xref: /dragonfly/sys/kern/vfs_subr.c (revision 8e9b4bd4)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.108 2007/11/02 19:52:25 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 #include <sys/sysref2.h>
87 
88 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
89 
90 int numvnodes;
91 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
92 int vfs_fastdev = 1;
93 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
94 
95 enum vtype iftovt_tab[16] = {
96 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
98 };
99 int vttoif_tab[9] = {
100 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 	S_IFSOCK, S_IFIFO, S_IFMT,
102 };
103 
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
106 		&reassignbufcalls, 0, "");
107 static int reassignbufloops;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
109 		&reassignbufloops, 0, "");
110 static int reassignbufsortgood;
111 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
112 		&reassignbufsortgood, 0, "");
113 static int reassignbufsortbad;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
115 		&reassignbufsortbad, 0, "");
116 static int reassignbufmethod = 1;
117 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
118 		&reassignbufmethod, 0, "");
119 
120 int	nfs_mount_type = -1;
121 static struct lwkt_token spechash_token;
122 struct nfs_public nfs_pub;	/* publicly exported FS */
123 
124 int desiredvnodes;
125 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
126 		&desiredvnodes, 0, "Maximum number of vnodes");
127 
128 static void	vfs_free_addrlist (struct netexport *nep);
129 static int	vfs_free_netcred (struct radix_node *rn, void *w);
130 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
131 				       struct export_args *argp);
132 
133 extern int dev_ref_debug;
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
144 {
145 	if (b1->b_loffset < b2->b_loffset)
146 		return(-1);
147 	if (b1->b_loffset > b2->b_loffset)
148 		return(1);
149 	return(0);
150 }
151 
152 /*
153  * Returns non-zero if the vnode is a candidate for lazy msyncing.
154  */
155 static __inline int
156 vshouldmsync(struct vnode *vp)
157 {
158 	if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
159 		return (0);		/* other holders */
160 	if (vp->v_object &&
161 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
162 		return (0);
163 	}
164 	return (1);
165 }
166 
167 /*
168  * Initialize the vnode management data structures.
169  *
170  * Called from vfsinit()
171  */
172 void
173 vfs_subr_init(void)
174 {
175 	/*
176 	 * Desired vnodes is a result of the physical page count
177 	 * and the size of kernel's heap.  It scales in proportion
178 	 * to the amount of available physical memory.  This can
179 	 * cause trouble on 64-bit and large memory platforms.
180 	 */
181 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
182 	desiredvnodes =
183 		min(maxproc + vmstats.v_page_count / 4,
184 		    2 * KvaSize /
185 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
186 
187 	lwkt_token_init(&spechash_token);
188 }
189 
190 /*
191  * Knob to control the precision of file timestamps:
192  *
193  *   0 = seconds only; nanoseconds zeroed.
194  *   1 = seconds and nanoseconds, accurate within 1/HZ.
195  *   2 = seconds and nanoseconds, truncated to microseconds.
196  * >=3 = seconds and nanoseconds, maximum precision.
197  */
198 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
199 
200 static int timestamp_precision = TSP_SEC;
201 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
202 		&timestamp_precision, 0, "");
203 
204 /*
205  * Get a current timestamp.
206  */
207 void
208 vfs_timestamp(struct timespec *tsp)
209 {
210 	struct timeval tv;
211 
212 	switch (timestamp_precision) {
213 	case TSP_SEC:
214 		tsp->tv_sec = time_second;
215 		tsp->tv_nsec = 0;
216 		break;
217 	case TSP_HZ:
218 		getnanotime(tsp);
219 		break;
220 	case TSP_USEC:
221 		microtime(&tv);
222 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
223 		break;
224 	case TSP_NSEC:
225 	default:
226 		nanotime(tsp);
227 		break;
228 	}
229 }
230 
231 /*
232  * Set vnode attributes to VNOVAL
233  */
234 void
235 vattr_null(struct vattr *vap)
236 {
237 	vap->va_type = VNON;
238 	vap->va_size = VNOVAL;
239 	vap->va_bytes = VNOVAL;
240 	vap->va_mode = VNOVAL;
241 	vap->va_nlink = VNOVAL;
242 	vap->va_uid = VNOVAL;
243 	vap->va_gid = VNOVAL;
244 	vap->va_fsid = VNOVAL;
245 	vap->va_fileid = VNOVAL;
246 	vap->va_blocksize = VNOVAL;
247 	vap->va_rmajor = VNOVAL;
248 	vap->va_rminor = VNOVAL;
249 	vap->va_atime.tv_sec = VNOVAL;
250 	vap->va_atime.tv_nsec = VNOVAL;
251 	vap->va_mtime.tv_sec = VNOVAL;
252 	vap->va_mtime.tv_nsec = VNOVAL;
253 	vap->va_ctime.tv_sec = VNOVAL;
254 	vap->va_ctime.tv_nsec = VNOVAL;
255 	vap->va_flags = VNOVAL;
256 	vap->va_gen = VNOVAL;
257 	vap->va_vaflags = 0;
258 	vap->va_fsmid = VNOVAL;
259 	/* va_*_uuid fields are only valid if related flags are set */
260 }
261 
262 /*
263  * Flush out and invalidate all buffers associated with a vnode.
264  *
265  * vp must be locked.
266  */
267 static int vinvalbuf_bp(struct buf *bp, void *data);
268 
269 struct vinvalbuf_bp_info {
270 	struct vnode *vp;
271 	int slptimeo;
272 	int lkflags;
273 	int flags;
274 };
275 
276 void
277 vupdatefsmid(struct vnode *vp)
278 {
279 	atomic_set_int(&vp->v_flag, VFSMID);
280 }
281 
282 int
283 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
284 {
285 	struct vinvalbuf_bp_info info;
286 	int error;
287 	vm_object_t object;
288 
289 	/*
290 	 * If we are being asked to save, call fsync to ensure that the inode
291 	 * is updated.
292 	 */
293 	if (flags & V_SAVE) {
294 		crit_enter();
295 		while (vp->v_track_write.bk_active) {
296 			vp->v_track_write.bk_waitflag = 1;
297 			error = tsleep(&vp->v_track_write, slpflag,
298 					"vinvlbuf", slptimeo);
299 			if (error) {
300 				crit_exit();
301 				return (error);
302 			}
303 		}
304 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
305 			crit_exit();
306 			if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
307 				return (error);
308 			crit_enter();
309 			if (vp->v_track_write.bk_active > 0 ||
310 			    !RB_EMPTY(&vp->v_rbdirty_tree))
311 				panic("vinvalbuf: dirty bufs");
312 		}
313 		crit_exit();
314   	}
315 	crit_enter();
316 	info.slptimeo = slptimeo;
317 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
318 	if (slpflag & PCATCH)
319 		info.lkflags |= LK_PCATCH;
320 	info.flags = flags;
321 	info.vp = vp;
322 
323 	/*
324 	 * Flush the buffer cache until nothing is left.
325 	 */
326 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
327 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
328 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
329 				vinvalbuf_bp, &info);
330 		if (error == 0) {
331 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
332 					vinvalbuf_bp, &info);
333 		}
334 	}
335 
336 	/*
337 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
338 	 * have write I/O in-progress but if there is a VM object then the
339 	 * VM object can also have read-I/O in-progress.
340 	 */
341 	do {
342 		while (vp->v_track_write.bk_active > 0) {
343 			vp->v_track_write.bk_waitflag = 1;
344 			tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
345 		}
346 		if ((object = vp->v_object) != NULL) {
347 			while (object->paging_in_progress)
348 				vm_object_pip_sleep(object, "vnvlbx");
349 		}
350 	} while (vp->v_track_write.bk_active > 0);
351 
352 	crit_exit();
353 
354 	/*
355 	 * Destroy the copy in the VM cache, too.
356 	 */
357 	if ((object = vp->v_object) != NULL) {
358 		vm_object_page_remove(object, 0, 0,
359 			(flags & V_SAVE) ? TRUE : FALSE);
360 	}
361 
362 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
363 		panic("vinvalbuf: flush failed");
364 	if (!RB_EMPTY(&vp->v_rbhash_tree))
365 		panic("vinvalbuf: flush failed, buffers still present");
366 	return (0);
367 }
368 
369 static int
370 vinvalbuf_bp(struct buf *bp, void *data)
371 {
372 	struct vinvalbuf_bp_info *info = data;
373 	int error;
374 
375 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
376 		error = BUF_TIMELOCK(bp, info->lkflags,
377 				     "vinvalbuf", info->slptimeo);
378 		if (error == 0) {
379 			BUF_UNLOCK(bp);
380 			error = ENOLCK;
381 		}
382 		if (error == ENOLCK)
383 			return(0);
384 		return (-error);
385 	}
386 
387 	KKASSERT(bp->b_vp == info->vp);
388 
389 	/*
390 	 * XXX Since there are no node locks for NFS, I
391 	 * believe there is a slight chance that a delayed
392 	 * write will occur while sleeping just above, so
393 	 * check for it.  Note that vfs_bio_awrite expects
394 	 * buffers to reside on a queue, while bwrite() and
395 	 * brelse() do not.
396 	 */
397 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
398 	    (info->flags & V_SAVE)) {
399 		if (bp->b_vp == info->vp) {
400 			if (bp->b_flags & B_CLUSTEROK) {
401 				vfs_bio_awrite(bp);
402 			} else {
403 				bremfree(bp);
404 				bp->b_flags |= B_ASYNC;
405 				bwrite(bp);
406 			}
407 		} else {
408 			bremfree(bp);
409 			bwrite(bp);
410 		}
411 	} else if (info->flags & V_SAVE) {
412 		/*
413 		 * Cannot set B_NOCACHE on a clean buffer as this will
414 		 * destroy the VM backing store which might actually
415 		 * be dirty (and unsynchronized).
416 		 */
417 		bremfree(bp);
418 		bp->b_flags |= (B_INVAL | B_RELBUF);
419 		bp->b_flags &= ~B_ASYNC;
420 		brelse(bp);
421 	} else {
422 		bremfree(bp);
423 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
424 		bp->b_flags &= ~B_ASYNC;
425 		brelse(bp);
426 	}
427 	return(0);
428 }
429 
430 /*
431  * Truncate a file's buffer and pages to a specified length.  This
432  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
433  * sync activity.
434  *
435  * The vnode must be locked.
436  */
437 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
438 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
439 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
440 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
441 
442 int
443 vtruncbuf(struct vnode *vp, off_t length, int blksize)
444 {
445 	off_t truncloffset;
446 	int count;
447 	const char *filename;
448 
449 	/*
450 	 * Round up to the *next* block, then destroy the buffers in question.
451 	 * Since we are only removing some of the buffers we must rely on the
452 	 * scan count to determine whether a loop is necessary.
453 	 */
454 	if ((count = (int)(length % blksize)) != 0)
455 		truncloffset = length + (blksize - count);
456 	else
457 		truncloffset = length;
458 
459 	crit_enter();
460 	do {
461 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
462 				vtruncbuf_bp_trunc_cmp,
463 				vtruncbuf_bp_trunc, &truncloffset);
464 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
465 				vtruncbuf_bp_trunc_cmp,
466 				vtruncbuf_bp_trunc, &truncloffset);
467 	} while(count);
468 
469 	/*
470 	 * For safety, fsync any remaining metadata if the file is not being
471 	 * truncated to 0.  Since the metadata does not represent the entire
472 	 * dirty list we have to rely on the hit count to ensure that we get
473 	 * all of it.
474 	 */
475 	if (length > 0) {
476 		do {
477 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
478 					vtruncbuf_bp_metasync_cmp,
479 					vtruncbuf_bp_metasync, vp);
480 		} while (count);
481 	}
482 
483 	/*
484 	 * Clean out any left over VM backing store.
485 	 */
486 	crit_exit();
487 
488 	vnode_pager_setsize(vp, length);
489 
490 	crit_enter();
491 
492 	/*
493 	 * It is possible to have in-progress I/O from buffers that were
494 	 * not part of the truncation.  This should not happen if we
495 	 * are truncating to 0-length.
496 	 */
497 	filename = TAILQ_FIRST(&vp->v_namecache) ?
498 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
499 
500 	while ((count = vp->v_track_write.bk_active) > 0) {
501 		vp->v_track_write.bk_waitflag = 1;
502 		tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
503 		if (length == 0) {
504 			kprintf("Warning: vtruncbuf(): Had to wait for "
505 			       "%d buffer I/Os to finish in %s\n",
506 			       count, filename);
507 		}
508 	}
509 
510 	/*
511 	 * Make sure no buffers were instantiated while we were trying
512 	 * to clean out the remaining VM pages.  This could occur due
513 	 * to busy dirty VM pages being flushed out to disk.
514 	 */
515 	do {
516 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
517 				vtruncbuf_bp_trunc_cmp,
518 				vtruncbuf_bp_trunc, &truncloffset);
519 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
520 				vtruncbuf_bp_trunc_cmp,
521 				vtruncbuf_bp_trunc, &truncloffset);
522 		if (count) {
523 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
524 			       "left over buffers in %s\n", count, filename);
525 		}
526 	} while(count);
527 
528 	crit_exit();
529 
530 	return (0);
531 }
532 
533 /*
534  * The callback buffer is beyond the new file EOF and must be destroyed.
535  * Note that the compare function must conform to the RB_SCAN's requirements.
536  */
537 static
538 int
539 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
540 {
541 	if (bp->b_loffset >= *(off_t *)data)
542 		return(0);
543 	return(-1);
544 }
545 
546 static
547 int
548 vtruncbuf_bp_trunc(struct buf *bp, void *data)
549 {
550 	/*
551 	 * Do not try to use a buffer we cannot immediately lock, but sleep
552 	 * anyway to prevent a livelock.  The code will loop until all buffers
553 	 * can be acted upon.
554 	 */
555 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
556 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
557 			BUF_UNLOCK(bp);
558 	} else {
559 		bremfree(bp);
560 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
561 		bp->b_flags &= ~B_ASYNC;
562 		brelse(bp);
563 	}
564 	return(1);
565 }
566 
567 /*
568  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
569  * blocks (with a negative loffset) are scanned.
570  * Note that the compare function must conform to the RB_SCAN's requirements.
571  */
572 static int
573 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
574 {
575 	if (bp->b_loffset < 0)
576 		return(0);
577 	return(1);
578 }
579 
580 static int
581 vtruncbuf_bp_metasync(struct buf *bp, void *data)
582 {
583 	struct vnode *vp = data;
584 
585 	if (bp->b_flags & B_DELWRI) {
586 		/*
587 		 * Do not try to use a buffer we cannot immediately lock,
588 		 * but sleep anyway to prevent a livelock.  The code will
589 		 * loop until all buffers can be acted upon.
590 		 */
591 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
592 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
593 				BUF_UNLOCK(bp);
594 		} else {
595 			bremfree(bp);
596 			if (bp->b_vp == vp) {
597 				bp->b_flags |= B_ASYNC;
598 			} else {
599 				bp->b_flags &= ~B_ASYNC;
600 			}
601 			bwrite(bp);
602 		}
603 		return(1);
604 	} else {
605 		return(0);
606 	}
607 }
608 
609 /*
610  * vfsync - implements a multipass fsync on a file which understands
611  * dependancies and meta-data.  The passed vnode must be locked.  The
612  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
613  *
614  * When fsyncing data asynchronously just do one consolidated pass starting
615  * with the most negative block number.  This may not get all the data due
616  * to dependancies.
617  *
618  * When fsyncing data synchronously do a data pass, then a metadata pass,
619  * then do additional data+metadata passes to try to get all the data out.
620  */
621 static int vfsync_wait_output(struct vnode *vp,
622 			    int (*waitoutput)(struct vnode *, struct thread *));
623 static int vfsync_data_only_cmp(struct buf *bp, void *data);
624 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
625 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
626 static int vfsync_bp(struct buf *bp, void *data);
627 
628 struct vfsync_info {
629 	struct vnode *vp;
630 	int synchronous;
631 	int syncdeps;
632 	int lazycount;
633 	int lazylimit;
634 	int skippedbufs;
635 	int (*checkdef)(struct buf *);
636 };
637 
638 int
639 vfsync(struct vnode *vp, int waitfor, int passes,
640 	int (*checkdef)(struct buf *),
641 	int (*waitoutput)(struct vnode *, struct thread *))
642 {
643 	struct vfsync_info info;
644 	int error;
645 
646 	bzero(&info, sizeof(info));
647 	info.vp = vp;
648 	if ((info.checkdef = checkdef) == NULL)
649 		info.syncdeps = 1;
650 
651 	crit_enter_id("vfsync");
652 
653 	switch(waitfor) {
654 	case MNT_LAZY:
655 		/*
656 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
657 		 * number of data (not meta) pages we try to flush to 1MB.
658 		 * A non-zero return means that lazy limit was reached.
659 		 */
660 		info.lazylimit = 1024 * 1024;
661 		info.syncdeps = 1;
662 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
663 				vfsync_lazy_range_cmp, vfsync_bp, &info);
664 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
665 				vfsync_meta_only_cmp, vfsync_bp, &info);
666 		if (error == 0)
667 			vp->v_lazyw = 0;
668 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
669 			vn_syncer_add_to_worklist(vp, 1);
670 		error = 0;
671 		break;
672 	case MNT_NOWAIT:
673 		/*
674 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
675 		 */
676 		info.syncdeps = 1;
677 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
678 			vfsync_bp, &info);
679 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
680 			vfsync_bp, &info);
681 		error = 0;
682 		break;
683 	default:
684 		/*
685 		 * Synchronous.  Do a data-only pass, then a meta-data+data
686 		 * pass, then additional integrated passes to try to get
687 		 * all the dependancies flushed.
688 		 */
689 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
690 			vfsync_bp, &info);
691 		error = vfsync_wait_output(vp, waitoutput);
692 		if (error == 0) {
693 			info.skippedbufs = 0;
694 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
695 				vfsync_bp, &info);
696 			error = vfsync_wait_output(vp, waitoutput);
697 			if (info.skippedbufs)
698 				kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
699 		}
700 		while (error == 0 && passes > 0 &&
701 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
702 			if (--passes == 0) {
703 				info.synchronous = 1;
704 				info.syncdeps = 1;
705 			}
706 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
707 				vfsync_bp, &info);
708 			if (error < 0)
709 				error = -error;
710 			info.syncdeps = 1;
711 			if (error == 0)
712 				error = vfsync_wait_output(vp, waitoutput);
713 		}
714 		break;
715 	}
716 	crit_exit_id("vfsync");
717 	return(error);
718 }
719 
720 static int
721 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
722 {
723 	int error = 0;
724 
725 	while (vp->v_track_write.bk_active) {
726 		vp->v_track_write.bk_waitflag = 1;
727 		tsleep(&vp->v_track_write, 0, "fsfsn", 0);
728 	}
729 	if (waitoutput)
730 		error = waitoutput(vp, curthread);
731 	return(error);
732 }
733 
734 static int
735 vfsync_data_only_cmp(struct buf *bp, void *data)
736 {
737 	if (bp->b_loffset < 0)
738 		return(-1);
739 	return(0);
740 }
741 
742 static int
743 vfsync_meta_only_cmp(struct buf *bp, void *data)
744 {
745 	if (bp->b_loffset < 0)
746 		return(0);
747 	return(1);
748 }
749 
750 static int
751 vfsync_lazy_range_cmp(struct buf *bp, void *data)
752 {
753 	struct vfsync_info *info = data;
754 	if (bp->b_loffset < info->vp->v_lazyw)
755 		return(-1);
756 	return(0);
757 }
758 
759 static int
760 vfsync_bp(struct buf *bp, void *data)
761 {
762 	struct vfsync_info *info = data;
763 	struct vnode *vp = info->vp;
764 	int error;
765 
766 	/*
767 	 * if syncdeps is not set we do not try to write buffers which have
768 	 * dependancies.
769 	 */
770 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
771 		return(0);
772 
773 	/*
774 	 * Ignore buffers that we cannot immediately lock.  XXX
775 	 */
776 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
777 		kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
778 		++info->skippedbufs;
779 		return(0);
780 	}
781 	if ((bp->b_flags & B_DELWRI) == 0)
782 		panic("vfsync_bp: buffer not dirty");
783 	if (vp != bp->b_vp)
784 		panic("vfsync_bp: buffer vp mismatch");
785 
786 	/*
787 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
788 	 * has been written but an additional handshake with the device
789 	 * is required before we can dispose of the buffer.  We have no idea
790 	 * how to do this so we have to skip these buffers.
791 	 */
792 	if (bp->b_flags & B_NEEDCOMMIT) {
793 		BUF_UNLOCK(bp);
794 		return(0);
795 	}
796 
797 	if (info->synchronous) {
798 		/*
799 		 * Synchronous flushing.  An error may be returned.
800 		 */
801 		bremfree(bp);
802 		crit_exit_id("vfsync");
803 		error = bwrite(bp);
804 		crit_enter_id("vfsync");
805 	} else {
806 		/*
807 		 * Asynchronous flushing.  A negative return value simply
808 		 * stops the scan and is not considered an error.  We use
809 		 * this to support limited MNT_LAZY flushes.
810 		 */
811 		vp->v_lazyw = bp->b_loffset;
812 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
813 			info->lazycount += vfs_bio_awrite(bp);
814 		} else {
815 			info->lazycount += bp->b_bufsize;
816 			bremfree(bp);
817 			crit_exit_id("vfsync");
818 			bawrite(bp);
819 			crit_enter_id("vfsync");
820 		}
821 		if (info->lazylimit && info->lazycount >= info->lazylimit)
822 			error = 1;
823 		else
824 			error = 0;
825 	}
826 	return(-error);
827 }
828 
829 /*
830  * Associate a buffer with a vnode.
831  */
832 void
833 bgetvp(struct vnode *vp, struct buf *bp)
834 {
835 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
836 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
837 
838 	vhold(vp);
839 	/*
840 	 * Insert onto list for new vnode.
841 	 */
842 	crit_enter();
843 	bp->b_vp = vp;
844 	bp->b_flags |= B_HASHED;
845 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
846 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
847 
848 	bp->b_flags |= B_VNCLEAN;
849 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
850 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
851 	crit_exit();
852 }
853 
854 /*
855  * Disassociate a buffer from a vnode.
856  */
857 void
858 brelvp(struct buf *bp)
859 {
860 	struct vnode *vp;
861 
862 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
863 
864 	/*
865 	 * Delete from old vnode list, if on one.
866 	 */
867 	vp = bp->b_vp;
868 	crit_enter();
869 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
870 		if (bp->b_flags & B_VNDIRTY)
871 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
872 		else
873 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
874 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
875 	}
876 	if (bp->b_flags & B_HASHED) {
877 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
878 		bp->b_flags &= ~B_HASHED;
879 	}
880 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
881 		vp->v_flag &= ~VONWORKLST;
882 		LIST_REMOVE(vp, v_synclist);
883 	}
884 	crit_exit();
885 	bp->b_vp = NULL;
886 	vdrop(vp);
887 }
888 
889 /*
890  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
891  * This routine is called when the state of the B_DELWRI bit is changed.
892  */
893 void
894 reassignbuf(struct buf *bp)
895 {
896 	struct vnode *vp = bp->b_vp;
897 	int delay;
898 
899 	KKASSERT(vp != NULL);
900 	++reassignbufcalls;
901 
902 	/*
903 	 * B_PAGING flagged buffers cannot be reassigned because their vp
904 	 * is not fully linked in.
905 	 */
906 	if (bp->b_flags & B_PAGING)
907 		panic("cannot reassign paging buffer");
908 
909 	crit_enter();
910 	if (bp->b_flags & B_DELWRI) {
911 		/*
912 		 * Move to the dirty list, add the vnode to the worklist
913 		 */
914 		if (bp->b_flags & B_VNCLEAN) {
915 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
916 			bp->b_flags &= ~B_VNCLEAN;
917 		}
918 		if ((bp->b_flags & B_VNDIRTY) == 0) {
919 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
920 				panic("reassignbuf: dup lblk vp %p bp %p",
921 				      vp, bp);
922 			}
923 			bp->b_flags |= B_VNDIRTY;
924 		}
925 		if ((vp->v_flag & VONWORKLST) == 0) {
926 			switch (vp->v_type) {
927 			case VDIR:
928 				delay = dirdelay;
929 				break;
930 			case VCHR:
931 			case VBLK:
932 				if (vp->v_rdev &&
933 				    vp->v_rdev->si_mountpoint != NULL) {
934 					delay = metadelay;
935 					break;
936 				}
937 				/* fall through */
938 			default:
939 				delay = filedelay;
940 			}
941 			vn_syncer_add_to_worklist(vp, delay);
942 		}
943 	} else {
944 		/*
945 		 * Move to the clean list, remove the vnode from the worklist
946 		 * if no dirty blocks remain.
947 		 */
948 		if (bp->b_flags & B_VNDIRTY) {
949 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
950 			bp->b_flags &= ~B_VNDIRTY;
951 		}
952 		if ((bp->b_flags & B_VNCLEAN) == 0) {
953 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
954 				panic("reassignbuf: dup lblk vp %p bp %p",
955 				      vp, bp);
956 			}
957 			bp->b_flags |= B_VNCLEAN;
958 		}
959 		if ((vp->v_flag & VONWORKLST) &&
960 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
961 			vp->v_flag &= ~VONWORKLST;
962 			LIST_REMOVE(vp, v_synclist);
963 		}
964 	}
965 	crit_exit();
966 }
967 
968 /*
969  * Create a vnode for a block device.
970  * Used for mounting the root file system.
971  */
972 int
973 bdevvp(cdev_t dev, struct vnode **vpp)
974 {
975 	struct vnode *vp;
976 	struct vnode *nvp;
977 	int error;
978 
979 	if (dev == NULL) {
980 		*vpp = NULLVP;
981 		return (ENXIO);
982 	}
983 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops_p, &nvp, 0, 0);
984 	if (error) {
985 		*vpp = NULLVP;
986 		return (error);
987 	}
988 	vp = nvp;
989 	vp->v_type = VCHR;
990 	vp->v_umajor = dev->si_umajor;
991 	vp->v_uminor = dev->si_uminor;
992 	vx_unlock(vp);
993 	*vpp = vp;
994 	return (0);
995 }
996 
997 int
998 v_associate_rdev(struct vnode *vp, cdev_t dev)
999 {
1000 	lwkt_tokref ilock;
1001 
1002 	if (dev == NULL)
1003 		return(ENXIO);
1004 	if (dev_is_good(dev) == 0)
1005 		return(ENXIO);
1006 	KKASSERT(vp->v_rdev == NULL);
1007 	if (dev_ref_debug)
1008 		kprintf("Z1");
1009 	vp->v_rdev = reference_dev(dev);
1010 	lwkt_gettoken(&ilock, &spechash_token);
1011 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1012 	lwkt_reltoken(&ilock);
1013 	return(0);
1014 }
1015 
1016 void
1017 v_release_rdev(struct vnode *vp)
1018 {
1019 	lwkt_tokref ilock;
1020 	cdev_t dev;
1021 
1022 	if ((dev = vp->v_rdev) != NULL) {
1023 		lwkt_gettoken(&ilock, &spechash_token);
1024 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1025 		vp->v_rdev = NULL;
1026 		release_dev(dev);
1027 		lwkt_reltoken(&ilock);
1028 	}
1029 }
1030 
1031 /*
1032  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1033  * the device number with the vnode.  The actual device is not associated
1034  * until the vnode is opened (usually in spec_open()), and will be
1035  * disassociated on last close.
1036  */
1037 void
1038 addaliasu(struct vnode *nvp, int x, int y)
1039 {
1040 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1041 		panic("addaliasu on non-special vnode");
1042 	nvp->v_umajor = x;
1043 	nvp->v_uminor = y;
1044 }
1045 
1046 /*
1047  * Disassociate a vnode from its underlying filesystem.
1048  *
1049  * The vnode must be VX locked and referenced.  In all normal situations
1050  * there are no active references.  If vclean_vxlocked() is called while
1051  * there are active references, the vnode is being ripped out and we have
1052  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1053  */
1054 void
1055 vclean_vxlocked(struct vnode *vp, int flags)
1056 {
1057 	int active;
1058 	int n;
1059 	vm_object_t object;
1060 
1061 	/*
1062 	 * If the vnode has already been reclaimed we have nothing to do.
1063 	 */
1064 	if (vp->v_flag & VRECLAIMED)
1065 		return;
1066 	vp->v_flag |= VRECLAIMED;
1067 
1068 	/*
1069 	 * Scrap the vfs cache
1070 	 */
1071 	while (cache_inval_vp(vp, 0) != 0) {
1072 		kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1073 		tsleep(vp, 0, "vclninv", 2);
1074 	}
1075 
1076 	/*
1077 	 * Check to see if the vnode is in use. If so we have to reference it
1078 	 * before we clean it out so that its count cannot fall to zero and
1079 	 * generate a race against ourselves to recycle it.
1080 	 */
1081 	active = sysref_isactive(&vp->v_sysref);
1082 
1083 	/*
1084 	 * Clean out any buffers associated with the vnode and destroy its
1085 	 * object, if it has one.
1086 	 */
1087 	vinvalbuf(vp, V_SAVE, 0, 0);
1088 
1089 	/*
1090 	 * If purging an active vnode (typically during a forced unmount
1091 	 * or reboot), it must be closed and deactivated before being
1092 	 * reclaimed.  This isn't really all that safe, but what can
1093 	 * we do? XXX.
1094 	 *
1095 	 * Note that neither of these routines unlocks the vnode.
1096 	 */
1097 	if (active && (flags & DOCLOSE)) {
1098 		while ((n = vp->v_opencount) != 0) {
1099 			if (vp->v_writecount)
1100 				VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1101 			else
1102 				VOP_CLOSE(vp, FNONBLOCK);
1103 			if (vp->v_opencount == n) {
1104 				kprintf("Warning: unable to force-close"
1105 				       " vnode %p\n", vp);
1106 				break;
1107 			}
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1113 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1114 	 * again to make sure they all get flushed.
1115 	 *
1116 	 * This can occur if a file with a link count of 0 needs to be
1117 	 * truncated.
1118 	 */
1119 	if ((vp->v_flag & VINACTIVE) == 0) {
1120 		vp->v_flag |= VINACTIVE;
1121 		VOP_INACTIVE(vp);
1122 		vinvalbuf(vp, V_SAVE, 0, 0);
1123 	}
1124 
1125 	/*
1126 	 * If the vnode has an object, destroy it.
1127 	 */
1128 	if ((object = vp->v_object) != NULL) {
1129 		if (object->ref_count == 0) {
1130 			if ((object->flags & OBJ_DEAD) == 0)
1131 				vm_object_terminate(object);
1132 		} else {
1133 			vm_pager_deallocate(object);
1134 		}
1135 		vp->v_flag &= ~VOBJBUF;
1136 	}
1137 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1138 
1139 	/*
1140 	 * Reclaim the vnode.
1141 	 */
1142 	if (VOP_RECLAIM(vp))
1143 		panic("vclean: cannot reclaim");
1144 
1145 	/*
1146 	 * Done with purge, notify sleepers of the grim news.
1147 	 */
1148 	vp->v_ops = &dead_vnode_vops_p;
1149 	vn_pollgone(vp);
1150 	vp->v_tag = VT_NON;
1151 
1152 	/*
1153 	 * If we are destroying an active vnode, reactivate it now that
1154 	 * we have reassociated it with deadfs.  This prevents the system
1155 	 * from crashing on the vnode due to it being unexpectedly marked
1156 	 * as inactive or reclaimed.
1157 	 */
1158 	if (active && (flags & DOCLOSE)) {
1159 		vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1160 	}
1161 }
1162 
1163 /*
1164  * Eliminate all activity associated with the requested vnode
1165  * and with all vnodes aliased to the requested vnode.
1166  *
1167  * The vnode must be referenced and vx_lock()'d
1168  *
1169  * revoke { struct vnode *a_vp, int a_flags }
1170  */
1171 int
1172 vop_stdrevoke(struct vop_revoke_args *ap)
1173 {
1174 	struct vnode *vp, *vq;
1175 	lwkt_tokref ilock;
1176 	cdev_t dev;
1177 
1178 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1179 
1180 	vp = ap->a_vp;
1181 
1182 	/*
1183 	 * If the vnode is already dead don't try to revoke it
1184 	 */
1185 	if (vp->v_flag & VRECLAIMED)
1186 		return (0);
1187 
1188 	/*
1189 	 * If the vnode has a device association, scrap all vnodes associated
1190 	 * with the device.  Don't let the device disappear on us while we
1191 	 * are scrapping the vnodes.
1192 	 *
1193 	 * The passed vp will probably show up in the list, do not VX lock
1194 	 * it twice!
1195 	 */
1196 	if (vp->v_type != VCHR)
1197 		return(0);
1198 	if ((dev = vp->v_rdev) == NULL) {
1199 		if ((dev = get_dev(vp->v_umajor, vp->v_uminor)) == NULL)
1200 			return(0);
1201 	}
1202 	reference_dev(dev);
1203 	lwkt_gettoken(&ilock, &spechash_token);
1204 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1205 		if (vp != vq)
1206 			vx_get(vq);
1207 		if (vq == SLIST_FIRST(&dev->si_hlist))
1208 			vgone_vxlocked(vq);
1209 		if (vp != vq)
1210 			vx_put(vq);
1211 	}
1212 	lwkt_reltoken(&ilock);
1213 	release_dev(dev);
1214 	return (0);
1215 }
1216 
1217 /*
1218  * This is called when the object underlying a vnode is being destroyed,
1219  * such as in a remove().  Try to recycle the vnode immediately if the
1220  * only active reference is our reference.
1221  */
1222 int
1223 vrecycle(struct vnode *vp)
1224 {
1225 	if (vp->v_sysref.refcnt <= 1) {
1226 		vgone_vxlocked(vp);
1227 		return (1);
1228 	}
1229 	return (0);
1230 }
1231 
1232 /*
1233  * Eliminate all activity associated with a vnode in preparation for reuse.
1234  *
1235  * The vnode must be VX locked and refd and will remain VX locked and refd
1236  * on return.  This routine may be called with the vnode in any state, as
1237  * long as it is VX locked.  The vnode will be cleaned out and marked
1238  * VRECLAIMED but will not actually be reused until all existing refs and
1239  * holds go away.
1240  *
1241  * NOTE: This routine may be called on a vnode which has not yet been
1242  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1243  * already been reclaimed.
1244  *
1245  * This routine is not responsible for placing us back on the freelist.
1246  * Instead, it happens automatically when the caller releases the VX lock
1247  * (assuming there aren't any other references).
1248  */
1249 
1250 void
1251 vgone_vxlocked(struct vnode *vp)
1252 {
1253 	/*
1254 	 * assert that the VX lock is held.  This is an absolute requirement
1255 	 * now for vgone_vxlocked() to be called.
1256 	 */
1257 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1258 
1259 	/*
1260 	 * Clean out the filesystem specific data and set the VRECLAIMED
1261 	 * bit.  Also deactivate the vnode if necessary.
1262 	 */
1263 	vclean_vxlocked(vp, DOCLOSE);
1264 
1265 	/*
1266 	 * Delete from old mount point vnode list, if on one.
1267 	 */
1268 	if (vp->v_mount != NULL)
1269 		insmntque(vp, NULL);
1270 
1271 	/*
1272 	 * If special device, remove it from special device alias list
1273 	 * if it is on one.  This should normally only occur if a vnode is
1274 	 * being revoked as the device should otherwise have been released
1275 	 * naturally.
1276 	 */
1277 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1278 		v_release_rdev(vp);
1279 	}
1280 
1281 	/*
1282 	 * Set us to VBAD
1283 	 */
1284 	vp->v_type = VBAD;
1285 }
1286 
1287 /*
1288  * Lookup a vnode by device number.
1289  */
1290 int
1291 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1292 {
1293 	lwkt_tokref ilock;
1294 	struct vnode *vp;
1295 
1296 	lwkt_gettoken(&ilock, &spechash_token);
1297 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1298 		if (type == vp->v_type) {
1299 			*vpp = vp;
1300 			lwkt_reltoken(&ilock);
1301 			return (1);
1302 		}
1303 	}
1304 	lwkt_reltoken(&ilock);
1305 	return (0);
1306 }
1307 
1308 /*
1309  * Calculate the total number of references to a special device.  This
1310  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1311  * an overloaded field.  Since udev2dev can now return NULL, we have
1312  * to check for a NULL v_rdev.
1313  */
1314 int
1315 count_dev(cdev_t dev)
1316 {
1317 	lwkt_tokref ilock;
1318 	struct vnode *vp;
1319 	int count = 0;
1320 
1321 	if (SLIST_FIRST(&dev->si_hlist)) {
1322 		lwkt_gettoken(&ilock, &spechash_token);
1323 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1324 			if (vp->v_sysref.refcnt > 0)
1325 				count += vp->v_sysref.refcnt;
1326 		}
1327 		lwkt_reltoken(&ilock);
1328 	}
1329 	return(count);
1330 }
1331 
1332 int
1333 count_udev(int x, int y)
1334 {
1335 	cdev_t dev;
1336 
1337 	if ((dev = get_dev(x, y)) == NULL)
1338 		return(0);
1339 	return(count_dev(dev));
1340 }
1341 
1342 int
1343 vcount(struct vnode *vp)
1344 {
1345 	if (vp->v_rdev == NULL)
1346 		return(0);
1347 	return(count_dev(vp->v_rdev));
1348 }
1349 
1350 /*
1351  * Initialize VMIO for a vnode.  This routine MUST be called before a
1352  * VFS can issue buffer cache ops on a vnode.  It is typically called
1353  * when a vnode is initialized from its inode.
1354  */
1355 int
1356 vinitvmio(struct vnode *vp, off_t filesize)
1357 {
1358 	vm_object_t object;
1359 	int error = 0;
1360 
1361 retry:
1362 	if ((object = vp->v_object) == NULL) {
1363 		object = vnode_pager_alloc(vp, filesize, 0, 0);
1364 		/*
1365 		 * Dereference the reference we just created.  This assumes
1366 		 * that the object is associated with the vp.
1367 		 */
1368 		object->ref_count--;
1369 		vrele(vp);
1370 	} else {
1371 		if (object->flags & OBJ_DEAD) {
1372 			vn_unlock(vp);
1373 			vm_object_dead_sleep(object, "vodead");
1374 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1375 			goto retry;
1376 		}
1377 	}
1378 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1379 	vp->v_flag |= VOBJBUF;
1380 	return (error);
1381 }
1382 
1383 
1384 /*
1385  * Print out a description of a vnode.
1386  */
1387 static char *typename[] =
1388 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1389 
1390 void
1391 vprint(char *label, struct vnode *vp)
1392 {
1393 	char buf[96];
1394 
1395 	if (label != NULL)
1396 		kprintf("%s: %p: ", label, (void *)vp);
1397 	else
1398 		kprintf("%p: ", (void *)vp);
1399 	kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1400 		typename[vp->v_type],
1401 		vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1402 	buf[0] = '\0';
1403 	if (vp->v_flag & VROOT)
1404 		strcat(buf, "|VROOT");
1405 	if (vp->v_flag & VTEXT)
1406 		strcat(buf, "|VTEXT");
1407 	if (vp->v_flag & VSYSTEM)
1408 		strcat(buf, "|VSYSTEM");
1409 	if (vp->v_flag & VFREE)
1410 		strcat(buf, "|VFREE");
1411 	if (vp->v_flag & VOBJBUF)
1412 		strcat(buf, "|VOBJBUF");
1413 	if (buf[0] != '\0')
1414 		kprintf(" flags (%s)", &buf[1]);
1415 	if (vp->v_data == NULL) {
1416 		kprintf("\n");
1417 	} else {
1418 		kprintf("\n\t");
1419 		VOP_PRINT(vp);
1420 	}
1421 }
1422 
1423 #ifdef DDB
1424 #include <ddb/ddb.h>
1425 
1426 static int db_show_locked_vnodes(struct mount *mp, void *data);
1427 
1428 /*
1429  * List all of the locked vnodes in the system.
1430  * Called when debugging the kernel.
1431  */
1432 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1433 {
1434 	kprintf("Locked vnodes\n");
1435 	mountlist_scan(db_show_locked_vnodes, NULL,
1436 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1437 }
1438 
1439 static int
1440 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1441 {
1442 	struct vnode *vp;
1443 
1444 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1445 		if (vn_islocked(vp))
1446 			vprint((char *)0, vp);
1447 	}
1448 	return(0);
1449 }
1450 #endif
1451 
1452 /*
1453  * Top level filesystem related information gathering.
1454  */
1455 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1456 
1457 static int
1458 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1459 {
1460 	int *name = (int *)arg1 - 1;	/* XXX */
1461 	u_int namelen = arg2 + 1;	/* XXX */
1462 	struct vfsconf *vfsp;
1463 
1464 #if 1 || defined(COMPAT_PRELITE2)
1465 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1466 	if (namelen == 1)
1467 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1468 #endif
1469 
1470 #ifdef notyet
1471 	/* all sysctl names at this level are at least name and field */
1472 	if (namelen < 2)
1473 		return (ENOTDIR);		/* overloaded */
1474 	if (name[0] != VFS_GENERIC) {
1475 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1476 			if (vfsp->vfc_typenum == name[0])
1477 				break;
1478 		if (vfsp == NULL)
1479 			return (EOPNOTSUPP);
1480 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1481 		    oldp, oldlenp, newp, newlen, p));
1482 	}
1483 #endif
1484 	switch (name[1]) {
1485 	case VFS_MAXTYPENUM:
1486 		if (namelen != 2)
1487 			return (ENOTDIR);
1488 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1489 	case VFS_CONF:
1490 		if (namelen != 3)
1491 			return (ENOTDIR);	/* overloaded */
1492 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1493 			if (vfsp->vfc_typenum == name[2])
1494 				break;
1495 		if (vfsp == NULL)
1496 			return (EOPNOTSUPP);
1497 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1498 	}
1499 	return (EOPNOTSUPP);
1500 }
1501 
1502 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1503 	"Generic filesystem");
1504 
1505 #if 1 || defined(COMPAT_PRELITE2)
1506 
1507 static int
1508 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1509 {
1510 	int error;
1511 	struct vfsconf *vfsp;
1512 	struct ovfsconf ovfs;
1513 
1514 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1515 		bzero(&ovfs, sizeof(ovfs));
1516 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1517 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1518 		ovfs.vfc_index = vfsp->vfc_typenum;
1519 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1520 		ovfs.vfc_flags = vfsp->vfc_flags;
1521 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1522 		if (error)
1523 			return error;
1524 	}
1525 	return 0;
1526 }
1527 
1528 #endif /* 1 || COMPAT_PRELITE2 */
1529 
1530 /*
1531  * Check to see if a filesystem is mounted on a block device.
1532  */
1533 int
1534 vfs_mountedon(struct vnode *vp)
1535 {
1536 	cdev_t dev;
1537 
1538 	if ((dev = vp->v_rdev) == NULL) {
1539 		if (vp->v_type != VBLK)
1540 			dev = get_dev(vp->v_uminor, vp->v_umajor);
1541 	}
1542 	if (dev != NULL && dev->si_mountpoint)
1543 		return (EBUSY);
1544 	return (0);
1545 }
1546 
1547 /*
1548  * Unmount all filesystems. The list is traversed in reverse order
1549  * of mounting to avoid dependencies.
1550  */
1551 
1552 static int vfs_umountall_callback(struct mount *mp, void *data);
1553 
1554 void
1555 vfs_unmountall(void)
1556 {
1557 	int count;
1558 
1559 	do {
1560 		count = mountlist_scan(vfs_umountall_callback,
1561 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1562 	} while (count);
1563 }
1564 
1565 static
1566 int
1567 vfs_umountall_callback(struct mount *mp, void *data)
1568 {
1569 	int error;
1570 
1571 	error = dounmount(mp, MNT_FORCE);
1572 	if (error) {
1573 		mountlist_remove(mp);
1574 		kprintf("unmount of filesystem mounted from %s failed (",
1575 			mp->mnt_stat.f_mntfromname);
1576 		if (error == EBUSY)
1577 			kprintf("BUSY)\n");
1578 		else
1579 			kprintf("%d)\n", error);
1580 	}
1581 	return(1);
1582 }
1583 
1584 /*
1585  * Build hash lists of net addresses and hang them off the mount point.
1586  * Called by ufs_mount() to set up the lists of export addresses.
1587  */
1588 static int
1589 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1590 		struct export_args *argp)
1591 {
1592 	struct netcred *np;
1593 	struct radix_node_head *rnh;
1594 	int i;
1595 	struct radix_node *rn;
1596 	struct sockaddr *saddr, *smask = 0;
1597 	struct domain *dom;
1598 	int error;
1599 
1600 	if (argp->ex_addrlen == 0) {
1601 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1602 			return (EPERM);
1603 		np = &nep->ne_defexported;
1604 		np->netc_exflags = argp->ex_flags;
1605 		np->netc_anon = argp->ex_anon;
1606 		np->netc_anon.cr_ref = 1;
1607 		mp->mnt_flag |= MNT_DEFEXPORTED;
1608 		return (0);
1609 	}
1610 
1611 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1612 		return (EINVAL);
1613 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1614 		return (EINVAL);
1615 
1616 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1617 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK);
1618 	bzero((caddr_t) np, i);
1619 	saddr = (struct sockaddr *) (np + 1);
1620 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1621 		goto out;
1622 	if (saddr->sa_len > argp->ex_addrlen)
1623 		saddr->sa_len = argp->ex_addrlen;
1624 	if (argp->ex_masklen) {
1625 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1626 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1627 		if (error)
1628 			goto out;
1629 		if (smask->sa_len > argp->ex_masklen)
1630 			smask->sa_len = argp->ex_masklen;
1631 	}
1632 	i = saddr->sa_family;
1633 	if ((rnh = nep->ne_rtable[i]) == 0) {
1634 		/*
1635 		 * Seems silly to initialize every AF when most are not used,
1636 		 * do so on demand here
1637 		 */
1638 		SLIST_FOREACH(dom, &domains, dom_next)
1639 			if (dom->dom_family == i && dom->dom_rtattach) {
1640 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1641 				    dom->dom_rtoffset);
1642 				break;
1643 			}
1644 		if ((rnh = nep->ne_rtable[i]) == 0) {
1645 			error = ENOBUFS;
1646 			goto out;
1647 		}
1648 	}
1649 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1650 	    np->netc_rnodes);
1651 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1652 		error = EPERM;
1653 		goto out;
1654 	}
1655 	np->netc_exflags = argp->ex_flags;
1656 	np->netc_anon = argp->ex_anon;
1657 	np->netc_anon.cr_ref = 1;
1658 	return (0);
1659 out:
1660 	kfree(np, M_NETADDR);
1661 	return (error);
1662 }
1663 
1664 /* ARGSUSED */
1665 static int
1666 vfs_free_netcred(struct radix_node *rn, void *w)
1667 {
1668 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1669 
1670 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1671 	kfree((caddr_t) rn, M_NETADDR);
1672 	return (0);
1673 }
1674 
1675 /*
1676  * Free the net address hash lists that are hanging off the mount points.
1677  */
1678 static void
1679 vfs_free_addrlist(struct netexport *nep)
1680 {
1681 	int i;
1682 	struct radix_node_head *rnh;
1683 
1684 	for (i = 0; i <= AF_MAX; i++)
1685 		if ((rnh = nep->ne_rtable[i])) {
1686 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1687 			    (caddr_t) rnh);
1688 			kfree((caddr_t) rnh, M_RTABLE);
1689 			nep->ne_rtable[i] = 0;
1690 		}
1691 }
1692 
1693 int
1694 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1695 {
1696 	int error;
1697 
1698 	if (argp->ex_flags & MNT_DELEXPORT) {
1699 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1700 			vfs_setpublicfs(NULL, NULL, NULL);
1701 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1702 		}
1703 		vfs_free_addrlist(nep);
1704 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1705 	}
1706 	if (argp->ex_flags & MNT_EXPORTED) {
1707 		if (argp->ex_flags & MNT_EXPUBLIC) {
1708 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1709 				return (error);
1710 			mp->mnt_flag |= MNT_EXPUBLIC;
1711 		}
1712 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1713 			return (error);
1714 		mp->mnt_flag |= MNT_EXPORTED;
1715 	}
1716 	return (0);
1717 }
1718 
1719 
1720 /*
1721  * Set the publicly exported filesystem (WebNFS). Currently, only
1722  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1723  */
1724 int
1725 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1726 		struct export_args *argp)
1727 {
1728 	int error;
1729 	struct vnode *rvp;
1730 	char *cp;
1731 
1732 	/*
1733 	 * mp == NULL -> invalidate the current info, the FS is
1734 	 * no longer exported. May be called from either vfs_export
1735 	 * or unmount, so check if it hasn't already been done.
1736 	 */
1737 	if (mp == NULL) {
1738 		if (nfs_pub.np_valid) {
1739 			nfs_pub.np_valid = 0;
1740 			if (nfs_pub.np_index != NULL) {
1741 				FREE(nfs_pub.np_index, M_TEMP);
1742 				nfs_pub.np_index = NULL;
1743 			}
1744 		}
1745 		return (0);
1746 	}
1747 
1748 	/*
1749 	 * Only one allowed at a time.
1750 	 */
1751 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1752 		return (EBUSY);
1753 
1754 	/*
1755 	 * Get real filehandle for root of exported FS.
1756 	 */
1757 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1758 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1759 
1760 	if ((error = VFS_ROOT(mp, &rvp)))
1761 		return (error);
1762 
1763 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1764 		return (error);
1765 
1766 	vput(rvp);
1767 
1768 	/*
1769 	 * If an indexfile was specified, pull it in.
1770 	 */
1771 	if (argp->ex_indexfile != NULL) {
1772 		int namelen;
1773 
1774 		error = vn_get_namelen(rvp, &namelen);
1775 		if (error)
1776 			return (error);
1777 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1778 		    M_WAITOK);
1779 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1780 		    namelen, (size_t *)0);
1781 		if (!error) {
1782 			/*
1783 			 * Check for illegal filenames.
1784 			 */
1785 			for (cp = nfs_pub.np_index; *cp; cp++) {
1786 				if (*cp == '/') {
1787 					error = EINVAL;
1788 					break;
1789 				}
1790 			}
1791 		}
1792 		if (error) {
1793 			FREE(nfs_pub.np_index, M_TEMP);
1794 			return (error);
1795 		}
1796 	}
1797 
1798 	nfs_pub.np_mount = mp;
1799 	nfs_pub.np_valid = 1;
1800 	return (0);
1801 }
1802 
1803 struct netcred *
1804 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1805 		struct sockaddr *nam)
1806 {
1807 	struct netcred *np;
1808 	struct radix_node_head *rnh;
1809 	struct sockaddr *saddr;
1810 
1811 	np = NULL;
1812 	if (mp->mnt_flag & MNT_EXPORTED) {
1813 		/*
1814 		 * Lookup in the export list first.
1815 		 */
1816 		if (nam != NULL) {
1817 			saddr = nam;
1818 			rnh = nep->ne_rtable[saddr->sa_family];
1819 			if (rnh != NULL) {
1820 				np = (struct netcred *)
1821 					(*rnh->rnh_matchaddr)((char *)saddr,
1822 							      rnh);
1823 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1824 					np = NULL;
1825 			}
1826 		}
1827 		/*
1828 		 * If no address match, use the default if it exists.
1829 		 */
1830 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1831 			np = &nep->ne_defexported;
1832 	}
1833 	return (np);
1834 }
1835 
1836 /*
1837  * perform msync on all vnodes under a mount point.  The mount point must
1838  * be locked.  This code is also responsible for lazy-freeing unreferenced
1839  * vnodes whos VM objects no longer contain pages.
1840  *
1841  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1842  *
1843  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1844  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1845  * way up in this high level function.
1846  */
1847 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1848 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1849 
1850 void
1851 vfs_msync(struct mount *mp, int flags)
1852 {
1853 	int vmsc_flags;
1854 
1855 	vmsc_flags = VMSC_GETVP;
1856 	if (flags != MNT_WAIT)
1857 		vmsc_flags |= VMSC_NOWAIT;
1858 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1859 			(void *)flags);
1860 }
1861 
1862 /*
1863  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1864  * vnodes, we cannot afford to do anything heavy weight until we have a
1865  * fairly good indication that there is work to do.
1866  */
1867 static
1868 int
1869 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1870 {
1871 	int flags = (int)data;
1872 
1873 	if ((vp->v_flag & VRECLAIMED) == 0) {
1874 		if (vshouldmsync(vp))
1875 			return(0);	/* call scan2 */
1876 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1877 		    (vp->v_flag & VOBJDIRTY) &&
1878 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
1879 			return(0);	/* call scan2 */
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * do not call scan2, continue the loop
1885 	 */
1886 	return(-1);
1887 }
1888 
1889 /*
1890  * This callback is handed a locked vnode.
1891  */
1892 static
1893 int
1894 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1895 {
1896 	vm_object_t obj;
1897 	int flags = (int)data;
1898 
1899 	if (vp->v_flag & VRECLAIMED)
1900 		return(0);
1901 
1902 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1903 		if ((obj = vp->v_object) != NULL) {
1904 			vm_object_page_clean(obj, 0, 0,
1905 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1906 		}
1907 	}
1908 	return(0);
1909 }
1910 
1911 /*
1912  * Record a process's interest in events which might happen to
1913  * a vnode.  Because poll uses the historic select-style interface
1914  * internally, this routine serves as both the ``check for any
1915  * pending events'' and the ``record my interest in future events''
1916  * functions.  (These are done together, while the lock is held,
1917  * to avoid race conditions.)
1918  */
1919 int
1920 vn_pollrecord(struct vnode *vp, int events)
1921 {
1922 	lwkt_tokref ilock;
1923 
1924 	KKASSERT(curthread->td_proc != NULL);
1925 
1926 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1927 	if (vp->v_pollinfo.vpi_revents & events) {
1928 		/*
1929 		 * This leaves events we are not interested
1930 		 * in available for the other process which
1931 		 * which presumably had requested them
1932 		 * (otherwise they would never have been
1933 		 * recorded).
1934 		 */
1935 		events &= vp->v_pollinfo.vpi_revents;
1936 		vp->v_pollinfo.vpi_revents &= ~events;
1937 
1938 		lwkt_reltoken(&ilock);
1939 		return events;
1940 	}
1941 	vp->v_pollinfo.vpi_events |= events;
1942 	selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
1943 	lwkt_reltoken(&ilock);
1944 	return 0;
1945 }
1946 
1947 /*
1948  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1949  * it is possible for us to miss an event due to race conditions, but
1950  * that condition is expected to be rare, so for the moment it is the
1951  * preferred interface.
1952  */
1953 void
1954 vn_pollevent(struct vnode *vp, int events)
1955 {
1956 	lwkt_tokref ilock;
1957 
1958 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1959 	if (vp->v_pollinfo.vpi_events & events) {
1960 		/*
1961 		 * We clear vpi_events so that we don't
1962 		 * call selwakeup() twice if two events are
1963 		 * posted before the polling process(es) is
1964 		 * awakened.  This also ensures that we take at
1965 		 * most one selwakeup() if the polling process
1966 		 * is no longer interested.  However, it does
1967 		 * mean that only one event can be noticed at
1968 		 * a time.  (Perhaps we should only clear those
1969 		 * event bits which we note?) XXX
1970 		 */
1971 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1972 		vp->v_pollinfo.vpi_revents |= events;
1973 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1974 	}
1975 	lwkt_reltoken(&ilock);
1976 }
1977 
1978 /*
1979  * Wake up anyone polling on vp because it is being revoked.
1980  * This depends on dead_poll() returning POLLHUP for correct
1981  * behavior.
1982  */
1983 void
1984 vn_pollgone(struct vnode *vp)
1985 {
1986 	lwkt_tokref ilock;
1987 
1988 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1989 	if (vp->v_pollinfo.vpi_events) {
1990 		vp->v_pollinfo.vpi_events = 0;
1991 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1992 	}
1993 	lwkt_reltoken(&ilock);
1994 }
1995 
1996 /*
1997  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
1998  * (or v_rdev might be NULL).
1999  */
2000 cdev_t
2001 vn_todev(struct vnode *vp)
2002 {
2003 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2004 		return (NULL);
2005 	KKASSERT(vp->v_rdev != NULL);
2006 	return (vp->v_rdev);
2007 }
2008 
2009 /*
2010  * Check if vnode represents a disk device.  The vnode does not need to be
2011  * opened.
2012  */
2013 int
2014 vn_isdisk(struct vnode *vp, int *errp)
2015 {
2016 	cdev_t dev;
2017 
2018 	if (vp->v_type != VCHR) {
2019 		if (errp != NULL)
2020 			*errp = ENOTBLK;
2021 		return (0);
2022 	}
2023 
2024 	if ((dev = vp->v_rdev) == NULL)
2025 		dev = get_dev(vp->v_umajor, vp->v_uminor);
2026 
2027 	if (dev == NULL) {
2028 		if (errp != NULL)
2029 			*errp = ENXIO;
2030 		return (0);
2031 	}
2032 	if (dev_is_good(dev) == 0) {
2033 		if (errp != NULL)
2034 			*errp = ENXIO;
2035 		return (0);
2036 	}
2037 	if ((dev_dflags(dev) & D_DISK) == 0) {
2038 		if (errp != NULL)
2039 			*errp = ENOTBLK;
2040 		return (0);
2041 	}
2042 	if (errp != NULL)
2043 		*errp = 0;
2044 	return (1);
2045 }
2046 
2047 int
2048 vn_get_namelen(struct vnode *vp, int *namelen)
2049 {
2050 	int error, retval[2];
2051 
2052 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2053 	if (error)
2054 		return (error);
2055 	*namelen = *retval;
2056 	return (0);
2057 }
2058 
2059 int
2060 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2061 		uint16_t d_namlen, const char *d_name)
2062 {
2063 	struct dirent *dp;
2064 	size_t len;
2065 
2066 	len = _DIRENT_RECLEN(d_namlen);
2067 	if (len > uio->uio_resid)
2068 		return(1);
2069 
2070 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2071 
2072 	dp->d_ino = d_ino;
2073 	dp->d_namlen = d_namlen;
2074 	dp->d_type = d_type;
2075 	bcopy(d_name, dp->d_name, d_namlen);
2076 
2077 	*error = uiomove((caddr_t)dp, len, uio);
2078 
2079 	kfree(dp, M_TEMP);
2080 
2081 	return(0);
2082 }
2083 
2084