d)\n", error);
1515 	}
1516 	return(1);
1517 }
1518 
1519 /*
1520  * Build hash lists of net addresses and hang them off the mount point.
1521  * Called by ufs_mount() to set up the lists of export addresses.
1522  */
1523 static int
1524 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1525 		struct export_args *argp)
1526 {
1527 	struct netcred *np;
1528 	struct radix_node_head *rnh;
1529 	int i;
1530 	struct radix_node *rn;
1531 	struct sockaddr *saddr, *smask = 0;
1532 	struct domain *dom;
1533 	int error;
1534 
1535 	if (argp->ex_addrlen == 0) {
1536 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1537 			return (EPERM);
1538 		np = &nep->ne_defexported;
1539 		np->netc_exflags = argp->ex_flags;
1540 		np->netc_anon = argp->ex_anon;
1541 		np->netc_anon.cr_ref = 1;
1542 		mp->mnt_flag |= MNT_DEFEXPORTED;
1543 		return (0);
1544 	}
1545 
1546 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1547 		return (EINVAL);
1548 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1549 		return (EINVAL);
1550 
1551 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1552 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1553 	bzero((caddr_t) np, i);
1554 	saddr = (struct sockaddr *) (np + 1);
1555 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1556 		goto out;
1557 	if (saddr->sa_len > argp->ex_addrlen)
1558 		saddr->sa_len = argp->ex_addrlen;
1559 	if (argp->ex_masklen) {
1560 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1561 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1562 		if (error)
1563 			goto out;
1564 		if (smask->sa_len > argp->ex_masklen)
1565 			smask->sa_len = argp->ex_masklen;
1566 	}
1567 	i = saddr->sa_family;
1568 	if ((rnh = nep->ne_rtable[i]) == 0) {
1569 		/*
1570 		 * Seems silly to initialize every AF when most are not used,
1571 		 * do so on demand here
1572 		 */
1573 		SLIST_FOREACH(dom, &domains, dom_next)
1574 			if (dom->dom_family == i && dom->dom_rtattach) {
1575 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1576 				    dom->dom_rtoffset);
1577 				break;
1578 			}
1579 		if ((rnh = nep->ne_rtable[i]) == 0) {
1580 			error = ENOBUFS;
1581 			goto out;
1582 		}
1583 	}
1584 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1585 	    np->netc_rnodes);
1586 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1587 		error = EPERM;
1588 		goto out;
1589 	}
1590 	np->netc_exflags = argp->ex_flags;
1591 	np->netc_anon = argp->ex_anon;
1592 	np->netc_anon.cr_ref = 1;
1593 	return (0);
1594 out:
1595 	free(np, M_NETADDR);
1596 	return (error);
1597 }
1598 
1599 /* ARGSUSED */
1600 static int
1601 vfs_free_netcred(struct radix_node *rn, void *w)
1602 {
1603 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1604 
1605 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1606 	free((caddr_t) rn, M_NETADDR);
1607 	return (0);
1608 }
1609 
1610 /*
1611  * Free the net address hash lists that are hanging off the mount points.
1612  */
1613 static void
1614 vfs_free_addrlist(struct netexport *nep)
1615 {
1616 	int i;
1617 	struct radix_node_head *rnh;
1618 
1619 	for (i = 0; i <= AF_MAX; i++)
1620 		if ((rnh = nep->ne_rtable[i])) {
1621 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1622 			    (caddr_t) rnh);
1623 			free((caddr_t) rnh, M_RTABLE);
1624 			nep->ne_rtable[i] = 0;
1625 		}
1626 }
1627 
1628 int
1629 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1630 {
1631 	int error;
1632 
1633 	if (argp->ex_flags & MNT_DELEXPORT) {
1634 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1635 			vfs_setpublicfs(NULL, NULL, NULL);
1636 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1637 		}
1638 		vfs_free_addrlist(nep);
1639 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1640 	}
1641 	if (argp->ex_flags & MNT_EXPORTED) {
1642 		if (argp->ex_flags & MNT_EXPUBLIC) {
1643 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1644 				return (error);
1645 			mp->mnt_flag |= MNT_EXPUBLIC;
1646 		}
1647 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1648 			return (error);
1649 		mp->mnt_flag |= MNT_EXPORTED;
1650 	}
1651 	return (0);
1652 }
1653 
1654 
1655 /*
1656  * Set the publicly exported filesystem (WebNFS). Currently, only
1657  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1658  */
1659 int
1660 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1661 		struct export_args *argp)
1662 {
1663 	int error;
1664 	struct vnode *rvp;
1665 	char *cp;
1666 
1667 	/*
1668 	 * mp == NULL -> invalidate the current info, the FS is
1669 	 * no longer exported. May be called from either vfs_export
1670 	 * or unmount, so check if it hasn't already been done.
1671 	 */
1672 	if (mp == NULL) {
1673 		if (nfs_pub.np_valid) {
1674 			nfs_pub.np_valid = 0;
1675 			if (nfs_pub.np_index != NULL) {
1676 				FREE(nfs_pub.np_index, M_TEMP);
1677 				nfs_pub.np_index = NULL;
1678 			}
1679 		}
1680 		return (0);
1681 	}
1682 
1683 	/*
1684 	 * Only one allowed at a time.
1685 	 */
1686 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1687 		return (EBUSY);
1688 
1689 	/*
1690 	 * Get real filehandle for root of exported FS.
1691 	 */
1692 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1693 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1694 
1695 	if ((error = VFS_ROOT(mp, &rvp)))
1696 		return (error);
1697 
1698 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1699 		return (error);
1700 
1701 	vput(rvp);
1702 
1703 	/*
1704 	 * If an indexfile was specified, pull it in.
1705 	 */
1706 	if (argp->ex_indexfile != NULL) {
1707 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
1708 		    M_WAITOK);
1709 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1710 		    MAXNAMLEN, (size_t *)0);
1711 		if (!error) {
1712 			/*
1713 			 * Check for illegal filenames.
1714 			 */
1715 			for (cp = nfs_pub.np_index; *cp; cp++) {
1716 				if (*cp == '/') {
1717 					error = EINVAL;
1718 					break;
1719 				}
1720 			}
1721 		}
1722 		if (error) {
1723 			FREE(nfs_pub.np_index, M_TEMP);
1724 			return (error);
1725 		}
1726 	}
1727 
1728 	nfs_pub.np_mount = mp;
1729 	nfs_pub.np_valid = 1;
1730 	return (0);
1731 }
1732 
1733 struct netcred *
1734 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1735 		struct sockaddr *nam)
1736 {
1737 	struct netcred *np;
1738 	struct radix_node_head *rnh;
1739 	struct sockaddr *saddr;
1740 
1741 	np = NULL;
1742 	if (mp->mnt_flag & MNT_EXPORTED) {
1743 		/*
1744 		 * Lookup in the export list first.
1745 		 */
1746 		if (nam != NULL) {
1747 			saddr = nam;
1748 			rnh = nep->ne_rtable[saddr->sa_family];
1749 			if (rnh != NULL) {
1750 				np = (struct netcred *)
1751 					(*rnh->rnh_matchaddr)((char *)saddr,
1752 							      rnh);
1753 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1754 					np = NULL;
1755 			}
1756 		}
1757 		/*
1758 		 * If no address match, use the default if it exists.
1759 		 */
1760 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1761 			np = &nep->ne_defexported;
1762 	}
1763 	return (np);
1764 }
1765 
1766 /*
1767  * perform msync on all vnodes under a mount point.  The mount point must
1768  * be locked.  This code is also responsible for lazy-freeing unreferenced
1769  * vnodes whos VM objects no longer contain pages.
1770  *
1771  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1772  */
1773 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1774 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1775 
1776 void
1777 vfs_msync(struct mount *mp, int flags)
1778 {
1779 	vmntvnodescan(mp, VMSC_REFVP, vfs_msync_scan1, vfs_msync_scan2,
1780 			(void *)flags);
1781 }
1782 
1783 /*
1784  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1785  * vnodes, we cannot afford to do anything heavy weight until we have a
1786  * fairly good indication that there is work to do.
1787  */
1788 static
1789 int
1790 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1791 {
1792 	int flags = (int)data;
1793 
1794 	if ((vp->v_flag & VRECLAIMED) == 0) {
1795 		if (vshouldfree(vp, 0))
1796 			return(0);	/* call scan2 */
1797 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1798 		    (vp->v_flag & VOBJDIRTY) &&
1799 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1800 			return(0);	/* call scan2 */
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * do not call scan2, continue the loop
1806 	 */
1807 	return(-1);
1808 }
1809 
1810 static
1811 int
1812 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1813 {
1814 	vm_object_t obj;
1815 	int flags = (int)data;
1816 
1817 	if (vp->v_flag & VRECLAIMED)
1818 		return(0);
1819 
1820 	if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1821 	    (vp->v_flag & VOBJDIRTY) &&
1822 	    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1823 		if (VOP_GETVOBJECT(vp, &obj) == 0) {
1824 			vm_object_page_clean(obj, 0, 0,
1825 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1826 		}
1827 	}
1828 	return(0);
1829 }
1830 
1831 /*
1832  * Create the VM object needed for VMIO and mmap support.  This
1833  * is done for all VREG files in the system.  Some filesystems might
1834  * afford the additional metadata buffering capability of the
1835  * VMIO code by making the device node be VMIO mode also.
1836  *
1837  * vp must be locked when vfs_object_create is called.
1838  */
1839 int
1840 vfs_object_create(struct vnode *vp, struct thread *td)
1841 {
1842 	return (VOP_CREATEVOBJECT(vp, td));
1843 }
1844 
1845 /*
1846  * Record a process's interest in events which might happen to
1847  * a vnode.  Because poll uses the historic select-style interface
1848  * internally, this routine serves as both the ``check for any
1849  * pending events'' and the ``record my interest in future events''
1850  * functions.  (These are done together, while the lock is held,
1851  * to avoid race conditions.)
1852  */
1853 int
1854 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1855 {
1856 	lwkt_tokref ilock;
1857 
1858 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1859 	if (vp->v_pollinfo.vpi_revents & events) {
1860 		/*
1861 		 * This leaves events we are not interested
1862 		 * in available for the other process which
1863 		 * which presumably had requested them
1864 		 * (otherwise they would never have been
1865 		 * recorded).
1866 		 */
1867 		events &= vp->v_pollinfo.vpi_revents;
1868 		vp->v_pollinfo.vpi_revents &= ~events;
1869 
1870 		lwkt_reltoken(&ilock);
1871 		return events;
1872 	}
1873 	vp->v_pollinfo.vpi_events |= events;
1874 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1875 	lwkt_reltoken(&ilock);
1876 	return 0;
1877 }
1878 
1879 /*
1880  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1881  * it is possible for us to miss an event due to race conditions, but
1882  * that condition is expected to be rare, so for the moment it is the
1883  * preferred interface.
1884  */
1885 void
1886 vn_pollevent(struct vnode *vp, int events)
1887 {
1888 	lwkt_tokref ilock;
1889 
1890 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1891 	if (vp->v_pollinfo.vpi_events & events) {
1892 		/*
1893 		 * We clear vpi_events so that we don't
1894 		 * call selwakeup() twice if two events are
1895 		 * posted before the polling process(es) is
1896 		 * awakened.  This also ensures that we take at
1897 		 * most one selwakeup() if the polling process
1898 		 * is no longer interested.  However, it does
1899 		 * mean that only one event can be noticed at
1900 		 * a time.  (Perhaps we should only clear those
1901 		 * event bits which we note?) XXX
1902 		 */
1903 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1904 		vp->v_pollinfo.vpi_revents |= events;
1905 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1906 	}
1907 	lwkt_reltoken(&ilock);
1908 }
1909 
1910 /*
1911  * Wake up anyone polling on vp because it is being revoked.
1912  * This depends on dead_poll() returning POLLHUP for correct
1913  * behavior.
1914  */
1915 void
1916 vn_pollgone(struct vnode *vp)
1917 {
1918 	lwkt_tokref ilock;
1919 
1920 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1921 	if (vp->v_pollinfo.vpi_events) {
1922 		vp->v_pollinfo.vpi_events = 0;
1923 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1924 	}
1925 	lwkt_reltoken(&ilock);
1926 }
1927 
1928 /*
1929  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
1930  * (or v_rdev might be NULL).
1931  */
1932 dev_t
1933 vn_todev(struct vnode *vp)
1934 {
1935 	if (vp->v_type != VBLK && vp->v_type != VCHR)
1936 		return (NODEV);
1937 	KKASSERT(vp->v_rdev != NULL);
1938 	return (vp->v_rdev);
1939 }
1940 
1941 /*
1942  * Check if vnode represents a disk device.  The vnode does not need to be
1943  * opened.
1944  */
1945 int
1946 vn_isdisk(struct vnode *vp, int *errp)
1947 {
1948 	dev_t dev;
1949 
1950 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
1951 		if (errp != NULL)
1952 			*errp = ENOTBLK;
1953 		return (0);
1954 	}
1955 
1956 	if ((dev = vp->v_rdev) == NULL)
1957 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1958 	if (dev == NULL || dev == NODEV) {
1959 		if (errp != NULL)
1960 			*errp = ENXIO;
1961 		return (0);
1962 	}
1963 	if (dev_is_good(dev) == 0) {
1964 		if (errp != NULL)
1965 			*errp = ENXIO;
1966 		return (0);
1967 	}
1968 	if ((dev_dflags(dev) & D_DISK) == 0) {
1969 		if (errp != NULL)
1970 			*errp = ENOTBLK;
1971 		return (0);
1972 	}
1973 	if (errp != NULL)
1974 		*errp = 0;
1975 	return (1);
1976 }
1977 
1978 #ifdef DEBUG_VFS_LOCKS
1979 
1980 void
1981 assert_vop_locked(struct vnode *vp, const char *str)
1982 {
1983 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
1984 		panic("%s: %p is not locked shared but should be", str, vp);
1985 	}
1986 }
1987 
1988 void
1989 assert_vop_unlocked(struct vnode *vp, const char *str)
1990 {
1991 	if (vp && IS_LOCKING_VFS(vp)) {
1992 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
1993 			panic("%s: %p is locked but should not be", str, vp);
1994 		}
1995 	}
1996 }
1997 
1998 #endif
1999