xref: /dragonfly/sys/kern/vfs_subr.c (revision 7485684f)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/fcntl.h>
54 #include <sys/file.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/caps.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <vm/vm_page2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
90 
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 __read_mostly enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 __read_mostly int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 	   &maxvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void vclean_vxlocked(struct vnode *vp, int flags);
126 
127 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
128 
129 /*
130  * Red black tree functions
131  */
132 static int rb_buf_compare(struct buf *b1, struct buf *b2);
133 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
134 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
135 
136 static int
137 rb_buf_compare(struct buf *b1, struct buf *b2)
138 {
139 	if (b1->b_loffset < b2->b_loffset)
140 		return(-1);
141 	if (b1->b_loffset > b2->b_loffset)
142 		return(1);
143 	return(0);
144 }
145 
146 /*
147  * Initialize the vnode management data structures.
148  *
149  * Called from vfsinit()
150  */
151 #define VNBREAKMEM1	(1L * 1024 * 1024 * 1024)
152 #define VNBREAKMEM2	(7L * 1024 * 1024 * 1024)
153 #define MINVNODES	2000
154 #define MAXVNODES	4000000
155 
156 void
157 vfs_subr_init(void)
158 {
159 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
160 	size_t freemem;
161 
162 	/*
163 	 * Size maxvnodes non-linearly to available memory.  Don't bloat
164 	 * the count on low-memory systems.  Scale up for systems with
165 	 * more than 1G and more than 8G of ram, but do so non-linearly
166 	 * because the value of a large maxvnodes count diminishes
167 	 * significantly beyond a certain point.
168 	 *
169 	 * The general minimum is maxproc * 8 (we want someone pushing
170 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
171 	 * does not affect this calculation.  The KvaSize limitation also
172 	 * typically does not affect this calculation (it is just in case
173 	 * the kernel VM space is made much smaller than main memory, which
174 	 * should no longer happen on 64-bit systems).
175 	 *
176 	 * There isn't much of a point allowing maxvnodes to exceed a
177 	 * few million as modern filesystems cache pages in the
178 	 * underlying block device and not so much hanging off of VM
179 	 * objects.
180 	 *
181 	 * Also, VM objects, vnodes, and filesystem inode and other related
182 	 * structures have gotten a lot larger in recent years and the kernel
183 	 * memory use tends to scale with maxvnodes, so we don't want to bloat
184 	 * it too much.  But neither do we want the max set too low because
185 	 * systems with large amounts of memory and cores are capable of
186 	 * doing a hell of a lot.
187 	 */
188 	factor1 = 80 * (sizeof(struct vm_object) + sizeof(struct vnode));
189 
190 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
191 
192 	maxvnodes = freemem / factor1;
193 	if (freemem > VNBREAKMEM1) {
194 		freemem -= VNBREAKMEM1;
195 		if (freemem < VNBREAKMEM2) {
196 			maxvnodes += freemem / factor1 / 2;
197 		} else {
198 			maxvnodes += VNBREAKMEM2 / factor1 / 2;
199 			freemem -= VNBREAKMEM2;
200 			maxvnodes += freemem / factor1 / 4;
201 		}
202 	}
203 	maxvnodes = imax(maxvnodes, maxproc * 8);
204 	maxvnodes = imin(maxvnodes, KvaSize / factor1);
205 	maxvnodes = imin(maxvnodes, MAXVNODES);
206 	maxvnodes = imax(maxvnodes, MINVNODES);
207 
208 	lwkt_token_init(&spechash_token, "spechash");
209 }
210 
211 /*
212  * Knob to control the precision of file timestamps:
213  *
214  *   0 = seconds only; nanoseconds zeroed.
215  *   1 = microseconds accurate to tick precision
216  *   2 = microseconds accurate to tick precision	(default, hz >= 100)
217  *   3 = nanoseconds accurate to tick precision
218  *   4 = microseconds, maximum precision		(default, hz < 100)
219  *   5 = nanoseconds, maximum precision
220  *
221  * Note that utimes() precision is microseconds because it takes a timeval
222  * structure, so its probably best to default to USEC or USEC_PRECISE, and
223  * not NSEC.
224  */
225 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
226        TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
227 
228 __read_mostly static int timestamp_precision = -1;
229 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
230 		&timestamp_precision, 0, "Precision of file timestamps");
231 
232 /*
233  * Get a current timestamp.
234  *
235  * MPSAFE
236  */
237 void
238 vfs_timestamp(struct timespec *tsp)
239 {
240 	switch (timestamp_precision) {
241 	case TSP_SEC:		/* seconds precision */
242 		getnanotime(tsp);
243 		tsp->tv_nsec = 0;
244 		break;
245 	case TSP_HZ:		/* ticks precision (limit to microseconds) */
246 		getnanotime(tsp);
247 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
248 		break;
249 	default:
250 	case TSP_USEC:		/* microseconds (ticks precision) */
251 		getnanotime(tsp);
252 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
253 		break;
254 	case TSP_NSEC:		/* nanoseconds (ticks precision) */
255 		getnanotime(tsp);
256 		break;
257 	case TSP_USEC_PRECISE:	/* microseconds (high preceision) */
258 		nanotime(tsp);
259 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
260 		break;
261 	case TSP_NSEC_PRECISE:	/* nanoseconds (high precision) */
262 		nanotime(tsp);
263 		break;
264 	}
265 }
266 
267 /*
268  * Set vnode attributes to VNOVAL
269  */
270 void
271 vattr_null(struct vattr *vap)
272 {
273 	vap->va_type = VNON;
274 	vap->va_size = VNOVAL;
275 	vap->va_bytes = VNOVAL;
276 	vap->va_mode = VNOVAL;
277 	vap->va_nlink = VNOVAL;
278 	vap->va_uid = VNOVAL;
279 	vap->va_gid = VNOVAL;
280 	vap->va_fsid = VNOVAL;
281 	vap->va_fileid = VNOVAL;
282 	vap->va_blocksize = VNOVAL;
283 	vap->va_rmajor = VNOVAL;
284 	vap->va_rminor = VNOVAL;
285 	vap->va_atime.tv_sec = VNOVAL;
286 	vap->va_atime.tv_nsec = VNOVAL;
287 	vap->va_mtime.tv_sec = VNOVAL;
288 	vap->va_mtime.tv_nsec = VNOVAL;
289 	vap->va_ctime.tv_sec = VNOVAL;
290 	vap->va_ctime.tv_nsec = VNOVAL;
291 	vap->va_flags = VNOVAL;
292 	vap->va_gen = VNOVAL;
293 	vap->va_vaflags = 0;
294 	/* va_*_uuid fields are only valid if related flags are set */
295 }
296 
297 /*
298  * Flush out and invalidate all buffers associated with a vnode.
299  *
300  * vp must be locked.
301  */
302 static int vinvalbuf_bp(struct buf *bp, void *data);
303 
304 struct vinvalbuf_bp_info {
305 	struct vnode *vp;
306 	int slptimeo;
307 	int lkflags;
308 	int flags;
309 	int clean;
310 };
311 
312 int
313 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
314 {
315 	struct vinvalbuf_bp_info info;
316 	vm_object_t object;
317 	int error;
318 
319 	lwkt_gettoken(&vp->v_token);
320 
321 	/*
322 	 * If we are being asked to save, call fsync to ensure that the inode
323 	 * is updated.
324 	 */
325 	if (flags & V_SAVE) {
326 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
327 		if (error)
328 			goto done;
329 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
330 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
331 				goto done;
332 #if 0
333 			/*
334 			 * Dirty bufs may be left or generated via races
335 			 * in circumstances where vinvalbuf() is called on
336 			 * a vnode not undergoing reclamation.   Only
337 			 * panic if we are trying to reclaim the vnode.
338 			 */
339 			if ((vp->v_flag & VRECLAIMED) &&
340 			    (bio_track_active(&vp->v_track_write) ||
341 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
342 				panic("vinvalbuf: dirty bufs");
343 			}
344 #endif
345 		}
346   	}
347 	info.slptimeo = slptimeo;
348 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
349 	if (slpflag & PCATCH)
350 		info.lkflags |= LK_PCATCH;
351 	info.flags = flags;
352 	info.vp = vp;
353 
354 	/*
355 	 * Flush the buffer cache until nothing is left, wait for all I/O
356 	 * to complete.  At least one pass is required.  We might block
357 	 * in the pip code so we have to re-check.  Order is important.
358 	 */
359 	do {
360 		/*
361 		 * Flush buffer cache
362 		 */
363 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
364 			info.clean = 1;
365 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
366 					NULL, vinvalbuf_bp, &info);
367 		}
368 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
369 			info.clean = 0;
370 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
371 					NULL, vinvalbuf_bp, &info);
372 		}
373 
374 		/*
375 		 * Wait for I/O completion.
376 		 */
377 		bio_track_wait(&vp->v_track_write, 0, 0);
378 		if ((object = vp->v_object) != NULL)
379 			refcount_wait(&object->paging_in_progress, "vnvlbx");
380 	} while (bio_track_active(&vp->v_track_write) ||
381 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
382 		 !RB_EMPTY(&vp->v_rbdirty_tree));
383 
384 	/*
385 	 * Destroy the copy in the VM cache, too.
386 	 */
387 	if ((object = vp->v_object) != NULL) {
388 		vm_object_page_remove(object, 0, 0,
389 			(flags & V_SAVE) ? TRUE : FALSE);
390 	}
391 
392 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
393 		panic("vinvalbuf: flush failed");
394 	if (!RB_EMPTY(&vp->v_rbhash_tree))
395 		panic("vinvalbuf: flush failed, buffers still present");
396 	error = 0;
397 done:
398 	lwkt_reltoken(&vp->v_token);
399 	return (error);
400 }
401 
402 static int
403 vinvalbuf_bp(struct buf *bp, void *data)
404 {
405 	struct vinvalbuf_bp_info *info = data;
406 	int error;
407 
408 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
409 		atomic_add_int(&bp->b_refs, 1);
410 		error = BUF_TIMELOCK(bp, info->lkflags,
411 				     "vinvalbuf", info->slptimeo);
412 		atomic_subtract_int(&bp->b_refs, 1);
413 		if (error == 0) {
414 			BUF_UNLOCK(bp);
415 			error = ENOLCK;
416 		}
417 		if (error == ENOLCK)
418 			return(0);
419 		return (-error);
420 	}
421 	KKASSERT(bp->b_vp == info->vp);
422 
423 	/*
424 	 * Must check clean/dirty status after successfully locking as
425 	 * it may race.
426 	 */
427 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
428 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
429 		BUF_UNLOCK(bp);
430 		return(0);
431 	}
432 
433 	/*
434 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
435 	 * check.  This code will write out the buffer, period.
436 	 */
437 	bremfree(bp);
438 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
439 	    (info->flags & V_SAVE)) {
440 		cluster_awrite(bp);
441 	} else if (info->flags & V_SAVE) {
442 		/*
443 		 * Cannot set B_NOCACHE on a clean buffer as this will
444 		 * destroy the VM backing store which might actually
445 		 * be dirty (and unsynchronized).
446 		 */
447 		bp->b_flags |= (B_INVAL | B_RELBUF);
448 		brelse(bp);
449 	} else {
450 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
451 		brelse(bp);
452 	}
453 	return(0);
454 }
455 
456 /*
457  * Truncate a file's buffer and pages to a specified length.  This
458  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
459  * sync activity.
460  *
461  * The vnode must be locked.
462  */
463 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
464 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
465 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
466 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
467 
468 struct vtruncbuf_info {
469 	struct vnode *vp;
470 	off_t	truncloffset;
471 	int	clean;
472 };
473 
474 int
475 vtruncbuf(struct vnode *vp, off_t length, int blksize)
476 {
477 	struct vtruncbuf_info info;
478 	const char *filename;
479 	int count;
480 
481 	/*
482 	 * Round up to the *next* block, then destroy the buffers in question.
483 	 * Since we are only removing some of the buffers we must rely on the
484 	 * scan count to determine whether a loop is necessary.
485 	 */
486 	if ((count = (int)(length % blksize)) != 0)
487 		info.truncloffset = length + (blksize - count);
488 	else
489 		info.truncloffset = length;
490 	info.vp = vp;
491 
492 	lwkt_gettoken(&vp->v_token);
493 	do {
494 		info.clean = 1;
495 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
496 				vtruncbuf_bp_trunc_cmp,
497 				vtruncbuf_bp_trunc, &info);
498 		info.clean = 0;
499 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
500 				vtruncbuf_bp_trunc_cmp,
501 				vtruncbuf_bp_trunc, &info);
502 	} while(count);
503 
504 	/*
505 	 * For safety, fsync any remaining metadata if the file is not being
506 	 * truncated to 0.  Since the metadata does not represent the entire
507 	 * dirty list we have to rely on the hit count to ensure that we get
508 	 * all of it.
509 	 */
510 	if (length > 0) {
511 		do {
512 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
513 					vtruncbuf_bp_metasync_cmp,
514 					vtruncbuf_bp_metasync, &info);
515 		} while (count);
516 	}
517 
518 	/*
519 	 * Clean out any left over VM backing store.
520 	 *
521 	 * It is possible to have in-progress I/O from buffers that were
522 	 * not part of the truncation.  This should not happen if we
523 	 * are truncating to 0-length.
524 	 */
525 	vnode_pager_setsize(vp, length);
526 	bio_track_wait(&vp->v_track_write, 0, 0);
527 
528 	/*
529 	 * Debugging only
530 	 */
531 	spin_lock(&vp->v_spin);
532 	filename = TAILQ_FIRST(&vp->v_namecache) ?
533 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
534 	spin_unlock(&vp->v_spin);
535 
536 	/*
537 	 * Make sure no buffers were instantiated while we were trying
538 	 * to clean out the remaining VM pages.  This could occur due
539 	 * to busy dirty VM pages being flushed out to disk.
540 	 */
541 	do {
542 		info.clean = 1;
543 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
544 				vtruncbuf_bp_trunc_cmp,
545 				vtruncbuf_bp_trunc, &info);
546 		info.clean = 0;
547 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
548 				vtruncbuf_bp_trunc_cmp,
549 				vtruncbuf_bp_trunc, &info);
550 		if (count) {
551 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
552 			       "left over buffers in %s\n", count, filename);
553 		}
554 	} while(count);
555 
556 	lwkt_reltoken(&vp->v_token);
557 
558 	return (0);
559 }
560 
561 /*
562  * The callback buffer is beyond the new file EOF and must be destroyed.
563  * Note that the compare function must conform to the RB_SCAN's requirements.
564  */
565 static
566 int
567 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
568 {
569 	struct vtruncbuf_info *info = data;
570 
571 	if (bp->b_loffset >= info->truncloffset)
572 		return(0);
573 	return(-1);
574 }
575 
576 static
577 int
578 vtruncbuf_bp_trunc(struct buf *bp, void *data)
579 {
580 	struct vtruncbuf_info *info = data;
581 
582 	/*
583 	 * Do not try to use a buffer we cannot immediately lock, but sleep
584 	 * anyway to prevent a livelock.  The code will loop until all buffers
585 	 * can be acted upon.
586 	 *
587 	 * We must always revalidate the buffer after locking it to deal
588 	 * with MP races.
589 	 */
590 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
591 		atomic_add_int(&bp->b_refs, 1);
592 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
593 			BUF_UNLOCK(bp);
594 		atomic_subtract_int(&bp->b_refs, 1);
595 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
596 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
597 		   bp->b_vp != info->vp ||
598 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
599 		BUF_UNLOCK(bp);
600 	} else {
601 		bremfree(bp);
602 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
603 		brelse(bp);
604 	}
605 	return(1);
606 }
607 
608 /*
609  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
610  * blocks (with a negative loffset) are scanned.
611  * Note that the compare function must conform to the RB_SCAN's requirements.
612  */
613 static int
614 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
615 {
616 	if (bp->b_loffset < 0)
617 		return(0);
618 	return(1);
619 }
620 
621 static int
622 vtruncbuf_bp_metasync(struct buf *bp, void *data)
623 {
624 	struct vtruncbuf_info *info = data;
625 
626 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
627 		atomic_add_int(&bp->b_refs, 1);
628 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
629 			BUF_UNLOCK(bp);
630 		atomic_subtract_int(&bp->b_refs, 1);
631 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
632 		   bp->b_vp != info->vp ||
633 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
634 		BUF_UNLOCK(bp);
635 	} else {
636 		bremfree(bp);
637 		if (bp->b_vp == info->vp)
638 			bawrite(bp);
639 		else
640 			bwrite(bp);
641 	}
642 	return(1);
643 }
644 
645 /*
646  * vfsync - implements a multipass fsync on a file which understands
647  * dependancies and meta-data.  The passed vnode must be locked.  The
648  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
649  *
650  * When fsyncing data asynchronously just do one consolidated pass starting
651  * with the most negative block number.  This may not get all the data due
652  * to dependancies.
653  *
654  * When fsyncing data synchronously do a data pass, then a metadata pass,
655  * then do additional data+metadata passes to try to get all the data out.
656  *
657  * Caller must ref the vnode but does not have to lock it.
658  */
659 static int vfsync_wait_output(struct vnode *vp,
660 			    int (*waitoutput)(struct vnode *, struct thread *));
661 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
662 static int vfsync_data_only_cmp(struct buf *bp, void *data);
663 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
664 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
665 static int vfsync_bp(struct buf *bp, void *data);
666 
667 struct vfsync_info {
668 	struct vnode *vp;
669 	int fastpass;
670 	int synchronous;
671 	int syncdeps;
672 	int lazycount;
673 	int lazylimit;
674 	int skippedbufs;
675 	int (*checkdef)(struct buf *);
676 	int (*cmpfunc)(struct buf *, void *);
677 };
678 
679 int
680 vfsync(struct vnode *vp, int waitfor, int passes,
681 	int (*checkdef)(struct buf *),
682 	int (*waitoutput)(struct vnode *, struct thread *))
683 {
684 	struct vfsync_info info;
685 	int error;
686 
687 	bzero(&info, sizeof(info));
688 	info.vp = vp;
689 	if ((info.checkdef = checkdef) == NULL)
690 		info.syncdeps = 1;
691 
692 	lwkt_gettoken(&vp->v_token);
693 
694 	switch(waitfor) {
695 	case MNT_LAZY | MNT_NOWAIT:
696 	case MNT_LAZY:
697 		/*
698 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
699 		 * number of data (not meta) pages we try to flush to 1MB.
700 		 * A non-zero return means that lazy limit was reached.
701 		 */
702 		info.lazylimit = 1024 * 1024;
703 		info.syncdeps = 1;
704 		info.cmpfunc = vfsync_lazy_range_cmp;
705 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
706 				vfsync_lazy_range_cmp, vfsync_bp, &info);
707 		info.cmpfunc = vfsync_meta_only_cmp;
708 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
709 			vfsync_meta_only_cmp, vfsync_bp, &info);
710 		if (error == 0)
711 			vp->v_lazyw = 0;
712 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
713 			vn_syncer_add(vp, 1);
714 		error = 0;
715 		break;
716 	case MNT_NOWAIT:
717 		/*
718 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
719 		 */
720 		info.syncdeps = 1;
721 		info.cmpfunc = vfsync_data_only_cmp;
722 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
723 			vfsync_bp, &info);
724 		info.cmpfunc = vfsync_meta_only_cmp;
725 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
726 			vfsync_bp, &info);
727 		error = 0;
728 		break;
729 	default:
730 		/*
731 		 * Synchronous.  Do a data-only pass, then a meta-data+data
732 		 * pass, then additional integrated passes to try to get
733 		 * all the dependancies flushed.
734 		 */
735 		info.cmpfunc = vfsync_data_only_cmp;
736 		info.fastpass = 1;
737 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
738 			vfsync_bp, &info);
739 		info.fastpass = 0;
740 		error = vfsync_wait_output(vp, waitoutput);
741 		if (error == 0) {
742 			info.skippedbufs = 0;
743 			info.cmpfunc = vfsync_dummy_cmp;
744 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
745 				vfsync_bp, &info);
746 			error = vfsync_wait_output(vp, waitoutput);
747 			if (info.skippedbufs) {
748 				kprintf("Warning: vfsync skipped %d dirty "
749 					"buf%s in pass2!\n",
750 					info.skippedbufs,
751 					((info.skippedbufs > 1) ? "s" : ""));
752 			}
753 		}
754 		while (error == 0 && passes > 0 &&
755 		       !RB_EMPTY(&vp->v_rbdirty_tree)
756 		) {
757 			info.skippedbufs = 0;
758 			if (--passes == 0) {
759 				info.synchronous = 1;
760 				info.syncdeps = 1;
761 			}
762 			info.cmpfunc = vfsync_dummy_cmp;
763 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
764 					vfsync_bp, &info);
765 			if (error < 0)
766 				error = -error;
767 			info.syncdeps = 1;
768 			if (error == 0)
769 				error = vfsync_wait_output(vp, waitoutput);
770 			if (info.skippedbufs && passes == 0) {
771 				kprintf("Warning: vfsync skipped %d dirty "
772 					"buf%s in final pass!\n",
773 					info.skippedbufs,
774 					((info.skippedbufs > 1) ? "s" : ""));
775 			}
776 		}
777 #if 0
778 		/*
779 		 * This case can occur normally because vnode lock might
780 		 * not be held.
781 		 */
782 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
783 			kprintf("dirty bufs left after final pass\n");
784 #endif
785 		break;
786 	}
787 	lwkt_reltoken(&vp->v_token);
788 
789 	return(error);
790 }
791 
792 static int
793 vfsync_wait_output(struct vnode *vp,
794 		   int (*waitoutput)(struct vnode *, struct thread *))
795 {
796 	int error;
797 
798 	error = bio_track_wait(&vp->v_track_write, 0, 0);
799 	if (waitoutput)
800 		error = waitoutput(vp, curthread);
801 	return(error);
802 }
803 
804 static int
805 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
806 {
807 	return(0);
808 }
809 
810 static int
811 vfsync_data_only_cmp(struct buf *bp, void *data)
812 {
813 	if (bp->b_loffset < 0)
814 		return(-1);
815 	return(0);
816 }
817 
818 static int
819 vfsync_meta_only_cmp(struct buf *bp, void *data)
820 {
821 	if (bp->b_loffset < 0)
822 		return(0);
823 	return(1);
824 }
825 
826 static int
827 vfsync_lazy_range_cmp(struct buf *bp, void *data)
828 {
829 	struct vfsync_info *info = data;
830 
831 	if (bp->b_loffset < info->vp->v_lazyw)
832 		return(-1);
833 	return(0);
834 }
835 
836 static int
837 vfsync_bp(struct buf *bp, void *data)
838 {
839 	struct vfsync_info *info = data;
840 	struct vnode *vp = info->vp;
841 	int error;
842 
843 	if (info->fastpass) {
844 		/*
845 		 * Ignore buffers that we cannot immediately lock.
846 		 */
847 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
848 			/*
849 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
850 			 * delay can mess up performance
851 			 *
852 			 * Another reason is that during a dirty-buffer
853 			 * scan a clustered write can start I/O on buffers
854 			 * ahead of the scan, causing the scan to not
855 			 * get a lock here.  Usually this means the write
856 			 * is already in progress so, in fact, we *want*
857 			 * to skip the buffer.
858 			 */
859 			++info->skippedbufs;
860 			return(0);
861 		}
862 	} else if (info->synchronous == 0) {
863 		/*
864 		 * Normal pass, give the buffer a little time to become
865 		 * available to us.
866 		 */
867 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
868 			++info->skippedbufs;
869 			return(0);
870 		}
871 	} else {
872 		/*
873 		 * Synchronous pass, give the buffer a lot of time before
874 		 * giving up.
875 		 */
876 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
877 			++info->skippedbufs;
878 			return(0);
879 		}
880 	}
881 
882 	/*
883 	 * We must revalidate the buffer after locking.
884 	 */
885 	if ((bp->b_flags & B_DELWRI) == 0 ||
886 	    bp->b_vp != info->vp ||
887 	    info->cmpfunc(bp, data)) {
888 		BUF_UNLOCK(bp);
889 		return(0);
890 	}
891 
892 	/*
893 	 * If syncdeps is not set we do not try to write buffers which have
894 	 * dependancies.
895 	 */
896 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
897 		BUF_UNLOCK(bp);
898 		return(0);
899 	}
900 
901 	/*
902 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
903 	 * has been written but an additional handshake with the device
904 	 * is required before we can dispose of the buffer.  We have no idea
905 	 * how to do this so we have to skip these buffers.
906 	 */
907 	if (bp->b_flags & B_NEEDCOMMIT) {
908 		BUF_UNLOCK(bp);
909 		return(0);
910 	}
911 
912 	/*
913 	 * Ask bioops if it is ok to sync.  If not the VFS may have
914 	 * set B_LOCKED so we have to cycle the buffer.
915 	 */
916 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
917 		bremfree(bp);
918 		brelse(bp);
919 		return(0);
920 	}
921 
922 	if (info->synchronous) {
923 		/*
924 		 * Synchronous flush.  An error may be returned and will
925 		 * stop the scan.
926 		 */
927 		bremfree(bp);
928 		error = bwrite(bp);
929 	} else {
930 		/*
931 		 * Asynchronous flush.  We use the error return to support
932 		 * MNT_LAZY flushes.
933 		 *
934 		 * In low-memory situations we revert to synchronous
935 		 * operation.  This should theoretically prevent the I/O
936 		 * path from exhausting memory in a non-recoverable way.
937 		 */
938 		vp->v_lazyw = bp->b_loffset;
939 		bremfree(bp);
940 		if (vm_paging_min()) {
941 			/* low memory */
942 			info->lazycount += bp->b_bufsize;
943 			bwrite(bp);
944 		} else {
945 			/* normal */
946 			info->lazycount += cluster_awrite(bp);
947 			waitrunningbufspace();
948 			/*vm_wait_nominal();*/
949 		}
950 		if (info->lazylimit && info->lazycount >= info->lazylimit)
951 			error = 1;
952 		else
953 			error = 0;
954 	}
955 	return(-error);
956 }
957 
958 /*
959  * Associate a buffer with a vnode.
960  *
961  * MPSAFE
962  */
963 int
964 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
965 {
966 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
967 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
968 
969 	/*
970 	 * Insert onto list for new vnode.
971 	 */
972 	lwkt_gettoken(&vp->v_token);
973 
974 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
975 		lwkt_reltoken(&vp->v_token);
976 		return (EEXIST);
977 	}
978 
979 	/*
980 	 * Diagnostics (mainly for HAMMER debugging).  Check for
981 	 * overlapping buffers.
982 	 */
983 	if (check_buf_overlap) {
984 		struct buf *bx;
985 		bx = buf_rb_hash_RB_PREV(bp);
986 		if (bx) {
987 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
988 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
989 					"bx %p bp %p\n",
990 					(intmax_t)bx->b_loffset,
991 					bx->b_bufsize,
992 					(intmax_t)bp->b_loffset,
993 					bx, bp);
994 				if (check_buf_overlap > 1)
995 					panic("bgetvp - overlapping buffer");
996 			}
997 		}
998 		bx = buf_rb_hash_RB_NEXT(bp);
999 		if (bx) {
1000 			if (bp->b_loffset + testsize > bx->b_loffset) {
1001 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
1002 					"bp %p bx %p\n",
1003 					(intmax_t)bp->b_loffset,
1004 					testsize,
1005 					(intmax_t)bx->b_loffset,
1006 					bp, bx);
1007 				if (check_buf_overlap > 1)
1008 					panic("bgetvp - overlapping buffer");
1009 			}
1010 		}
1011 	}
1012 	bp->b_vp = vp;
1013 	bp->b_flags |= B_HASHED;
1014 	bp->b_flags |= B_VNCLEAN;
1015 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1016 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1017 	/*vhold(vp);*/
1018 	lwkt_reltoken(&vp->v_token);
1019 	return(0);
1020 }
1021 
1022 /*
1023  * Disassociate a buffer from a vnode.
1024  *
1025  * MPSAFE
1026  */
1027 void
1028 brelvp(struct buf *bp)
1029 {
1030 	struct vnode *vp;
1031 
1032 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1033 
1034 	/*
1035 	 * Delete from old vnode list, if on one.
1036 	 */
1037 	vp = bp->b_vp;
1038 	lwkt_gettoken(&vp->v_token);
1039 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1040 		if (bp->b_flags & B_VNDIRTY)
1041 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1042 		else
1043 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1044 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1045 	}
1046 	if (bp->b_flags & B_HASHED) {
1047 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1048 		bp->b_flags &= ~B_HASHED;
1049 	}
1050 
1051 	/*
1052 	 * Only remove from synclist when no dirty buffers are left AND
1053 	 * the VFS has not flagged the vnode's inode as being dirty.
1054 	 */
1055 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1056 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1057 		vn_syncer_remove(vp, 0);
1058 	}
1059 	bp->b_vp = NULL;
1060 
1061 	lwkt_reltoken(&vp->v_token);
1062 
1063 	/*vdrop(vp);*/
1064 }
1065 
1066 /*
1067  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1068  * This routine is called when the state of the B_DELWRI bit is changed.
1069  *
1070  * Must be called with vp->v_token held.
1071  * MPSAFE
1072  */
1073 void
1074 reassignbuf(struct buf *bp)
1075 {
1076 	struct vnode *vp = bp->b_vp;
1077 	int delay;
1078 
1079 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1080 	++reassignbufcalls;
1081 
1082 	/*
1083 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1084 	 * is not fully linked in.
1085 	 */
1086 	if (bp->b_flags & B_PAGING)
1087 		panic("cannot reassign paging buffer");
1088 
1089 	if (bp->b_flags & B_DELWRI) {
1090 		/*
1091 		 * Move to the dirty list, add the vnode to the worklist
1092 		 */
1093 		if (bp->b_flags & B_VNCLEAN) {
1094 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1095 			bp->b_flags &= ~B_VNCLEAN;
1096 		}
1097 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1098 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1099 				panic("reassignbuf: dup lblk vp %p bp %p",
1100 				      vp, bp);
1101 			}
1102 			bp->b_flags |= B_VNDIRTY;
1103 		}
1104 		if ((vp->v_flag & VONWORKLST) == 0) {
1105 			switch (vp->v_type) {
1106 			case VDIR:
1107 				delay = dirdelay;
1108 				break;
1109 			case VCHR:
1110 			case VBLK:
1111 				if (vp->v_rdev &&
1112 				    vp->v_rdev->si_mountpoint != NULL) {
1113 					delay = metadelay;
1114 					break;
1115 				}
1116 				/* fall through */
1117 			default:
1118 				delay = filedelay;
1119 			}
1120 			vn_syncer_add(vp, delay);
1121 		}
1122 	} else {
1123 		/*
1124 		 * Move to the clean list, remove the vnode from the worklist
1125 		 * if no dirty blocks remain.
1126 		 */
1127 		if (bp->b_flags & B_VNDIRTY) {
1128 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1129 			bp->b_flags &= ~B_VNDIRTY;
1130 		}
1131 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1132 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1133 				panic("reassignbuf: dup lblk vp %p bp %p",
1134 				      vp, bp);
1135 			}
1136 			bp->b_flags |= B_VNCLEAN;
1137 		}
1138 
1139 		/*
1140 		 * Only remove from synclist when no dirty buffers are left
1141 		 * AND the VFS has not flagged the vnode's inode as being
1142 		 * dirty.
1143 		 */
1144 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1145 		     VONWORKLST &&
1146 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1147 			vn_syncer_remove(vp, 0);
1148 		}
1149 	}
1150 }
1151 
1152 /*
1153  * Create a vnode for a block device.  Used for mounting the root file
1154  * system.
1155  *
1156  * A vref()'d vnode is returned.
1157  */
1158 extern struct vop_ops *devfs_vnode_dev_vops_p;
1159 int
1160 bdevvp(cdev_t dev, struct vnode **vpp)
1161 {
1162 	struct vnode *vp;
1163 	struct vnode *nvp;
1164 	int error;
1165 
1166 	if (dev == NULL) {
1167 		*vpp = NULLVP;
1168 		return (ENXIO);
1169 	}
1170 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1171 				&nvp, 0, 0);
1172 	if (error) {
1173 		*vpp = NULLVP;
1174 		return (error);
1175 	}
1176 	vp = nvp;
1177 	vp->v_type = VCHR;
1178 #if 0
1179 	vp->v_rdev = dev;
1180 #endif
1181 	v_associate_rdev(vp, dev);
1182 	vp->v_umajor = dev->si_umajor;
1183 	vp->v_uminor = dev->si_uminor;
1184 	vx_unlock(vp);
1185 	*vpp = vp;
1186 	return (0);
1187 }
1188 
1189 int
1190 v_associate_rdev(struct vnode *vp, cdev_t dev)
1191 {
1192 	if (dev == NULL)
1193 		return(ENXIO);
1194 	if (dev_is_good(dev) == 0)
1195 		return(ENXIO);
1196 	KKASSERT(vp->v_rdev == NULL);
1197 	vp->v_rdev = reference_dev(dev);
1198 	lwkt_gettoken(&spechash_token);
1199 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1200 	lwkt_reltoken(&spechash_token);
1201 	return(0);
1202 }
1203 
1204 void
1205 v_release_rdev(struct vnode *vp)
1206 {
1207 	cdev_t dev;
1208 
1209 	if ((dev = vp->v_rdev) != NULL) {
1210 		lwkt_gettoken(&spechash_token);
1211 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1212 		vp->v_rdev = NULL;
1213 		release_dev(dev);
1214 		lwkt_reltoken(&spechash_token);
1215 	}
1216 }
1217 
1218 /*
1219  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1220  * the device number with the vnode.  The actual device is not associated
1221  * until the vnode is opened (usually in spec_open()), and will be
1222  * disassociated on last close.
1223  */
1224 void
1225 addaliasu(struct vnode *nvp, int x, int y)
1226 {
1227 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1228 		panic("addaliasu on non-special vnode");
1229 	nvp->v_umajor = x;
1230 	nvp->v_uminor = y;
1231 }
1232 
1233 /*
1234  * Simple call that a filesystem can make to try to get rid of a
1235  * vnode.  It will fail if anyone is referencing the vnode (including
1236  * the caller).
1237  *
1238  * The filesystem can check whether its in-memory inode structure still
1239  * references the vp on return.
1240  *
1241  * May only be called if the vnode is in a known state (i.e. being prevented
1242  * from being deallocated by some other condition such as a vfs inode hold).
1243  *
1244  * This call might not succeed.
1245  */
1246 void
1247 vclean_unlocked(struct vnode *vp)
1248 {
1249 	vx_get(vp);
1250 	if (VREFCNT(vp) <= 1)
1251 		vgone_vxlocked(vp);
1252 	vx_put(vp);
1253 }
1254 
1255 /*
1256  * Disassociate a vnode from its underlying filesystem.
1257  *
1258  * The vnode must be VX locked and referenced.  In all normal situations
1259  * there are no active references.  If vclean_vxlocked() is called while
1260  * there are active references, the vnode is being ripped out and we have
1261  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1262  */
1263 static void
1264 vclean_vxlocked(struct vnode *vp, int flags)
1265 {
1266 	int active;
1267 	int n;
1268 	vm_object_t object;
1269 	struct namecache *ncp;
1270 
1271 	/*
1272 	 * If the vnode has already been reclaimed we have nothing to do.
1273 	 */
1274 	if (vp->v_flag & VRECLAIMED)
1275 		return;
1276 
1277 	/*
1278 	 * Set flag to interlock operation, flag finalization to ensure
1279 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1280 	 */
1281 	vsetflags(vp, VRECLAIMED);
1282 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1283 	vp->v_act = 0;
1284 
1285 	if (verbose_reclaims) {
1286 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1287 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1288 	}
1289 
1290 	/*
1291 	 * Scrap the vfs cache
1292 	 */
1293 	while (cache_inval_vp(vp, 0) != 0) {
1294 		kprintf("Warning: vnode %p clean/cache_resolution "
1295 			"race detected\n", vp);
1296 		tsleep(vp, 0, "vclninv", 2);
1297 	}
1298 
1299 	/*
1300 	 * Check to see if the vnode is in use. If so we have to reference it
1301 	 * before we clean it out so that its count cannot fall to zero and
1302 	 * generate a race against ourselves to recycle it.
1303 	 */
1304 	active = (VREFCNT(vp) > 0);
1305 
1306 	/*
1307 	 * Clean out any buffers associated with the vnode and destroy its
1308 	 * object, if it has one.
1309 	 */
1310 	vinvalbuf(vp, V_SAVE, 0, 0);
1311 
1312 	/*
1313 	 * If purging an active vnode (typically during a forced unmount
1314 	 * or reboot), it must be closed and deactivated before being
1315 	 * reclaimed.  This isn't really all that safe, but what can
1316 	 * we do? XXX.
1317 	 *
1318 	 * Note that neither of these routines unlocks the vnode.
1319 	 */
1320 	if (active && (flags & DOCLOSE)) {
1321 		while ((n = vp->v_opencount) != 0) {
1322 			if (vp->v_writecount)
1323 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1324 			else
1325 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1326 			if (vp->v_opencount == n) {
1327 				kprintf("Warning: unable to force-close"
1328 				       " vnode %p\n", vp);
1329 				break;
1330 			}
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1336 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1337 	 * again to make sure they all get flushed.
1338 	 *
1339 	 * This can occur if a file with a link count of 0 needs to be
1340 	 * truncated.
1341 	 *
1342 	 * If the vnode is already dead don't try to deactivate it.
1343 	 */
1344 	if ((vp->v_flag & VINACTIVE) == 0) {
1345 		vsetflags(vp, VINACTIVE);
1346 		if (vp->v_mount)
1347 			VOP_INACTIVE(vp);
1348 		vinvalbuf(vp, V_SAVE, 0, 0);
1349 	}
1350 
1351 	/*
1352 	 * If the vnode has an object, destroy it.
1353 	 */
1354 	while ((object = vp->v_object) != NULL) {
1355 		vm_object_hold(object);
1356 		if (object == vp->v_object)
1357 			break;
1358 		vm_object_drop(object);
1359 	}
1360 
1361 	if (object != NULL) {
1362 		if (object->ref_count == 0) {
1363 			if ((object->flags & OBJ_DEAD) == 0)
1364 				vm_object_terminate(object);
1365 			vm_object_drop(object);
1366 			vclrflags(vp, VOBJBUF);
1367 		} else {
1368 			vm_pager_deallocate(object);
1369 			vclrflags(vp, VOBJBUF);
1370 			vm_object_drop(object);
1371 		}
1372 	}
1373 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1374 
1375 	if (vp->v_flag & VOBJDIRTY)
1376 		vclrobjdirty(vp);
1377 
1378 	/*
1379 	 * Reclaim the vnode if not already dead.
1380 	 */
1381 	if (vp->v_mount && VOP_RECLAIM(vp))
1382 		panic("vclean: cannot reclaim");
1383 
1384 	/*
1385 	 * Done with purge, notify sleepers of the grim news.
1386 	 */
1387 	vp->v_ops = &dead_vnode_vops_p;
1388 	vn_gone(vp);
1389 	vp->v_tag = VT_NON;
1390 
1391 	/*
1392 	 * If we are destroying an active vnode, reactivate it now that
1393 	 * we have reassociated it with deadfs.  This prevents the system
1394 	 * from crashing on the vnode due to it being unexpectedly marked
1395 	 * as inactive or reclaimed.
1396 	 */
1397 	if (active && (flags & DOCLOSE)) {
1398 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1399 	}
1400 }
1401 
1402 /*
1403  * Eliminate all activity associated with the requested vnode
1404  * and with all vnodes aliased to the requested vnode.
1405  *
1406  * The vnode must be referenced but should not be locked.
1407  */
1408 int
1409 vrevoke(struct vnode *vp, struct ucred *cred)
1410 {
1411 	struct vnode *vq;
1412 	struct vnode *vqn;
1413 	cdev_t dev;
1414 	int error;
1415 
1416 	/*
1417 	 * If the vnode has a device association, scrap all vnodes associated
1418 	 * with the device.  Don't let the device disappear on us while we
1419 	 * are scrapping the vnodes.
1420 	 *
1421 	 * The passed vp will probably show up in the list, do not VX lock
1422 	 * it twice!
1423 	 *
1424 	 * Releasing the vnode's rdev here can mess up specfs's call to
1425 	 * device close, so don't do it.  The vnode has been disassociated
1426 	 * and the device will be closed after the last ref on the related
1427 	 * fp goes away (if not still open by e.g. the kernel).
1428 	 */
1429 	if (vp->v_type != VCHR) {
1430 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1431 		return (error);
1432 	}
1433 	if ((dev = vp->v_rdev) == NULL) {
1434 		return(0);
1435 	}
1436 	reference_dev(dev);
1437 	lwkt_gettoken(&spechash_token);
1438 
1439 restart:
1440 	vqn = SLIST_FIRST(&dev->si_hlist);
1441 	if (vqn)
1442 		vhold(vqn);
1443 	while ((vq = vqn) != NULL) {
1444 		if (VREFCNT(vq) > 0) {
1445 			vref(vq);
1446 			fdrevoke(vq, DTYPE_VNODE, cred);
1447 			/*v_release_rdev(vq);*/
1448 			vrele(vq);
1449 			if (vq->v_rdev != dev) {
1450 				vdrop(vq);
1451 				goto restart;
1452 			}
1453 		}
1454 		vqn = SLIST_NEXT(vq, v_cdevnext);
1455 		if (vqn)
1456 			vhold(vqn);
1457 		vdrop(vq);
1458 	}
1459 	lwkt_reltoken(&spechash_token);
1460 	dev_drevoke(dev);
1461 	release_dev(dev);
1462 	return (0);
1463 }
1464 
1465 /*
1466  * This is called when the object underlying a vnode is being destroyed,
1467  * such as in a remove().  Try to recycle the vnode immediately if the
1468  * only active reference is our reference.
1469  *
1470  * Directory vnodes in the namecache with children cannot be immediately
1471  * recycled because numerous VOP_N*() ops require them to be stable.
1472  *
1473  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1474  * function is a NOP if VRECLAIMED is already set.
1475  */
1476 int
1477 vrecycle(struct vnode *vp)
1478 {
1479 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1480 		if (cache_inval_vp_nonblock(vp))
1481 			return(0);
1482 		vgone_vxlocked(vp);
1483 		return (1);
1484 	}
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Return the maximum I/O size allowed for strategy calls on VP.
1490  *
1491  * If vp is VCHR or VBLK we dive the device, otherwise we use
1492  * the vp's mount info.
1493  *
1494  * The returned value is clamped at MAXPHYS as most callers cannot use
1495  * buffers larger than that size.
1496  */
1497 int
1498 vmaxiosize(struct vnode *vp)
1499 {
1500 	int maxiosize;
1501 
1502 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1503 		maxiosize = vp->v_rdev->si_iosize_max;
1504 	else
1505 		maxiosize = vp->v_mount->mnt_iosize_max;
1506 
1507 	if (maxiosize > MAXPHYS)
1508 		maxiosize = MAXPHYS;
1509 	return (maxiosize);
1510 }
1511 
1512 /*
1513  * Eliminate all activity associated with a vnode in preparation for
1514  * destruction.
1515  *
1516  * The vnode must be VX locked and refd and will remain VX locked and refd
1517  * on return.  This routine may be called with the vnode in any state, as
1518  * long as it is VX locked.  The vnode will be cleaned out and marked
1519  * VRECLAIMED but will not actually be reused until all existing refs and
1520  * holds go away.
1521  *
1522  * NOTE: This routine may be called on a vnode which has not yet been
1523  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1524  * already been reclaimed.
1525  *
1526  * This routine is not responsible for placing us back on the freelist.
1527  * Instead, it happens automatically when the caller releases the VX lock
1528  * (assuming there aren't any other references).
1529  */
1530 void
1531 vgone_vxlocked(struct vnode *vp)
1532 {
1533 	/*
1534 	 * assert that the VX lock is held.  This is an absolute requirement
1535 	 * now for vgone_vxlocked() to be called.
1536 	 */
1537 	KKASSERT(lockinuse(&vp->v_lock));
1538 
1539 	/*
1540 	 * Clean out the filesystem specific data and set the VRECLAIMED
1541 	 * bit.  Also deactivate the vnode if necessary.
1542 	 *
1543 	 * The vnode should have automatically been removed from the syncer
1544 	 * list as syncer/dirty flags cleared during the cleaning.
1545 	 */
1546 	vclean_vxlocked(vp, DOCLOSE);
1547 
1548 	/*
1549 	 * Normally panic if the vnode is still dirty, unless we are doing
1550 	 * a forced unmount (tmpfs typically).
1551 	 */
1552 	if (vp->v_flag & VONWORKLST) {
1553 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1554 			/* force removal */
1555 			vn_syncer_remove(vp, 1);
1556 		} else {
1557 			panic("vp %p still dirty in vgone after flush", vp);
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Delete from old mount point vnode list, if on one.
1563 	 */
1564 	if (vp->v_mount != NULL) {
1565 		KKASSERT(vp->v_data == NULL);
1566 		insmntque(vp, NULL);
1567 	}
1568 
1569 	/*
1570 	 * If special device, remove it from special device alias list
1571 	 * if it is on one.  This should normally only occur if a vnode is
1572 	 * being revoked as the device should otherwise have been released
1573 	 * naturally.
1574 	 */
1575 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1576 		v_release_rdev(vp);
1577 	}
1578 
1579 	/*
1580 	 * Set us to VBAD
1581 	 */
1582 	vp->v_type = VBAD;
1583 }
1584 
1585 /*
1586  * Calculate the total number of references to a special device.  This
1587  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1588  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1589  * have to check for a NULL v_rdev.
1590  */
1591 int
1592 count_dev(cdev_t dev)
1593 {
1594 	struct vnode *vp;
1595 	int count = 0;
1596 
1597 	if (SLIST_FIRST(&dev->si_hlist)) {
1598 		lwkt_gettoken(&spechash_token);
1599 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1600 			count += vp->v_opencount;
1601 		}
1602 		lwkt_reltoken(&spechash_token);
1603 	}
1604 	return(count);
1605 }
1606 
1607 int
1608 vcount(struct vnode *vp)
1609 {
1610 	if (vp->v_rdev == NULL)
1611 		return(0);
1612 	return(count_dev(vp->v_rdev));
1613 }
1614 
1615 /*
1616  * Initialize VMIO for a vnode.  This routine MUST be called before a
1617  * VFS can issue buffer cache ops on a vnode.  It is typically called
1618  * when a vnode is initialized from its inode.
1619  */
1620 int
1621 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1622 {
1623 	vm_object_t object;
1624 	int error = 0;
1625 
1626 	object = vp->v_object;
1627 	if (object) {
1628 		vm_object_hold(object);
1629 		KKASSERT(vp->v_object == object);
1630 	}
1631 
1632 	if (object == NULL) {
1633 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1634 
1635 		/*
1636 		 * Dereference the reference we just created.  This assumes
1637 		 * that the object is associated with the vp.  Allow it to
1638 		 * have zero refs.  It cannot be destroyed as long as it
1639 		 * is associated with the vnode.
1640 		 */
1641 		vm_object_hold(object);
1642 		atomic_add_int(&object->ref_count, -1);
1643 		vrele(vp);
1644 	} else {
1645 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1646 	}
1647 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1648 	vsetflags(vp, VOBJBUF);
1649 	vm_object_drop(object);
1650 
1651 	return (error);
1652 }
1653 
1654 
1655 /*
1656  * Print out a description of a vnode.
1657  */
1658 static char *typename[] =
1659 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1660 
1661 void
1662 vprint(char *label, struct vnode *vp)
1663 {
1664 	char buf[96];
1665 
1666 	if (label != NULL)
1667 		kprintf("%s: %p: ", label, (void *)vp);
1668 	else
1669 		kprintf("%p: ", (void *)vp);
1670 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1671 		typename[vp->v_type],
1672 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1673 	buf[0] = '\0';
1674 	if (vp->v_flag & VROOT)
1675 		strcat(buf, "|VROOT");
1676 	if (vp->v_flag & VPFSROOT)
1677 		strcat(buf, "|VPFSROOT");
1678 	if (vp->v_flag & VTEXT)
1679 		strcat(buf, "|VTEXT");
1680 	if (vp->v_flag & VSYSTEM)
1681 		strcat(buf, "|VSYSTEM");
1682 	if (vp->v_flag & VOBJBUF)
1683 		strcat(buf, "|VOBJBUF");
1684 	if (buf[0] != '\0')
1685 		kprintf(" flags (%s)", &buf[1]);
1686 	if (vp->v_data == NULL) {
1687 		kprintf("\n");
1688 	} else {
1689 		kprintf("\n\t");
1690 		VOP_PRINT(vp);
1691 	}
1692 }
1693 
1694 /*
1695  * Do the usual access checking.
1696  * file_mode, uid and gid are from the vnode in question,
1697  * while acc_mode and cred are from the VOP_ACCESS parameter list
1698  */
1699 int
1700 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1701 	mode_t acc_mode, struct ucred *cred)
1702 {
1703 	mode_t mask;
1704 	int ismember;
1705 
1706 	/*
1707 	 * Super-user always gets read/write access, but execute access depends
1708 	 * on at least one execute bit being set.
1709 	 */
1710 	if (caps_priv_check(cred, SYSCAP_RESTRICTEDROOT) == 0) {
1711 		if ((acc_mode & VEXEC) && type != VDIR &&
1712 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1713 			return (EACCES);
1714 		return (0);
1715 	}
1716 
1717 	mask = 0;
1718 
1719 	/* Otherwise, check the owner. */
1720 	if (cred->cr_uid == uid) {
1721 		if (acc_mode & VEXEC)
1722 			mask |= S_IXUSR;
1723 		if (acc_mode & VREAD)
1724 			mask |= S_IRUSR;
1725 		if (acc_mode & VWRITE)
1726 			mask |= S_IWUSR;
1727 		return ((file_mode & mask) == mask ? 0 : EACCES);
1728 	}
1729 
1730 	/* Otherwise, check the groups. */
1731 	ismember = groupmember(gid, cred);
1732 	if (cred->cr_svgid == gid || ismember) {
1733 		if (acc_mode & VEXEC)
1734 			mask |= S_IXGRP;
1735 		if (acc_mode & VREAD)
1736 			mask |= S_IRGRP;
1737 		if (acc_mode & VWRITE)
1738 			mask |= S_IWGRP;
1739 		return ((file_mode & mask) == mask ? 0 : EACCES);
1740 	}
1741 
1742 	/* Otherwise, check everyone else. */
1743 	if (acc_mode & VEXEC)
1744 		mask |= S_IXOTH;
1745 	if (acc_mode & VREAD)
1746 		mask |= S_IROTH;
1747 	if (acc_mode & VWRITE)
1748 		mask |= S_IWOTH;
1749 	return ((file_mode & mask) == mask ? 0 : EACCES);
1750 }
1751 
1752 #ifdef DDB
1753 #include <ddb/ddb.h>
1754 
1755 static int db_show_locked_vnodes(struct mount *mp, void *data);
1756 
1757 /*
1758  * List all of the locked vnodes in the system.
1759  * Called when debugging the kernel.
1760  */
1761 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1762 {
1763 	kprintf("Locked vnodes\n");
1764 	mountlist_scan(db_show_locked_vnodes, NULL,
1765 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1766 }
1767 
1768 static int
1769 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1770 {
1771 	struct vnode *vp;
1772 
1773 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1774 		if (vn_islocked(vp))
1775 			vprint(NULL, vp);
1776 	}
1777 	return(0);
1778 }
1779 #endif
1780 
1781 /*
1782  * Top level filesystem related information gathering.
1783  */
1784 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1785 
1786 static int
1787 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1788 {
1789 	int *name = (int *)arg1 - 1;	/* XXX */
1790 	u_int namelen = arg2 + 1;	/* XXX */
1791 	struct vfsconf *vfsp;
1792 	int maxtypenum;
1793 
1794 #if 1 || defined(COMPAT_PRELITE2)
1795 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1796 	if (namelen == 1)
1797 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1798 #endif
1799 
1800 #ifdef notyet
1801 	/* all sysctl names at this level are at least name and field */
1802 	if (namelen < 2)
1803 		return (ENOTDIR);		/* overloaded */
1804 	if (name[0] != VFS_GENERIC) {
1805 		vfsp = vfsconf_find_by_typenum(name[0]);
1806 		if (vfsp == NULL)
1807 			return (EOPNOTSUPP);
1808 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1809 		    oldp, oldlenp, newp, newlen, p));
1810 	}
1811 #endif
1812 	switch (name[1]) {
1813 	case VFS_MAXTYPENUM:
1814 		if (namelen != 2)
1815 			return (ENOTDIR);
1816 		maxtypenum = vfsconf_get_maxtypenum();
1817 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1818 	case VFS_CONF:
1819 		if (namelen != 3)
1820 			return (ENOTDIR);	/* overloaded */
1821 		vfsp = vfsconf_find_by_typenum(name[2]);
1822 		if (vfsp == NULL)
1823 			return (EOPNOTSUPP);
1824 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1825 	}
1826 	return (EOPNOTSUPP);
1827 }
1828 
1829 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1830 	"Generic filesystem");
1831 
1832 #if 1 || defined(COMPAT_PRELITE2)
1833 
1834 static int
1835 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1836 {
1837 	int error;
1838 	struct ovfsconf ovfs;
1839 	struct sysctl_req *req = (struct sysctl_req*) data;
1840 
1841 	bzero(&ovfs, sizeof(ovfs));
1842 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1843 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1844 	ovfs.vfc_index = vfsp->vfc_typenum;
1845 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1846 	ovfs.vfc_flags = vfsp->vfc_flags;
1847 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1848 	if (error)
1849 		return error; /* abort iteration with error code */
1850 	else
1851 		return 0; /* continue iterating with next element */
1852 }
1853 
1854 static int
1855 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1856 {
1857 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1858 }
1859 
1860 #endif /* 1 || COMPAT_PRELITE2 */
1861 
1862 /*
1863  * Check to see if a filesystem is mounted on a block device.
1864  */
1865 int
1866 vfs_mountedon(struct vnode *vp)
1867 {
1868 	cdev_t dev;
1869 
1870 	dev = vp->v_rdev;
1871 	if (dev != NULL && dev->si_mountpoint)
1872 		return (EBUSY);
1873 	return (0);
1874 }
1875 
1876 /*
1877  * Unmount all filesystems. The list is traversed in reverse order
1878  * of mounting to avoid dependencies.
1879  *
1880  * We want the umountall to be able to break out of its loop if a
1881  * failure occurs, after scanning all possible mounts, so the callback
1882  * returns 0 on error.
1883  *
1884  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1885  *	 confuse mountlist_scan()'s unbusy check.
1886  */
1887 static int vfs_umountall_callback(struct mount *mp, void *data);
1888 
1889 void
1890 vfs_unmountall(int halting)
1891 {
1892 	int count;
1893 
1894 	do {
1895 		count = mountlist_scan(vfs_umountall_callback, &halting,
1896 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1897 	} while (count);
1898 }
1899 
1900 static
1901 int
1902 vfs_umountall_callback(struct mount *mp, void *data)
1903 {
1904 	int error;
1905 	int halting = *(int *)data;
1906 
1907 	/*
1908 	 * NOTE: When halting, dounmount will disconnect but leave
1909 	 *	 certain mount points intact.  e.g. devfs.
1910 	 */
1911 	error = dounmount(mp, MNT_FORCE, halting);
1912 	if (error) {
1913 		kprintf("unmount of filesystem mounted from %s failed (",
1914 			mp->mnt_stat.f_mntfromname);
1915 		if (error == EBUSY)
1916 			kprintf("BUSY)\n");
1917 		else
1918 			kprintf("%d)\n", error);
1919 		return 0;
1920 	} else {
1921 		return 1;
1922 	}
1923 }
1924 
1925 /*
1926  * Checks the mount flags for parameter mp and put the names comma-separated
1927  * into a string buffer buf with a size limit specified by len.
1928  *
1929  * It returns the number of bytes written into buf, and (*errorp) will be
1930  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1931  * not large enough).  The buffer will be 0-terminated if len was not 0.
1932  */
1933 size_t
1934 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1935 	       char *buf, size_t len, int *errorp)
1936 {
1937 	static const struct mountctl_opt optnames[] = {
1938 		{ MNT_RDONLY,           "read-only" },
1939 		{ MNT_SYNCHRONOUS,      "synchronous" },
1940 		{ MNT_NOEXEC,           "noexec" },
1941 		{ MNT_NOSUID,           "nosuid" },
1942 		{ MNT_NODEV,            "nodev" },
1943 		{ MNT_AUTOMOUNTED,      "automounted" },
1944 		{ MNT_ASYNC,            "asynchronous" },
1945 		{ MNT_SUIDDIR,          "suiddir" },
1946 		{ MNT_SOFTDEP,          "soft-updates" },
1947 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1948 		{ MNT_TRIM,             "trim" },
1949 		{ MNT_NOATIME,          "noatime" },
1950 		{ MNT_NOCLUSTERR,       "noclusterr" },
1951 		{ MNT_NOCLUSTERW,       "noclusterw" },
1952 		{ MNT_EXRDONLY,         "NFS read-only" },
1953 		{ MNT_EXPORTED,         "NFS exported" },
1954 		/* Remaining NFS flags could come here */
1955 		{ MNT_LOCAL,            "local" },
1956 		{ MNT_QUOTA,            "with-quotas" },
1957 		/* { MNT_ROOTFS,           "rootfs" }, */
1958 		/* { MNT_IGNORE,           "ignore" }, */
1959 		{ 0,			NULL}
1960 	};
1961 	int bwritten;
1962 	int bleft;
1963 	int optlen;
1964 	int actsize;
1965 
1966 	*errorp = 0;
1967 	bwritten = 0;
1968 	bleft = len - 1;	/* leave room for trailing \0 */
1969 
1970 	/*
1971 	 * Checks the size of the string. If it contains
1972 	 * any data, then we will append the new flags to
1973 	 * it.
1974 	 */
1975 	actsize = strlen(buf);
1976 	if (actsize > 0)
1977 		buf += actsize;
1978 
1979 	/* Default flags if no flags passed */
1980 	if (optp == NULL)
1981 		optp = optnames;
1982 
1983 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1984 		*errorp = EINVAL;
1985 		return(0);
1986 	}
1987 
1988 	for (; flags && optp->o_opt; ++optp) {
1989 		if ((flags & optp->o_opt) == 0)
1990 			continue;
1991 		optlen = strlen(optp->o_name);
1992 		if (bwritten || actsize > 0) {
1993 			if (bleft < 2) {
1994 				*errorp = ENOSPC;
1995 				break;
1996 			}
1997 			buf[bwritten++] = ',';
1998 			buf[bwritten++] = ' ';
1999 			bleft -= 2;
2000 		}
2001 		if (bleft < optlen) {
2002 			*errorp = ENOSPC;
2003 			break;
2004 		}
2005 		bcopy(optp->o_name, buf + bwritten, optlen);
2006 		bwritten += optlen;
2007 		bleft -= optlen;
2008 		flags &= ~optp->o_opt;
2009 	}
2010 
2011 	/*
2012 	 * Space already reserved for trailing \0
2013 	 */
2014 	buf[bwritten] = 0;
2015 	return (bwritten);
2016 }
2017 
2018 /*
2019  * Build hash lists of net addresses and hang them off the mount point.
2020  * Called by ufs_mount() to set up the lists of export addresses.
2021  */
2022 static int
2023 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2024 		const struct export_args *argp)
2025 {
2026 	struct netcred *np;
2027 	struct radix_node_head *rnh;
2028 	int i;
2029 	struct radix_node *rn;
2030 	struct sockaddr *saddr, *smask = NULL;
2031 	int error;
2032 
2033 	if (argp->ex_addrlen == 0) {
2034 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2035 			return (EPERM);
2036 		np = &nep->ne_defexported;
2037 		np->netc_exflags = argp->ex_flags;
2038 		np->netc_anon = argp->ex_anon;
2039 		np->netc_anon.cr_ref = 1;
2040 		mp->mnt_flag |= MNT_DEFEXPORTED;
2041 		return (0);
2042 	}
2043 
2044 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2045 		return (EINVAL);
2046 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2047 		return (EINVAL);
2048 
2049 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2050 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2051 	saddr = (struct sockaddr *) (np + 1);
2052 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2053 		goto out;
2054 	if (saddr->sa_len > argp->ex_addrlen)
2055 		saddr->sa_len = argp->ex_addrlen;
2056 	if (argp->ex_masklen) {
2057 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2058 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2059 		if (error)
2060 			goto out;
2061 		if (smask->sa_len > argp->ex_masklen)
2062 			smask->sa_len = argp->ex_masklen;
2063 	}
2064 	NE_LOCK(nep);
2065 	if (nep->ne_maskhead == NULL) {
2066 		if (!rn_inithead(&nep->ne_maskhead, NULL, 0)) {
2067 			error = ENOBUFS;
2068 			goto out;
2069 		}
2070 	}
2071 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2072 		error = ENOBUFS;
2073 		goto out;
2074 	}
2075 	rn = rnh->rnh_addaddr(saddr, smask, rnh, np->netc_rnodes);
2076 	NE_UNLOCK(nep);
2077 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2078 		error = EPERM;
2079 		goto out;
2080 	}
2081 	np->netc_exflags = argp->ex_flags;
2082 	np->netc_anon = argp->ex_anon;
2083 	np->netc_anon.cr_ref = 1;
2084 	return (0);
2085 
2086 out:
2087 	kfree(np, M_NETCRED);
2088 	return (error);
2089 }
2090 
2091 /*
2092  * Free netcred structures installed in the netexport
2093  */
2094 static void
2095 vfs_free_netcred(struct radix_node *rn)
2096 {
2097 	struct netcred *np;
2098 
2099 	np = (struct netcred *)rn;
2100 	kfree(np, M_NETCRED);
2101 }
2102 
2103 static struct radix_node_head *
2104 vfs_create_addrlist_af(int af, struct netexport *nep)
2105 {
2106 	struct radix_node_head *rnh = NULL;
2107 #if defined(INET) || defined(INET6)
2108 	struct radix_node_head *maskhead = nep->ne_maskhead;
2109 	int off;
2110 #endif
2111 
2112 	NE_ASSERT_LOCKED(nep);
2113 #if defined(INET) || defined(INET6)
2114 	KKASSERT(maskhead != NULL);
2115 #endif
2116 	switch (af) {
2117 #ifdef INET
2118 	case AF_INET:
2119 		if ((rnh = nep->ne_inethead) == NULL) {
2120 			off = offsetof(struct sockaddr_in, sin_addr);
2121 			if (!rn_inithead(&rnh, maskhead, off))
2122 				return (NULL);
2123 			nep->ne_inethead = rnh;
2124 		}
2125 		break;
2126 #endif
2127 #ifdef INET6
2128 	case AF_INET6:
2129 		if ((rnh = nep->ne_inet6head) == NULL) {
2130 			off = offsetof(struct sockaddr_in6, sin6_addr);
2131 			if (!rn_inithead(&rnh, maskhead, off))
2132 				return (NULL);
2133 			nep->ne_inet6head = rnh;
2134 		}
2135 		break;
2136 #endif
2137 	}
2138 	return (rnh);
2139 }
2140 
2141 /*
2142  * Free the net address hash lists that are hanging off the mount points.
2143  */
2144 static void
2145 vfs_free_addrlist(struct netexport *nep)
2146 {
2147 	NE_LOCK(nep);
2148 	if (nep->ne_inethead != NULL) {
2149 		rn_flush(nep->ne_inethead, vfs_free_netcred);
2150 		rn_freehead(nep->ne_inethead);
2151 		nep->ne_inethead = NULL;
2152 	}
2153 	if (nep->ne_inet6head != NULL) {
2154 		rn_flush(nep->ne_inet6head, vfs_free_netcred);
2155 		rn_freehead(nep->ne_inet6head);
2156 		nep->ne_inet6head = NULL;
2157 	}
2158 	if (nep->ne_maskhead != NULL) {
2159 		rn_flush(nep->ne_maskhead, rn_freemask);
2160 		rn_freehead(nep->ne_maskhead);
2161 		nep->ne_maskhead = NULL;
2162 	}
2163 	NE_UNLOCK(nep);
2164 }
2165 
2166 int
2167 vfs_export(struct mount *mp, struct netexport *nep,
2168 	   const struct export_args *argp)
2169 {
2170 	int error;
2171 
2172 	if (argp->ex_flags & MNT_DELEXPORT) {
2173 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2174 			vfs_setpublicfs(NULL, NULL, NULL);
2175 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2176 		}
2177 		vfs_free_addrlist(nep);
2178 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2179 	}
2180 	if (argp->ex_flags & MNT_EXPORTED) {
2181 		if (argp->ex_flags & MNT_EXPUBLIC) {
2182 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2183 				return (error);
2184 			mp->mnt_flag |= MNT_EXPUBLIC;
2185 		}
2186 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2187 			return (error);
2188 		mp->mnt_flag |= MNT_EXPORTED;
2189 	}
2190 	return (0);
2191 }
2192 
2193 
2194 /*
2195  * Set the publicly exported filesystem (WebNFS). Currently, only
2196  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2197  */
2198 int
2199 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2200 		const struct export_args *argp)
2201 {
2202 	int error;
2203 	struct vnode *rvp;
2204 	char *cp;
2205 
2206 	/*
2207 	 * mp == NULL -> invalidate the current info, the FS is
2208 	 * no longer exported. May be called from either vfs_export
2209 	 * or unmount, so check if it hasn't already been done.
2210 	 */
2211 	if (mp == NULL) {
2212 		if (nfs_pub.np_valid) {
2213 			nfs_pub.np_valid = 0;
2214 			if (nfs_pub.np_index != NULL) {
2215 				kfree(nfs_pub.np_index, M_TEMP);
2216 				nfs_pub.np_index = NULL;
2217 			}
2218 		}
2219 		return (0);
2220 	}
2221 
2222 	/*
2223 	 * Only one allowed at a time.
2224 	 */
2225 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2226 		return (EBUSY);
2227 
2228 	/*
2229 	 * Get real filehandle for root of exported FS.
2230 	 */
2231 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2232 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2233 
2234 	if ((error = VFS_ROOT(mp, &rvp)))
2235 		return (error);
2236 
2237 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2238 		return (error);
2239 
2240 	vput(rvp);
2241 
2242 	/*
2243 	 * If an indexfile was specified, pull it in.
2244 	 */
2245 	if (argp->ex_indexfile != NULL) {
2246 		int namelen;
2247 
2248 		error = vn_get_namelen(rvp, &namelen);
2249 		if (error)
2250 			return (error);
2251 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2252 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2253 		    namelen, NULL);
2254 		if (!error) {
2255 			/*
2256 			 * Check for illegal filenames.
2257 			 */
2258 			for (cp = nfs_pub.np_index; *cp; cp++) {
2259 				if (*cp == '/') {
2260 					error = EINVAL;
2261 					break;
2262 				}
2263 			}
2264 		}
2265 		if (error) {
2266 			kfree(nfs_pub.np_index, M_TEMP);
2267 			return (error);
2268 		}
2269 	}
2270 
2271 	nfs_pub.np_mount = mp;
2272 	nfs_pub.np_valid = 1;
2273 	return (0);
2274 }
2275 
2276 struct netcred *
2277 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2278 		struct sockaddr *nam)
2279 {
2280 	struct netcred *np;
2281 	struct radix_node_head *rnh;
2282 	struct sockaddr *saddr;
2283 
2284 	np = NULL;
2285 	if (mp->mnt_flag & MNT_EXPORTED) {
2286 		/*
2287 		 * Lookup in the export list first.
2288 		 */
2289 		NE_LOCK(nep);
2290 		if (nam != NULL) {
2291 			saddr = nam;
2292 			switch (saddr->sa_family) {
2293 #ifdef INET
2294 			case AF_INET:
2295 				rnh = nep->ne_inethead;
2296 				break;
2297 #endif
2298 #ifdef INET6
2299 			case AF_INET6:
2300 				rnh = nep->ne_inet6head;
2301 				break;
2302 #endif
2303 			default:
2304 				rnh = NULL;
2305 			}
2306 			if (rnh != NULL) {
2307 				np = (struct netcred *)
2308 					rnh->rnh_matchaddr(saddr, rnh);
2309 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2310 					np = NULL;
2311 			}
2312 		}
2313 		NE_UNLOCK(nep);
2314 		/*
2315 		 * If no address match, use the default if it exists.
2316 		 */
2317 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2318 			np = &nep->ne_defexported;
2319 	}
2320 	return (np);
2321 }
2322 
2323 /*
2324  * perform msync on all vnodes under a mount point.  The mount point must
2325  * be locked.  This code is also responsible for lazy-freeing unreferenced
2326  * vnodes whos VM objects no longer contain pages.
2327  *
2328  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2329  *
2330  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2331  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2332  * way up in this high level function.
2333  */
2334 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2335 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2336 
2337 void
2338 vfs_msync(struct mount *mp, int flags)
2339 {
2340 	int vmsc_flags;
2341 
2342 	/*
2343 	 * tmpfs sets this flag to prevent msync(), sync, and the
2344 	 * filesystem periodic syncer from trying to flush VM pages
2345 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2346 	 * to swap.
2347 	 */
2348 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2349 		return;
2350 
2351 	/*
2352 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2353 	 * syncer thread feature we can use vsyncscan() instead of
2354 	 * vmntvnodescan(), which is much faster.
2355 	 */
2356 	vmsc_flags = VMSC_GETVP;
2357 	if (flags != MNT_WAIT)
2358 		vmsc_flags |= VMSC_NOWAIT;
2359 
2360 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2361 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2362 			  (void *)(intptr_t)flags);
2363 	} else {
2364 		vmntvnodescan(mp, vmsc_flags,
2365 			      vfs_msync_scan1, vfs_msync_scan2,
2366 			      (void *)(intptr_t)flags);
2367 	}
2368 }
2369 
2370 /*
2371  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2372  * vnodes, we cannot afford to do anything heavy weight until we have a
2373  * fairly good indication that there is work to do.
2374  *
2375  * The new namecache holds the vnode for each v_namecache association
2376  * so allow these refs.
2377  */
2378 static
2379 int
2380 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2381 {
2382 	int flags = (int)(intptr_t)data;
2383 
2384 	if ((vp->v_flag & VRECLAIMED) == 0) {
2385 		if (vp->v_auxrefs == vp->v_namecache_count &&
2386 		    VREFCNT(vp) <= 0 && vp->v_object) {
2387 			return(0);	/* call scan2 */
2388 		}
2389 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2390 		    (vp->v_flag & VOBJDIRTY) &&
2391 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2392 			return(0);	/* call scan2 */
2393 		}
2394 	}
2395 
2396 	/*
2397 	 * do not call scan2, continue the loop
2398 	 */
2399 	return(-1);
2400 }
2401 
2402 /*
2403  * This callback is handed a locked vnode.
2404  */
2405 static
2406 int
2407 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2408 {
2409 	vm_object_t obj;
2410 	int flags = (int)(intptr_t)data;
2411 	int opcflags;
2412 
2413 	if (vp->v_flag & VRECLAIMED)
2414 		return(0);
2415 
2416 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2417 		if ((obj = vp->v_object) != NULL) {
2418 			if (flags == MNT_WAIT) {
2419 				/*
2420 				 * VFS_MSYNC is called with MNT_WAIT when
2421 				 * unmounting.
2422 				 */
2423 				opcflags = OBJPC_SYNC;
2424 			} else if (vp->v_writecount || obj->ref_count) {
2425 				/*
2426 				 * VFS_MSYNC is otherwise called via the
2427 				 * periodic filesystem sync or the 'sync'
2428 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2429 				 * if the file is open for writing or memory
2430 				 * mapped.  Pages flagged PG_NOSYNC will not
2431 				 * be automatically flushed at this time.
2432 				 *
2433 				 * The obj->ref_count test is not perfect
2434 				 * since temporary refs may be present, but
2435 				 * the periodic filesystem sync will ultimately
2436 				 * catch it if the file is not open and not
2437 				 * mapped.
2438 				 */
2439 				opcflags = OBJPC_NOSYNC;
2440 			} else {
2441 				/*
2442 				 * If the file is no longer open for writing
2443 				 * and also no longer mapped, do not honor
2444 				 * MAP_NOSYNC.  That is, fully synchronize
2445 				 * the file.
2446 				 *
2447 				 * This still occurs on the periodic fs sync,
2448 				 * so frontend programs which turn the file
2449 				 * over quickly enough can still avoid the
2450 				 * sync, but ultimately we do want to flush
2451 				 * even MADV_NOSYNC pages once it is no longer
2452 				 * mapped or open for writing.
2453 				 */
2454 				opcflags = 0;
2455 			}
2456 			vm_object_page_clean(obj, 0, 0, opcflags);
2457 		}
2458 	}
2459 	return(0);
2460 }
2461 
2462 /*
2463  * Wake up anyone interested in vp because it is being revoked.
2464  */
2465 void
2466 vn_gone(struct vnode *vp)
2467 {
2468 	lwkt_gettoken(&vp->v_token);
2469 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2470 	lwkt_reltoken(&vp->v_token);
2471 }
2472 
2473 /*
2474  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2475  * (or v_rdev might be NULL).
2476  */
2477 cdev_t
2478 vn_todev(struct vnode *vp)
2479 {
2480 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2481 		return (NULL);
2482 	KKASSERT(vp->v_rdev != NULL);
2483 	return (vp->v_rdev);
2484 }
2485 
2486 /*
2487  * Check if vnode represents a disk device.  The vnode does not need to be
2488  * opened.
2489  *
2490  * MPALMOSTSAFE
2491  */
2492 int
2493 vn_isdisk(struct vnode *vp, int *errp)
2494 {
2495 	cdev_t dev;
2496 
2497 	if (vp->v_type != VCHR) {
2498 		if (errp != NULL)
2499 			*errp = ENOTBLK;
2500 		return (0);
2501 	}
2502 
2503 	dev = vp->v_rdev;
2504 
2505 	if (dev == NULL) {
2506 		if (errp != NULL)
2507 			*errp = ENXIO;
2508 		return (0);
2509 	}
2510 	if (dev_is_good(dev) == 0) {
2511 		if (errp != NULL)
2512 			*errp = ENXIO;
2513 		return (0);
2514 	}
2515 	if ((dev_dflags(dev) & D_DISK) == 0) {
2516 		if (errp != NULL)
2517 			*errp = ENOTBLK;
2518 		return (0);
2519 	}
2520 	if (errp != NULL)
2521 		*errp = 0;
2522 	return (1);
2523 }
2524 
2525 int
2526 vn_get_namelen(struct vnode *vp, int *namelen)
2527 {
2528 	int error;
2529 	register_t retval[2];
2530 
2531 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2532 	if (error)
2533 		return (error);
2534 	*namelen = (int)retval[0];
2535 	return (0);
2536 }
2537 
2538 int
2539 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2540 		uint16_t d_namlen, const char *d_name)
2541 {
2542 	struct dirent *dp;
2543 	size_t len;
2544 
2545 	len = _DIRENT_RECLEN(d_namlen);
2546 	if (len > uio->uio_resid)
2547 		return(1);
2548 
2549 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2550 
2551 	dp->d_ino = d_ino;
2552 	dp->d_namlen = d_namlen;
2553 	dp->d_type = d_type;
2554 	bcopy(d_name, dp->d_name, d_namlen);
2555 
2556 	*error = uiomove((caddr_t)dp, len, uio);
2557 
2558 	kfree(dp, M_TEMP);
2559 
2560 	return(0);
2561 }
2562 
2563 void
2564 vn_mark_atime(struct vnode *vp, struct thread *td)
2565 {
2566 	struct proc *p = td->td_proc;
2567 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2568 
2569 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2570 		VOP_MARKATIME(vp, cred);
2571 	}
2572 }
2573 
2574 /*
2575  * Calculate the number of entries in an inode-related chained hash table.
2576  * With today's memory sizes, maxvnodes can wind up being a very large
2577  * number.  There is no reason to waste memory, so tolerate some stacking.
2578  */
2579 int
2580 vfs_inodehashsize(void)
2581 {
2582 	int hsize;
2583 
2584 	hsize = 32;
2585 	while (hsize < maxvnodes)
2586 		hsize <<= 1;
2587 	while (hsize > maxvnodes * 2)
2588 		hsize >>= 1;		/* nominal 2x stacking */
2589 
2590 	if (maxvnodes > 1024 * 1024)
2591 		hsize >>= 1;		/* nominal 8x stacking */
2592 
2593 	if (maxvnodes > 128 * 1024)
2594 		hsize >>= 1;		/* nominal 4x stacking */
2595 
2596 	if (hsize < 16)
2597 		hsize = 16;
2598 
2599 	return hsize;
2600 }
2601 
2602 union _qcvt {
2603 	quad_t qcvt;
2604 	int32_t val[2];
2605 };
2606 
2607 #define SETHIGH(q, h) { \
2608 	union _qcvt tmp; \
2609 	tmp.qcvt = (q); \
2610 	tmp.val[_QUAD_HIGHWORD] = (h); \
2611 	(q) = tmp.qcvt; \
2612 }
2613 #define SETLOW(q, l) { \
2614 	union _qcvt tmp; \
2615 	tmp.qcvt = (q); \
2616 	tmp.val[_QUAD_LOWWORD] = (l); \
2617 	(q) = tmp.qcvt; \
2618 }
2619 
2620 u_quad_t
2621 init_va_filerev(void)
2622 {
2623 	struct timeval tv;
2624 	u_quad_t ret = 0;
2625 
2626 	getmicrouptime(&tv);
2627 	SETHIGH(ret, tv.tv_sec);
2628 	SETLOW(ret, tv.tv_usec * 4294);
2629 
2630 	return ret;
2631 }
2632 
2633 /*
2634  * Set default timestamp_precision.  If hz is reasonably high we go for
2635  * performance and limit vfs timestamps to microseconds with tick resolution.
2636  * If hz is too low, however, we lose a bit of performance to get a more
2637  * precise timestamp, because the mtime/ctime granularity might just be too
2638  * rough otherwise (for make and Makefile's, for example).
2639  */
2640 static void
2641 vfs_ts_prec_init(void *dummy)
2642 {
2643 	if (timestamp_precision < 0) {
2644 		if (hz >= 100)
2645 			timestamp_precision = TSP_USEC;
2646 		else
2647 			timestamp_precision = TSP_USEC_PRECISE;
2648 	}
2649 }
2650 SYSINIT(vfs_ts_prec_init, SI_SUB_VFS, SI_ORDER_ANY, vfs_ts_prec_init, NULL);
2651