xref: /dragonfly/sys/kern/vfs_subr.c (revision c8860c9a)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/fcntl.h>
54 #include <sys/file.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <vm/vm_page2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
90 
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 __read_mostly enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 __read_mostly int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 	   &maxvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void	vfs_free_addrlist (struct netexport *nep);
126 static int	vfs_free_netcred (struct radix_node *rn, void *w);
127 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 	            const struct export_args *argp);
130 static void vclean_vxlocked(struct vnode *vp, int flags);
131 
132 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
133 
134 /*
135  * Red black tree functions
136  */
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
143 {
144 	if (b1->b_loffset < b2->b_loffset)
145 		return(-1);
146 	if (b1->b_loffset > b2->b_loffset)
147 		return(1);
148 	return(0);
149 }
150 
151 /*
152  * Initialize the vnode management data structures.
153  *
154  * Called from vfsinit()
155  */
156 #define VNBREAKMEM1	(1L * 1024 * 1024 * 1024)
157 #define VNBREAKMEM2	(7L * 1024 * 1024 * 1024)
158 #define MINVNODES	2000
159 #define MAXVNODES	4000000
160 
161 void
162 vfs_subr_init(void)
163 {
164 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
165 	size_t freemem;
166 
167 	/*
168 	 * Size maxvnodes non-linearly to available memory.  Don't bloat
169 	 * the count on low-memory systems.  Scale up for systems with
170 	 * more than 1G and more than 8G of ram, but do so non-linearly
171 	 * because the value of a large maxvnodes count diminishes
172 	 * significantly beyond a certain point.
173 	 *
174 	 * The general minimum is maxproc * 8 (we want someone pushing
175 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
176 	 * does not affect this calculation.  The KvaSize limitation also
177 	 * typically does not affect this calculation (it is just in case
178 	 * the kernel VM space is made much smaller than main memory, which
179 	 * should no longer happen on 64-bit systems).
180 	 *
181 	 * There isn't much of a point allowing maxvnodes to exceed a
182 	 * few million as modern filesystems cache pages in the
183 	 * underlying block device and not so much hanging off of VM
184 	 * objects.
185 	 *
186 	 * Also, VM objects, vnodes, and filesystem inode and other related
187 	 * structures have gotten a lot larger in recent years and the kernel
188 	 * memory use tends to scale with maxvnodes, so we don't want to bloat
189 	 * it too much.  But neither do we want the max set too low because
190 	 * systems with large amounts of memory and cores are capable of
191 	 * doing a hell of a lot.
192 	 */
193 	factor1 = 80 * (sizeof(struct vm_object) + sizeof(struct vnode));
194 
195 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
196 
197 	maxvnodes = freemem / factor1;
198 	if (freemem > VNBREAKMEM1) {
199 		freemem -= VNBREAKMEM1;
200 		if (freemem < VNBREAKMEM2) {
201 			maxvnodes += freemem / factor1 / 2;
202 		} else {
203 			maxvnodes += VNBREAKMEM2 / factor1 / 2;
204 			freemem -= VNBREAKMEM2;
205 			maxvnodes += freemem / factor1 / 4;
206 		}
207 	}
208 	maxvnodes = imax(maxvnodes, maxproc * 8);
209 	maxvnodes = imin(maxvnodes, KvaSize / factor1);
210 	maxvnodes = imin(maxvnodes, MAXVNODES);
211 	maxvnodes = imax(maxvnodes, MINVNODES);
212 
213 	lwkt_token_init(&spechash_token, "spechash");
214 }
215 
216 /*
217  * Knob to control the precision of file timestamps:
218  *
219  *   0 = seconds only; nanoseconds zeroed.
220  *   1 = seconds and nanoseconds, accurate within 1/HZ.
221  *   2 = seconds and nanoseconds, truncated to microseconds.
222  * >=3 = seconds and nanoseconds, maximum precision.
223  *
224  * Note that utimes() precision is microseconds because it takes a timeval
225  * structure, so its probably best to default to USEC and not NSEC.
226  */
227 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
228        TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
229 
230 __read_mostly static int timestamp_precision = TSP_USEC;
231 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
232 		&timestamp_precision, 0, "Precision of file timestamps");
233 
234 /*
235  * Get a current timestamp.
236  *
237  * MPSAFE
238  */
239 void
240 vfs_timestamp(struct timespec *tsp)
241 {
242 	switch (timestamp_precision) {
243 	case TSP_SEC:		/* seconds precision */
244 		getnanotime(tsp);
245 		tsp->tv_nsec = 0;
246 		break;
247 	default:
248 	case TSP_HZ:		/* ticks precision (limit to microseconds) */
249 		getnanotime(tsp);
250 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
251 		break;
252 	case TSP_USEC:		/* microseconds (ticks precision) */
253 		getnanotime(tsp);
254 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
255 		break;
256 	case TSP_NSEC:		/* nanoseconds (ticks precision) */
257 		getnanotime(tsp);
258 		break;
259 	case TSP_USEC_PRECISE:	/* microseconds (high preceision) */
260 		nanotime(tsp);
261 		tsp->tv_nsec -= tsp->tv_nsec % 1000;
262 		break;
263 	case TSP_NSEC_PRECISE:	/* nanoseconds (high precision) */
264 		nanotime(tsp);
265 		break;
266 	}
267 }
268 
269 /*
270  * Set vnode attributes to VNOVAL
271  */
272 void
273 vattr_null(struct vattr *vap)
274 {
275 	vap->va_type = VNON;
276 	vap->va_size = VNOVAL;
277 	vap->va_bytes = VNOVAL;
278 	vap->va_mode = VNOVAL;
279 	vap->va_nlink = VNOVAL;
280 	vap->va_uid = VNOVAL;
281 	vap->va_gid = VNOVAL;
282 	vap->va_fsid = VNOVAL;
283 	vap->va_fileid = VNOVAL;
284 	vap->va_blocksize = VNOVAL;
285 	vap->va_rmajor = VNOVAL;
286 	vap->va_rminor = VNOVAL;
287 	vap->va_atime.tv_sec = VNOVAL;
288 	vap->va_atime.tv_nsec = VNOVAL;
289 	vap->va_mtime.tv_sec = VNOVAL;
290 	vap->va_mtime.tv_nsec = VNOVAL;
291 	vap->va_ctime.tv_sec = VNOVAL;
292 	vap->va_ctime.tv_nsec = VNOVAL;
293 	vap->va_flags = VNOVAL;
294 	vap->va_gen = VNOVAL;
295 	vap->va_vaflags = 0;
296 	/* va_*_uuid fields are only valid if related flags are set */
297 }
298 
299 /*
300  * Flush out and invalidate all buffers associated with a vnode.
301  *
302  * vp must be locked.
303  */
304 static int vinvalbuf_bp(struct buf *bp, void *data);
305 
306 struct vinvalbuf_bp_info {
307 	struct vnode *vp;
308 	int slptimeo;
309 	int lkflags;
310 	int flags;
311 	int clean;
312 };
313 
314 int
315 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
316 {
317 	struct vinvalbuf_bp_info info;
318 	vm_object_t object;
319 	int error;
320 
321 	lwkt_gettoken(&vp->v_token);
322 
323 	/*
324 	 * If we are being asked to save, call fsync to ensure that the inode
325 	 * is updated.
326 	 */
327 	if (flags & V_SAVE) {
328 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
329 		if (error)
330 			goto done;
331 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
332 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
333 				goto done;
334 #if 0
335 			/*
336 			 * Dirty bufs may be left or generated via races
337 			 * in circumstances where vinvalbuf() is called on
338 			 * a vnode not undergoing reclamation.   Only
339 			 * panic if we are trying to reclaim the vnode.
340 			 */
341 			if ((vp->v_flag & VRECLAIMED) &&
342 			    (bio_track_active(&vp->v_track_write) ||
343 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
344 				panic("vinvalbuf: dirty bufs");
345 			}
346 #endif
347 		}
348   	}
349 	info.slptimeo = slptimeo;
350 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
351 	if (slpflag & PCATCH)
352 		info.lkflags |= LK_PCATCH;
353 	info.flags = flags;
354 	info.vp = vp;
355 
356 	/*
357 	 * Flush the buffer cache until nothing is left, wait for all I/O
358 	 * to complete.  At least one pass is required.  We might block
359 	 * in the pip code so we have to re-check.  Order is important.
360 	 */
361 	do {
362 		/*
363 		 * Flush buffer cache
364 		 */
365 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
366 			info.clean = 1;
367 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
368 					NULL, vinvalbuf_bp, &info);
369 		}
370 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
371 			info.clean = 0;
372 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
373 					NULL, vinvalbuf_bp, &info);
374 		}
375 
376 		/*
377 		 * Wait for I/O completion.
378 		 */
379 		bio_track_wait(&vp->v_track_write, 0, 0);
380 		if ((object = vp->v_object) != NULL)
381 			refcount_wait(&object->paging_in_progress, "vnvlbx");
382 	} while (bio_track_active(&vp->v_track_write) ||
383 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
384 		 !RB_EMPTY(&vp->v_rbdirty_tree));
385 
386 	/*
387 	 * Destroy the copy in the VM cache, too.
388 	 */
389 	if ((object = vp->v_object) != NULL) {
390 		vm_object_page_remove(object, 0, 0,
391 			(flags & V_SAVE) ? TRUE : FALSE);
392 	}
393 
394 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
395 		panic("vinvalbuf: flush failed");
396 	if (!RB_EMPTY(&vp->v_rbhash_tree))
397 		panic("vinvalbuf: flush failed, buffers still present");
398 	error = 0;
399 done:
400 	lwkt_reltoken(&vp->v_token);
401 	return (error);
402 }
403 
404 static int
405 vinvalbuf_bp(struct buf *bp, void *data)
406 {
407 	struct vinvalbuf_bp_info *info = data;
408 	int error;
409 
410 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
411 		atomic_add_int(&bp->b_refs, 1);
412 		error = BUF_TIMELOCK(bp, info->lkflags,
413 				     "vinvalbuf", info->slptimeo);
414 		atomic_subtract_int(&bp->b_refs, 1);
415 		if (error == 0) {
416 			BUF_UNLOCK(bp);
417 			error = ENOLCK;
418 		}
419 		if (error == ENOLCK)
420 			return(0);
421 		return (-error);
422 	}
423 	KKASSERT(bp->b_vp == info->vp);
424 
425 	/*
426 	 * Must check clean/dirty status after successfully locking as
427 	 * it may race.
428 	 */
429 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
430 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
431 		BUF_UNLOCK(bp);
432 		return(0);
433 	}
434 
435 	/*
436 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
437 	 * check.  This code will write out the buffer, period.
438 	 */
439 	bremfree(bp);
440 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
441 	    (info->flags & V_SAVE)) {
442 		cluster_awrite(bp);
443 	} else if (info->flags & V_SAVE) {
444 		/*
445 		 * Cannot set B_NOCACHE on a clean buffer as this will
446 		 * destroy the VM backing store which might actually
447 		 * be dirty (and unsynchronized).
448 		 */
449 		bp->b_flags |= (B_INVAL | B_RELBUF);
450 		brelse(bp);
451 	} else {
452 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
453 		brelse(bp);
454 	}
455 	return(0);
456 }
457 
458 /*
459  * Truncate a file's buffer and pages to a specified length.  This
460  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
461  * sync activity.
462  *
463  * The vnode must be locked.
464  */
465 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
466 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
467 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
468 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
469 
470 struct vtruncbuf_info {
471 	struct vnode *vp;
472 	off_t	truncloffset;
473 	int	clean;
474 };
475 
476 int
477 vtruncbuf(struct vnode *vp, off_t length, int blksize)
478 {
479 	struct vtruncbuf_info info;
480 	const char *filename;
481 	int count;
482 
483 	/*
484 	 * Round up to the *next* block, then destroy the buffers in question.
485 	 * Since we are only removing some of the buffers we must rely on the
486 	 * scan count to determine whether a loop is necessary.
487 	 */
488 	if ((count = (int)(length % blksize)) != 0)
489 		info.truncloffset = length + (blksize - count);
490 	else
491 		info.truncloffset = length;
492 	info.vp = vp;
493 
494 	lwkt_gettoken(&vp->v_token);
495 	do {
496 		info.clean = 1;
497 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
498 				vtruncbuf_bp_trunc_cmp,
499 				vtruncbuf_bp_trunc, &info);
500 		info.clean = 0;
501 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
502 				vtruncbuf_bp_trunc_cmp,
503 				vtruncbuf_bp_trunc, &info);
504 	} while(count);
505 
506 	/*
507 	 * For safety, fsync any remaining metadata if the file is not being
508 	 * truncated to 0.  Since the metadata does not represent the entire
509 	 * dirty list we have to rely on the hit count to ensure that we get
510 	 * all of it.
511 	 */
512 	if (length > 0) {
513 		do {
514 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
515 					vtruncbuf_bp_metasync_cmp,
516 					vtruncbuf_bp_metasync, &info);
517 		} while (count);
518 	}
519 
520 	/*
521 	 * Clean out any left over VM backing store.
522 	 *
523 	 * It is possible to have in-progress I/O from buffers that were
524 	 * not part of the truncation.  This should not happen if we
525 	 * are truncating to 0-length.
526 	 */
527 	vnode_pager_setsize(vp, length);
528 	bio_track_wait(&vp->v_track_write, 0, 0);
529 
530 	/*
531 	 * Debugging only
532 	 */
533 	spin_lock(&vp->v_spin);
534 	filename = TAILQ_FIRST(&vp->v_namecache) ?
535 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
536 	spin_unlock(&vp->v_spin);
537 
538 	/*
539 	 * Make sure no buffers were instantiated while we were trying
540 	 * to clean out the remaining VM pages.  This could occur due
541 	 * to busy dirty VM pages being flushed out to disk.
542 	 */
543 	do {
544 		info.clean = 1;
545 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
546 				vtruncbuf_bp_trunc_cmp,
547 				vtruncbuf_bp_trunc, &info);
548 		info.clean = 0;
549 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
550 				vtruncbuf_bp_trunc_cmp,
551 				vtruncbuf_bp_trunc, &info);
552 		if (count) {
553 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
554 			       "left over buffers in %s\n", count, filename);
555 		}
556 	} while(count);
557 
558 	lwkt_reltoken(&vp->v_token);
559 
560 	return (0);
561 }
562 
563 /*
564  * The callback buffer is beyond the new file EOF and must be destroyed.
565  * Note that the compare function must conform to the RB_SCAN's requirements.
566  */
567 static
568 int
569 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
570 {
571 	struct vtruncbuf_info *info = data;
572 
573 	if (bp->b_loffset >= info->truncloffset)
574 		return(0);
575 	return(-1);
576 }
577 
578 static
579 int
580 vtruncbuf_bp_trunc(struct buf *bp, void *data)
581 {
582 	struct vtruncbuf_info *info = data;
583 
584 	/*
585 	 * Do not try to use a buffer we cannot immediately lock, but sleep
586 	 * anyway to prevent a livelock.  The code will loop until all buffers
587 	 * can be acted upon.
588 	 *
589 	 * We must always revalidate the buffer after locking it to deal
590 	 * with MP races.
591 	 */
592 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
593 		atomic_add_int(&bp->b_refs, 1);
594 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
595 			BUF_UNLOCK(bp);
596 		atomic_subtract_int(&bp->b_refs, 1);
597 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
598 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
599 		   bp->b_vp != info->vp ||
600 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
601 		BUF_UNLOCK(bp);
602 	} else {
603 		bremfree(bp);
604 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
605 		brelse(bp);
606 	}
607 	return(1);
608 }
609 
610 /*
611  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
612  * blocks (with a negative loffset) are scanned.
613  * Note that the compare function must conform to the RB_SCAN's requirements.
614  */
615 static int
616 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
617 {
618 	if (bp->b_loffset < 0)
619 		return(0);
620 	return(1);
621 }
622 
623 static int
624 vtruncbuf_bp_metasync(struct buf *bp, void *data)
625 {
626 	struct vtruncbuf_info *info = data;
627 
628 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
629 		atomic_add_int(&bp->b_refs, 1);
630 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
631 			BUF_UNLOCK(bp);
632 		atomic_subtract_int(&bp->b_refs, 1);
633 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
634 		   bp->b_vp != info->vp ||
635 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
636 		BUF_UNLOCK(bp);
637 	} else {
638 		bremfree(bp);
639 		if (bp->b_vp == info->vp)
640 			bawrite(bp);
641 		else
642 			bwrite(bp);
643 	}
644 	return(1);
645 }
646 
647 /*
648  * vfsync - implements a multipass fsync on a file which understands
649  * dependancies and meta-data.  The passed vnode must be locked.  The
650  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
651  *
652  * When fsyncing data asynchronously just do one consolidated pass starting
653  * with the most negative block number.  This may not get all the data due
654  * to dependancies.
655  *
656  * When fsyncing data synchronously do a data pass, then a metadata pass,
657  * then do additional data+metadata passes to try to get all the data out.
658  *
659  * Caller must ref the vnode but does not have to lock it.
660  */
661 static int vfsync_wait_output(struct vnode *vp,
662 			    int (*waitoutput)(struct vnode *, struct thread *));
663 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
664 static int vfsync_data_only_cmp(struct buf *bp, void *data);
665 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
666 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
667 static int vfsync_bp(struct buf *bp, void *data);
668 
669 struct vfsync_info {
670 	struct vnode *vp;
671 	int fastpass;
672 	int synchronous;
673 	int syncdeps;
674 	int lazycount;
675 	int lazylimit;
676 	int skippedbufs;
677 	int (*checkdef)(struct buf *);
678 	int (*cmpfunc)(struct buf *, void *);
679 };
680 
681 int
682 vfsync(struct vnode *vp, int waitfor, int passes,
683 	int (*checkdef)(struct buf *),
684 	int (*waitoutput)(struct vnode *, struct thread *))
685 {
686 	struct vfsync_info info;
687 	int error;
688 
689 	bzero(&info, sizeof(info));
690 	info.vp = vp;
691 	if ((info.checkdef = checkdef) == NULL)
692 		info.syncdeps = 1;
693 
694 	lwkt_gettoken(&vp->v_token);
695 
696 	switch(waitfor) {
697 	case MNT_LAZY | MNT_NOWAIT:
698 	case MNT_LAZY:
699 		/*
700 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
701 		 * number of data (not meta) pages we try to flush to 1MB.
702 		 * A non-zero return means that lazy limit was reached.
703 		 */
704 		info.lazylimit = 1024 * 1024;
705 		info.syncdeps = 1;
706 		info.cmpfunc = vfsync_lazy_range_cmp;
707 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
708 				vfsync_lazy_range_cmp, vfsync_bp, &info);
709 		info.cmpfunc = vfsync_meta_only_cmp;
710 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
711 			vfsync_meta_only_cmp, vfsync_bp, &info);
712 		if (error == 0)
713 			vp->v_lazyw = 0;
714 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
715 			vn_syncer_add(vp, 1);
716 		error = 0;
717 		break;
718 	case MNT_NOWAIT:
719 		/*
720 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
721 		 */
722 		info.syncdeps = 1;
723 		info.cmpfunc = vfsync_data_only_cmp;
724 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
725 			vfsync_bp, &info);
726 		info.cmpfunc = vfsync_meta_only_cmp;
727 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
728 			vfsync_bp, &info);
729 		error = 0;
730 		break;
731 	default:
732 		/*
733 		 * Synchronous.  Do a data-only pass, then a meta-data+data
734 		 * pass, then additional integrated passes to try to get
735 		 * all the dependancies flushed.
736 		 */
737 		info.cmpfunc = vfsync_data_only_cmp;
738 		info.fastpass = 1;
739 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
740 			vfsync_bp, &info);
741 		info.fastpass = 0;
742 		error = vfsync_wait_output(vp, waitoutput);
743 		if (error == 0) {
744 			info.skippedbufs = 0;
745 			info.cmpfunc = vfsync_dummy_cmp;
746 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
747 				vfsync_bp, &info);
748 			error = vfsync_wait_output(vp, waitoutput);
749 			if (info.skippedbufs) {
750 				kprintf("Warning: vfsync skipped %d dirty "
751 					"buf%s in pass2!\n",
752 					info.skippedbufs,
753 					((info.skippedbufs > 1) ? "s" : ""));
754 			}
755 		}
756 		while (error == 0 && passes > 0 &&
757 		       !RB_EMPTY(&vp->v_rbdirty_tree)
758 		) {
759 			info.skippedbufs = 0;
760 			if (--passes == 0) {
761 				info.synchronous = 1;
762 				info.syncdeps = 1;
763 			}
764 			info.cmpfunc = vfsync_dummy_cmp;
765 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
766 					vfsync_bp, &info);
767 			if (error < 0)
768 				error = -error;
769 			info.syncdeps = 1;
770 			if (error == 0)
771 				error = vfsync_wait_output(vp, waitoutput);
772 			if (info.skippedbufs && passes == 0) {
773 				kprintf("Warning: vfsync skipped %d dirty "
774 					"buf%s in final pass!\n",
775 					info.skippedbufs,
776 					((info.skippedbufs > 1) ? "s" : ""));
777 			}
778 		}
779 #if 0
780 		/*
781 		 * This case can occur normally because vnode lock might
782 		 * not be held.
783 		 */
784 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
785 			kprintf("dirty bufs left after final pass\n");
786 #endif
787 		break;
788 	}
789 	lwkt_reltoken(&vp->v_token);
790 
791 	return(error);
792 }
793 
794 static int
795 vfsync_wait_output(struct vnode *vp,
796 		   int (*waitoutput)(struct vnode *, struct thread *))
797 {
798 	int error;
799 
800 	error = bio_track_wait(&vp->v_track_write, 0, 0);
801 	if (waitoutput)
802 		error = waitoutput(vp, curthread);
803 	return(error);
804 }
805 
806 static int
807 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
808 {
809 	return(0);
810 }
811 
812 static int
813 vfsync_data_only_cmp(struct buf *bp, void *data)
814 {
815 	if (bp->b_loffset < 0)
816 		return(-1);
817 	return(0);
818 }
819 
820 static int
821 vfsync_meta_only_cmp(struct buf *bp, void *data)
822 {
823 	if (bp->b_loffset < 0)
824 		return(0);
825 	return(1);
826 }
827 
828 static int
829 vfsync_lazy_range_cmp(struct buf *bp, void *data)
830 {
831 	struct vfsync_info *info = data;
832 
833 	if (bp->b_loffset < info->vp->v_lazyw)
834 		return(-1);
835 	return(0);
836 }
837 
838 static int
839 vfsync_bp(struct buf *bp, void *data)
840 {
841 	struct vfsync_info *info = data;
842 	struct vnode *vp = info->vp;
843 	int error;
844 
845 	if (info->fastpass) {
846 		/*
847 		 * Ignore buffers that we cannot immediately lock.
848 		 */
849 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
850 			/*
851 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
852 			 * delay can mess up performance
853 			 *
854 			 * Another reason is that during a dirty-buffer
855 			 * scan a clustered write can start I/O on buffers
856 			 * ahead of the scan, causing the scan to not
857 			 * get a lock here.  Usually this means the write
858 			 * is already in progress so, in fact, we *want*
859 			 * to skip the buffer.
860 			 */
861 			++info->skippedbufs;
862 			return(0);
863 		}
864 	} else if (info->synchronous == 0) {
865 		/*
866 		 * Normal pass, give the buffer a little time to become
867 		 * available to us.
868 		 */
869 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
870 			++info->skippedbufs;
871 			return(0);
872 		}
873 	} else {
874 		/*
875 		 * Synchronous pass, give the buffer a lot of time before
876 		 * giving up.
877 		 */
878 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
879 			++info->skippedbufs;
880 			return(0);
881 		}
882 	}
883 
884 	/*
885 	 * We must revalidate the buffer after locking.
886 	 */
887 	if ((bp->b_flags & B_DELWRI) == 0 ||
888 	    bp->b_vp != info->vp ||
889 	    info->cmpfunc(bp, data)) {
890 		BUF_UNLOCK(bp);
891 		return(0);
892 	}
893 
894 	/*
895 	 * If syncdeps is not set we do not try to write buffers which have
896 	 * dependancies.
897 	 */
898 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
899 		BUF_UNLOCK(bp);
900 		return(0);
901 	}
902 
903 	/*
904 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
905 	 * has been written but an additional handshake with the device
906 	 * is required before we can dispose of the buffer.  We have no idea
907 	 * how to do this so we have to skip these buffers.
908 	 */
909 	if (bp->b_flags & B_NEEDCOMMIT) {
910 		BUF_UNLOCK(bp);
911 		return(0);
912 	}
913 
914 	/*
915 	 * Ask bioops if it is ok to sync.  If not the VFS may have
916 	 * set B_LOCKED so we have to cycle the buffer.
917 	 */
918 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
919 		bremfree(bp);
920 		brelse(bp);
921 		return(0);
922 	}
923 
924 	if (info->synchronous) {
925 		/*
926 		 * Synchronous flush.  An error may be returned and will
927 		 * stop the scan.
928 		 */
929 		bremfree(bp);
930 		error = bwrite(bp);
931 	} else {
932 		/*
933 		 * Asynchronous flush.  We use the error return to support
934 		 * MNT_LAZY flushes.
935 		 *
936 		 * In low-memory situations we revert to synchronous
937 		 * operation.  This should theoretically prevent the I/O
938 		 * path from exhausting memory in a non-recoverable way.
939 		 */
940 		vp->v_lazyw = bp->b_loffset;
941 		bremfree(bp);
942 		if (vm_paging_min()) {
943 			/* low memory */
944 			info->lazycount += bp->b_bufsize;
945 			bwrite(bp);
946 		} else {
947 			/* normal */
948 			info->lazycount += cluster_awrite(bp);
949 			waitrunningbufspace();
950 			/*vm_wait_nominal();*/
951 		}
952 		if (info->lazylimit && info->lazycount >= info->lazylimit)
953 			error = 1;
954 		else
955 			error = 0;
956 	}
957 	return(-error);
958 }
959 
960 /*
961  * Associate a buffer with a vnode.
962  *
963  * MPSAFE
964  */
965 int
966 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
967 {
968 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
969 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
970 
971 	/*
972 	 * Insert onto list for new vnode.
973 	 */
974 	lwkt_gettoken(&vp->v_token);
975 
976 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
977 		lwkt_reltoken(&vp->v_token);
978 		return (EEXIST);
979 	}
980 
981 	/*
982 	 * Diagnostics (mainly for HAMMER debugging).  Check for
983 	 * overlapping buffers.
984 	 */
985 	if (check_buf_overlap) {
986 		struct buf *bx;
987 		bx = buf_rb_hash_RB_PREV(bp);
988 		if (bx) {
989 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
990 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
991 					"bx %p bp %p\n",
992 					(intmax_t)bx->b_loffset,
993 					bx->b_bufsize,
994 					(intmax_t)bp->b_loffset,
995 					bx, bp);
996 				if (check_buf_overlap > 1)
997 					panic("bgetvp - overlapping buffer");
998 			}
999 		}
1000 		bx = buf_rb_hash_RB_NEXT(bp);
1001 		if (bx) {
1002 			if (bp->b_loffset + testsize > bx->b_loffset) {
1003 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
1004 					"bp %p bx %p\n",
1005 					(intmax_t)bp->b_loffset,
1006 					testsize,
1007 					(intmax_t)bx->b_loffset,
1008 					bp, bx);
1009 				if (check_buf_overlap > 1)
1010 					panic("bgetvp - overlapping buffer");
1011 			}
1012 		}
1013 	}
1014 	bp->b_vp = vp;
1015 	bp->b_flags |= B_HASHED;
1016 	bp->b_flags |= B_VNCLEAN;
1017 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1018 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1019 	/*vhold(vp);*/
1020 	lwkt_reltoken(&vp->v_token);
1021 	return(0);
1022 }
1023 
1024 /*
1025  * Disassociate a buffer from a vnode.
1026  *
1027  * MPSAFE
1028  */
1029 void
1030 brelvp(struct buf *bp)
1031 {
1032 	struct vnode *vp;
1033 
1034 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1035 
1036 	/*
1037 	 * Delete from old vnode list, if on one.
1038 	 */
1039 	vp = bp->b_vp;
1040 	lwkt_gettoken(&vp->v_token);
1041 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1042 		if (bp->b_flags & B_VNDIRTY)
1043 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1044 		else
1045 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1046 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1047 	}
1048 	if (bp->b_flags & B_HASHED) {
1049 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1050 		bp->b_flags &= ~B_HASHED;
1051 	}
1052 
1053 	/*
1054 	 * Only remove from synclist when no dirty buffers are left AND
1055 	 * the VFS has not flagged the vnode's inode as being dirty.
1056 	 */
1057 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1058 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1059 		vn_syncer_remove(vp, 0);
1060 	}
1061 	bp->b_vp = NULL;
1062 
1063 	lwkt_reltoken(&vp->v_token);
1064 
1065 	/*vdrop(vp);*/
1066 }
1067 
1068 /*
1069  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1070  * This routine is called when the state of the B_DELWRI bit is changed.
1071  *
1072  * Must be called with vp->v_token held.
1073  * MPSAFE
1074  */
1075 void
1076 reassignbuf(struct buf *bp)
1077 {
1078 	struct vnode *vp = bp->b_vp;
1079 	int delay;
1080 
1081 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1082 	++reassignbufcalls;
1083 
1084 	/*
1085 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1086 	 * is not fully linked in.
1087 	 */
1088 	if (bp->b_flags & B_PAGING)
1089 		panic("cannot reassign paging buffer");
1090 
1091 	if (bp->b_flags & B_DELWRI) {
1092 		/*
1093 		 * Move to the dirty list, add the vnode to the worklist
1094 		 */
1095 		if (bp->b_flags & B_VNCLEAN) {
1096 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1097 			bp->b_flags &= ~B_VNCLEAN;
1098 		}
1099 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1100 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1101 				panic("reassignbuf: dup lblk vp %p bp %p",
1102 				      vp, bp);
1103 			}
1104 			bp->b_flags |= B_VNDIRTY;
1105 		}
1106 		if ((vp->v_flag & VONWORKLST) == 0) {
1107 			switch (vp->v_type) {
1108 			case VDIR:
1109 				delay = dirdelay;
1110 				break;
1111 			case VCHR:
1112 			case VBLK:
1113 				if (vp->v_rdev &&
1114 				    vp->v_rdev->si_mountpoint != NULL) {
1115 					delay = metadelay;
1116 					break;
1117 				}
1118 				/* fall through */
1119 			default:
1120 				delay = filedelay;
1121 			}
1122 			vn_syncer_add(vp, delay);
1123 		}
1124 	} else {
1125 		/*
1126 		 * Move to the clean list, remove the vnode from the worklist
1127 		 * if no dirty blocks remain.
1128 		 */
1129 		if (bp->b_flags & B_VNDIRTY) {
1130 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1131 			bp->b_flags &= ~B_VNDIRTY;
1132 		}
1133 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1134 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1135 				panic("reassignbuf: dup lblk vp %p bp %p",
1136 				      vp, bp);
1137 			}
1138 			bp->b_flags |= B_VNCLEAN;
1139 		}
1140 
1141 		/*
1142 		 * Only remove from synclist when no dirty buffers are left
1143 		 * AND the VFS has not flagged the vnode's inode as being
1144 		 * dirty.
1145 		 */
1146 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1147 		     VONWORKLST &&
1148 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1149 			vn_syncer_remove(vp, 0);
1150 		}
1151 	}
1152 }
1153 
1154 /*
1155  * Create a vnode for a block device.  Used for mounting the root file
1156  * system.
1157  *
1158  * A vref()'d vnode is returned.
1159  */
1160 extern struct vop_ops *devfs_vnode_dev_vops_p;
1161 int
1162 bdevvp(cdev_t dev, struct vnode **vpp)
1163 {
1164 	struct vnode *vp;
1165 	struct vnode *nvp;
1166 	int error;
1167 
1168 	if (dev == NULL) {
1169 		*vpp = NULLVP;
1170 		return (ENXIO);
1171 	}
1172 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1173 				&nvp, 0, 0);
1174 	if (error) {
1175 		*vpp = NULLVP;
1176 		return (error);
1177 	}
1178 	vp = nvp;
1179 	vp->v_type = VCHR;
1180 #if 0
1181 	vp->v_rdev = dev;
1182 #endif
1183 	v_associate_rdev(vp, dev);
1184 	vp->v_umajor = dev->si_umajor;
1185 	vp->v_uminor = dev->si_uminor;
1186 	vx_unlock(vp);
1187 	*vpp = vp;
1188 	return (0);
1189 }
1190 
1191 int
1192 v_associate_rdev(struct vnode *vp, cdev_t dev)
1193 {
1194 	if (dev == NULL)
1195 		return(ENXIO);
1196 	if (dev_is_good(dev) == 0)
1197 		return(ENXIO);
1198 	KKASSERT(vp->v_rdev == NULL);
1199 	vp->v_rdev = reference_dev(dev);
1200 	lwkt_gettoken(&spechash_token);
1201 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1202 	lwkt_reltoken(&spechash_token);
1203 	return(0);
1204 }
1205 
1206 void
1207 v_release_rdev(struct vnode *vp)
1208 {
1209 	cdev_t dev;
1210 
1211 	if ((dev = vp->v_rdev) != NULL) {
1212 		lwkt_gettoken(&spechash_token);
1213 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1214 		vp->v_rdev = NULL;
1215 		release_dev(dev);
1216 		lwkt_reltoken(&spechash_token);
1217 	}
1218 }
1219 
1220 /*
1221  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1222  * the device number with the vnode.  The actual device is not associated
1223  * until the vnode is opened (usually in spec_open()), and will be
1224  * disassociated on last close.
1225  */
1226 void
1227 addaliasu(struct vnode *nvp, int x, int y)
1228 {
1229 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1230 		panic("addaliasu on non-special vnode");
1231 	nvp->v_umajor = x;
1232 	nvp->v_uminor = y;
1233 }
1234 
1235 /*
1236  * Simple call that a filesystem can make to try to get rid of a
1237  * vnode.  It will fail if anyone is referencing the vnode (including
1238  * the caller).
1239  *
1240  * The filesystem can check whether its in-memory inode structure still
1241  * references the vp on return.
1242  *
1243  * May only be called if the vnode is in a known state (i.e. being prevented
1244  * from being deallocated by some other condition such as a vfs inode hold).
1245  *
1246  * This call might not succeed.
1247  */
1248 void
1249 vclean_unlocked(struct vnode *vp)
1250 {
1251 	vx_get(vp);
1252 	if (VREFCNT(vp) <= 1)
1253 		vgone_vxlocked(vp);
1254 	vx_put(vp);
1255 }
1256 
1257 /*
1258  * Disassociate a vnode from its underlying filesystem.
1259  *
1260  * The vnode must be VX locked and referenced.  In all normal situations
1261  * there are no active references.  If vclean_vxlocked() is called while
1262  * there are active references, the vnode is being ripped out and we have
1263  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1264  */
1265 static void
1266 vclean_vxlocked(struct vnode *vp, int flags)
1267 {
1268 	int active;
1269 	int n;
1270 	vm_object_t object;
1271 	struct namecache *ncp;
1272 
1273 	/*
1274 	 * If the vnode has already been reclaimed we have nothing to do.
1275 	 */
1276 	if (vp->v_flag & VRECLAIMED)
1277 		return;
1278 
1279 	/*
1280 	 * Set flag to interlock operation, flag finalization to ensure
1281 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1282 	 */
1283 	vsetflags(vp, VRECLAIMED);
1284 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1285 	vp->v_act = 0;
1286 
1287 	if (verbose_reclaims) {
1288 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1289 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1290 	}
1291 
1292 	/*
1293 	 * Scrap the vfs cache
1294 	 */
1295 	while (cache_inval_vp(vp, 0) != 0) {
1296 		kprintf("Warning: vnode %p clean/cache_resolution "
1297 			"race detected\n", vp);
1298 		tsleep(vp, 0, "vclninv", 2);
1299 	}
1300 
1301 	/*
1302 	 * Check to see if the vnode is in use. If so we have to reference it
1303 	 * before we clean it out so that its count cannot fall to zero and
1304 	 * generate a race against ourselves to recycle it.
1305 	 */
1306 	active = (VREFCNT(vp) > 0);
1307 
1308 	/*
1309 	 * Clean out any buffers associated with the vnode and destroy its
1310 	 * object, if it has one.
1311 	 */
1312 	vinvalbuf(vp, V_SAVE, 0, 0);
1313 
1314 	/*
1315 	 * If purging an active vnode (typically during a forced unmount
1316 	 * or reboot), it must be closed and deactivated before being
1317 	 * reclaimed.  This isn't really all that safe, but what can
1318 	 * we do? XXX.
1319 	 *
1320 	 * Note that neither of these routines unlocks the vnode.
1321 	 */
1322 	if (active && (flags & DOCLOSE)) {
1323 		while ((n = vp->v_opencount) != 0) {
1324 			if (vp->v_writecount)
1325 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1326 			else
1327 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1328 			if (vp->v_opencount == n) {
1329 				kprintf("Warning: unable to force-close"
1330 				       " vnode %p\n", vp);
1331 				break;
1332 			}
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1338 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1339 	 * again to make sure they all get flushed.
1340 	 *
1341 	 * This can occur if a file with a link count of 0 needs to be
1342 	 * truncated.
1343 	 *
1344 	 * If the vnode is already dead don't try to deactivate it.
1345 	 */
1346 	if ((vp->v_flag & VINACTIVE) == 0) {
1347 		vsetflags(vp, VINACTIVE);
1348 		if (vp->v_mount)
1349 			VOP_INACTIVE(vp);
1350 		vinvalbuf(vp, V_SAVE, 0, 0);
1351 	}
1352 
1353 	/*
1354 	 * If the vnode has an object, destroy it.
1355 	 */
1356 	while ((object = vp->v_object) != NULL) {
1357 		vm_object_hold(object);
1358 		if (object == vp->v_object)
1359 			break;
1360 		vm_object_drop(object);
1361 	}
1362 
1363 	if (object != NULL) {
1364 		if (object->ref_count == 0) {
1365 			if ((object->flags & OBJ_DEAD) == 0)
1366 				vm_object_terminate(object);
1367 			vm_object_drop(object);
1368 			vclrflags(vp, VOBJBUF);
1369 		} else {
1370 			vm_pager_deallocate(object);
1371 			vclrflags(vp, VOBJBUF);
1372 			vm_object_drop(object);
1373 		}
1374 	}
1375 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1376 
1377 	if (vp->v_flag & VOBJDIRTY)
1378 		vclrobjdirty(vp);
1379 
1380 	/*
1381 	 * Reclaim the vnode if not already dead.
1382 	 */
1383 	if (vp->v_mount && VOP_RECLAIM(vp))
1384 		panic("vclean: cannot reclaim");
1385 
1386 	/*
1387 	 * Done with purge, notify sleepers of the grim news.
1388 	 */
1389 	vp->v_ops = &dead_vnode_vops_p;
1390 	vn_gone(vp);
1391 	vp->v_tag = VT_NON;
1392 
1393 	/*
1394 	 * If we are destroying an active vnode, reactivate it now that
1395 	 * we have reassociated it with deadfs.  This prevents the system
1396 	 * from crashing on the vnode due to it being unexpectedly marked
1397 	 * as inactive or reclaimed.
1398 	 */
1399 	if (active && (flags & DOCLOSE)) {
1400 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1401 	}
1402 }
1403 
1404 /*
1405  * Eliminate all activity associated with the requested vnode
1406  * and with all vnodes aliased to the requested vnode.
1407  *
1408  * The vnode must be referenced but should not be locked.
1409  */
1410 int
1411 vrevoke(struct vnode *vp, struct ucred *cred)
1412 {
1413 	struct vnode *vq;
1414 	struct vnode *vqn;
1415 	cdev_t dev;
1416 	int error;
1417 
1418 	/*
1419 	 * If the vnode has a device association, scrap all vnodes associated
1420 	 * with the device.  Don't let the device disappear on us while we
1421 	 * are scrapping the vnodes.
1422 	 *
1423 	 * The passed vp will probably show up in the list, do not VX lock
1424 	 * it twice!
1425 	 *
1426 	 * Releasing the vnode's rdev here can mess up specfs's call to
1427 	 * device close, so don't do it.  The vnode has been disassociated
1428 	 * and the device will be closed after the last ref on the related
1429 	 * fp goes away (if not still open by e.g. the kernel).
1430 	 */
1431 	if (vp->v_type != VCHR) {
1432 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1433 		return (error);
1434 	}
1435 	if ((dev = vp->v_rdev) == NULL) {
1436 		return(0);
1437 	}
1438 	reference_dev(dev);
1439 	lwkt_gettoken(&spechash_token);
1440 
1441 restart:
1442 	vqn = SLIST_FIRST(&dev->si_hlist);
1443 	if (vqn)
1444 		vhold(vqn);
1445 	while ((vq = vqn) != NULL) {
1446 		if (VREFCNT(vq) > 0) {
1447 			vref(vq);
1448 			fdrevoke(vq, DTYPE_VNODE, cred);
1449 			/*v_release_rdev(vq);*/
1450 			vrele(vq);
1451 			if (vq->v_rdev != dev) {
1452 				vdrop(vq);
1453 				goto restart;
1454 			}
1455 		}
1456 		vqn = SLIST_NEXT(vq, v_cdevnext);
1457 		if (vqn)
1458 			vhold(vqn);
1459 		vdrop(vq);
1460 	}
1461 	lwkt_reltoken(&spechash_token);
1462 	dev_drevoke(dev);
1463 	release_dev(dev);
1464 	return (0);
1465 }
1466 
1467 /*
1468  * This is called when the object underlying a vnode is being destroyed,
1469  * such as in a remove().  Try to recycle the vnode immediately if the
1470  * only active reference is our reference.
1471  *
1472  * Directory vnodes in the namecache with children cannot be immediately
1473  * recycled because numerous VOP_N*() ops require them to be stable.
1474  *
1475  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1476  * function is a NOP if VRECLAIMED is already set.
1477  */
1478 int
1479 vrecycle(struct vnode *vp)
1480 {
1481 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1482 		if (cache_inval_vp_nonblock(vp))
1483 			return(0);
1484 		vgone_vxlocked(vp);
1485 		return (1);
1486 	}
1487 	return (0);
1488 }
1489 
1490 /*
1491  * Return the maximum I/O size allowed for strategy calls on VP.
1492  *
1493  * If vp is VCHR or VBLK we dive the device, otherwise we use
1494  * the vp's mount info.
1495  *
1496  * The returned value is clamped at MAXPHYS as most callers cannot use
1497  * buffers larger than that size.
1498  */
1499 int
1500 vmaxiosize(struct vnode *vp)
1501 {
1502 	int maxiosize;
1503 
1504 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1505 		maxiosize = vp->v_rdev->si_iosize_max;
1506 	else
1507 		maxiosize = vp->v_mount->mnt_iosize_max;
1508 
1509 	if (maxiosize > MAXPHYS)
1510 		maxiosize = MAXPHYS;
1511 	return (maxiosize);
1512 }
1513 
1514 /*
1515  * Eliminate all activity associated with a vnode in preparation for
1516  * destruction.
1517  *
1518  * The vnode must be VX locked and refd and will remain VX locked and refd
1519  * on return.  This routine may be called with the vnode in any state, as
1520  * long as it is VX locked.  The vnode will be cleaned out and marked
1521  * VRECLAIMED but will not actually be reused until all existing refs and
1522  * holds go away.
1523  *
1524  * NOTE: This routine may be called on a vnode which has not yet been
1525  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1526  * already been reclaimed.
1527  *
1528  * This routine is not responsible for placing us back on the freelist.
1529  * Instead, it happens automatically when the caller releases the VX lock
1530  * (assuming there aren't any other references).
1531  */
1532 void
1533 vgone_vxlocked(struct vnode *vp)
1534 {
1535 	/*
1536 	 * assert that the VX lock is held.  This is an absolute requirement
1537 	 * now for vgone_vxlocked() to be called.
1538 	 */
1539 	KKASSERT(lockinuse(&vp->v_lock));
1540 
1541 	/*
1542 	 * Clean out the filesystem specific data and set the VRECLAIMED
1543 	 * bit.  Also deactivate the vnode if necessary.
1544 	 *
1545 	 * The vnode should have automatically been removed from the syncer
1546 	 * list as syncer/dirty flags cleared during the cleaning.
1547 	 */
1548 	vclean_vxlocked(vp, DOCLOSE);
1549 
1550 	/*
1551 	 * Normally panic if the vnode is still dirty, unless we are doing
1552 	 * a forced unmount (tmpfs typically).
1553 	 */
1554 	if (vp->v_flag & VONWORKLST) {
1555 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1556 			/* force removal */
1557 			vn_syncer_remove(vp, 1);
1558 		} else {
1559 			panic("vp %p still dirty in vgone after flush", vp);
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Delete from old mount point vnode list, if on one.
1565 	 */
1566 	if (vp->v_mount != NULL) {
1567 		KKASSERT(vp->v_data == NULL);
1568 		insmntque(vp, NULL);
1569 	}
1570 
1571 	/*
1572 	 * If special device, remove it from special device alias list
1573 	 * if it is on one.  This should normally only occur if a vnode is
1574 	 * being revoked as the device should otherwise have been released
1575 	 * naturally.
1576 	 */
1577 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1578 		v_release_rdev(vp);
1579 	}
1580 
1581 	/*
1582 	 * Set us to VBAD
1583 	 */
1584 	vp->v_type = VBAD;
1585 }
1586 
1587 /*
1588  * Calculate the total number of references to a special device.  This
1589  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1590  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1591  * have to check for a NULL v_rdev.
1592  */
1593 int
1594 count_dev(cdev_t dev)
1595 {
1596 	struct vnode *vp;
1597 	int count = 0;
1598 
1599 	if (SLIST_FIRST(&dev->si_hlist)) {
1600 		lwkt_gettoken(&spechash_token);
1601 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1602 			count += vp->v_opencount;
1603 		}
1604 		lwkt_reltoken(&spechash_token);
1605 	}
1606 	return(count);
1607 }
1608 
1609 int
1610 vcount(struct vnode *vp)
1611 {
1612 	if (vp->v_rdev == NULL)
1613 		return(0);
1614 	return(count_dev(vp->v_rdev));
1615 }
1616 
1617 /*
1618  * Initialize VMIO for a vnode.  This routine MUST be called before a
1619  * VFS can issue buffer cache ops on a vnode.  It is typically called
1620  * when a vnode is initialized from its inode.
1621  */
1622 int
1623 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1624 {
1625 	vm_object_t object;
1626 	int error = 0;
1627 
1628 	object = vp->v_object;
1629 	if (object) {
1630 		vm_object_hold(object);
1631 		KKASSERT(vp->v_object == object);
1632 	}
1633 
1634 	if (object == NULL) {
1635 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1636 
1637 		/*
1638 		 * Dereference the reference we just created.  This assumes
1639 		 * that the object is associated with the vp.  Allow it to
1640 		 * have zero refs.  It cannot be destroyed as long as it
1641 		 * is associated with the vnode.
1642 		 */
1643 		vm_object_hold(object);
1644 		atomic_add_int(&object->ref_count, -1);
1645 		vrele(vp);
1646 	} else {
1647 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1648 	}
1649 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1650 	vsetflags(vp, VOBJBUF);
1651 	vm_object_drop(object);
1652 
1653 	return (error);
1654 }
1655 
1656 
1657 /*
1658  * Print out a description of a vnode.
1659  */
1660 static char *typename[] =
1661 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1662 
1663 void
1664 vprint(char *label, struct vnode *vp)
1665 {
1666 	char buf[96];
1667 
1668 	if (label != NULL)
1669 		kprintf("%s: %p: ", label, (void *)vp);
1670 	else
1671 		kprintf("%p: ", (void *)vp);
1672 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1673 		typename[vp->v_type],
1674 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1675 	buf[0] = '\0';
1676 	if (vp->v_flag & VROOT)
1677 		strcat(buf, "|VROOT");
1678 	if (vp->v_flag & VPFSROOT)
1679 		strcat(buf, "|VPFSROOT");
1680 	if (vp->v_flag & VTEXT)
1681 		strcat(buf, "|VTEXT");
1682 	if (vp->v_flag & VSYSTEM)
1683 		strcat(buf, "|VSYSTEM");
1684 	if (vp->v_flag & VOBJBUF)
1685 		strcat(buf, "|VOBJBUF");
1686 	if (buf[0] != '\0')
1687 		kprintf(" flags (%s)", &buf[1]);
1688 	if (vp->v_data == NULL) {
1689 		kprintf("\n");
1690 	} else {
1691 		kprintf("\n\t");
1692 		VOP_PRINT(vp);
1693 	}
1694 }
1695 
1696 /*
1697  * Do the usual access checking.
1698  * file_mode, uid and gid are from the vnode in question,
1699  * while acc_mode and cred are from the VOP_ACCESS parameter list
1700  */
1701 int
1702 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1703     mode_t acc_mode, struct ucred *cred)
1704 {
1705 	mode_t mask;
1706 	int ismember;
1707 
1708 	/*
1709 	 * Super-user always gets read/write access, but execute access depends
1710 	 * on at least one execute bit being set.
1711 	 */
1712 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1713 		if ((acc_mode & VEXEC) && type != VDIR &&
1714 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1715 			return (EACCES);
1716 		return (0);
1717 	}
1718 
1719 	mask = 0;
1720 
1721 	/* Otherwise, check the owner. */
1722 	if (cred->cr_uid == uid) {
1723 		if (acc_mode & VEXEC)
1724 			mask |= S_IXUSR;
1725 		if (acc_mode & VREAD)
1726 			mask |= S_IRUSR;
1727 		if (acc_mode & VWRITE)
1728 			mask |= S_IWUSR;
1729 		return ((file_mode & mask) == mask ? 0 : EACCES);
1730 	}
1731 
1732 	/* Otherwise, check the groups. */
1733 	ismember = groupmember(gid, cred);
1734 	if (cred->cr_svgid == gid || ismember) {
1735 		if (acc_mode & VEXEC)
1736 			mask |= S_IXGRP;
1737 		if (acc_mode & VREAD)
1738 			mask |= S_IRGRP;
1739 		if (acc_mode & VWRITE)
1740 			mask |= S_IWGRP;
1741 		return ((file_mode & mask) == mask ? 0 : EACCES);
1742 	}
1743 
1744 	/* Otherwise, check everyone else. */
1745 	if (acc_mode & VEXEC)
1746 		mask |= S_IXOTH;
1747 	if (acc_mode & VREAD)
1748 		mask |= S_IROTH;
1749 	if (acc_mode & VWRITE)
1750 		mask |= S_IWOTH;
1751 	return ((file_mode & mask) == mask ? 0 : EACCES);
1752 }
1753 
1754 #ifdef DDB
1755 #include <ddb/ddb.h>
1756 
1757 static int db_show_locked_vnodes(struct mount *mp, void *data);
1758 
1759 /*
1760  * List all of the locked vnodes in the system.
1761  * Called when debugging the kernel.
1762  */
1763 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1764 {
1765 	kprintf("Locked vnodes\n");
1766 	mountlist_scan(db_show_locked_vnodes, NULL,
1767 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1768 }
1769 
1770 static int
1771 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1772 {
1773 	struct vnode *vp;
1774 
1775 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1776 		if (vn_islocked(vp))
1777 			vprint(NULL, vp);
1778 	}
1779 	return(0);
1780 }
1781 #endif
1782 
1783 /*
1784  * Top level filesystem related information gathering.
1785  */
1786 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1787 
1788 static int
1789 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1790 {
1791 	int *name = (int *)arg1 - 1;	/* XXX */
1792 	u_int namelen = arg2 + 1;	/* XXX */
1793 	struct vfsconf *vfsp;
1794 	int maxtypenum;
1795 
1796 #if 1 || defined(COMPAT_PRELITE2)
1797 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1798 	if (namelen == 1)
1799 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1800 #endif
1801 
1802 #ifdef notyet
1803 	/* all sysctl names at this level are at least name and field */
1804 	if (namelen < 2)
1805 		return (ENOTDIR);		/* overloaded */
1806 	if (name[0] != VFS_GENERIC) {
1807 		vfsp = vfsconf_find_by_typenum(name[0]);
1808 		if (vfsp == NULL)
1809 			return (EOPNOTSUPP);
1810 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1811 		    oldp, oldlenp, newp, newlen, p));
1812 	}
1813 #endif
1814 	switch (name[1]) {
1815 	case VFS_MAXTYPENUM:
1816 		if (namelen != 2)
1817 			return (ENOTDIR);
1818 		maxtypenum = vfsconf_get_maxtypenum();
1819 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1820 	case VFS_CONF:
1821 		if (namelen != 3)
1822 			return (ENOTDIR);	/* overloaded */
1823 		vfsp = vfsconf_find_by_typenum(name[2]);
1824 		if (vfsp == NULL)
1825 			return (EOPNOTSUPP);
1826 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1827 	}
1828 	return (EOPNOTSUPP);
1829 }
1830 
1831 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1832 	"Generic filesystem");
1833 
1834 #if 1 || defined(COMPAT_PRELITE2)
1835 
1836 static int
1837 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1838 {
1839 	int error;
1840 	struct ovfsconf ovfs;
1841 	struct sysctl_req *req = (struct sysctl_req*) data;
1842 
1843 	bzero(&ovfs, sizeof(ovfs));
1844 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1845 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1846 	ovfs.vfc_index = vfsp->vfc_typenum;
1847 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1848 	ovfs.vfc_flags = vfsp->vfc_flags;
1849 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1850 	if (error)
1851 		return error; /* abort iteration with error code */
1852 	else
1853 		return 0; /* continue iterating with next element */
1854 }
1855 
1856 static int
1857 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1858 {
1859 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1860 }
1861 
1862 #endif /* 1 || COMPAT_PRELITE2 */
1863 
1864 /*
1865  * Check to see if a filesystem is mounted on a block device.
1866  */
1867 int
1868 vfs_mountedon(struct vnode *vp)
1869 {
1870 	cdev_t dev;
1871 
1872 	dev = vp->v_rdev;
1873 	if (dev != NULL && dev->si_mountpoint)
1874 		return (EBUSY);
1875 	return (0);
1876 }
1877 
1878 /*
1879  * Unmount all filesystems. The list is traversed in reverse order
1880  * of mounting to avoid dependencies.
1881  *
1882  * We want the umountall to be able to break out of its loop if a
1883  * failure occurs, after scanning all possible mounts, so the callback
1884  * returns 0 on error.
1885  *
1886  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1887  *	 confuse mountlist_scan()'s unbusy check.
1888  */
1889 static int vfs_umountall_callback(struct mount *mp, void *data);
1890 
1891 void
1892 vfs_unmountall(int halting)
1893 {
1894 	int count;
1895 
1896 	do {
1897 		count = mountlist_scan(vfs_umountall_callback, &halting,
1898 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1899 	} while (count);
1900 }
1901 
1902 static
1903 int
1904 vfs_umountall_callback(struct mount *mp, void *data)
1905 {
1906 	int error;
1907 	int halting = *(int *)data;
1908 
1909 	/*
1910 	 * NOTE: When halting, dounmount will disconnect but leave
1911 	 *	 certain mount points intact.  e.g. devfs.
1912 	 */
1913 	error = dounmount(mp, MNT_FORCE, halting);
1914 	if (error) {
1915 		kprintf("unmount of filesystem mounted from %s failed (",
1916 			mp->mnt_stat.f_mntfromname);
1917 		if (error == EBUSY)
1918 			kprintf("BUSY)\n");
1919 		else
1920 			kprintf("%d)\n", error);
1921 		return 0;
1922 	} else {
1923 		return 1;
1924 	}
1925 }
1926 
1927 /*
1928  * Checks the mount flags for parameter mp and put the names comma-separated
1929  * into a string buffer buf with a size limit specified by len.
1930  *
1931  * It returns the number of bytes written into buf, and (*errorp) will be
1932  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1933  * not large enough).  The buffer will be 0-terminated if len was not 0.
1934  */
1935 size_t
1936 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1937 	       char *buf, size_t len, int *errorp)
1938 {
1939 	static const struct mountctl_opt optnames[] = {
1940 		{ MNT_RDONLY,           "read-only" },
1941 		{ MNT_SYNCHRONOUS,      "synchronous" },
1942 		{ MNT_NOEXEC,           "noexec" },
1943 		{ MNT_NOSUID,           "nosuid" },
1944 		{ MNT_NODEV,            "nodev" },
1945 		{ MNT_AUTOMOUNTED,      "automounted" },
1946 		{ MNT_ASYNC,            "asynchronous" },
1947 		{ MNT_SUIDDIR,          "suiddir" },
1948 		{ MNT_SOFTDEP,          "soft-updates" },
1949 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1950 		{ MNT_TRIM,             "trim" },
1951 		{ MNT_NOATIME,          "noatime" },
1952 		{ MNT_NOCLUSTERR,       "noclusterr" },
1953 		{ MNT_NOCLUSTERW,       "noclusterw" },
1954 		{ MNT_EXRDONLY,         "NFS read-only" },
1955 		{ MNT_EXPORTED,         "NFS exported" },
1956 		/* Remaining NFS flags could come here */
1957 		{ MNT_LOCAL,            "local" },
1958 		{ MNT_QUOTA,            "with-quotas" },
1959 		/* { MNT_ROOTFS,           "rootfs" }, */
1960 		/* { MNT_IGNORE,           "ignore" }, */
1961 		{ 0,			NULL}
1962 	};
1963 	int bwritten;
1964 	int bleft;
1965 	int optlen;
1966 	int actsize;
1967 
1968 	*errorp = 0;
1969 	bwritten = 0;
1970 	bleft = len - 1;	/* leave room for trailing \0 */
1971 
1972 	/*
1973 	 * Checks the size of the string. If it contains
1974 	 * any data, then we will append the new flags to
1975 	 * it.
1976 	 */
1977 	actsize = strlen(buf);
1978 	if (actsize > 0)
1979 		buf += actsize;
1980 
1981 	/* Default flags if no flags passed */
1982 	if (optp == NULL)
1983 		optp = optnames;
1984 
1985 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1986 		*errorp = EINVAL;
1987 		return(0);
1988 	}
1989 
1990 	for (; flags && optp->o_opt; ++optp) {
1991 		if ((flags & optp->o_opt) == 0)
1992 			continue;
1993 		optlen = strlen(optp->o_name);
1994 		if (bwritten || actsize > 0) {
1995 			if (bleft < 2) {
1996 				*errorp = ENOSPC;
1997 				break;
1998 			}
1999 			buf[bwritten++] = ',';
2000 			buf[bwritten++] = ' ';
2001 			bleft -= 2;
2002 		}
2003 		if (bleft < optlen) {
2004 			*errorp = ENOSPC;
2005 			break;
2006 		}
2007 		bcopy(optp->o_name, buf + bwritten, optlen);
2008 		bwritten += optlen;
2009 		bleft -= optlen;
2010 		flags &= ~optp->o_opt;
2011 	}
2012 
2013 	/*
2014 	 * Space already reserved for trailing \0
2015 	 */
2016 	buf[bwritten] = 0;
2017 	return (bwritten);
2018 }
2019 
2020 /*
2021  * Build hash lists of net addresses and hang them off the mount point.
2022  * Called by ufs_mount() to set up the lists of export addresses.
2023  */
2024 static int
2025 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2026 		const struct export_args *argp)
2027 {
2028 	struct netcred *np;
2029 	struct radix_node_head *rnh;
2030 	int i;
2031 	struct radix_node *rn;
2032 	struct sockaddr *saddr, *smask = NULL;
2033 	int error;
2034 
2035 	if (argp->ex_addrlen == 0) {
2036 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2037 			return (EPERM);
2038 		np = &nep->ne_defexported;
2039 		np->netc_exflags = argp->ex_flags;
2040 		np->netc_anon = argp->ex_anon;
2041 		np->netc_anon.cr_ref = 1;
2042 		mp->mnt_flag |= MNT_DEFEXPORTED;
2043 		return (0);
2044 	}
2045 
2046 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2047 		return (EINVAL);
2048 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2049 		return (EINVAL);
2050 
2051 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2052 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2053 	saddr = (struct sockaddr *) (np + 1);
2054 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2055 		goto out;
2056 	if (saddr->sa_len > argp->ex_addrlen)
2057 		saddr->sa_len = argp->ex_addrlen;
2058 	if (argp->ex_masklen) {
2059 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2060 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2061 		if (error)
2062 			goto out;
2063 		if (smask->sa_len > argp->ex_masklen)
2064 			smask->sa_len = argp->ex_masklen;
2065 	}
2066 	NE_LOCK(nep);
2067 	if (nep->ne_maskhead == NULL) {
2068 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2069 			error = ENOBUFS;
2070 			goto out;
2071 		}
2072 	}
2073 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2074 		error = ENOBUFS;
2075 		goto out;
2076 	}
2077 	rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2078 				 np->netc_rnodes);
2079 	NE_UNLOCK(nep);
2080 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2081 		error = EPERM;
2082 		goto out;
2083 	}
2084 	np->netc_exflags = argp->ex_flags;
2085 	np->netc_anon = argp->ex_anon;
2086 	np->netc_anon.cr_ref = 1;
2087 	return (0);
2088 
2089 out:
2090 	kfree(np, M_NETCRED);
2091 	return (error);
2092 }
2093 
2094 /*
2095  * Free netcred structures installed in the netexport
2096  */
2097 static int
2098 vfs_free_netcred(struct radix_node *rn, void *w)
2099 {
2100 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2101 
2102 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2103 	kfree(rn, M_NETCRED);
2104 
2105 	return (0);
2106 }
2107 
2108 /*
2109  * callback to free an element of the mask table installed in the
2110  * netexport.  These may be created indirectly and are not netcred
2111  * structures.
2112  */
2113 static int
2114 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2115 {
2116 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2117 
2118 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2119 	kfree(rn, M_RTABLE);
2120 
2121 	return (0);
2122 }
2123 
2124 static struct radix_node_head *
2125 vfs_create_addrlist_af(int af, struct netexport *nep)
2126 {
2127 	struct radix_node_head *rnh = NULL;
2128 #if defined(INET) || defined(INET6)
2129 	struct radix_node_head *maskhead = nep->ne_maskhead;
2130 	int off;
2131 #endif
2132 
2133 	NE_ASSERT_LOCKED(nep);
2134 #if defined(INET) || defined(INET6)
2135 	KKASSERT(maskhead != NULL);
2136 #endif
2137 	switch (af) {
2138 #ifdef INET
2139 	case AF_INET:
2140 		if ((rnh = nep->ne_inethead) == NULL) {
2141 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2142 			if (!rn_inithead((void **)&rnh, maskhead, off))
2143 				return (NULL);
2144 			nep->ne_inethead = rnh;
2145 		}
2146 		break;
2147 #endif
2148 #ifdef INET6
2149 	case AF_INET6:
2150 		if ((rnh = nep->ne_inet6head) == NULL) {
2151 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2152 			if (!rn_inithead((void **)&rnh, maskhead, off))
2153 				return (NULL);
2154 			nep->ne_inet6head = rnh;
2155 		}
2156 		break;
2157 #endif
2158 	}
2159 	return (rnh);
2160 }
2161 
2162 /*
2163  * helper function for freeing netcred elements
2164  */
2165 static void
2166 vfs_free_addrlist_af(struct radix_node_head **prnh)
2167 {
2168 	struct radix_node_head *rnh = *prnh;
2169 
2170 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2171 	kfree(rnh, M_RTABLE);
2172 	*prnh = NULL;
2173 }
2174 
2175 /*
2176  * helper function for freeing mask elements
2177  */
2178 static void
2179 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2180 {
2181 	struct radix_node_head *rnh = *prnh;
2182 
2183 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2184 	kfree(rnh, M_RTABLE);
2185 	*prnh = NULL;
2186 }
2187 
2188 /*
2189  * Free the net address hash lists that are hanging off the mount points.
2190  */
2191 static void
2192 vfs_free_addrlist(struct netexport *nep)
2193 {
2194 	NE_LOCK(nep);
2195 	if (nep->ne_inethead != NULL)
2196 		vfs_free_addrlist_af(&nep->ne_inethead);
2197 	if (nep->ne_inet6head != NULL)
2198 		vfs_free_addrlist_af(&nep->ne_inet6head);
2199 	if (nep->ne_maskhead)
2200 		vfs_free_addrlist_masks(&nep->ne_maskhead);
2201 	NE_UNLOCK(nep);
2202 }
2203 
2204 int
2205 vfs_export(struct mount *mp, struct netexport *nep,
2206 	   const struct export_args *argp)
2207 {
2208 	int error;
2209 
2210 	if (argp->ex_flags & MNT_DELEXPORT) {
2211 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2212 			vfs_setpublicfs(NULL, NULL, NULL);
2213 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2214 		}
2215 		vfs_free_addrlist(nep);
2216 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2217 	}
2218 	if (argp->ex_flags & MNT_EXPORTED) {
2219 		if (argp->ex_flags & MNT_EXPUBLIC) {
2220 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2221 				return (error);
2222 			mp->mnt_flag |= MNT_EXPUBLIC;
2223 		}
2224 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2225 			return (error);
2226 		mp->mnt_flag |= MNT_EXPORTED;
2227 	}
2228 	return (0);
2229 }
2230 
2231 
2232 /*
2233  * Set the publicly exported filesystem (WebNFS). Currently, only
2234  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2235  */
2236 int
2237 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2238 		const struct export_args *argp)
2239 {
2240 	int error;
2241 	struct vnode *rvp;
2242 	char *cp;
2243 
2244 	/*
2245 	 * mp == NULL -> invalidate the current info, the FS is
2246 	 * no longer exported. May be called from either vfs_export
2247 	 * or unmount, so check if it hasn't already been done.
2248 	 */
2249 	if (mp == NULL) {
2250 		if (nfs_pub.np_valid) {
2251 			nfs_pub.np_valid = 0;
2252 			if (nfs_pub.np_index != NULL) {
2253 				kfree(nfs_pub.np_index, M_TEMP);
2254 				nfs_pub.np_index = NULL;
2255 			}
2256 		}
2257 		return (0);
2258 	}
2259 
2260 	/*
2261 	 * Only one allowed at a time.
2262 	 */
2263 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2264 		return (EBUSY);
2265 
2266 	/*
2267 	 * Get real filehandle for root of exported FS.
2268 	 */
2269 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2270 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2271 
2272 	if ((error = VFS_ROOT(mp, &rvp)))
2273 		return (error);
2274 
2275 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2276 		return (error);
2277 
2278 	vput(rvp);
2279 
2280 	/*
2281 	 * If an indexfile was specified, pull it in.
2282 	 */
2283 	if (argp->ex_indexfile != NULL) {
2284 		int namelen;
2285 
2286 		error = vn_get_namelen(rvp, &namelen);
2287 		if (error)
2288 			return (error);
2289 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2290 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2291 		    namelen, NULL);
2292 		if (!error) {
2293 			/*
2294 			 * Check for illegal filenames.
2295 			 */
2296 			for (cp = nfs_pub.np_index; *cp; cp++) {
2297 				if (*cp == '/') {
2298 					error = EINVAL;
2299 					break;
2300 				}
2301 			}
2302 		}
2303 		if (error) {
2304 			kfree(nfs_pub.np_index, M_TEMP);
2305 			return (error);
2306 		}
2307 	}
2308 
2309 	nfs_pub.np_mount = mp;
2310 	nfs_pub.np_valid = 1;
2311 	return (0);
2312 }
2313 
2314 struct netcred *
2315 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2316 		struct sockaddr *nam)
2317 {
2318 	struct netcred *np;
2319 	struct radix_node_head *rnh;
2320 	struct sockaddr *saddr;
2321 
2322 	np = NULL;
2323 	if (mp->mnt_flag & MNT_EXPORTED) {
2324 		/*
2325 		 * Lookup in the export list first.
2326 		 */
2327 		NE_LOCK(nep);
2328 		if (nam != NULL) {
2329 			saddr = nam;
2330 			switch (saddr->sa_family) {
2331 #ifdef INET
2332 			case AF_INET:
2333 				rnh = nep->ne_inethead;
2334 				break;
2335 #endif
2336 #ifdef INET6
2337 			case AF_INET6:
2338 				rnh = nep->ne_inet6head;
2339 				break;
2340 #endif
2341 			default:
2342 				rnh = NULL;
2343 			}
2344 			if (rnh != NULL) {
2345 				np = (struct netcred *)
2346 					(*rnh->rnh_matchaddr)((char *)saddr,
2347 							      rnh);
2348 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2349 					np = NULL;
2350 			}
2351 		}
2352 		NE_UNLOCK(nep);
2353 		/*
2354 		 * If no address match, use the default if it exists.
2355 		 */
2356 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2357 			np = &nep->ne_defexported;
2358 	}
2359 	return (np);
2360 }
2361 
2362 /*
2363  * perform msync on all vnodes under a mount point.  The mount point must
2364  * be locked.  This code is also responsible for lazy-freeing unreferenced
2365  * vnodes whos VM objects no longer contain pages.
2366  *
2367  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2368  *
2369  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2370  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2371  * way up in this high level function.
2372  */
2373 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2374 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2375 
2376 void
2377 vfs_msync(struct mount *mp, int flags)
2378 {
2379 	int vmsc_flags;
2380 
2381 	/*
2382 	 * tmpfs sets this flag to prevent msync(), sync, and the
2383 	 * filesystem periodic syncer from trying to flush VM pages
2384 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2385 	 * to swap.
2386 	 */
2387 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2388 		return;
2389 
2390 	/*
2391 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2392 	 * syncer thread feature we can use vsyncscan() instead of
2393 	 * vmntvnodescan(), which is much faster.
2394 	 */
2395 	vmsc_flags = VMSC_GETVP;
2396 	if (flags != MNT_WAIT)
2397 		vmsc_flags |= VMSC_NOWAIT;
2398 
2399 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2400 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2401 			  (void *)(intptr_t)flags);
2402 	} else {
2403 		vmntvnodescan(mp, vmsc_flags,
2404 			      vfs_msync_scan1, vfs_msync_scan2,
2405 			      (void *)(intptr_t)flags);
2406 	}
2407 }
2408 
2409 /*
2410  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2411  * vnodes, we cannot afford to do anything heavy weight until we have a
2412  * fairly good indication that there is work to do.
2413  *
2414  * The new namecache holds the vnode for each v_namecache association
2415  * so allow these refs.
2416  */
2417 static
2418 int
2419 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2420 {
2421 	int flags = (int)(intptr_t)data;
2422 
2423 	if ((vp->v_flag & VRECLAIMED) == 0) {
2424 		if (vp->v_auxrefs == vp->v_namecache_count &&
2425 		    VREFCNT(vp) <= 0 && vp->v_object) {
2426 			return(0);	/* call scan2 */
2427 		}
2428 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2429 		    (vp->v_flag & VOBJDIRTY) &&
2430 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2431 			return(0);	/* call scan2 */
2432 		}
2433 	}
2434 
2435 	/*
2436 	 * do not call scan2, continue the loop
2437 	 */
2438 	return(-1);
2439 }
2440 
2441 /*
2442  * This callback is handed a locked vnode.
2443  */
2444 static
2445 int
2446 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2447 {
2448 	vm_object_t obj;
2449 	int flags = (int)(intptr_t)data;
2450 	int opcflags;
2451 
2452 	if (vp->v_flag & VRECLAIMED)
2453 		return(0);
2454 
2455 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2456 		if ((obj = vp->v_object) != NULL) {
2457 			if (flags == MNT_WAIT) {
2458 				/*
2459 				 * VFS_MSYNC is called with MNT_WAIT when
2460 				 * unmounting.
2461 				 */
2462 				opcflags = OBJPC_SYNC;
2463 			} else if (vp->v_writecount || obj->ref_count) {
2464 				/*
2465 				 * VFS_MSYNC is otherwise called via the
2466 				 * periodic filesystem sync or the 'sync'
2467 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2468 				 * if the file is open for writing or memory
2469 				 * mapped.  Pages flagged PG_NOSYNC will not
2470 				 * be automatically flushed at this time.
2471 				 *
2472 				 * The obj->ref_count test is not perfect
2473 				 * since temporary refs may be present, but
2474 				 * the periodic filesystem sync will ultimately
2475 				 * catch it if the file is not open and not
2476 				 * mapped.
2477 				 */
2478 				opcflags = OBJPC_NOSYNC;
2479 			} else {
2480 				/*
2481 				 * If the file is no longer open for writing
2482 				 * and also no longer mapped, do not honor
2483 				 * MAP_NOSYNC.  That is, fully synchronize
2484 				 * the file.
2485 				 *
2486 				 * This still occurs on the periodic fs sync,
2487 				 * so frontend programs which turn the file
2488 				 * over quickly enough can still avoid the
2489 				 * sync, but ultimately we do want to flush
2490 				 * even MADV_NOSYNC pages once it is no longer
2491 				 * mapped or open for writing.
2492 				 */
2493 				opcflags = 0;
2494 			}
2495 			vm_object_page_clean(obj, 0, 0, opcflags);
2496 		}
2497 	}
2498 	return(0);
2499 }
2500 
2501 /*
2502  * Wake up anyone interested in vp because it is being revoked.
2503  */
2504 void
2505 vn_gone(struct vnode *vp)
2506 {
2507 	lwkt_gettoken(&vp->v_token);
2508 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2509 	lwkt_reltoken(&vp->v_token);
2510 }
2511 
2512 /*
2513  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2514  * (or v_rdev might be NULL).
2515  */
2516 cdev_t
2517 vn_todev(struct vnode *vp)
2518 {
2519 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2520 		return (NULL);
2521 	KKASSERT(vp->v_rdev != NULL);
2522 	return (vp->v_rdev);
2523 }
2524 
2525 /*
2526  * Check if vnode represents a disk device.  The vnode does not need to be
2527  * opened.
2528  *
2529  * MPALMOSTSAFE
2530  */
2531 int
2532 vn_isdisk(struct vnode *vp, int *errp)
2533 {
2534 	cdev_t dev;
2535 
2536 	if (vp->v_type != VCHR) {
2537 		if (errp != NULL)
2538 			*errp = ENOTBLK;
2539 		return (0);
2540 	}
2541 
2542 	dev = vp->v_rdev;
2543 
2544 	if (dev == NULL) {
2545 		if (errp != NULL)
2546 			*errp = ENXIO;
2547 		return (0);
2548 	}
2549 	if (dev_is_good(dev) == 0) {
2550 		if (errp != NULL)
2551 			*errp = ENXIO;
2552 		return (0);
2553 	}
2554 	if ((dev_dflags(dev) & D_DISK) == 0) {
2555 		if (errp != NULL)
2556 			*errp = ENOTBLK;
2557 		return (0);
2558 	}
2559 	if (errp != NULL)
2560 		*errp = 0;
2561 	return (1);
2562 }
2563 
2564 int
2565 vn_get_namelen(struct vnode *vp, int *namelen)
2566 {
2567 	int error;
2568 	register_t retval[2];
2569 
2570 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2571 	if (error)
2572 		return (error);
2573 	*namelen = (int)retval[0];
2574 	return (0);
2575 }
2576 
2577 int
2578 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2579 		uint16_t d_namlen, const char *d_name)
2580 {
2581 	struct dirent *dp;
2582 	size_t len;
2583 
2584 	len = _DIRENT_RECLEN(d_namlen);
2585 	if (len > uio->uio_resid)
2586 		return(1);
2587 
2588 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2589 
2590 	dp->d_ino = d_ino;
2591 	dp->d_namlen = d_namlen;
2592 	dp->d_type = d_type;
2593 	bcopy(d_name, dp->d_name, d_namlen);
2594 
2595 	*error = uiomove((caddr_t)dp, len, uio);
2596 
2597 	kfree(dp, M_TEMP);
2598 
2599 	return(0);
2600 }
2601 
2602 void
2603 vn_mark_atime(struct vnode *vp, struct thread *td)
2604 {
2605 	struct proc *p = td->td_proc;
2606 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2607 
2608 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2609 		VOP_MARKATIME(vp, cred);
2610 	}
2611 }
2612 
2613 /*
2614  * Calculate the number of entries in an inode-related chained hash table.
2615  * With today's memory sizes, maxvnodes can wind up being a very large
2616  * number.  There is no reason to waste memory, so tolerate some stacking.
2617  */
2618 int
2619 vfs_inodehashsize(void)
2620 {
2621 	int hsize;
2622 
2623 	hsize = 32;
2624 	while (hsize < maxvnodes)
2625 		hsize <<= 1;
2626 	while (hsize > maxvnodes * 2)
2627 		hsize >>= 1;		/* nominal 2x stacking */
2628 
2629 	if (maxvnodes > 1024 * 1024)
2630 		hsize >>= 1;		/* nominal 8x stacking */
2631 
2632 	if (maxvnodes > 128 * 1024)
2633 		hsize >>= 1;		/* nominal 4x stacking */
2634 
2635 	if (hsize < 16)
2636 		hsize = 16;
2637 
2638 	return hsize;
2639 }
2640 
2641 union _qcvt {
2642 	quad_t qcvt;
2643 	int32_t val[2];
2644 };
2645 
2646 #define SETHIGH(q, h) { \
2647 	union _qcvt tmp; \
2648 	tmp.qcvt = (q); \
2649 	tmp.val[_QUAD_HIGHWORD] = (h); \
2650 	(q) = tmp.qcvt; \
2651 }
2652 #define SETLOW(q, l) { \
2653 	union _qcvt tmp; \
2654 	tmp.qcvt = (q); \
2655 	tmp.val[_QUAD_LOWWORD] = (l); \
2656 	(q) = tmp.qcvt; \
2657 }
2658 
2659 u_quad_t
2660 init_va_filerev(void)
2661 {
2662 	struct timeval tv;
2663 	u_quad_t ret = 0;
2664 
2665 	getmicrouptime(&tv);
2666 	SETHIGH(ret, tv.tv_sec);
2667 	SETLOW(ret, tv.tv_usec * 4294);
2668 
2669 	return ret;
2670 }
2671