xref: /dragonfly/sys/kern/vfs_subr.c (revision 7d3e9a5b)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/fcntl.h>
54 #include <sys/file.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <vm/vm_page2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
90 
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 __read_mostly enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 __read_mostly int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 	   &maxvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void	vfs_free_addrlist (struct netexport *nep);
126 static int	vfs_free_netcred (struct radix_node *rn, void *w);
127 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 	            const struct export_args *argp);
130 static void vclean_vxlocked(struct vnode *vp, int flags);
131 
132 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
133 
134 /*
135  * Red black tree functions
136  */
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
143 {
144 	if (b1->b_loffset < b2->b_loffset)
145 		return(-1);
146 	if (b1->b_loffset > b2->b_loffset)
147 		return(1);
148 	return(0);
149 }
150 
151 /*
152  * Initialize the vnode management data structures.
153  *
154  * Called from vfsinit()
155  */
156 #define VNBREAKMEM1	(1L * 1024 * 1024 * 1024)
157 #define VNBREAKMEM2	(7L * 1024 * 1024 * 1024)
158 #define MINVNODES	2000
159 #define MAXVNODES	4000000
160 
161 void
162 vfs_subr_init(void)
163 {
164 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
165 	size_t freemem;
166 
167 	/*
168 	 * Size maxvnodes non-linearly to available memory.  Don't bloat
169 	 * the count on low-memory systems.  Scale up for systems with
170 	 * more than 1G and more than 8G of ram, but do so non-linearly
171 	 * because the value of a large maxvnodes count diminishes
172 	 * significantly beyond a certain point.
173 	 *
174 	 * The general minimum is maxproc * 8 (we want someone pushing
175 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
176 	 * does not affect this calculation.  The KvaSize limitation also
177 	 * typically does not affect this calculation (it is just in case
178 	 * the kernel VM space is made much smaller than main memory, which
179 	 * should no longer happen on 64-bit systems).
180 	 *
181 	 * There isn't much of a point allowing maxvnodes to exceed a
182 	 * few million as modern filesystems cache pages in the
183 	 * underlying block device and not so much hanging off of VM
184 	 * objects.
185 	 *
186 	 * Also, VM objects, vnodes, and filesystem inode and other related
187 	 * structures have gotten a lot larger in recent years and the kernel
188 	 * memory use tends to scale with maxvnodes, so we don't want to bloat
189 	 * it too much.  But neither do we want the max set too low because
190 	 * systems with large amounts of memory and cores are capable of
191 	 * doing a hell of a lot.
192 	 */
193 	factor1 = 80 * (sizeof(struct vm_object) + sizeof(struct vnode));
194 
195 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
196 
197 	maxvnodes = freemem / factor1;
198 	if (freemem > VNBREAKMEM1) {
199 		freemem -= VNBREAKMEM1;
200 		if (freemem < VNBREAKMEM2) {
201 			maxvnodes += freemem / factor1 / 2;
202 		} else {
203 			maxvnodes += VNBREAKMEM2 / factor1 / 2;
204 			freemem -= VNBREAKMEM2;
205 			maxvnodes += freemem / factor1 / 4;
206 		}
207 	}
208 	maxvnodes = imax(maxvnodes, maxproc * 8);
209 	maxvnodes = imin(maxvnodes, KvaSize / factor1);
210 	maxvnodes = imin(maxvnodes, MAXVNODES);
211 	maxvnodes = imax(maxvnodes, MINVNODES);
212 
213 	lwkt_token_init(&spechash_token, "spechash");
214 }
215 
216 /*
217  * Knob to control the precision of file timestamps:
218  *
219  *   0 = seconds only; nanoseconds zeroed.
220  *   1 = microseconds accurate to tick precision
221  *   2 = microseconds accurate to tick precision	(default, hz >= 100)
222  *   3 = nanoseconds accurate to tick precision
223  *   4 = microseconds, maximum precision		(default, hz < 100)
224  *   5 = nanoseconds, maximum precision
225  *
226  * Note that utimes() precision is microseconds because it takes a timeval
227  * structure, so its probably best to default to USEC or USEC_PRECISE, and
228  * not NSEC.
229  */
230 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
231        TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
232 
233 __read_mostly static int timestamp_precision = -1;
234 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
235 		&timestamp_precision, 0, "Precision of file timestamps");
236 
237 /*
238  * Get a current timestamp.
239  *
240  * MPSAFE
241  */
242 void
243 vfs_timestamp(struct timespec *tsp)
244 {
245 	switch (timestamp_precision) {
246 	case TSP_SEC:		/* seconds precision */
247 		getnanotime(tsp);
248 		tsp->tv_nsec = 0;
249 		break;
250 	case TSP_HZ:		/* ticks precision (limit to microseconds) */
251 		getnanotime(tsp);
252 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
253 		break;
254 	default:
255 	case TSP_USEC:		/* microseconds (ticks precision) */
256 		getnanotime(tsp);
257 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
258 		break;
259 	case TSP_NSEC:		/* nanoseconds (ticks precision) */
260 		getnanotime(tsp);
261 		break;
262 	case TSP_USEC_PRECISE:	/* microseconds (high preceision) */
263 		nanotime(tsp);
264 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
265 		break;
266 	case TSP_NSEC_PRECISE:	/* nanoseconds (high precision) */
267 		nanotime(tsp);
268 		break;
269 	}
270 }
271 
272 /*
273  * Set vnode attributes to VNOVAL
274  */
275 void
276 vattr_null(struct vattr *vap)
277 {
278 	vap->va_type = VNON;
279 	vap->va_size = VNOVAL;
280 	vap->va_bytes = VNOVAL;
281 	vap->va_mode = VNOVAL;
282 	vap->va_nlink = VNOVAL;
283 	vap->va_uid = VNOVAL;
284 	vap->va_gid = VNOVAL;
285 	vap->va_fsid = VNOVAL;
286 	vap->va_fileid = VNOVAL;
287 	vap->va_blocksize = VNOVAL;
288 	vap->va_rmajor = VNOVAL;
289 	vap->va_rminor = VNOVAL;
290 	vap->va_atime.tv_sec = VNOVAL;
291 	vap->va_atime.tv_nsec = VNOVAL;
292 	vap->va_mtime.tv_sec = VNOVAL;
293 	vap->va_mtime.tv_nsec = VNOVAL;
294 	vap->va_ctime.tv_sec = VNOVAL;
295 	vap->va_ctime.tv_nsec = VNOVAL;
296 	vap->va_flags = VNOVAL;
297 	vap->va_gen = VNOVAL;
298 	vap->va_vaflags = 0;
299 	/* va_*_uuid fields are only valid if related flags are set */
300 }
301 
302 /*
303  * Flush out and invalidate all buffers associated with a vnode.
304  *
305  * vp must be locked.
306  */
307 static int vinvalbuf_bp(struct buf *bp, void *data);
308 
309 struct vinvalbuf_bp_info {
310 	struct vnode *vp;
311 	int slptimeo;
312 	int lkflags;
313 	int flags;
314 	int clean;
315 };
316 
317 int
318 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
319 {
320 	struct vinvalbuf_bp_info info;
321 	vm_object_t object;
322 	int error;
323 
324 	lwkt_gettoken(&vp->v_token);
325 
326 	/*
327 	 * If we are being asked to save, call fsync to ensure that the inode
328 	 * is updated.
329 	 */
330 	if (flags & V_SAVE) {
331 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
332 		if (error)
333 			goto done;
334 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
335 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
336 				goto done;
337 #if 0
338 			/*
339 			 * Dirty bufs may be left or generated via races
340 			 * in circumstances where vinvalbuf() is called on
341 			 * a vnode not undergoing reclamation.   Only
342 			 * panic if we are trying to reclaim the vnode.
343 			 */
344 			if ((vp->v_flag & VRECLAIMED) &&
345 			    (bio_track_active(&vp->v_track_write) ||
346 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
347 				panic("vinvalbuf: dirty bufs");
348 			}
349 #endif
350 		}
351   	}
352 	info.slptimeo = slptimeo;
353 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
354 	if (slpflag & PCATCH)
355 		info.lkflags |= LK_PCATCH;
356 	info.flags = flags;
357 	info.vp = vp;
358 
359 	/*
360 	 * Flush the buffer cache until nothing is left, wait for all I/O
361 	 * to complete.  At least one pass is required.  We might block
362 	 * in the pip code so we have to re-check.  Order is important.
363 	 */
364 	do {
365 		/*
366 		 * Flush buffer cache
367 		 */
368 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
369 			info.clean = 1;
370 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
371 					NULL, vinvalbuf_bp, &info);
372 		}
373 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
374 			info.clean = 0;
375 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
376 					NULL, vinvalbuf_bp, &info);
377 		}
378 
379 		/*
380 		 * Wait for I/O completion.
381 		 */
382 		bio_track_wait(&vp->v_track_write, 0, 0);
383 		if ((object = vp->v_object) != NULL)
384 			refcount_wait(&object->paging_in_progress, "vnvlbx");
385 	} while (bio_track_active(&vp->v_track_write) ||
386 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
387 		 !RB_EMPTY(&vp->v_rbdirty_tree));
388 
389 	/*
390 	 * Destroy the copy in the VM cache, too.
391 	 */
392 	if ((object = vp->v_object) != NULL) {
393 		vm_object_page_remove(object, 0, 0,
394 			(flags & V_SAVE) ? TRUE : FALSE);
395 	}
396 
397 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
398 		panic("vinvalbuf: flush failed");
399 	if (!RB_EMPTY(&vp->v_rbhash_tree))
400 		panic("vinvalbuf: flush failed, buffers still present");
401 	error = 0;
402 done:
403 	lwkt_reltoken(&vp->v_token);
404 	return (error);
405 }
406 
407 static int
408 vinvalbuf_bp(struct buf *bp, void *data)
409 {
410 	struct vinvalbuf_bp_info *info = data;
411 	int error;
412 
413 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
414 		atomic_add_int(&bp->b_refs, 1);
415 		error = BUF_TIMELOCK(bp, info->lkflags,
416 				     "vinvalbuf", info->slptimeo);
417 		atomic_subtract_int(&bp->b_refs, 1);
418 		if (error == 0) {
419 			BUF_UNLOCK(bp);
420 			error = ENOLCK;
421 		}
422 		if (error == ENOLCK)
423 			return(0);
424 		return (-error);
425 	}
426 	KKASSERT(bp->b_vp == info->vp);
427 
428 	/*
429 	 * Must check clean/dirty status after successfully locking as
430 	 * it may race.
431 	 */
432 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
433 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
434 		BUF_UNLOCK(bp);
435 		return(0);
436 	}
437 
438 	/*
439 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
440 	 * check.  This code will write out the buffer, period.
441 	 */
442 	bremfree(bp);
443 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
444 	    (info->flags & V_SAVE)) {
445 		cluster_awrite(bp);
446 	} else if (info->flags & V_SAVE) {
447 		/*
448 		 * Cannot set B_NOCACHE on a clean buffer as this will
449 		 * destroy the VM backing store which might actually
450 		 * be dirty (and unsynchronized).
451 		 */
452 		bp->b_flags |= (B_INVAL | B_RELBUF);
453 		brelse(bp);
454 	} else {
455 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
456 		brelse(bp);
457 	}
458 	return(0);
459 }
460 
461 /*
462  * Truncate a file's buffer and pages to a specified length.  This
463  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
464  * sync activity.
465  *
466  * The vnode must be locked.
467  */
468 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
469 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
470 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
471 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
472 
473 struct vtruncbuf_info {
474 	struct vnode *vp;
475 	off_t	truncloffset;
476 	int	clean;
477 };
478 
479 int
480 vtruncbuf(struct vnode *vp, off_t length, int blksize)
481 {
482 	struct vtruncbuf_info info;
483 	const char *filename;
484 	int count;
485 
486 	/*
487 	 * Round up to the *next* block, then destroy the buffers in question.
488 	 * Since we are only removing some of the buffers we must rely on the
489 	 * scan count to determine whether a loop is necessary.
490 	 */
491 	if ((count = (int)(length % blksize)) != 0)
492 		info.truncloffset = length + (blksize - count);
493 	else
494 		info.truncloffset = length;
495 	info.vp = vp;
496 
497 	lwkt_gettoken(&vp->v_token);
498 	do {
499 		info.clean = 1;
500 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
501 				vtruncbuf_bp_trunc_cmp,
502 				vtruncbuf_bp_trunc, &info);
503 		info.clean = 0;
504 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
505 				vtruncbuf_bp_trunc_cmp,
506 				vtruncbuf_bp_trunc, &info);
507 	} while(count);
508 
509 	/*
510 	 * For safety, fsync any remaining metadata if the file is not being
511 	 * truncated to 0.  Since the metadata does not represent the entire
512 	 * dirty list we have to rely on the hit count to ensure that we get
513 	 * all of it.
514 	 */
515 	if (length > 0) {
516 		do {
517 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
518 					vtruncbuf_bp_metasync_cmp,
519 					vtruncbuf_bp_metasync, &info);
520 		} while (count);
521 	}
522 
523 	/*
524 	 * Clean out any left over VM backing store.
525 	 *
526 	 * It is possible to have in-progress I/O from buffers that were
527 	 * not part of the truncation.  This should not happen if we
528 	 * are truncating to 0-length.
529 	 */
530 	vnode_pager_setsize(vp, length);
531 	bio_track_wait(&vp->v_track_write, 0, 0);
532 
533 	/*
534 	 * Debugging only
535 	 */
536 	spin_lock(&vp->v_spin);
537 	filename = TAILQ_FIRST(&vp->v_namecache) ?
538 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
539 	spin_unlock(&vp->v_spin);
540 
541 	/*
542 	 * Make sure no buffers were instantiated while we were trying
543 	 * to clean out the remaining VM pages.  This could occur due
544 	 * to busy dirty VM pages being flushed out to disk.
545 	 */
546 	do {
547 		info.clean = 1;
548 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
549 				vtruncbuf_bp_trunc_cmp,
550 				vtruncbuf_bp_trunc, &info);
551 		info.clean = 0;
552 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
553 				vtruncbuf_bp_trunc_cmp,
554 				vtruncbuf_bp_trunc, &info);
555 		if (count) {
556 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
557 			       "left over buffers in %s\n", count, filename);
558 		}
559 	} while(count);
560 
561 	lwkt_reltoken(&vp->v_token);
562 
563 	return (0);
564 }
565 
566 /*
567  * The callback buffer is beyond the new file EOF and must be destroyed.
568  * Note that the compare function must conform to the RB_SCAN's requirements.
569  */
570 static
571 int
572 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
573 {
574 	struct vtruncbuf_info *info = data;
575 
576 	if (bp->b_loffset >= info->truncloffset)
577 		return(0);
578 	return(-1);
579 }
580 
581 static
582 int
583 vtruncbuf_bp_trunc(struct buf *bp, void *data)
584 {
585 	struct vtruncbuf_info *info = data;
586 
587 	/*
588 	 * Do not try to use a buffer we cannot immediately lock, but sleep
589 	 * anyway to prevent a livelock.  The code will loop until all buffers
590 	 * can be acted upon.
591 	 *
592 	 * We must always revalidate the buffer after locking it to deal
593 	 * with MP races.
594 	 */
595 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
596 		atomic_add_int(&bp->b_refs, 1);
597 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
598 			BUF_UNLOCK(bp);
599 		atomic_subtract_int(&bp->b_refs, 1);
600 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
601 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
602 		   bp->b_vp != info->vp ||
603 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
604 		BUF_UNLOCK(bp);
605 	} else {
606 		bremfree(bp);
607 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
608 		brelse(bp);
609 	}
610 	return(1);
611 }
612 
613 /*
614  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
615  * blocks (with a negative loffset) are scanned.
616  * Note that the compare function must conform to the RB_SCAN's requirements.
617  */
618 static int
619 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
620 {
621 	if (bp->b_loffset < 0)
622 		return(0);
623 	return(1);
624 }
625 
626 static int
627 vtruncbuf_bp_metasync(struct buf *bp, void *data)
628 {
629 	struct vtruncbuf_info *info = data;
630 
631 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
632 		atomic_add_int(&bp->b_refs, 1);
633 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
634 			BUF_UNLOCK(bp);
635 		atomic_subtract_int(&bp->b_refs, 1);
636 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
637 		   bp->b_vp != info->vp ||
638 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
639 		BUF_UNLOCK(bp);
640 	} else {
641 		bremfree(bp);
642 		if (bp->b_vp == info->vp)
643 			bawrite(bp);
644 		else
645 			bwrite(bp);
646 	}
647 	return(1);
648 }
649 
650 /*
651  * vfsync - implements a multipass fsync on a file which understands
652  * dependancies and meta-data.  The passed vnode must be locked.  The
653  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
654  *
655  * When fsyncing data asynchronously just do one consolidated pass starting
656  * with the most negative block number.  This may not get all the data due
657  * to dependancies.
658  *
659  * When fsyncing data synchronously do a data pass, then a metadata pass,
660  * then do additional data+metadata passes to try to get all the data out.
661  *
662  * Caller must ref the vnode but does not have to lock it.
663  */
664 static int vfsync_wait_output(struct vnode *vp,
665 			    int (*waitoutput)(struct vnode *, struct thread *));
666 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
667 static int vfsync_data_only_cmp(struct buf *bp, void *data);
668 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
669 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
670 static int vfsync_bp(struct buf *bp, void *data);
671 
672 struct vfsync_info {
673 	struct vnode *vp;
674 	int fastpass;
675 	int synchronous;
676 	int syncdeps;
677 	int lazycount;
678 	int lazylimit;
679 	int skippedbufs;
680 	int (*checkdef)(struct buf *);
681 	int (*cmpfunc)(struct buf *, void *);
682 };
683 
684 int
685 vfsync(struct vnode *vp, int waitfor, int passes,
686 	int (*checkdef)(struct buf *),
687 	int (*waitoutput)(struct vnode *, struct thread *))
688 {
689 	struct vfsync_info info;
690 	int error;
691 
692 	bzero(&info, sizeof(info));
693 	info.vp = vp;
694 	if ((info.checkdef = checkdef) == NULL)
695 		info.syncdeps = 1;
696 
697 	lwkt_gettoken(&vp->v_token);
698 
699 	switch(waitfor) {
700 	case MNT_LAZY | MNT_NOWAIT:
701 	case MNT_LAZY:
702 		/*
703 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
704 		 * number of data (not meta) pages we try to flush to 1MB.
705 		 * A non-zero return means that lazy limit was reached.
706 		 */
707 		info.lazylimit = 1024 * 1024;
708 		info.syncdeps = 1;
709 		info.cmpfunc = vfsync_lazy_range_cmp;
710 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
711 				vfsync_lazy_range_cmp, vfsync_bp, &info);
712 		info.cmpfunc = vfsync_meta_only_cmp;
713 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
714 			vfsync_meta_only_cmp, vfsync_bp, &info);
715 		if (error == 0)
716 			vp->v_lazyw = 0;
717 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
718 			vn_syncer_add(vp, 1);
719 		error = 0;
720 		break;
721 	case MNT_NOWAIT:
722 		/*
723 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
724 		 */
725 		info.syncdeps = 1;
726 		info.cmpfunc = vfsync_data_only_cmp;
727 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
728 			vfsync_bp, &info);
729 		info.cmpfunc = vfsync_meta_only_cmp;
730 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
731 			vfsync_bp, &info);
732 		error = 0;
733 		break;
734 	default:
735 		/*
736 		 * Synchronous.  Do a data-only pass, then a meta-data+data
737 		 * pass, then additional integrated passes to try to get
738 		 * all the dependancies flushed.
739 		 */
740 		info.cmpfunc = vfsync_data_only_cmp;
741 		info.fastpass = 1;
742 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
743 			vfsync_bp, &info);
744 		info.fastpass = 0;
745 		error = vfsync_wait_output(vp, waitoutput);
746 		if (error == 0) {
747 			info.skippedbufs = 0;
748 			info.cmpfunc = vfsync_dummy_cmp;
749 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
750 				vfsync_bp, &info);
751 			error = vfsync_wait_output(vp, waitoutput);
752 			if (info.skippedbufs) {
753 				kprintf("Warning: vfsync skipped %d dirty "
754 					"buf%s in pass2!\n",
755 					info.skippedbufs,
756 					((info.skippedbufs > 1) ? "s" : ""));
757 			}
758 		}
759 		while (error == 0 && passes > 0 &&
760 		       !RB_EMPTY(&vp->v_rbdirty_tree)
761 		) {
762 			info.skippedbufs = 0;
763 			if (--passes == 0) {
764 				info.synchronous = 1;
765 				info.syncdeps = 1;
766 			}
767 			info.cmpfunc = vfsync_dummy_cmp;
768 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
769 					vfsync_bp, &info);
770 			if (error < 0)
771 				error = -error;
772 			info.syncdeps = 1;
773 			if (error == 0)
774 				error = vfsync_wait_output(vp, waitoutput);
775 			if (info.skippedbufs && passes == 0) {
776 				kprintf("Warning: vfsync skipped %d dirty "
777 					"buf%s in final pass!\n",
778 					info.skippedbufs,
779 					((info.skippedbufs > 1) ? "s" : ""));
780 			}
781 		}
782 #if 0
783 		/*
784 		 * This case can occur normally because vnode lock might
785 		 * not be held.
786 		 */
787 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
788 			kprintf("dirty bufs left after final pass\n");
789 #endif
790 		break;
791 	}
792 	lwkt_reltoken(&vp->v_token);
793 
794 	return(error);
795 }
796 
797 static int
798 vfsync_wait_output(struct vnode *vp,
799 		   int (*waitoutput)(struct vnode *, struct thread *))
800 {
801 	int error;
802 
803 	error = bio_track_wait(&vp->v_track_write, 0, 0);
804 	if (waitoutput)
805 		error = waitoutput(vp, curthread);
806 	return(error);
807 }
808 
809 static int
810 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
811 {
812 	return(0);
813 }
814 
815 static int
816 vfsync_data_only_cmp(struct buf *bp, void *data)
817 {
818 	if (bp->b_loffset < 0)
819 		return(-1);
820 	return(0);
821 }
822 
823 static int
824 vfsync_meta_only_cmp(struct buf *bp, void *data)
825 {
826 	if (bp->b_loffset < 0)
827 		return(0);
828 	return(1);
829 }
830 
831 static int
832 vfsync_lazy_range_cmp(struct buf *bp, void *data)
833 {
834 	struct vfsync_info *info = data;
835 
836 	if (bp->b_loffset < info->vp->v_lazyw)
837 		return(-1);
838 	return(0);
839 }
840 
841 static int
842 vfsync_bp(struct buf *bp, void *data)
843 {
844 	struct vfsync_info *info = data;
845 	struct vnode *vp = info->vp;
846 	int error;
847 
848 	if (info->fastpass) {
849 		/*
850 		 * Ignore buffers that we cannot immediately lock.
851 		 */
852 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
853 			/*
854 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
855 			 * delay can mess up performance
856 			 *
857 			 * Another reason is that during a dirty-buffer
858 			 * scan a clustered write can start I/O on buffers
859 			 * ahead of the scan, causing the scan to not
860 			 * get a lock here.  Usually this means the write
861 			 * is already in progress so, in fact, we *want*
862 			 * to skip the buffer.
863 			 */
864 			++info->skippedbufs;
865 			return(0);
866 		}
867 	} else if (info->synchronous == 0) {
868 		/*
869 		 * Normal pass, give the buffer a little time to become
870 		 * available to us.
871 		 */
872 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
873 			++info->skippedbufs;
874 			return(0);
875 		}
876 	} else {
877 		/*
878 		 * Synchronous pass, give the buffer a lot of time before
879 		 * giving up.
880 		 */
881 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
882 			++info->skippedbufs;
883 			return(0);
884 		}
885 	}
886 
887 	/*
888 	 * We must revalidate the buffer after locking.
889 	 */
890 	if ((bp->b_flags & B_DELWRI) == 0 ||
891 	    bp->b_vp != info->vp ||
892 	    info->cmpfunc(bp, data)) {
893 		BUF_UNLOCK(bp);
894 		return(0);
895 	}
896 
897 	/*
898 	 * If syncdeps is not set we do not try to write buffers which have
899 	 * dependancies.
900 	 */
901 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
902 		BUF_UNLOCK(bp);
903 		return(0);
904 	}
905 
906 	/*
907 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
908 	 * has been written but an additional handshake with the device
909 	 * is required before we can dispose of the buffer.  We have no idea
910 	 * how to do this so we have to skip these buffers.
911 	 */
912 	if (bp->b_flags & B_NEEDCOMMIT) {
913 		BUF_UNLOCK(bp);
914 		return(0);
915 	}
916 
917 	/*
918 	 * Ask bioops if it is ok to sync.  If not the VFS may have
919 	 * set B_LOCKED so we have to cycle the buffer.
920 	 */
921 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
922 		bremfree(bp);
923 		brelse(bp);
924 		return(0);
925 	}
926 
927 	if (info->synchronous) {
928 		/*
929 		 * Synchronous flush.  An error may be returned and will
930 		 * stop the scan.
931 		 */
932 		bremfree(bp);
933 		error = bwrite(bp);
934 	} else {
935 		/*
936 		 * Asynchronous flush.  We use the error return to support
937 		 * MNT_LAZY flushes.
938 		 *
939 		 * In low-memory situations we revert to synchronous
940 		 * operation.  This should theoretically prevent the I/O
941 		 * path from exhausting memory in a non-recoverable way.
942 		 */
943 		vp->v_lazyw = bp->b_loffset;
944 		bremfree(bp);
945 		if (vm_paging_min()) {
946 			/* low memory */
947 			info->lazycount += bp->b_bufsize;
948 			bwrite(bp);
949 		} else {
950 			/* normal */
951 			info->lazycount += cluster_awrite(bp);
952 			waitrunningbufspace();
953 			/*vm_wait_nominal();*/
954 		}
955 		if (info->lazylimit && info->lazycount >= info->lazylimit)
956 			error = 1;
957 		else
958 			error = 0;
959 	}
960 	return(-error);
961 }
962 
963 /*
964  * Associate a buffer with a vnode.
965  *
966  * MPSAFE
967  */
968 int
969 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
970 {
971 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
972 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
973 
974 	/*
975 	 * Insert onto list for new vnode.
976 	 */
977 	lwkt_gettoken(&vp->v_token);
978 
979 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
980 		lwkt_reltoken(&vp->v_token);
981 		return (EEXIST);
982 	}
983 
984 	/*
985 	 * Diagnostics (mainly for HAMMER debugging).  Check for
986 	 * overlapping buffers.
987 	 */
988 	if (check_buf_overlap) {
989 		struct buf *bx;
990 		bx = buf_rb_hash_RB_PREV(bp);
991 		if (bx) {
992 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
993 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
994 					"bx %p bp %p\n",
995 					(intmax_t)bx->b_loffset,
996 					bx->b_bufsize,
997 					(intmax_t)bp->b_loffset,
998 					bx, bp);
999 				if (check_buf_overlap > 1)
1000 					panic("bgetvp - overlapping buffer");
1001 			}
1002 		}
1003 		bx = buf_rb_hash_RB_NEXT(bp);
1004 		if (bx) {
1005 			if (bp->b_loffset + testsize > bx->b_loffset) {
1006 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
1007 					"bp %p bx %p\n",
1008 					(intmax_t)bp->b_loffset,
1009 					testsize,
1010 					(intmax_t)bx->b_loffset,
1011 					bp, bx);
1012 				if (check_buf_overlap > 1)
1013 					panic("bgetvp - overlapping buffer");
1014 			}
1015 		}
1016 	}
1017 	bp->b_vp = vp;
1018 	bp->b_flags |= B_HASHED;
1019 	bp->b_flags |= B_VNCLEAN;
1020 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1021 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1022 	/*vhold(vp);*/
1023 	lwkt_reltoken(&vp->v_token);
1024 	return(0);
1025 }
1026 
1027 /*
1028  * Disassociate a buffer from a vnode.
1029  *
1030  * MPSAFE
1031  */
1032 void
1033 brelvp(struct buf *bp)
1034 {
1035 	struct vnode *vp;
1036 
1037 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1038 
1039 	/*
1040 	 * Delete from old vnode list, if on one.
1041 	 */
1042 	vp = bp->b_vp;
1043 	lwkt_gettoken(&vp->v_token);
1044 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1045 		if (bp->b_flags & B_VNDIRTY)
1046 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1047 		else
1048 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1049 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1050 	}
1051 	if (bp->b_flags & B_HASHED) {
1052 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1053 		bp->b_flags &= ~B_HASHED;
1054 	}
1055 
1056 	/*
1057 	 * Only remove from synclist when no dirty buffers are left AND
1058 	 * the VFS has not flagged the vnode's inode as being dirty.
1059 	 */
1060 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1061 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1062 		vn_syncer_remove(vp, 0);
1063 	}
1064 	bp->b_vp = NULL;
1065 
1066 	lwkt_reltoken(&vp->v_token);
1067 
1068 	/*vdrop(vp);*/
1069 }
1070 
1071 /*
1072  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1073  * This routine is called when the state of the B_DELWRI bit is changed.
1074  *
1075  * Must be called with vp->v_token held.
1076  * MPSAFE
1077  */
1078 void
1079 reassignbuf(struct buf *bp)
1080 {
1081 	struct vnode *vp = bp->b_vp;
1082 	int delay;
1083 
1084 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1085 	++reassignbufcalls;
1086 
1087 	/*
1088 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1089 	 * is not fully linked in.
1090 	 */
1091 	if (bp->b_flags & B_PAGING)
1092 		panic("cannot reassign paging buffer");
1093 
1094 	if (bp->b_flags & B_DELWRI) {
1095 		/*
1096 		 * Move to the dirty list, add the vnode to the worklist
1097 		 */
1098 		if (bp->b_flags & B_VNCLEAN) {
1099 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1100 			bp->b_flags &= ~B_VNCLEAN;
1101 		}
1102 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1103 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1104 				panic("reassignbuf: dup lblk vp %p bp %p",
1105 				      vp, bp);
1106 			}
1107 			bp->b_flags |= B_VNDIRTY;
1108 		}
1109 		if ((vp->v_flag & VONWORKLST) == 0) {
1110 			switch (vp->v_type) {
1111 			case VDIR:
1112 				delay = dirdelay;
1113 				break;
1114 			case VCHR:
1115 			case VBLK:
1116 				if (vp->v_rdev &&
1117 				    vp->v_rdev->si_mountpoint != NULL) {
1118 					delay = metadelay;
1119 					break;
1120 				}
1121 				/* fall through */
1122 			default:
1123 				delay = filedelay;
1124 			}
1125 			vn_syncer_add(vp, delay);
1126 		}
1127 	} else {
1128 		/*
1129 		 * Move to the clean list, remove the vnode from the worklist
1130 		 * if no dirty blocks remain.
1131 		 */
1132 		if (bp->b_flags & B_VNDIRTY) {
1133 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1134 			bp->b_flags &= ~B_VNDIRTY;
1135 		}
1136 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1137 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1138 				panic("reassignbuf: dup lblk vp %p bp %p",
1139 				      vp, bp);
1140 			}
1141 			bp->b_flags |= B_VNCLEAN;
1142 		}
1143 
1144 		/*
1145 		 * Only remove from synclist when no dirty buffers are left
1146 		 * AND the VFS has not flagged the vnode's inode as being
1147 		 * dirty.
1148 		 */
1149 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1150 		     VONWORKLST &&
1151 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1152 			vn_syncer_remove(vp, 0);
1153 		}
1154 	}
1155 }
1156 
1157 /*
1158  * Create a vnode for a block device.  Used for mounting the root file
1159  * system.
1160  *
1161  * A vref()'d vnode is returned.
1162  */
1163 extern struct vop_ops *devfs_vnode_dev_vops_p;
1164 int
1165 bdevvp(cdev_t dev, struct vnode **vpp)
1166 {
1167 	struct vnode *vp;
1168 	struct vnode *nvp;
1169 	int error;
1170 
1171 	if (dev == NULL) {
1172 		*vpp = NULLVP;
1173 		return (ENXIO);
1174 	}
1175 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1176 				&nvp, 0, 0);
1177 	if (error) {
1178 		*vpp = NULLVP;
1179 		return (error);
1180 	}
1181 	vp = nvp;
1182 	vp->v_type = VCHR;
1183 #if 0
1184 	vp->v_rdev = dev;
1185 #endif
1186 	v_associate_rdev(vp, dev);
1187 	vp->v_umajor = dev->si_umajor;
1188 	vp->v_uminor = dev->si_uminor;
1189 	vx_unlock(vp);
1190 	*vpp = vp;
1191 	return (0);
1192 }
1193 
1194 int
1195 v_associate_rdev(struct vnode *vp, cdev_t dev)
1196 {
1197 	if (dev == NULL)
1198 		return(ENXIO);
1199 	if (dev_is_good(dev) == 0)
1200 		return(ENXIO);
1201 	KKASSERT(vp->v_rdev == NULL);
1202 	vp->v_rdev = reference_dev(dev);
1203 	lwkt_gettoken(&spechash_token);
1204 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1205 	lwkt_reltoken(&spechash_token);
1206 	return(0);
1207 }
1208 
1209 void
1210 v_release_rdev(struct vnode *vp)
1211 {
1212 	cdev_t dev;
1213 
1214 	if ((dev = vp->v_rdev) != NULL) {
1215 		lwkt_gettoken(&spechash_token);
1216 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1217 		vp->v_rdev = NULL;
1218 		release_dev(dev);
1219 		lwkt_reltoken(&spechash_token);
1220 	}
1221 }
1222 
1223 /*
1224  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1225  * the device number with the vnode.  The actual device is not associated
1226  * until the vnode is opened (usually in spec_open()), and will be
1227  * disassociated on last close.
1228  */
1229 void
1230 addaliasu(struct vnode *nvp, int x, int y)
1231 {
1232 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1233 		panic("addaliasu on non-special vnode");
1234 	nvp->v_umajor = x;
1235 	nvp->v_uminor = y;
1236 }
1237 
1238 /*
1239  * Simple call that a filesystem can make to try to get rid of a
1240  * vnode.  It will fail if anyone is referencing the vnode (including
1241  * the caller).
1242  *
1243  * The filesystem can check whether its in-memory inode structure still
1244  * references the vp on return.
1245  *
1246  * May only be called if the vnode is in a known state (i.e. being prevented
1247  * from being deallocated by some other condition such as a vfs inode hold).
1248  *
1249  * This call might not succeed.
1250  */
1251 void
1252 vclean_unlocked(struct vnode *vp)
1253 {
1254 	vx_get(vp);
1255 	if (VREFCNT(vp) <= 1)
1256 		vgone_vxlocked(vp);
1257 	vx_put(vp);
1258 }
1259 
1260 /*
1261  * Disassociate a vnode from its underlying filesystem.
1262  *
1263  * The vnode must be VX locked and referenced.  In all normal situations
1264  * there are no active references.  If vclean_vxlocked() is called while
1265  * there are active references, the vnode is being ripped out and we have
1266  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1267  */
1268 static void
1269 vclean_vxlocked(struct vnode *vp, int flags)
1270 {
1271 	int active;
1272 	int n;
1273 	vm_object_t object;
1274 	struct namecache *ncp;
1275 
1276 	/*
1277 	 * If the vnode has already been reclaimed we have nothing to do.
1278 	 */
1279 	if (vp->v_flag & VRECLAIMED)
1280 		return;
1281 
1282 	/*
1283 	 * Set flag to interlock operation, flag finalization to ensure
1284 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1285 	 */
1286 	vsetflags(vp, VRECLAIMED);
1287 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1288 	vp->v_act = 0;
1289 
1290 	if (verbose_reclaims) {
1291 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1292 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1293 	}
1294 
1295 	/*
1296 	 * Scrap the vfs cache
1297 	 */
1298 	while (cache_inval_vp(vp, 0) != 0) {
1299 		kprintf("Warning: vnode %p clean/cache_resolution "
1300 			"race detected\n", vp);
1301 		tsleep(vp, 0, "vclninv", 2);
1302 	}
1303 
1304 	/*
1305 	 * Check to see if the vnode is in use. If so we have to reference it
1306 	 * before we clean it out so that its count cannot fall to zero and
1307 	 * generate a race against ourselves to recycle it.
1308 	 */
1309 	active = (VREFCNT(vp) > 0);
1310 
1311 	/*
1312 	 * Clean out any buffers associated with the vnode and destroy its
1313 	 * object, if it has one.
1314 	 */
1315 	vinvalbuf(vp, V_SAVE, 0, 0);
1316 
1317 	/*
1318 	 * If purging an active vnode (typically during a forced unmount
1319 	 * or reboot), it must be closed and deactivated before being
1320 	 * reclaimed.  This isn't really all that safe, but what can
1321 	 * we do? XXX.
1322 	 *
1323 	 * Note that neither of these routines unlocks the vnode.
1324 	 */
1325 	if (active && (flags & DOCLOSE)) {
1326 		while ((n = vp->v_opencount) != 0) {
1327 			if (vp->v_writecount)
1328 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1329 			else
1330 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1331 			if (vp->v_opencount == n) {
1332 				kprintf("Warning: unable to force-close"
1333 				       " vnode %p\n", vp);
1334 				break;
1335 			}
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1341 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1342 	 * again to make sure they all get flushed.
1343 	 *
1344 	 * This can occur if a file with a link count of 0 needs to be
1345 	 * truncated.
1346 	 *
1347 	 * If the vnode is already dead don't try to deactivate it.
1348 	 */
1349 	if ((vp->v_flag & VINACTIVE) == 0) {
1350 		vsetflags(vp, VINACTIVE);
1351 		if (vp->v_mount)
1352 			VOP_INACTIVE(vp);
1353 		vinvalbuf(vp, V_SAVE, 0, 0);
1354 	}
1355 
1356 	/*
1357 	 * If the vnode has an object, destroy it.
1358 	 */
1359 	while ((object = vp->v_object) != NULL) {
1360 		vm_object_hold(object);
1361 		if (object == vp->v_object)
1362 			break;
1363 		vm_object_drop(object);
1364 	}
1365 
1366 	if (object != NULL) {
1367 		if (object->ref_count == 0) {
1368 			if ((object->flags & OBJ_DEAD) == 0)
1369 				vm_object_terminate(object);
1370 			vm_object_drop(object);
1371 			vclrflags(vp, VOBJBUF);
1372 		} else {
1373 			vm_pager_deallocate(object);
1374 			vclrflags(vp, VOBJBUF);
1375 			vm_object_drop(object);
1376 		}
1377 	}
1378 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1379 
1380 	if (vp->v_flag & VOBJDIRTY)
1381 		vclrobjdirty(vp);
1382 
1383 	/*
1384 	 * Reclaim the vnode if not already dead.
1385 	 */
1386 	if (vp->v_mount && VOP_RECLAIM(vp))
1387 		panic("vclean: cannot reclaim");
1388 
1389 	/*
1390 	 * Done with purge, notify sleepers of the grim news.
1391 	 */
1392 	vp->v_ops = &dead_vnode_vops_p;
1393 	vn_gone(vp);
1394 	vp->v_tag = VT_NON;
1395 
1396 	/*
1397 	 * If we are destroying an active vnode, reactivate it now that
1398 	 * we have reassociated it with deadfs.  This prevents the system
1399 	 * from crashing on the vnode due to it being unexpectedly marked
1400 	 * as inactive or reclaimed.
1401 	 */
1402 	if (active && (flags & DOCLOSE)) {
1403 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1404 	}
1405 }
1406 
1407 /*
1408  * Eliminate all activity associated with the requested vnode
1409  * and with all vnodes aliased to the requested vnode.
1410  *
1411  * The vnode must be referenced but should not be locked.
1412  */
1413 int
1414 vrevoke(struct vnode *vp, struct ucred *cred)
1415 {
1416 	struct vnode *vq;
1417 	struct vnode *vqn;
1418 	cdev_t dev;
1419 	int error;
1420 
1421 	/*
1422 	 * If the vnode has a device association, scrap all vnodes associated
1423 	 * with the device.  Don't let the device disappear on us while we
1424 	 * are scrapping the vnodes.
1425 	 *
1426 	 * The passed vp will probably show up in the list, do not VX lock
1427 	 * it twice!
1428 	 *
1429 	 * Releasing the vnode's rdev here can mess up specfs's call to
1430 	 * device close, so don't do it.  The vnode has been disassociated
1431 	 * and the device will be closed after the last ref on the related
1432 	 * fp goes away (if not still open by e.g. the kernel).
1433 	 */
1434 	if (vp->v_type != VCHR) {
1435 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1436 		return (error);
1437 	}
1438 	if ((dev = vp->v_rdev) == NULL) {
1439 		return(0);
1440 	}
1441 	reference_dev(dev);
1442 	lwkt_gettoken(&spechash_token);
1443 
1444 restart:
1445 	vqn = SLIST_FIRST(&dev->si_hlist);
1446 	if (vqn)
1447 		vhold(vqn);
1448 	while ((vq = vqn) != NULL) {
1449 		if (VREFCNT(vq) > 0) {
1450 			vref(vq);
1451 			fdrevoke(vq, DTYPE_VNODE, cred);
1452 			/*v_release_rdev(vq);*/
1453 			vrele(vq);
1454 			if (vq->v_rdev != dev) {
1455 				vdrop(vq);
1456 				goto restart;
1457 			}
1458 		}
1459 		vqn = SLIST_NEXT(vq, v_cdevnext);
1460 		if (vqn)
1461 			vhold(vqn);
1462 		vdrop(vq);
1463 	}
1464 	lwkt_reltoken(&spechash_token);
1465 	dev_drevoke(dev);
1466 	release_dev(dev);
1467 	return (0);
1468 }
1469 
1470 /*
1471  * This is called when the object underlying a vnode is being destroyed,
1472  * such as in a remove().  Try to recycle the vnode immediately if the
1473  * only active reference is our reference.
1474  *
1475  * Directory vnodes in the namecache with children cannot be immediately
1476  * recycled because numerous VOP_N*() ops require them to be stable.
1477  *
1478  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1479  * function is a NOP if VRECLAIMED is already set.
1480  */
1481 int
1482 vrecycle(struct vnode *vp)
1483 {
1484 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1485 		if (cache_inval_vp_nonblock(vp))
1486 			return(0);
1487 		vgone_vxlocked(vp);
1488 		return (1);
1489 	}
1490 	return (0);
1491 }
1492 
1493 /*
1494  * Return the maximum I/O size allowed for strategy calls on VP.
1495  *
1496  * If vp is VCHR or VBLK we dive the device, otherwise we use
1497  * the vp's mount info.
1498  *
1499  * The returned value is clamped at MAXPHYS as most callers cannot use
1500  * buffers larger than that size.
1501  */
1502 int
1503 vmaxiosize(struct vnode *vp)
1504 {
1505 	int maxiosize;
1506 
1507 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1508 		maxiosize = vp->v_rdev->si_iosize_max;
1509 	else
1510 		maxiosize = vp->v_mount->mnt_iosize_max;
1511 
1512 	if (maxiosize > MAXPHYS)
1513 		maxiosize = MAXPHYS;
1514 	return (maxiosize);
1515 }
1516 
1517 /*
1518  * Eliminate all activity associated with a vnode in preparation for
1519  * destruction.
1520  *
1521  * The vnode must be VX locked and refd and will remain VX locked and refd
1522  * on return.  This routine may be called with the vnode in any state, as
1523  * long as it is VX locked.  The vnode will be cleaned out and marked
1524  * VRECLAIMED but will not actually be reused until all existing refs and
1525  * holds go away.
1526  *
1527  * NOTE: This routine may be called on a vnode which has not yet been
1528  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1529  * already been reclaimed.
1530  *
1531  * This routine is not responsible for placing us back on the freelist.
1532  * Instead, it happens automatically when the caller releases the VX lock
1533  * (assuming there aren't any other references).
1534  */
1535 void
1536 vgone_vxlocked(struct vnode *vp)
1537 {
1538 	/*
1539 	 * assert that the VX lock is held.  This is an absolute requirement
1540 	 * now for vgone_vxlocked() to be called.
1541 	 */
1542 	KKASSERT(lockinuse(&vp->v_lock));
1543 
1544 	/*
1545 	 * Clean out the filesystem specific data and set the VRECLAIMED
1546 	 * bit.  Also deactivate the vnode if necessary.
1547 	 *
1548 	 * The vnode should have automatically been removed from the syncer
1549 	 * list as syncer/dirty flags cleared during the cleaning.
1550 	 */
1551 	vclean_vxlocked(vp, DOCLOSE);
1552 
1553 	/*
1554 	 * Normally panic if the vnode is still dirty, unless we are doing
1555 	 * a forced unmount (tmpfs typically).
1556 	 */
1557 	if (vp->v_flag & VONWORKLST) {
1558 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1559 			/* force removal */
1560 			vn_syncer_remove(vp, 1);
1561 		} else {
1562 			panic("vp %p still dirty in vgone after flush", vp);
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * Delete from old mount point vnode list, if on one.
1568 	 */
1569 	if (vp->v_mount != NULL) {
1570 		KKASSERT(vp->v_data == NULL);
1571 		insmntque(vp, NULL);
1572 	}
1573 
1574 	/*
1575 	 * If special device, remove it from special device alias list
1576 	 * if it is on one.  This should normally only occur if a vnode is
1577 	 * being revoked as the device should otherwise have been released
1578 	 * naturally.
1579 	 */
1580 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1581 		v_release_rdev(vp);
1582 	}
1583 
1584 	/*
1585 	 * Set us to VBAD
1586 	 */
1587 	vp->v_type = VBAD;
1588 }
1589 
1590 /*
1591  * Calculate the total number of references to a special device.  This
1592  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1593  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1594  * have to check for a NULL v_rdev.
1595  */
1596 int
1597 count_dev(cdev_t dev)
1598 {
1599 	struct vnode *vp;
1600 	int count = 0;
1601 
1602 	if (SLIST_FIRST(&dev->si_hlist)) {
1603 		lwkt_gettoken(&spechash_token);
1604 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1605 			count += vp->v_opencount;
1606 		}
1607 		lwkt_reltoken(&spechash_token);
1608 	}
1609 	return(count);
1610 }
1611 
1612 int
1613 vcount(struct vnode *vp)
1614 {
1615 	if (vp->v_rdev == NULL)
1616 		return(0);
1617 	return(count_dev(vp->v_rdev));
1618 }
1619 
1620 /*
1621  * Initialize VMIO for a vnode.  This routine MUST be called before a
1622  * VFS can issue buffer cache ops on a vnode.  It is typically called
1623  * when a vnode is initialized from its inode.
1624  */
1625 int
1626 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1627 {
1628 	vm_object_t object;
1629 	int error = 0;
1630 
1631 	object = vp->v_object;
1632 	if (object) {
1633 		vm_object_hold(object);
1634 		KKASSERT(vp->v_object == object);
1635 	}
1636 
1637 	if (object == NULL) {
1638 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1639 
1640 		/*
1641 		 * Dereference the reference we just created.  This assumes
1642 		 * that the object is associated with the vp.  Allow it to
1643 		 * have zero refs.  It cannot be destroyed as long as it
1644 		 * is associated with the vnode.
1645 		 */
1646 		vm_object_hold(object);
1647 		atomic_add_int(&object->ref_count, -1);
1648 		vrele(vp);
1649 	} else {
1650 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1651 	}
1652 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1653 	vsetflags(vp, VOBJBUF);
1654 	vm_object_drop(object);
1655 
1656 	return (error);
1657 }
1658 
1659 
1660 /*
1661  * Print out a description of a vnode.
1662  */
1663 static char *typename[] =
1664 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1665 
1666 void
1667 vprint(char *label, struct vnode *vp)
1668 {
1669 	char buf[96];
1670 
1671 	if (label != NULL)
1672 		kprintf("%s: %p: ", label, (void *)vp);
1673 	else
1674 		kprintf("%p: ", (void *)vp);
1675 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1676 		typename[vp->v_type],
1677 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1678 	buf[0] = '\0';
1679 	if (vp->v_flag & VROOT)
1680 		strcat(buf, "|VROOT");
1681 	if (vp->v_flag & VPFSROOT)
1682 		strcat(buf, "|VPFSROOT");
1683 	if (vp->v_flag & VTEXT)
1684 		strcat(buf, "|VTEXT");
1685 	if (vp->v_flag & VSYSTEM)
1686 		strcat(buf, "|VSYSTEM");
1687 	if (vp->v_flag & VOBJBUF)
1688 		strcat(buf, "|VOBJBUF");
1689 	if (buf[0] != '\0')
1690 		kprintf(" flags (%s)", &buf[1]);
1691 	if (vp->v_data == NULL) {
1692 		kprintf("\n");
1693 	} else {
1694 		kprintf("\n\t");
1695 		VOP_PRINT(vp);
1696 	}
1697 }
1698 
1699 /*
1700  * Do the usual access checking.
1701  * file_mode, uid and gid are from the vnode in question,
1702  * while acc_mode and cred are from the VOP_ACCESS parameter list
1703  */
1704 int
1705 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1706     mode_t acc_mode, struct ucred *cred)
1707 {
1708 	mode_t mask;
1709 	int ismember;
1710 
1711 	/*
1712 	 * Super-user always gets read/write access, but execute access depends
1713 	 * on at least one execute bit being set.
1714 	 */
1715 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1716 		if ((acc_mode & VEXEC) && type != VDIR &&
1717 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1718 			return (EACCES);
1719 		return (0);
1720 	}
1721 
1722 	mask = 0;
1723 
1724 	/* Otherwise, check the owner. */
1725 	if (cred->cr_uid == uid) {
1726 		if (acc_mode & VEXEC)
1727 			mask |= S_IXUSR;
1728 		if (acc_mode & VREAD)
1729 			mask |= S_IRUSR;
1730 		if (acc_mode & VWRITE)
1731 			mask |= S_IWUSR;
1732 		return ((file_mode & mask) == mask ? 0 : EACCES);
1733 	}
1734 
1735 	/* Otherwise, check the groups. */
1736 	ismember = groupmember(gid, cred);
1737 	if (cred->cr_svgid == gid || ismember) {
1738 		if (acc_mode & VEXEC)
1739 			mask |= S_IXGRP;
1740 		if (acc_mode & VREAD)
1741 			mask |= S_IRGRP;
1742 		if (acc_mode & VWRITE)
1743 			mask |= S_IWGRP;
1744 		return ((file_mode & mask) == mask ? 0 : EACCES);
1745 	}
1746 
1747 	/* Otherwise, check everyone else. */
1748 	if (acc_mode & VEXEC)
1749 		mask |= S_IXOTH;
1750 	if (acc_mode & VREAD)
1751 		mask |= S_IROTH;
1752 	if (acc_mode & VWRITE)
1753 		mask |= S_IWOTH;
1754 	return ((file_mode & mask) == mask ? 0 : EACCES);
1755 }
1756 
1757 #ifdef DDB
1758 #include <ddb/ddb.h>
1759 
1760 static int db_show_locked_vnodes(struct mount *mp, void *data);
1761 
1762 /*
1763  * List all of the locked vnodes in the system.
1764  * Called when debugging the kernel.
1765  */
1766 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1767 {
1768 	kprintf("Locked vnodes\n");
1769 	mountlist_scan(db_show_locked_vnodes, NULL,
1770 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1771 }
1772 
1773 static int
1774 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1775 {
1776 	struct vnode *vp;
1777 
1778 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1779 		if (vn_islocked(vp))
1780 			vprint(NULL, vp);
1781 	}
1782 	return(0);
1783 }
1784 #endif
1785 
1786 /*
1787  * Top level filesystem related information gathering.
1788  */
1789 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1790 
1791 static int
1792 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1793 {
1794 	int *name = (int *)arg1 - 1;	/* XXX */
1795 	u_int namelen = arg2 + 1;	/* XXX */
1796 	struct vfsconf *vfsp;
1797 	int maxtypenum;
1798 
1799 #if 1 || defined(COMPAT_PRELITE2)
1800 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1801 	if (namelen == 1)
1802 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1803 #endif
1804 
1805 #ifdef notyet
1806 	/* all sysctl names at this level are at least name and field */
1807 	if (namelen < 2)
1808 		return (ENOTDIR);		/* overloaded */
1809 	if (name[0] != VFS_GENERIC) {
1810 		vfsp = vfsconf_find_by_typenum(name[0]);
1811 		if (vfsp == NULL)
1812 			return (EOPNOTSUPP);
1813 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1814 		    oldp, oldlenp, newp, newlen, p));
1815 	}
1816 #endif
1817 	switch (name[1]) {
1818 	case VFS_MAXTYPENUM:
1819 		if (namelen != 2)
1820 			return (ENOTDIR);
1821 		maxtypenum = vfsconf_get_maxtypenum();
1822 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1823 	case VFS_CONF:
1824 		if (namelen != 3)
1825 			return (ENOTDIR);	/* overloaded */
1826 		vfsp = vfsconf_find_by_typenum(name[2]);
1827 		if (vfsp == NULL)
1828 			return (EOPNOTSUPP);
1829 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1830 	}
1831 	return (EOPNOTSUPP);
1832 }
1833 
1834 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1835 	"Generic filesystem");
1836 
1837 #if 1 || defined(COMPAT_PRELITE2)
1838 
1839 static int
1840 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1841 {
1842 	int error;
1843 	struct ovfsconf ovfs;
1844 	struct sysctl_req *req = (struct sysctl_req*) data;
1845 
1846 	bzero(&ovfs, sizeof(ovfs));
1847 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1848 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1849 	ovfs.vfc_index = vfsp->vfc_typenum;
1850 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1851 	ovfs.vfc_flags = vfsp->vfc_flags;
1852 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1853 	if (error)
1854 		return error; /* abort iteration with error code */
1855 	else
1856 		return 0; /* continue iterating with next element */
1857 }
1858 
1859 static int
1860 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1861 {
1862 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1863 }
1864 
1865 #endif /* 1 || COMPAT_PRELITE2 */
1866 
1867 /*
1868  * Check to see if a filesystem is mounted on a block device.
1869  */
1870 int
1871 vfs_mountedon(struct vnode *vp)
1872 {
1873 	cdev_t dev;
1874 
1875 	dev = vp->v_rdev;
1876 	if (dev != NULL && dev->si_mountpoint)
1877 		return (EBUSY);
1878 	return (0);
1879 }
1880 
1881 /*
1882  * Unmount all filesystems. The list is traversed in reverse order
1883  * of mounting to avoid dependencies.
1884  *
1885  * We want the umountall to be able to break out of its loop if a
1886  * failure occurs, after scanning all possible mounts, so the callback
1887  * returns 0 on error.
1888  *
1889  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1890  *	 confuse mountlist_scan()'s unbusy check.
1891  */
1892 static int vfs_umountall_callback(struct mount *mp, void *data);
1893 
1894 void
1895 vfs_unmountall(int halting)
1896 {
1897 	int count;
1898 
1899 	do {
1900 		count = mountlist_scan(vfs_umountall_callback, &halting,
1901 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1902 	} while (count);
1903 }
1904 
1905 static
1906 int
1907 vfs_umountall_callback(struct mount *mp, void *data)
1908 {
1909 	int error;
1910 	int halting = *(int *)data;
1911 
1912 	/*
1913 	 * NOTE: When halting, dounmount will disconnect but leave
1914 	 *	 certain mount points intact.  e.g. devfs.
1915 	 */
1916 	error = dounmount(mp, MNT_FORCE, halting);
1917 	if (error) {
1918 		kprintf("unmount of filesystem mounted from %s failed (",
1919 			mp->mnt_stat.f_mntfromname);
1920 		if (error == EBUSY)
1921 			kprintf("BUSY)\n");
1922 		else
1923 			kprintf("%d)\n", error);
1924 		return 0;
1925 	} else {
1926 		return 1;
1927 	}
1928 }
1929 
1930 /*
1931  * Checks the mount flags for parameter mp and put the names comma-separated
1932  * into a string buffer buf with a size limit specified by len.
1933  *
1934  * It returns the number of bytes written into buf, and (*errorp) will be
1935  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1936  * not large enough).  The buffer will be 0-terminated if len was not 0.
1937  */
1938 size_t
1939 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1940 	       char *buf, size_t len, int *errorp)
1941 {
1942 	static const struct mountctl_opt optnames[] = {
1943 		{ MNT_RDONLY,           "read-only" },
1944 		{ MNT_SYNCHRONOUS,      "synchronous" },
1945 		{ MNT_NOEXEC,           "noexec" },
1946 		{ MNT_NOSUID,           "nosuid" },
1947 		{ MNT_NODEV,            "nodev" },
1948 		{ MNT_AUTOMOUNTED,      "automounted" },
1949 		{ MNT_ASYNC,            "asynchronous" },
1950 		{ MNT_SUIDDIR,          "suiddir" },
1951 		{ MNT_SOFTDEP,          "soft-updates" },
1952 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1953 		{ MNT_TRIM,             "trim" },
1954 		{ MNT_NOATIME,          "noatime" },
1955 		{ MNT_NOCLUSTERR,       "noclusterr" },
1956 		{ MNT_NOCLUSTERW,       "noclusterw" },
1957 		{ MNT_EXRDONLY,         "NFS read-only" },
1958 		{ MNT_EXPORTED,         "NFS exported" },
1959 		/* Remaining NFS flags could come here */
1960 		{ MNT_LOCAL,            "local" },
1961 		{ MNT_QUOTA,            "with-quotas" },
1962 		/* { MNT_ROOTFS,           "rootfs" }, */
1963 		/* { MNT_IGNORE,           "ignore" }, */
1964 		{ 0,			NULL}
1965 	};
1966 	int bwritten;
1967 	int bleft;
1968 	int optlen;
1969 	int actsize;
1970 
1971 	*errorp = 0;
1972 	bwritten = 0;
1973 	bleft = len - 1;	/* leave room for trailing \0 */
1974 
1975 	/*
1976 	 * Checks the size of the string. If it contains
1977 	 * any data, then we will append the new flags to
1978 	 * it.
1979 	 */
1980 	actsize = strlen(buf);
1981 	if (actsize > 0)
1982 		buf += actsize;
1983 
1984 	/* Default flags if no flags passed */
1985 	if (optp == NULL)
1986 		optp = optnames;
1987 
1988 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1989 		*errorp = EINVAL;
1990 		return(0);
1991 	}
1992 
1993 	for (; flags && optp->o_opt; ++optp) {
1994 		if ((flags & optp->o_opt) == 0)
1995 			continue;
1996 		optlen = strlen(optp->o_name);
1997 		if (bwritten || actsize > 0) {
1998 			if (bleft < 2) {
1999 				*errorp = ENOSPC;
2000 				break;
2001 			}
2002 			buf[bwritten++] = ',';
2003 			buf[bwritten++] = ' ';
2004 			bleft -= 2;
2005 		}
2006 		if (bleft < optlen) {
2007 			*errorp = ENOSPC;
2008 			break;
2009 		}
2010 		bcopy(optp->o_name, buf + bwritten, optlen);
2011 		bwritten += optlen;
2012 		bleft -= optlen;
2013 		flags &= ~optp->o_opt;
2014 	}
2015 
2016 	/*
2017 	 * Space already reserved for trailing \0
2018 	 */
2019 	buf[bwritten] = 0;
2020 	return (bwritten);
2021 }
2022 
2023 /*
2024  * Build hash lists of net addresses and hang them off the mount point.
2025  * Called by ufs_mount() to set up the lists of export addresses.
2026  */
2027 static int
2028 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2029 		const struct export_args *argp)
2030 {
2031 	struct netcred *np;
2032 	struct radix_node_head *rnh;
2033 	int i;
2034 	struct radix_node *rn;
2035 	struct sockaddr *saddr, *smask = NULL;
2036 	int error;
2037 
2038 	if (argp->ex_addrlen == 0) {
2039 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2040 			return (EPERM);
2041 		np = &nep->ne_defexported;
2042 		np->netc_exflags = argp->ex_flags;
2043 		np->netc_anon = argp->ex_anon;
2044 		np->netc_anon.cr_ref = 1;
2045 		mp->mnt_flag |= MNT_DEFEXPORTED;
2046 		return (0);
2047 	}
2048 
2049 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2050 		return (EINVAL);
2051 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2052 		return (EINVAL);
2053 
2054 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2055 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2056 	saddr = (struct sockaddr *) (np + 1);
2057 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2058 		goto out;
2059 	if (saddr->sa_len > argp->ex_addrlen)
2060 		saddr->sa_len = argp->ex_addrlen;
2061 	if (argp->ex_masklen) {
2062 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2063 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2064 		if (error)
2065 			goto out;
2066 		if (smask->sa_len > argp->ex_masklen)
2067 			smask->sa_len = argp->ex_masklen;
2068 	}
2069 	NE_LOCK(nep);
2070 	if (nep->ne_maskhead == NULL) {
2071 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2072 			error = ENOBUFS;
2073 			goto out;
2074 		}
2075 	}
2076 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2077 		error = ENOBUFS;
2078 		goto out;
2079 	}
2080 	rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2081 				 np->netc_rnodes);
2082 	NE_UNLOCK(nep);
2083 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2084 		error = EPERM;
2085 		goto out;
2086 	}
2087 	np->netc_exflags = argp->ex_flags;
2088 	np->netc_anon = argp->ex_anon;
2089 	np->netc_anon.cr_ref = 1;
2090 	return (0);
2091 
2092 out:
2093 	kfree(np, M_NETCRED);
2094 	return (error);
2095 }
2096 
2097 /*
2098  * Free netcred structures installed in the netexport
2099  */
2100 static int
2101 vfs_free_netcred(struct radix_node *rn, void *w)
2102 {
2103 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2104 
2105 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2106 	kfree(rn, M_NETCRED);
2107 
2108 	return (0);
2109 }
2110 
2111 /*
2112  * callback to free an element of the mask table installed in the
2113  * netexport.  These may be created indirectly and are not netcred
2114  * structures.
2115  */
2116 static int
2117 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2118 {
2119 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2120 
2121 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2122 	kfree(rn, M_RTABLE);
2123 
2124 	return (0);
2125 }
2126 
2127 static struct radix_node_head *
2128 vfs_create_addrlist_af(int af, struct netexport *nep)
2129 {
2130 	struct radix_node_head *rnh = NULL;
2131 #if defined(INET) || defined(INET6)
2132 	struct radix_node_head *maskhead = nep->ne_maskhead;
2133 	int off;
2134 #endif
2135 
2136 	NE_ASSERT_LOCKED(nep);
2137 #if defined(INET) || defined(INET6)
2138 	KKASSERT(maskhead != NULL);
2139 #endif
2140 	switch (af) {
2141 #ifdef INET
2142 	case AF_INET:
2143 		if ((rnh = nep->ne_inethead) == NULL) {
2144 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2145 			if (!rn_inithead((void **)&rnh, maskhead, off))
2146 				return (NULL);
2147 			nep->ne_inethead = rnh;
2148 		}
2149 		break;
2150 #endif
2151 #ifdef INET6
2152 	case AF_INET6:
2153 		if ((rnh = nep->ne_inet6head) == NULL) {
2154 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2155 			if (!rn_inithead((void **)&rnh, maskhead, off))
2156 				return (NULL);
2157 			nep->ne_inet6head = rnh;
2158 		}
2159 		break;
2160 #endif
2161 	}
2162 	return (rnh);
2163 }
2164 
2165 /*
2166  * helper function for freeing netcred elements
2167  */
2168 static void
2169 vfs_free_addrlist_af(struct radix_node_head **prnh)
2170 {
2171 	struct radix_node_head *rnh = *prnh;
2172 
2173 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2174 	kfree(rnh, M_RTABLE);
2175 	*prnh = NULL;
2176 }
2177 
2178 /*
2179  * helper function for freeing mask elements
2180  */
2181 static void
2182 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2183 {
2184 	struct radix_node_head *rnh = *prnh;
2185 
2186 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2187 	kfree(rnh, M_RTABLE);
2188 	*prnh = NULL;
2189 }
2190 
2191 /*
2192  * Free the net address hash lists that are hanging off the mount points.
2193  */
2194 static void
2195 vfs_free_addrlist(struct netexport *nep)
2196 {
2197 	NE_LOCK(nep);
2198 	if (nep->ne_inethead != NULL)
2199 		vfs_free_addrlist_af(&nep->ne_inethead);
2200 	if (nep->ne_inet6head != NULL)
2201 		vfs_free_addrlist_af(&nep->ne_inet6head);
2202 	if (nep->ne_maskhead)
2203 		vfs_free_addrlist_masks(&nep->ne_maskhead);
2204 	NE_UNLOCK(nep);
2205 }
2206 
2207 int
2208 vfs_export(struct mount *mp, struct netexport *nep,
2209 	   const struct export_args *argp)
2210 {
2211 	int error;
2212 
2213 	if (argp->ex_flags & MNT_DELEXPORT) {
2214 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2215 			vfs_setpublicfs(NULL, NULL, NULL);
2216 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2217 		}
2218 		vfs_free_addrlist(nep);
2219 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2220 	}
2221 	if (argp->ex_flags & MNT_EXPORTED) {
2222 		if (argp->ex_flags & MNT_EXPUBLIC) {
2223 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2224 				return (error);
2225 			mp->mnt_flag |= MNT_EXPUBLIC;
2226 		}
2227 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2228 			return (error);
2229 		mp->mnt_flag |= MNT_EXPORTED;
2230 	}
2231 	return (0);
2232 }
2233 
2234 
2235 /*
2236  * Set the publicly exported filesystem (WebNFS). Currently, only
2237  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2238  */
2239 int
2240 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2241 		const struct export_args *argp)
2242 {
2243 	int error;
2244 	struct vnode *rvp;
2245 	char *cp;
2246 
2247 	/*
2248 	 * mp == NULL -> invalidate the current info, the FS is
2249 	 * no longer exported. May be called from either vfs_export
2250 	 * or unmount, so check if it hasn't already been done.
2251 	 */
2252 	if (mp == NULL) {
2253 		if (nfs_pub.np_valid) {
2254 			nfs_pub.np_valid = 0;
2255 			if (nfs_pub.np_index != NULL) {
2256 				kfree(nfs_pub.np_index, M_TEMP);
2257 				nfs_pub.np_index = NULL;
2258 			}
2259 		}
2260 		return (0);
2261 	}
2262 
2263 	/*
2264 	 * Only one allowed at a time.
2265 	 */
2266 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2267 		return (EBUSY);
2268 
2269 	/*
2270 	 * Get real filehandle for root of exported FS.
2271 	 */
2272 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2273 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2274 
2275 	if ((error = VFS_ROOT(mp, &rvp)))
2276 		return (error);
2277 
2278 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2279 		return (error);
2280 
2281 	vput(rvp);
2282 
2283 	/*
2284 	 * If an indexfile was specified, pull it in.
2285 	 */
2286 	if (argp->ex_indexfile != NULL) {
2287 		int namelen;
2288 
2289 		error = vn_get_namelen(rvp, &namelen);
2290 		if (error)
2291 			return (error);
2292 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2293 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2294 		    namelen, NULL);
2295 		if (!error) {
2296 			/*
2297 			 * Check for illegal filenames.
2298 			 */
2299 			for (cp = nfs_pub.np_index; *cp; cp++) {
2300 				if (*cp == '/') {
2301 					error = EINVAL;
2302 					break;
2303 				}
2304 			}
2305 		}
2306 		if (error) {
2307 			kfree(nfs_pub.np_index, M_TEMP);
2308 			return (error);
2309 		}
2310 	}
2311 
2312 	nfs_pub.np_mount = mp;
2313 	nfs_pub.np_valid = 1;
2314 	return (0);
2315 }
2316 
2317 struct netcred *
2318 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2319 		struct sockaddr *nam)
2320 {
2321 	struct netcred *np;
2322 	struct radix_node_head *rnh;
2323 	struct sockaddr *saddr;
2324 
2325 	np = NULL;
2326 	if (mp->mnt_flag & MNT_EXPORTED) {
2327 		/*
2328 		 * Lookup in the export list first.
2329 		 */
2330 		NE_LOCK(nep);
2331 		if (nam != NULL) {
2332 			saddr = nam;
2333 			switch (saddr->sa_family) {
2334 #ifdef INET
2335 			case AF_INET:
2336 				rnh = nep->ne_inethead;
2337 				break;
2338 #endif
2339 #ifdef INET6
2340 			case AF_INET6:
2341 				rnh = nep->ne_inet6head;
2342 				break;
2343 #endif
2344 			default:
2345 				rnh = NULL;
2346 			}
2347 			if (rnh != NULL) {
2348 				np = (struct netcred *)
2349 					(*rnh->rnh_matchaddr)((char *)saddr,
2350 							      rnh);
2351 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2352 					np = NULL;
2353 			}
2354 		}
2355 		NE_UNLOCK(nep);
2356 		/*
2357 		 * If no address match, use the default if it exists.
2358 		 */
2359 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2360 			np = &nep->ne_defexported;
2361 	}
2362 	return (np);
2363 }
2364 
2365 /*
2366  * perform msync on all vnodes under a mount point.  The mount point must
2367  * be locked.  This code is also responsible for lazy-freeing unreferenced
2368  * vnodes whos VM objects no longer contain pages.
2369  *
2370  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2371  *
2372  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2373  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2374  * way up in this high level function.
2375  */
2376 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2377 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2378 
2379 void
2380 vfs_msync(struct mount *mp, int flags)
2381 {
2382 	int vmsc_flags;
2383 
2384 	/*
2385 	 * tmpfs sets this flag to prevent msync(), sync, and the
2386 	 * filesystem periodic syncer from trying to flush VM pages
2387 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2388 	 * to swap.
2389 	 */
2390 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2391 		return;
2392 
2393 	/*
2394 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2395 	 * syncer thread feature we can use vsyncscan() instead of
2396 	 * vmntvnodescan(), which is much faster.
2397 	 */
2398 	vmsc_flags = VMSC_GETVP;
2399 	if (flags != MNT_WAIT)
2400 		vmsc_flags |= VMSC_NOWAIT;
2401 
2402 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2403 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2404 			  (void *)(intptr_t)flags);
2405 	} else {
2406 		vmntvnodescan(mp, vmsc_flags,
2407 			      vfs_msync_scan1, vfs_msync_scan2,
2408 			      (void *)(intptr_t)flags);
2409 	}
2410 }
2411 
2412 /*
2413  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2414  * vnodes, we cannot afford to do anything heavy weight until we have a
2415  * fairly good indication that there is work to do.
2416  *
2417  * The new namecache holds the vnode for each v_namecache association
2418  * so allow these refs.
2419  */
2420 static
2421 int
2422 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2423 {
2424 	int flags = (int)(intptr_t)data;
2425 
2426 	if ((vp->v_flag & VRECLAIMED) == 0) {
2427 		if (vp->v_auxrefs == vp->v_namecache_count &&
2428 		    VREFCNT(vp) <= 0 && vp->v_object) {
2429 			return(0);	/* call scan2 */
2430 		}
2431 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2432 		    (vp->v_flag & VOBJDIRTY) &&
2433 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2434 			return(0);	/* call scan2 */
2435 		}
2436 	}
2437 
2438 	/*
2439 	 * do not call scan2, continue the loop
2440 	 */
2441 	return(-1);
2442 }
2443 
2444 /*
2445  * This callback is handed a locked vnode.
2446  */
2447 static
2448 int
2449 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2450 {
2451 	vm_object_t obj;
2452 	int flags = (int)(intptr_t)data;
2453 	int opcflags;
2454 
2455 	if (vp->v_flag & VRECLAIMED)
2456 		return(0);
2457 
2458 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2459 		if ((obj = vp->v_object) != NULL) {
2460 			if (flags == MNT_WAIT) {
2461 				/*
2462 				 * VFS_MSYNC is called with MNT_WAIT when
2463 				 * unmounting.
2464 				 */
2465 				opcflags = OBJPC_SYNC;
2466 			} else if (vp->v_writecount || obj->ref_count) {
2467 				/*
2468 				 * VFS_MSYNC is otherwise called via the
2469 				 * periodic filesystem sync or the 'sync'
2470 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2471 				 * if the file is open for writing or memory
2472 				 * mapped.  Pages flagged PG_NOSYNC will not
2473 				 * be automatically flushed at this time.
2474 				 *
2475 				 * The obj->ref_count test is not perfect
2476 				 * since temporary refs may be present, but
2477 				 * the periodic filesystem sync will ultimately
2478 				 * catch it if the file is not open and not
2479 				 * mapped.
2480 				 */
2481 				opcflags = OBJPC_NOSYNC;
2482 			} else {
2483 				/*
2484 				 * If the file is no longer open for writing
2485 				 * and also no longer mapped, do not honor
2486 				 * MAP_NOSYNC.  That is, fully synchronize
2487 				 * the file.
2488 				 *
2489 				 * This still occurs on the periodic fs sync,
2490 				 * so frontend programs which turn the file
2491 				 * over quickly enough can still avoid the
2492 				 * sync, but ultimately we do want to flush
2493 				 * even MADV_NOSYNC pages once it is no longer
2494 				 * mapped or open for writing.
2495 				 */
2496 				opcflags = 0;
2497 			}
2498 			vm_object_page_clean(obj, 0, 0, opcflags);
2499 		}
2500 	}
2501 	return(0);
2502 }
2503 
2504 /*
2505  * Wake up anyone interested in vp because it is being revoked.
2506  */
2507 void
2508 vn_gone(struct vnode *vp)
2509 {
2510 	lwkt_gettoken(&vp->v_token);
2511 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2512 	lwkt_reltoken(&vp->v_token);
2513 }
2514 
2515 /*
2516  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2517  * (or v_rdev might be NULL).
2518  */
2519 cdev_t
2520 vn_todev(struct vnode *vp)
2521 {
2522 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2523 		return (NULL);
2524 	KKASSERT(vp->v_rdev != NULL);
2525 	return (vp->v_rdev);
2526 }
2527 
2528 /*
2529  * Check if vnode represents a disk device.  The vnode does not need to be
2530  * opened.
2531  *
2532  * MPALMOSTSAFE
2533  */
2534 int
2535 vn_isdisk(struct vnode *vp, int *errp)
2536 {
2537 	cdev_t dev;
2538 
2539 	if (vp->v_type != VCHR) {
2540 		if (errp != NULL)
2541 			*errp = ENOTBLK;
2542 		return (0);
2543 	}
2544 
2545 	dev = vp->v_rdev;
2546 
2547 	if (dev == NULL) {
2548 		if (errp != NULL)
2549 			*errp = ENXIO;
2550 		return (0);
2551 	}
2552 	if (dev_is_good(dev) == 0) {
2553 		if (errp != NULL)
2554 			*errp = ENXIO;
2555 		return (0);
2556 	}
2557 	if ((dev_dflags(dev) & D_DISK) == 0) {
2558 		if (errp != NULL)
2559 			*errp = ENOTBLK;
2560 		return (0);
2561 	}
2562 	if (errp != NULL)
2563 		*errp = 0;
2564 	return (1);
2565 }
2566 
2567 int
2568 vn_get_namelen(struct vnode *vp, int *namelen)
2569 {
2570 	int error;
2571 	register_t retval[2];
2572 
2573 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2574 	if (error)
2575 		return (error);
2576 	*namelen = (int)retval[0];
2577 	return (0);
2578 }
2579 
2580 int
2581 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2582 		uint16_t d_namlen, const char *d_name)
2583 {
2584 	struct dirent *dp;
2585 	size_t len;
2586 
2587 	len = _DIRENT_RECLEN(d_namlen);
2588 	if (len > uio->uio_resid)
2589 		return(1);
2590 
2591 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2592 
2593 	dp->d_ino = d_ino;
2594 	dp->d_namlen = d_namlen;
2595 	dp->d_type = d_type;
2596 	bcopy(d_name, dp->d_name, d_namlen);
2597 
2598 	*error = uiomove((caddr_t)dp, len, uio);
2599 
2600 	kfree(dp, M_TEMP);
2601 
2602 	return(0);
2603 }
2604 
2605 void
2606 vn_mark_atime(struct vnode *vp, struct thread *td)
2607 {
2608 	struct proc *p = td->td_proc;
2609 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2610 
2611 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2612 		VOP_MARKATIME(vp, cred);
2613 	}
2614 }
2615 
2616 /*
2617  * Calculate the number of entries in an inode-related chained hash table.
2618  * With today's memory sizes, maxvnodes can wind up being a very large
2619  * number.  There is no reason to waste memory, so tolerate some stacking.
2620  */
2621 int
2622 vfs_inodehashsize(void)
2623 {
2624 	int hsize;
2625 
2626 	hsize = 32;
2627 	while (hsize < maxvnodes)
2628 		hsize <<= 1;
2629 	while (hsize > maxvnodes * 2)
2630 		hsize >>= 1;		/* nominal 2x stacking */
2631 
2632 	if (maxvnodes > 1024 * 1024)
2633 		hsize >>= 1;		/* nominal 8x stacking */
2634 
2635 	if (maxvnodes > 128 * 1024)
2636 		hsize >>= 1;		/* nominal 4x stacking */
2637 
2638 	if (hsize < 16)
2639 		hsize = 16;
2640 
2641 	return hsize;
2642 }
2643 
2644 union _qcvt {
2645 	quad_t qcvt;
2646 	int32_t val[2];
2647 };
2648 
2649 #define SETHIGH(q, h) { \
2650 	union _qcvt tmp; \
2651 	tmp.qcvt = (q); \
2652 	tmp.val[_QUAD_HIGHWORD] = (h); \
2653 	(q) = tmp.qcvt; \
2654 }
2655 #define SETLOW(q, l) { \
2656 	union _qcvt tmp; \
2657 	tmp.qcvt = (q); \
2658 	tmp.val[_QUAD_LOWWORD] = (l); \
2659 	(q) = tmp.qcvt; \
2660 }
2661 
2662 u_quad_t
2663 init_va_filerev(void)
2664 {
2665 	struct timeval tv;
2666 	u_quad_t ret = 0;
2667 
2668 	getmicrouptime(&tv);
2669 	SETHIGH(ret, tv.tv_sec);
2670 	SETLOW(ret, tv.tv_usec * 4294);
2671 
2672 	return ret;
2673 }
2674 
2675 /*
2676  * Set default timestamp_precision.  If hz is reasonably high we go for
2677  * performance and limit vfs timestamps to microseconds with tick resolution.
2678  * If hz is too low, however, we lose a bit of performance to get a more
2679  * precise timestamp, because the mtime/ctime granularity might just be too
2680  * rough otherwise (for make and Makefile's, for example).
2681  */
2682 static void
2683 vfs_ts_prec_init(void *dummy)
2684 {
2685 	if (timestamp_precision < 0) {
2686 		if (hz >= 100)
2687 			timestamp_precision = TSP_USEC;
2688 		else
2689 			timestamp_precision = TSP_USEC_PRECISE;
2690 	}
2691 }
2692 SYSINIT(vfs_ts_prec_init, SI_SUB_VFS, SI_ORDER_ANY, vfs_ts_prec_init, NULL);
2693