xref: /dragonfly/sys/kern/vfs_subr.c (revision c2cd059b)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.71 2006/03/24 18:35:33 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 int numvnodes;
90 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91 int vfs_fastdev = 1;
92 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
93 
94 enum vtype iftovt_tab[16] = {
95 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97 };
98 int vttoif_tab[9] = {
99 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 	S_IFSOCK, S_IFIFO, S_IFMT,
101 };
102 
103 static int reassignbufcalls;
104 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 		&reassignbufcalls, 0, "");
106 static int reassignbufloops;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 		&reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 		&reassignbufsortgood, 0, "");
112 static int reassignbufsortbad;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 		&reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 		&reassignbufmethod, 0, "");
118 
119 int	nfs_mount_type = -1;
120 static struct lwkt_token spechash_token;
121 struct nfs_public nfs_pub;	/* publicly exported FS */
122 
123 int desiredvnodes;
124 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 		&desiredvnodes, 0, "Maximum number of vnodes");
126 
127 static void	vfs_free_addrlist (struct netexport *nep);
128 static int	vfs_free_netcred (struct radix_node *rn, void *w);
129 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 				       struct export_args *argp);
131 
132 extern int dev_ref_debug;
133 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
144 {
145 	if (b1->b_loffset < b2->b_loffset)
146 		return(-1);
147 	if (b1->b_loffset > b2->b_loffset)
148 		return(1);
149 	return(0);
150 }
151 
152 /*
153  * Return 0 if the vnode is already on the free list or cannot be placed
154  * on the free list.  Return 1 if the vnode can be placed on the free list.
155  */
156 static __inline int
157 vshouldfree(struct vnode *vp, int usecount)
158 {
159 	if (vp->v_flag & VFREE)
160 		return (0);		/* already free */
161 	if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
162 		return (0);		/* other holderse */
163 	if (vp->v_object &&
164 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
165 		return (0);
166 	}
167 	return (1);
168 }
169 
170 /*
171  * Initialize the vnode management data structures.
172  *
173  * Called from vfsinit()
174  */
175 void
176 vfs_subr_init(void)
177 {
178 	/*
179 	 * Desired vnodes is a result of the physical page count
180 	 * and the size of kernel's heap.  It scales in proportion
181 	 * to the amount of available physical memory.  This can
182 	 * cause trouble on 64-bit and large memory platforms.
183 	 */
184 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
185 	desiredvnodes =
186 		min(maxproc + vmstats.v_page_count /4,
187 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
188 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
189 
190 	lwkt_token_init(&spechash_token);
191 }
192 
193 /*
194  * Knob to control the precision of file timestamps:
195  *
196  *   0 = seconds only; nanoseconds zeroed.
197  *   1 = seconds and nanoseconds, accurate within 1/HZ.
198  *   2 = seconds and nanoseconds, truncated to microseconds.
199  * >=3 = seconds and nanoseconds, maximum precision.
200  */
201 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
202 
203 static int timestamp_precision = TSP_SEC;
204 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
205 		&timestamp_precision, 0, "");
206 
207 /*
208  * Get a current timestamp.
209  */
210 void
211 vfs_timestamp(struct timespec *tsp)
212 {
213 	struct timeval tv;
214 
215 	switch (timestamp_precision) {
216 	case TSP_SEC:
217 		tsp->tv_sec = time_second;
218 		tsp->tv_nsec = 0;
219 		break;
220 	case TSP_HZ:
221 		getnanotime(tsp);
222 		break;
223 	case TSP_USEC:
224 		microtime(&tv);
225 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
226 		break;
227 	case TSP_NSEC:
228 	default:
229 		nanotime(tsp);
230 		break;
231 	}
232 }
233 
234 /*
235  * Set vnode attributes to VNOVAL
236  */
237 void
238 vattr_null(struct vattr *vap)
239 {
240 	vap->va_type = VNON;
241 	vap->va_size = VNOVAL;
242 	vap->va_bytes = VNOVAL;
243 	vap->va_mode = VNOVAL;
244 	vap->va_nlink = VNOVAL;
245 	vap->va_uid = VNOVAL;
246 	vap->va_gid = VNOVAL;
247 	vap->va_fsid = VNOVAL;
248 	vap->va_fileid = VNOVAL;
249 	vap->va_blocksize = VNOVAL;
250 	vap->va_rdev = VNOVAL;
251 	vap->va_atime.tv_sec = VNOVAL;
252 	vap->va_atime.tv_nsec = VNOVAL;
253 	vap->va_mtime.tv_sec = VNOVAL;
254 	vap->va_mtime.tv_nsec = VNOVAL;
255 	vap->va_ctime.tv_sec = VNOVAL;
256 	vap->va_ctime.tv_nsec = VNOVAL;
257 	vap->va_flags = VNOVAL;
258 	vap->va_gen = VNOVAL;
259 	vap->va_vaflags = 0;
260 	vap->va_fsmid = VNOVAL;
261 }
262 
263 /*
264  * Flush out and invalidate all buffers associated with a vnode.
265  *
266  * vp must be locked.
267  */
268 static int vinvalbuf_bp(struct buf *bp, void *data);
269 
270 struct vinvalbuf_bp_info {
271 	struct vnode *vp;
272 	int slptimeo;
273 	int lkflags;
274 	int flags;
275 };
276 
277 int
278 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
279 	int slpflag, int slptimeo)
280 {
281 	struct vinvalbuf_bp_info info;
282 	int error;
283 	vm_object_t object;
284 
285 	/*
286 	 * If we are being asked to save, call fsync to ensure that the inode
287 	 * is updated.
288 	 */
289 	if (flags & V_SAVE) {
290 		crit_enter();
291 		while (vp->v_track_write.bk_active) {
292 			vp->v_track_write.bk_waitflag = 1;
293 			error = tsleep(&vp->v_track_write, slpflag,
294 					"vinvlbuf", slptimeo);
295 			if (error) {
296 				crit_exit();
297 				return (error);
298 			}
299 		}
300 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
301 			crit_exit();
302 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
303 				return (error);
304 			crit_enter();
305 			if (vp->v_track_write.bk_active > 0 ||
306 			    !RB_EMPTY(&vp->v_rbdirty_tree))
307 				panic("vinvalbuf: dirty bufs");
308 		}
309 		crit_exit();
310   	}
311 	crit_enter();
312 	info.slptimeo = slptimeo;
313 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
314 	if (slpflag & PCATCH)
315 		info.lkflags |= LK_PCATCH;
316 	info.flags = flags;
317 	info.vp = vp;
318 
319 	/*
320 	 * Flush the buffer cache until nothing is left.
321 	 */
322 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
323 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
324 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
325 				vinvalbuf_bp, &info);
326 		if (error == 0) {
327 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
328 					vinvalbuf_bp, &info);
329 		}
330 	}
331 
332 	/*
333 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
334 	 * have write I/O in-progress but if there is a VM object then the
335 	 * VM object can also have read-I/O in-progress.
336 	 */
337 	do {
338 		while (vp->v_track_write.bk_active > 0) {
339 			vp->v_track_write.bk_waitflag = 1;
340 			tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
341 		}
342 		if (VOP_GETVOBJECT(vp, &object) == 0) {
343 			while (object->paging_in_progress)
344 				vm_object_pip_sleep(object, "vnvlbx");
345 		}
346 	} while (vp->v_track_write.bk_active > 0);
347 
348 	crit_exit();
349 
350 	/*
351 	 * Destroy the copy in the VM cache, too.
352 	 */
353 	if (VOP_GETVOBJECT(vp, &object) == 0) {
354 		vm_object_page_remove(object, 0, 0,
355 			(flags & V_SAVE) ? TRUE : FALSE);
356 	}
357 
358 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
359 		panic("vinvalbuf: flush failed");
360 	if (!RB_EMPTY(&vp->v_rbhash_tree))
361 		panic("vinvalbuf: flush failed, buffers still present");
362 	return (0);
363 }
364 
365 static int
366 vinvalbuf_bp(struct buf *bp, void *data)
367 {
368 	struct vinvalbuf_bp_info *info = data;
369 	int error;
370 
371 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
372 		error = BUF_TIMELOCK(bp, info->lkflags,
373 				     "vinvalbuf", info->slptimeo);
374 		if (error == 0) {
375 			BUF_UNLOCK(bp);
376 			error = ENOLCK;
377 		}
378 		if (error == ENOLCK)
379 			return(0);
380 		return (-error);
381 	}
382 
383 	KKASSERT(bp->b_vp == info->vp);
384 
385 	/*
386 	 * XXX Since there are no node locks for NFS, I
387 	 * believe there is a slight chance that a delayed
388 	 * write will occur while sleeping just above, so
389 	 * check for it.  Note that vfs_bio_awrite expects
390 	 * buffers to reside on a queue, while VOP_BWRITE and
391 	 * brelse do not.
392 	 */
393 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
394 	    (info->flags & V_SAVE)) {
395 		if (bp->b_vp == info->vp) {
396 			if (bp->b_flags & B_CLUSTEROK) {
397 				vfs_bio_awrite(bp);
398 			} else {
399 				bremfree(bp);
400 				bp->b_flags |= B_ASYNC;
401 				VOP_BWRITE(bp->b_vp, bp);
402 			}
403 		} else {
404 			bremfree(bp);
405 			VOP_BWRITE(bp->b_vp, bp);
406 		}
407 	} else {
408 		bremfree(bp);
409 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
410 		bp->b_flags &= ~B_ASYNC;
411 		brelse(bp);
412 	}
413 	return(0);
414 }
415 
416 /*
417  * Truncate a file's buffer and pages to a specified length.  This
418  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
419  * sync activity.
420  *
421  * The vnode must be locked.
422  */
423 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
424 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
425 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
426 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
427 
428 int
429 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
430 {
431 	off_t truncloffset;
432 	int count;
433 
434 	/*
435 	 * Round up to the *next* block, then destroy the buffers in question.
436 	 * Since we are only removing some of the buffers we must rely on the
437 	 * scan count to determine whether a loop is necessary.
438 	 */
439 	if ((count = (int)(length % blksize)) != 0)
440 		truncloffset = length + (blksize - count);
441 	else
442 		truncloffset = length;
443 
444 	crit_enter();
445 	do {
446 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
447 				vtruncbuf_bp_trunc_cmp,
448 				vtruncbuf_bp_trunc, &truncloffset);
449 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
450 				vtruncbuf_bp_trunc_cmp,
451 				vtruncbuf_bp_trunc, &truncloffset);
452 	} while(count);
453 
454 	/*
455 	 * For safety, fsync any remaining metadata if the file is not being
456 	 * truncated to 0.  Since the metadata does not represent the entire
457 	 * dirty list we have to rely on the hit count to ensure that we get
458 	 * all of it.
459 	 */
460 	if (length > 0) {
461 		do {
462 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
463 					vtruncbuf_bp_metasync_cmp,
464 					vtruncbuf_bp_metasync, vp);
465 		} while (count);
466 	}
467 
468 	/*
469 	 * Wait for any in-progress I/O to complete before returning (why?)
470 	 */
471 	while (vp->v_track_write.bk_active > 0) {
472 		vp->v_track_write.bk_waitflag = 1;
473 		tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
474 	}
475 
476 	crit_exit();
477 
478 	vnode_pager_setsize(vp, length);
479 
480 	return (0);
481 }
482 
483 /*
484  * The callback buffer is beyond the new file EOF and must be destroyed.
485  * Note that the compare function must conform to the RB_SCAN's requirements.
486  */
487 static
488 int
489 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
490 {
491 	if (bp->b_loffset >= *(off_t *)data)
492 		return(0);
493 	return(-1);
494 }
495 
496 static
497 int
498 vtruncbuf_bp_trunc(struct buf *bp, void *data)
499 {
500 	/*
501 	 * Do not try to use a buffer we cannot immediately lock, but sleep
502 	 * anyway to prevent a livelock.  The code will loop until all buffers
503 	 * can be acted upon.
504 	 */
505 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
506 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
507 			BUF_UNLOCK(bp);
508 	} else {
509 		bremfree(bp);
510 		bp->b_flags |= (B_INVAL | B_RELBUF);
511 		bp->b_flags &= ~B_ASYNC;
512 		brelse(bp);
513 	}
514 	return(1);
515 }
516 
517 /*
518  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
519  * blocks (with a negative loffset) are scanned.
520  * Note that the compare function must conform to the RB_SCAN's requirements.
521  */
522 static int
523 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
524 {
525 	if (bp->b_loffset < 0)
526 		return(0);
527 	return(1);
528 }
529 
530 static int
531 vtruncbuf_bp_metasync(struct buf *bp, void *data)
532 {
533 	struct vnode *vp = data;
534 
535 	if (bp->b_flags & B_DELWRI) {
536 		/*
537 		 * Do not try to use a buffer we cannot immediately lock,
538 		 * but sleep anyway to prevent a livelock.  The code will
539 		 * loop until all buffers can be acted upon.
540 		 */
541 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
542 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
543 				BUF_UNLOCK(bp);
544 		} else {
545 			bremfree(bp);
546 			if (bp->b_vp == vp) {
547 				bp->b_flags |= B_ASYNC;
548 			} else {
549 				bp->b_flags &= ~B_ASYNC;
550 			}
551 			VOP_BWRITE(bp->b_vp, bp);
552 		}
553 		return(1);
554 	} else {
555 		return(0);
556 	}
557 }
558 
559 /*
560  * vfsync - implements a multipass fsync on a file which understands
561  * dependancies and meta-data.  The passed vnode must be locked.  The
562  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
563  *
564  * When fsyncing data asynchronously just do one consolidated pass starting
565  * with the most negative block number.  This may not get all the data due
566  * to dependancies.
567  *
568  * When fsyncing data synchronously do a data pass, then a metadata pass,
569  * then do additional data+metadata passes to try to get all the data out.
570  */
571 static int vfsync_wait_output(struct vnode *vp,
572 			    int (*waitoutput)(struct vnode *, struct thread *));
573 static int vfsync_data_only_cmp(struct buf *bp, void *data);
574 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
575 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
576 static int vfsync_bp(struct buf *bp, void *data);
577 
578 struct vfsync_info {
579 	struct vnode *vp;
580 	int synchronous;
581 	int syncdeps;
582 	int lazycount;
583 	int lazylimit;
584 	int skippedbufs;
585 	off_t loffset;
586 	int (*checkdef)(struct buf *);
587 };
588 
589 int
590 vfsync(struct vnode *vp, int waitfor, int passes, off_t loffset,
591 	int (*checkdef)(struct buf *),
592 	int (*waitoutput)(struct vnode *, struct thread *))
593 {
594 	struct vfsync_info info;
595 	int error;
596 
597 	bzero(&info, sizeof(info));
598 	info.vp = vp;
599 	info.loffset = loffset;
600 	if ((info.checkdef = checkdef) == NULL)
601 		info.syncdeps = 1;
602 
603 	crit_enter();
604 
605 	switch(waitfor) {
606 	case MNT_LAZY:
607 		/*
608 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
609 		 * number of data (not meta) pages we try to flush to 1MB.
610 		 * A non-zero return means that lazy limit was reached.
611 		 */
612 		info.lazylimit = 1024 * 1024;
613 		info.syncdeps = 1;
614 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
615 				vfsync_lazy_range_cmp, vfsync_bp, &info);
616 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
617 				vfsync_meta_only_cmp, vfsync_bp, &info);
618 		if (error == 0)
619 			vp->v_lazyw = 0;
620 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
621 			vn_syncer_add_to_worklist(vp, 1);
622 		error = 0;
623 		break;
624 	case MNT_NOWAIT:
625 		/*
626 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
627 		 */
628 		info.syncdeps = 1;
629 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
630 			vfsync_bp, &info);
631 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
632 			vfsync_bp, &info);
633 		error = 0;
634 		break;
635 	default:
636 		/*
637 		 * Synchronous.  Do a data-only pass, then a meta-data+data
638 		 * pass, then additional integrated passes to try to get
639 		 * all the dependancies flushed.
640 		 */
641 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
642 			vfsync_bp, &info);
643 		error = vfsync_wait_output(vp, waitoutput);
644 		if (error == 0) {
645 			info.skippedbufs = 0;
646 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
647 				vfsync_bp, &info);
648 			error = vfsync_wait_output(vp, waitoutput);
649 			if (info.skippedbufs)
650 				printf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
651 		}
652 		while (error == 0 && passes > 0 &&
653 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
654 			if (--passes == 0) {
655 				info.synchronous = 1;
656 				info.syncdeps = 1;
657 			}
658 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
659 				vfsync_bp, &info);
660 			if (error < 0)
661 				error = -error;
662 			info.syncdeps = 1;
663 			if (error == 0)
664 				error = vfsync_wait_output(vp, waitoutput);
665 		}
666 		break;
667 	}
668 	crit_exit();
669 	return(error);
670 }
671 
672 static int
673 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
674 {
675 	int error = 0;
676 
677 	while (vp->v_track_write.bk_active) {
678 		vp->v_track_write.bk_waitflag = 1;
679 		tsleep(&vp->v_track_write, 0, "fsfsn", 0);
680 	}
681 	if (waitoutput)
682 		error = waitoutput(vp, curthread);
683 	return(error);
684 }
685 
686 static int
687 vfsync_data_only_cmp(struct buf *bp, void *data)
688 {
689 	if (bp->b_loffset < 0)
690 		return(-1);
691 	return(0);
692 }
693 
694 static int
695 vfsync_meta_only_cmp(struct buf *bp, void *data)
696 {
697 	if (bp->b_loffset < 0)
698 		return(0);
699 	return(1);
700 }
701 
702 static int
703 vfsync_lazy_range_cmp(struct buf *bp, void *data)
704 {
705 	struct vfsync_info *info = data;
706 	if (bp->b_loffset < info->vp->v_lazyw)
707 		return(-1);
708 	return(0);
709 }
710 
711 static int
712 vfsync_bp(struct buf *bp, void *data)
713 {
714 	struct vfsync_info *info = data;
715 	struct vnode *vp = info->vp;
716 	int error;
717 
718 	/*
719 	 * if syncdeps is not set we do not try to write buffers which have
720 	 * dependancies.
721 	 */
722 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
723 		return(0);
724 
725 	/*
726 	 * Ignore buffers that we cannot immediately lock.  XXX
727 	 */
728 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
729 		printf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
730 		++info->skippedbufs;
731 		return(0);
732 	}
733 	if ((bp->b_flags & B_DELWRI) == 0)
734 		panic("vfsync_bp: buffer not dirty");
735 	if (vp != bp->b_vp)
736 		panic("vfsync_bp: buffer vp mismatch");
737 
738 	/*
739 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
740 	 * has been written but an additional handshake with the device
741 	 * is required before we can dispose of the buffer.  We have no idea
742 	 * how to do this so we have to skip these buffers.
743 	 */
744 	if (bp->b_flags & B_NEEDCOMMIT) {
745 		BUF_UNLOCK(bp);
746 		return(0);
747 	}
748 
749 	/*
750 	 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
751 	 * buffers beyond the file EOF.
752 	 */
753 	if (info->loffset != NOOFFSET && vp->v_type == VREG &&
754 	    bp->b_loffset >= info->loffset) {
755 		bremfree(bp);
756 		bp->b_flags |= B_INVAL | B_NOCACHE;
757 		crit_exit();
758 		brelse(bp);
759 		crit_enter();
760 	}
761 
762 	if (info->synchronous) {
763 		/*
764 		 * Synchronous flushing.  An error may be returned.
765 		 */
766 		bremfree(bp);
767 		crit_exit();
768 		error = bwrite(bp);
769 		crit_enter();
770 	} else {
771 		/*
772 		 * Asynchronous flushing.  A negative return value simply
773 		 * stops the scan and is not considered an error.  We use
774 		 * this to support limited MNT_LAZY flushes.
775 		 */
776 		vp->v_lazyw = bp->b_loffset;
777 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
778 			info->lazycount += vfs_bio_awrite(bp);
779 		} else {
780 			info->lazycount += bp->b_bufsize;
781 			bremfree(bp);
782 			crit_exit();
783 			bawrite(bp);
784 			crit_enter();
785 		}
786 		if (info->lazylimit && info->lazycount >= info->lazylimit)
787 			error = 1;
788 		else
789 			error = 0;
790 	}
791 	return(-error);
792 }
793 
794 /*
795  * Associate a buffer with a vnode.
796  */
797 void
798 bgetvp(struct vnode *vp, struct buf *bp)
799 {
800 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
801 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI)) == 0);
802 	KKASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0);
803 
804 	vhold(vp);
805 	/*
806 	 * Insert onto list for new vnode.
807 	 */
808 	crit_enter();
809 	bp->b_vp = vp;
810 	bp->b_flags |= B_HASHED;
811 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
812 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
813 
814 	bp->b_xflags |= BX_VNCLEAN;
815 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
816 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
817 	crit_exit();
818 }
819 
820 /*
821  * Disassociate a buffer from a vnode.
822  */
823 void
824 brelvp(struct buf *bp)
825 {
826 	struct vnode *vp;
827 
828 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
829 
830 	/*
831 	 * Delete from old vnode list, if on one.
832 	 */
833 	vp = bp->b_vp;
834 	crit_enter();
835 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
836 		if (bp->b_xflags & BX_VNDIRTY)
837 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
838 		else
839 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
840 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
841 	}
842 	if (bp->b_flags & B_HASHED) {
843 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
844 		bp->b_flags &= ~B_HASHED;
845 	}
846 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
847 		vp->v_flag &= ~VONWORKLST;
848 		LIST_REMOVE(vp, v_synclist);
849 	}
850 	crit_exit();
851 	bp->b_vp = NULL;
852 	vdrop(vp);
853 }
854 
855 /*
856  * Associate a p-buffer with a vnode.
857  *
858  * Also sets B_PAGING flag to indicate that vnode is not fully associated
859  * with the buffer.  i.e. the bp has not been linked into the vnode or
860  * ref-counted.
861  */
862 void
863 pbgetvp(struct vnode *vp, struct buf *bp)
864 {
865 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
866 	KKASSERT((bp->b_flags & B_HASHED) == 0);
867 
868 	bp->b_vp = vp;
869 	bp->b_flags |= B_PAGING;
870 }
871 
872 /*
873  * Disassociate a p-buffer from a vnode.
874  */
875 void
876 pbrelvp(struct buf *bp)
877 {
878 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
879 	KKASSERT((bp->b_flags & B_HASHED) == 0);
880 
881 	bp->b_vp = NULL;
882 	bp->b_flags &= ~B_PAGING;
883 }
884 
885 /*
886  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
887  * This routine is called when the state of the B_DELWRI bit is changed.
888  */
889 void
890 reassignbuf(struct buf *bp)
891 {
892 	struct vnode *vp = bp->b_vp;
893 	int delay;
894 
895 	KKASSERT(vp != NULL);
896 	++reassignbufcalls;
897 
898 	/*
899 	 * B_PAGING flagged buffers cannot be reassigned because their vp
900 	 * is not fully linked in.
901 	 */
902 	if (bp->b_flags & B_PAGING)
903 		panic("cannot reassign paging buffer");
904 
905 	crit_enter();
906 	if (bp->b_flags & B_DELWRI) {
907 		/*
908 		 * Move to the dirty list, add the vnode to the worklist
909 		 */
910 		if (bp->b_xflags & BX_VNCLEAN) {
911 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
912 			bp->b_xflags &= ~BX_VNCLEAN;
913 		}
914 		if ((bp->b_xflags & BX_VNDIRTY) == 0) {
915 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
916 				panic("reassignbuf: dup lblk vp %p bp %p",
917 				      vp, bp);
918 			}
919 			bp->b_xflags |= BX_VNDIRTY;
920 		}
921 		if ((vp->v_flag & VONWORKLST) == 0) {
922 			switch (vp->v_type) {
923 			case VDIR:
924 				delay = dirdelay;
925 				break;
926 			case VCHR:
927 			case VBLK:
928 				if (vp->v_rdev &&
929 				    vp->v_rdev->si_mountpoint != NULL) {
930 					delay = metadelay;
931 					break;
932 				}
933 				/* fall through */
934 			default:
935 				delay = filedelay;
936 			}
937 			vn_syncer_add_to_worklist(vp, delay);
938 		}
939 	} else {
940 		/*
941 		 * Move to the clean list, remove the vnode from the worklist
942 		 * if no dirty blocks remain.
943 		 */
944 		if (bp->b_xflags & BX_VNDIRTY) {
945 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
946 			bp->b_xflags &= ~BX_VNDIRTY;
947 		}
948 		if ((bp->b_xflags & BX_VNCLEAN) == 0) {
949 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
950 				panic("reassignbuf: dup lblk vp %p bp %p",
951 				      vp, bp);
952 			}
953 			bp->b_xflags |= BX_VNCLEAN;
954 		}
955 		if ((vp->v_flag & VONWORKLST) &&
956 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
957 			vp->v_flag &= ~VONWORKLST;
958 			LIST_REMOVE(vp, v_synclist);
959 		}
960 	}
961 	crit_exit();
962 }
963 
964 /*
965  * Create a vnode for a block device.
966  * Used for mounting the root file system.
967  */
968 int
969 bdevvp(dev_t dev, struct vnode **vpp)
970 {
971 	struct vnode *vp;
972 	struct vnode *nvp;
973 	int error;
974 
975 	if (dev == NODEV) {
976 		*vpp = NULLVP;
977 		return (ENXIO);
978 	}
979 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
980 	if (error) {
981 		*vpp = NULLVP;
982 		return (error);
983 	}
984 	vp = nvp;
985 	vp->v_type = VCHR;
986 	vp->v_udev = dev->si_udev;
987 	vx_unlock(vp);
988 	*vpp = vp;
989 	return (0);
990 }
991 
992 int
993 v_associate_rdev(struct vnode *vp, dev_t dev)
994 {
995 	lwkt_tokref ilock;
996 
997 	if (dev == NULL || dev == NODEV)
998 		return(ENXIO);
999 	if (dev_is_good(dev) == 0)
1000 		return(ENXIO);
1001 	KKASSERT(vp->v_rdev == NULL);
1002 	if (dev_ref_debug)
1003 		printf("Z1");
1004 	vp->v_rdev = reference_dev(dev);
1005 	lwkt_gettoken(&ilock, &spechash_token);
1006 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1007 	lwkt_reltoken(&ilock);
1008 	return(0);
1009 }
1010 
1011 void
1012 v_release_rdev(struct vnode *vp)
1013 {
1014 	lwkt_tokref ilock;
1015 	dev_t dev;
1016 
1017 	if ((dev = vp->v_rdev) != NULL) {
1018 		lwkt_gettoken(&ilock, &spechash_token);
1019 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1020 		if (dev_ref_debug && vp->v_opencount != 0) {
1021 			printf("releasing rdev with non-0 "
1022 				"v_opencount(%d) (revoked?)\n",
1023 				vp->v_opencount);
1024 		}
1025 		vp->v_rdev = NULL;
1026 		vp->v_opencount = 0;
1027 		release_dev(dev);
1028 		lwkt_reltoken(&ilock);
1029 	}
1030 }
1031 
1032 /*
1033  * Add a vnode to the alias list hung off the dev_t.  We only associate
1034  * the device number with the vnode.  The actual device is not associated
1035  * until the vnode is opened (usually in spec_open()), and will be
1036  * disassociated on last close.
1037  */
1038 void
1039 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1040 {
1041 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1042 		panic("addaliasu on non-special vnode");
1043 	nvp->v_udev = nvp_udev;
1044 }
1045 
1046 /*
1047  * Disassociate a vnode from its underlying filesystem.
1048  *
1049  * The vnode must be VX locked and refd
1050  *
1051  * If there are v_usecount references to the vnode other then ours we have
1052  * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1053  */
1054 void
1055 vclean(struct vnode *vp, int flags, struct thread *td)
1056 {
1057 	int active;
1058 	int retflags = 0;
1059 
1060 	/*
1061 	 * If the vnode has already been reclaimed we have nothing to do.
1062 	 */
1063 	if (vp->v_flag & VRECLAIMED)
1064 		return;
1065 	vp->v_flag |= VRECLAIMED;
1066 
1067 	/*
1068 	 * Scrap the vfs cache
1069 	 */
1070 	while (cache_inval_vp(vp, 0, &retflags) != 0) {
1071 		printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1072 		tsleep(vp, 0, "vclninv", 2);
1073 	}
1074 
1075 	/*
1076 	 * Check to see if the vnode is in use. If so we have to reference it
1077 	 * before we clean it out so that its count cannot fall to zero and
1078 	 * generate a race against ourselves to recycle it.
1079 	 */
1080 	active = (vp->v_usecount > 1);
1081 
1082 	/*
1083 	 * Clean out any buffers associated with the vnode and destroy its
1084 	 * object, if it has one.
1085 	 */
1086 	vinvalbuf(vp, V_SAVE, td, 0, 0);
1087 	VOP_DESTROYVOBJECT(vp);
1088 
1089 	/*
1090 	 * If purging an active vnode, it must be closed and
1091 	 * deactivated before being reclaimed.   XXX
1092 	 *
1093 	 * Note that neither of these routines unlocks the vnode.
1094 	 */
1095 	if (active) {
1096 		if (flags & DOCLOSE)
1097 			VOP_CLOSE(vp, FNONBLOCK, td);
1098 	}
1099 
1100 	/*
1101 	 * If the vnode has not be deactivated, deactivated it.
1102 	 */
1103 	if ((vp->v_flag & VINACTIVE) == 0) {
1104 		vp->v_flag |= VINACTIVE;
1105 		VOP_INACTIVE(vp, td);
1106 	}
1107 
1108 	/*
1109 	 * Reclaim the vnode.
1110 	 */
1111 	if (VOP_RECLAIM(vp, retflags, td))
1112 		panic("vclean: cannot reclaim");
1113 
1114 	/*
1115 	 * Done with purge, notify sleepers of the grim news.
1116 	 */
1117 	vp->v_ops = &dead_vnode_vops;
1118 	vn_pollgone(vp);
1119 	vp->v_tag = VT_NON;
1120 }
1121 
1122 /*
1123  * Eliminate all activity associated with the requested vnode
1124  * and with all vnodes aliased to the requested vnode.
1125  *
1126  * The vnode must be referenced and vx_lock()'d
1127  *
1128  * revoke { struct vnode *a_vp, int a_flags }
1129  */
1130 int
1131 vop_stdrevoke(struct vop_revoke_args *ap)
1132 {
1133 	struct vnode *vp, *vq;
1134 	lwkt_tokref ilock;
1135 	dev_t dev;
1136 
1137 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1138 
1139 	vp = ap->a_vp;
1140 
1141 	/*
1142 	 * If the vnode is already dead don't try to revoke it
1143 	 */
1144 	if (vp->v_flag & VRECLAIMED)
1145 		return (0);
1146 
1147 	/*
1148 	 * If the vnode has a device association, scrap all vnodes associated
1149 	 * with the device.  Don't let the device disappear on us while we
1150 	 * are scrapping the vnodes.
1151 	 *
1152 	 * The passed vp will probably show up in the list, do not VX lock
1153 	 * it twice!
1154 	 */
1155 	if (vp->v_type != VCHR && vp->v_type != VBLK)
1156 		return(0);
1157 	if ((dev = vp->v_rdev) == NULL) {
1158 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1159 			return(0);
1160 	}
1161 	reference_dev(dev);
1162 	lwkt_gettoken(&ilock, &spechash_token);
1163 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1164 		if (vp == vq || vx_get(vq) == 0) {
1165 			if (vq == SLIST_FIRST(&dev->si_hlist))
1166 				vgone(vq);
1167 			if (vp != vq)
1168 				vx_put(vq);
1169 		}
1170 	}
1171 	lwkt_reltoken(&ilock);
1172 	release_dev(dev);
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Recycle an unused vnode to the front of the free list.
1178  *
1179  * Returns 1 if we were successfully able to recycle the vnode,
1180  * 0 otherwise.
1181  */
1182 int
1183 vrecycle(struct vnode *vp, struct thread *td)
1184 {
1185 	if (vp->v_usecount == 1) {
1186 		vgone(vp);
1187 		return (1);
1188 	}
1189 	return (0);
1190 }
1191 
1192 /*
1193  * Eliminate all activity associated with a vnode in preparation for reuse.
1194  *
1195  * The vnode must be VX locked and refd and will remain VX locked and refd
1196  * on return.  This routine may be called with the vnode in any state, as
1197  * long as it is VX locked.  The vnode will be cleaned out and marked
1198  * VRECLAIMED but will not actually be reused until all existing refs and
1199  * holds go away.
1200  *
1201  * NOTE: This routine may be called on a vnode which has not yet been
1202  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1203  * already been reclaimed.
1204  *
1205  * This routine is not responsible for placing us back on the freelist.
1206  * Instead, it happens automatically when the caller releases the VX lock
1207  * (assuming there aren't any other references).
1208  */
1209 void
1210 vgone(struct vnode *vp)
1211 {
1212 	/*
1213 	 * assert that the VX lock is held.  This is an absolute requirement
1214 	 * now for vgone() to be called.
1215 	 */
1216 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1217 
1218 	/*
1219 	 * Clean out the filesystem specific data and set the VRECLAIMED
1220 	 * bit.  Also deactivate the vnode if necessary.
1221 	 */
1222 	vclean(vp, DOCLOSE, curthread);
1223 
1224 	/*
1225 	 * Delete from old mount point vnode list, if on one.
1226 	 */
1227 	if (vp->v_mount != NULL)
1228 		insmntque(vp, NULL);
1229 
1230 	/*
1231 	 * If special device, remove it from special device alias list
1232 	 * if it is on one.  This should normally only occur if a vnode is
1233 	 * being revoked as the device should otherwise have been released
1234 	 * naturally.
1235 	 */
1236 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1237 		v_release_rdev(vp);
1238 	}
1239 
1240 	/*
1241 	 * Set us to VBAD
1242 	 */
1243 	vp->v_type = VBAD;
1244 }
1245 
1246 /*
1247  * Lookup a vnode by device number.
1248  */
1249 int
1250 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1251 {
1252 	lwkt_tokref ilock;
1253 	struct vnode *vp;
1254 
1255 	lwkt_gettoken(&ilock, &spechash_token);
1256 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1257 		if (type == vp->v_type) {
1258 			*vpp = vp;
1259 			lwkt_reltoken(&ilock);
1260 			return (1);
1261 		}
1262 	}
1263 	lwkt_reltoken(&ilock);
1264 	return (0);
1265 }
1266 
1267 /*
1268  * Calculate the total number of references to a special device.  This
1269  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1270  * an overloaded field.  Since udev2dev can now return NODEV, we have
1271  * to check for a NULL v_rdev.
1272  */
1273 int
1274 count_dev(dev_t dev)
1275 {
1276 	lwkt_tokref ilock;
1277 	struct vnode *vp;
1278 	int count = 0;
1279 
1280 	if (SLIST_FIRST(&dev->si_hlist)) {
1281 		lwkt_gettoken(&ilock, &spechash_token);
1282 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1283 			count += vp->v_usecount;
1284 		}
1285 		lwkt_reltoken(&ilock);
1286 	}
1287 	return(count);
1288 }
1289 
1290 int
1291 count_udev(udev_t udev)
1292 {
1293 	dev_t dev;
1294 
1295 	if ((dev = udev2dev(udev, 0)) == NODEV)
1296 		return(0);
1297 	return(count_dev(dev));
1298 }
1299 
1300 int
1301 vcount(struct vnode *vp)
1302 {
1303 	if (vp->v_rdev == NULL)
1304 		return(0);
1305 	return(count_dev(vp->v_rdev));
1306 }
1307 
1308 /*
1309  * Print out a description of a vnode.
1310  */
1311 static char *typename[] =
1312 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1313 
1314 void
1315 vprint(char *label, struct vnode *vp)
1316 {
1317 	char buf[96];
1318 
1319 	if (label != NULL)
1320 		printf("%s: %p: ", label, (void *)vp);
1321 	else
1322 		printf("%p: ", (void *)vp);
1323 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1324 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1325 	    vp->v_holdcnt);
1326 	buf[0] = '\0';
1327 	if (vp->v_flag & VROOT)
1328 		strcat(buf, "|VROOT");
1329 	if (vp->v_flag & VTEXT)
1330 		strcat(buf, "|VTEXT");
1331 	if (vp->v_flag & VSYSTEM)
1332 		strcat(buf, "|VSYSTEM");
1333 	if (vp->v_flag & VFREE)
1334 		strcat(buf, "|VFREE");
1335 	if (vp->v_flag & VOBJBUF)
1336 		strcat(buf, "|VOBJBUF");
1337 	if (buf[0] != '\0')
1338 		printf(" flags (%s)", &buf[1]);
1339 	if (vp->v_data == NULL) {
1340 		printf("\n");
1341 	} else {
1342 		printf("\n\t");
1343 		VOP_PRINT(vp);
1344 	}
1345 }
1346 
1347 #ifdef DDB
1348 #include <ddb/ddb.h>
1349 
1350 static int db_show_locked_vnodes(struct mount *mp, void *data);
1351 
1352 /*
1353  * List all of the locked vnodes in the system.
1354  * Called when debugging the kernel.
1355  */
1356 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1357 {
1358 	printf("Locked vnodes\n");
1359 	mountlist_scan(db_show_locked_vnodes, NULL,
1360 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1361 }
1362 
1363 static int
1364 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1365 {
1366 	struct vnode *vp;
1367 
1368 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1369 		if (VOP_ISLOCKED(vp, NULL))
1370 			vprint((char *)0, vp);
1371 	}
1372 	return(0);
1373 }
1374 #endif
1375 
1376 /*
1377  * Top level filesystem related information gathering.
1378  */
1379 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1380 
1381 static int
1382 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1383 {
1384 	int *name = (int *)arg1 - 1;	/* XXX */
1385 	u_int namelen = arg2 + 1;	/* XXX */
1386 	struct vfsconf *vfsp;
1387 
1388 #if 1 || defined(COMPAT_PRELITE2)
1389 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1390 	if (namelen == 1)
1391 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1392 #endif
1393 
1394 #ifdef notyet
1395 	/* all sysctl names at this level are at least name and field */
1396 	if (namelen < 2)
1397 		return (ENOTDIR);		/* overloaded */
1398 	if (name[0] != VFS_GENERIC) {
1399 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1400 			if (vfsp->vfc_typenum == name[0])
1401 				break;
1402 		if (vfsp == NULL)
1403 			return (EOPNOTSUPP);
1404 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1405 		    oldp, oldlenp, newp, newlen, p));
1406 	}
1407 #endif
1408 	switch (name[1]) {
1409 	case VFS_MAXTYPENUM:
1410 		if (namelen != 2)
1411 			return (ENOTDIR);
1412 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1413 	case VFS_CONF:
1414 		if (namelen != 3)
1415 			return (ENOTDIR);	/* overloaded */
1416 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1417 			if (vfsp->vfc_typenum == name[2])
1418 				break;
1419 		if (vfsp == NULL)
1420 			return (EOPNOTSUPP);
1421 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1422 	}
1423 	return (EOPNOTSUPP);
1424 }
1425 
1426 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1427 	"Generic filesystem");
1428 
1429 #if 1 || defined(COMPAT_PRELITE2)
1430 
1431 static int
1432 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1433 {
1434 	int error;
1435 	struct vfsconf *vfsp;
1436 	struct ovfsconf ovfs;
1437 
1438 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1439 		bzero(&ovfs, sizeof(ovfs));
1440 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1441 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1442 		ovfs.vfc_index = vfsp->vfc_typenum;
1443 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1444 		ovfs.vfc_flags = vfsp->vfc_flags;
1445 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1446 		if (error)
1447 			return error;
1448 	}
1449 	return 0;
1450 }
1451 
1452 #endif /* 1 || COMPAT_PRELITE2 */
1453 
1454 /*
1455  * Check to see if a filesystem is mounted on a block device.
1456  */
1457 int
1458 vfs_mountedon(struct vnode *vp)
1459 {
1460 	dev_t dev;
1461 
1462 	if ((dev = vp->v_rdev) == NULL)
1463 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1464 	if (dev != NODEV && dev->si_mountpoint)
1465 		return (EBUSY);
1466 	return (0);
1467 }
1468 
1469 /*
1470  * Unmount all filesystems. The list is traversed in reverse order
1471  * of mounting to avoid dependencies.
1472  */
1473 
1474 static int vfs_umountall_callback(struct mount *mp, void *data);
1475 
1476 void
1477 vfs_unmountall(void)
1478 {
1479 	struct thread *td = curthread;
1480 	int count;
1481 
1482 	if (td->td_proc == NULL)
1483 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
1484 
1485 	do {
1486 		count = mountlist_scan(vfs_umountall_callback,
1487 					&td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1488 	} while (count);
1489 }
1490 
1491 static
1492 int
1493 vfs_umountall_callback(struct mount *mp, void *data)
1494 {
1495 	struct thread *td = *(struct thread **)data;
1496 	int error;
1497 
1498 	error = dounmount(mp, MNT_FORCE, td);
1499 	if (error) {
1500 		mountlist_remove(mp);
1501 		printf("unmount of filesystem mounted from %s failed (",
1502 			mp->mnt_stat.f_mntfromname);
1503 		if (error == EBUSY)
1504 			printf("BUSY)\n");
1505 		else
1506 			printf("%d)\n", error);
1507 	}
1508 	return(1);
1509 }
1510 
1511 /*
1512  * Build hash lists of net addresses and hang them off the mount point.
1513  * Called by ufs_mount() to set up the lists of export addresses.
1514  */
1515 static int
1516 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1517 		struct export_args *argp)
1518 {
1519 	struct netcred *np;
1520 	struct radix_node_head *rnh;
1521 	int i;
1522 	struct radix_node *rn;
1523 	struct sockaddr *saddr, *smask = 0;
1524 	struct domain *dom;
1525 	int error;
1526 
1527 	if (argp->ex_addrlen == 0) {
1528 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1529 			return (EPERM);
1530 		np = &nep->ne_defexported;
1531 		np->netc_exflags = argp->ex_flags;
1532 		np->netc_anon = argp->ex_anon;
1533 		np->netc_anon.cr_ref = 1;
1534 		mp->mnt_flag |= MNT_DEFEXPORTED;
1535 		return (0);
1536 	}
1537 
1538 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1539 		return (EINVAL);
1540 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1541 		return (EINVAL);
1542 
1543 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1544 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1545 	bzero((caddr_t) np, i);
1546 	saddr = (struct sockaddr *) (np + 1);
1547 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1548 		goto out;
1549 	if (saddr->sa_len > argp->ex_addrlen)
1550 		saddr->sa_len = argp->ex_addrlen;
1551 	if (argp->ex_masklen) {
1552 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1553 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1554 		if (error)
1555 			goto out;
1556 		if (smask->sa_len > argp->ex_masklen)
1557 			smask->sa_len = argp->ex_masklen;
1558 	}
1559 	i = saddr->sa_family;
1560 	if ((rnh = nep->ne_rtable[i]) == 0) {
1561 		/*
1562 		 * Seems silly to initialize every AF when most are not used,
1563 		 * do so on demand here
1564 		 */
1565 		SLIST_FOREACH(dom, &domains, dom_next)
1566 			if (dom->dom_family == i && dom->dom_rtattach) {
1567 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1568 				    dom->dom_rtoffset);
1569 				break;
1570 			}
1571 		if ((rnh = nep->ne_rtable[i]) == 0) {
1572 			error = ENOBUFS;
1573 			goto out;
1574 		}
1575 	}
1576 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1577 	    np->netc_rnodes);
1578 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1579 		error = EPERM;
1580 		goto out;
1581 	}
1582 	np->netc_exflags = argp->ex_flags;
1583 	np->netc_anon = argp->ex_anon;
1584 	np->netc_anon.cr_ref = 1;
1585 	return (0);
1586 out:
1587 	free(np, M_NETADDR);
1588 	return (error);
1589 }
1590 
1591 /* ARGSUSED */
1592 static int
1593 vfs_free_netcred(struct radix_node *rn, void *w)
1594 {
1595 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1596 
1597 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1598 	free((caddr_t) rn, M_NETADDR);
1599 	return (0);
1600 }
1601 
1602 /*
1603  * Free the net address hash lists that are hanging off the mount points.
1604  */
1605 static void
1606 vfs_free_addrlist(struct netexport *nep)
1607 {
1608 	int i;
1609 	struct radix_node_head *rnh;
1610 
1611 	for (i = 0; i <= AF_MAX; i++)
1612 		if ((rnh = nep->ne_rtable[i])) {
1613 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1614 			    (caddr_t) rnh);
1615 			free((caddr_t) rnh, M_RTABLE);
1616 			nep->ne_rtable[i] = 0;
1617 		}
1618 }
1619 
1620 int
1621 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1622 {
1623 	int error;
1624 
1625 	if (argp->ex_flags & MNT_DELEXPORT) {
1626 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1627 			vfs_setpublicfs(NULL, NULL, NULL);
1628 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1629 		}
1630 		vfs_free_addrlist(nep);
1631 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1632 	}
1633 	if (argp->ex_flags & MNT_EXPORTED) {
1634 		if (argp->ex_flags & MNT_EXPUBLIC) {
1635 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1636 				return (error);
1637 			mp->mnt_flag |= MNT_EXPUBLIC;
1638 		}
1639 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1640 			return (error);
1641 		mp->mnt_flag |= MNT_EXPORTED;
1642 	}
1643 	return (0);
1644 }
1645 
1646 
1647 /*
1648  * Set the publicly exported filesystem (WebNFS). Currently, only
1649  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1650  */
1651 int
1652 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1653 		struct export_args *argp)
1654 {
1655 	int error;
1656 	struct vnode *rvp;
1657 	char *cp;
1658 
1659 	/*
1660 	 * mp == NULL -> invalidate the current info, the FS is
1661 	 * no longer exported. May be called from either vfs_export
1662 	 * or unmount, so check if it hasn't already been done.
1663 	 */
1664 	if (mp == NULL) {
1665 		if (nfs_pub.np_valid) {
1666 			nfs_pub.np_valid = 0;
1667 			if (nfs_pub.np_index != NULL) {
1668 				FREE(nfs_pub.np_index, M_TEMP);
1669 				nfs_pub.np_index = NULL;
1670 			}
1671 		}
1672 		return (0);
1673 	}
1674 
1675 	/*
1676 	 * Only one allowed at a time.
1677 	 */
1678 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1679 		return (EBUSY);
1680 
1681 	/*
1682 	 * Get real filehandle for root of exported FS.
1683 	 */
1684 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1685 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1686 
1687 	if ((error = VFS_ROOT(mp, &rvp)))
1688 		return (error);
1689 
1690 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1691 		return (error);
1692 
1693 	vput(rvp);
1694 
1695 	/*
1696 	 * If an indexfile was specified, pull it in.
1697 	 */
1698 	if (argp->ex_indexfile != NULL) {
1699 		int namelen;
1700 
1701 		error = vn_get_namelen(rvp, &namelen);
1702 		if (error)
1703 			return (error);
1704 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1705 		    M_WAITOK);
1706 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1707 		    namelen, (size_t *)0);
1708 		if (!error) {
1709 			/*
1710 			 * Check for illegal filenames.
1711 			 */
1712 			for (cp = nfs_pub.np_index; *cp; cp++) {
1713 				if (*cp == '/') {
1714 					error = EINVAL;
1715 					break;
1716 				}
1717 			}
1718 		}
1719 		if (error) {
1720 			FREE(nfs_pub.np_index, M_TEMP);
1721 			return (error);
1722 		}
1723 	}
1724 
1725 	nfs_pub.np_mount = mp;
1726 	nfs_pub.np_valid = 1;
1727 	return (0);
1728 }
1729 
1730 struct netcred *
1731 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1732 		struct sockaddr *nam)
1733 {
1734 	struct netcred *np;
1735 	struct radix_node_head *rnh;
1736 	struct sockaddr *saddr;
1737 
1738 	np = NULL;
1739 	if (mp->mnt_flag & MNT_EXPORTED) {
1740 		/*
1741 		 * Lookup in the export list first.
1742 		 */
1743 		if (nam != NULL) {
1744 			saddr = nam;
1745 			rnh = nep->ne_rtable[saddr->sa_family];
1746 			if (rnh != NULL) {
1747 				np = (struct netcred *)
1748 					(*rnh->rnh_matchaddr)((char *)saddr,
1749 							      rnh);
1750 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1751 					np = NULL;
1752 			}
1753 		}
1754 		/*
1755 		 * If no address match, use the default if it exists.
1756 		 */
1757 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1758 			np = &nep->ne_defexported;
1759 	}
1760 	return (np);
1761 }
1762 
1763 /*
1764  * perform msync on all vnodes under a mount point.  The mount point must
1765  * be locked.  This code is also responsible for lazy-freeing unreferenced
1766  * vnodes whos VM objects no longer contain pages.
1767  *
1768  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1769  *
1770  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1771  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1772  * way up in this high level function.
1773  */
1774 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1775 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1776 
1777 void
1778 vfs_msync(struct mount *mp, int flags)
1779 {
1780 	int vmsc_flags;
1781 
1782 	vmsc_flags = VMSC_GETVP;
1783 	if (flags != MNT_WAIT)
1784 		vmsc_flags |= VMSC_NOWAIT;
1785 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1786 			(void *)flags);
1787 }
1788 
1789 /*
1790  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1791  * vnodes, we cannot afford to do anything heavy weight until we have a
1792  * fairly good indication that there is work to do.
1793  */
1794 static
1795 int
1796 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1797 {
1798 	int flags = (int)data;
1799 
1800 	if ((vp->v_flag & VRECLAIMED) == 0) {
1801 		if (vshouldfree(vp, 0))
1802 			return(0);	/* call scan2 */
1803 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1804 		    (vp->v_flag & VOBJDIRTY) &&
1805 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1806 			return(0);	/* call scan2 */
1807 		}
1808 	}
1809 
1810 	/*
1811 	 * do not call scan2, continue the loop
1812 	 */
1813 	return(-1);
1814 }
1815 
1816 /*
1817  * This callback is handed a locked vnode.
1818  */
1819 static
1820 int
1821 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1822 {
1823 	vm_object_t obj;
1824 	int flags = (int)data;
1825 
1826 	if (vp->v_flag & VRECLAIMED)
1827 		return(0);
1828 
1829 	if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1830 	    (vp->v_flag & VOBJDIRTY)) {
1831 		if (VOP_GETVOBJECT(vp, &obj) == 0) {
1832 			vm_object_page_clean(obj, 0, 0,
1833 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1834 		}
1835 	}
1836 	return(0);
1837 }
1838 
1839 /*
1840  * Create the VM object needed for VMIO and mmap support.  This
1841  * is done for all VREG files in the system.  Some filesystems might
1842  * afford the additional metadata buffering capability of the
1843  * VMIO code by making the device node be VMIO mode also.
1844  *
1845  * vp must be locked when vfs_object_create is called.
1846  */
1847 int
1848 vfs_object_create(struct vnode *vp, struct thread *td)
1849 {
1850 	return (VOP_CREATEVOBJECT(vp, td));
1851 }
1852 
1853 /*
1854  * Record a process's interest in events which might happen to
1855  * a vnode.  Because poll uses the historic select-style interface
1856  * internally, this routine serves as both the ``check for any
1857  * pending events'' and the ``record my interest in future events''
1858  * functions.  (These are done together, while the lock is held,
1859  * to avoid race conditions.)
1860  */
1861 int
1862 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1863 {
1864 	lwkt_tokref ilock;
1865 
1866 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1867 	if (vp->v_pollinfo.vpi_revents & events) {
1868 		/*
1869 		 * This leaves events we are not interested
1870 		 * in available for the other process which
1871 		 * which presumably had requested them
1872 		 * (otherwise they would never have been
1873 		 * recorded).
1874 		 */
1875 		events &= vp->v_pollinfo.vpi_revents;
1876 		vp->v_pollinfo.vpi_revents &= ~events;
1877 
1878 		lwkt_reltoken(&ilock);
1879 		return events;
1880 	}
1881 	vp->v_pollinfo.vpi_events |= events;
1882 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1883 	lwkt_reltoken(&ilock);
1884 	return 0;
1885 }
1886 
1887 /*
1888  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1889  * it is possible for us to miss an event due to race conditions, but
1890  * that condition is expected to be rare, so for the moment it is the
1891  * preferred interface.
1892  */
1893 void
1894 vn_pollevent(struct vnode *vp, int events)
1895 {
1896 	lwkt_tokref ilock;
1897 
1898 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1899 	if (vp->v_pollinfo.vpi_events & events) {
1900 		/*
1901 		 * We clear vpi_events so that we don't
1902 		 * call selwakeup() twice if two events are
1903 		 * posted before the polling process(es) is
1904 		 * awakened.  This also ensures that we take at
1905 		 * most one selwakeup() if the polling process
1906 		 * is no longer interested.  However, it does
1907 		 * mean that only one event can be noticed at
1908 		 * a time.  (Perhaps we should only clear those
1909 		 * event bits which we note?) XXX
1910 		 */
1911 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1912 		vp->v_pollinfo.vpi_revents |= events;
1913 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1914 	}
1915 	lwkt_reltoken(&ilock);
1916 }
1917 
1918 /*
1919  * Wake up anyone polling on vp because it is being revoked.
1920  * This depends on dead_poll() returning POLLHUP for correct
1921  * behavior.
1922  */
1923 void
1924 vn_pollgone(struct vnode *vp)
1925 {
1926 	lwkt_tokref ilock;
1927 
1928 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1929 	if (vp->v_pollinfo.vpi_events) {
1930 		vp->v_pollinfo.vpi_events = 0;
1931 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1932 	}
1933 	lwkt_reltoken(&ilock);
1934 }
1935 
1936 /*
1937  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
1938  * (or v_rdev might be NULL).
1939  */
1940 dev_t
1941 vn_todev(struct vnode *vp)
1942 {
1943 	if (vp->v_type != VBLK && vp->v_type != VCHR)
1944 		return (NODEV);
1945 	KKASSERT(vp->v_rdev != NULL);
1946 	return (vp->v_rdev);
1947 }
1948 
1949 /*
1950  * Check if vnode represents a disk device.  The vnode does not need to be
1951  * opened.
1952  */
1953 int
1954 vn_isdisk(struct vnode *vp, int *errp)
1955 {
1956 	dev_t dev;
1957 
1958 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
1959 		if (errp != NULL)
1960 			*errp = ENOTBLK;
1961 		return (0);
1962 	}
1963 
1964 	if ((dev = vp->v_rdev) == NULL)
1965 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1966 	if (dev == NULL || dev == NODEV) {
1967 		if (errp != NULL)
1968 			*errp = ENXIO;
1969 		return (0);
1970 	}
1971 	if (dev_is_good(dev) == 0) {
1972 		if (errp != NULL)
1973 			*errp = ENXIO;
1974 		return (0);
1975 	}
1976 	if ((dev_dflags(dev) & D_DISK) == 0) {
1977 		if (errp != NULL)
1978 			*errp = ENOTBLK;
1979 		return (0);
1980 	}
1981 	if (errp != NULL)
1982 		*errp = 0;
1983 	return (1);
1984 }
1985 
1986 #ifdef DEBUG_VFS_LOCKS
1987 
1988 void
1989 assert_vop_locked(struct vnode *vp, const char *str)
1990 {
1991 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
1992 		panic("%s: %p is not locked shared but should be", str, vp);
1993 	}
1994 }
1995 
1996 void
1997 assert_vop_unlocked(struct vnode *vp, const char *str)
1998 {
1999 	if (vp && IS_LOCKING_VFS(vp)) {
2000 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
2001 			panic("%s: %p is locked but should not be", str, vp);
2002 		}
2003 	}
2004 }
2005 
2006 #endif
2007 
2008 int
2009 vn_get_namelen(struct vnode *vp, int *namelen)
2010 {
2011 	int error, retval[2];
2012 
2013 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2014 	if (error)
2015 		return (error);
2016 	*namelen = *retval;
2017 	return (0);
2018 }
2019 
2020 int
2021 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2022 		uint16_t d_namlen, const char *d_name)
2023 {
2024 	struct dirent *dp;
2025 	size_t len;
2026 
2027 	len = _DIRENT_RECLEN(d_namlen);
2028 	if (len > uio->uio_resid)
2029 		return(1);
2030 
2031 	dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2032 
2033 	dp->d_ino = d_ino;
2034 	dp->d_namlen = d_namlen;
2035 	dp->d_type = d_type;
2036 	bcopy(d_name, dp->d_name, d_namlen);
2037 
2038 	*error = uiomove((caddr_t)dp, len, uio);
2039 
2040 	free(dp, M_TEMP);
2041 
2042 	return(0);
2043 }
2044