xref: /dragonfly/sys/kern/vfs_subr.c (revision d4ef6694)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/buf.h>
46 #include <sys/conf.h>
47 #include <sys/dirent.h>
48 #include <sys/domain.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/kernel.h>
53 #include <sys/kthread.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mount.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/reboot.h>
60 #include <sys/socket.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/syslog.h>
64 #include <sys/unistd.h>
65 #include <sys/vmmeter.h>
66 #include <sys/vnode.h>
67 
68 #include <machine/limits.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_kern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vnode_pager.h>
79 #include <vm/vm_zone.h>
80 
81 #include <sys/buf2.h>
82 #include <sys/thread2.h>
83 #include <sys/sysref2.h>
84 #include <sys/mplock2.h>
85 
86 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
87 
88 int numvnodes;
89 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
90     "Number of vnodes allocated");
91 int verbose_reclaims;
92 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
93     "Output filename of reclaimed vnode(s)");
94 
95 enum vtype iftovt_tab[16] = {
96 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
98 };
99 int vttoif_tab[9] = {
100 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 	S_IFSOCK, S_IFIFO, S_IFMT,
102 };
103 
104 static int reassignbufcalls;
105 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
106     0, "Number of times buffers have been reassigned to the proper list");
107 
108 static int check_buf_overlap = 2;	/* invasive check */
109 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
110     0, "Enable overlapping buffer checks");
111 
112 int	nfs_mount_type = -1;
113 static struct lwkt_token spechash_token;
114 struct nfs_public nfs_pub;	/* publicly exported FS */
115 
116 int desiredvnodes;
117 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
118 		&desiredvnodes, 0, "Maximum number of vnodes");
119 
120 static void	vfs_free_addrlist (struct netexport *nep);
121 static int	vfs_free_netcred (struct radix_node *rn, void *w);
122 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
123 				       const struct export_args *argp);
124 
125 /*
126  * Red black tree functions
127  */
128 static int rb_buf_compare(struct buf *b1, struct buf *b2);
129 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
130 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
131 
132 static int
133 rb_buf_compare(struct buf *b1, struct buf *b2)
134 {
135 	if (b1->b_loffset < b2->b_loffset)
136 		return(-1);
137 	if (b1->b_loffset > b2->b_loffset)
138 		return(1);
139 	return(0);
140 }
141 
142 /*
143  * Initialize the vnode management data structures.
144  *
145  * Called from vfsinit()
146  */
147 void
148 vfs_subr_init(void)
149 {
150 	int factor1;
151 	int factor2;
152 
153 	/*
154 	 * Desiredvnodes is kern.maxvnodes.  We want to scale it
155 	 * according to available system memory but we may also have
156 	 * to limit it based on available KVM, which is capped on 32 bit
157 	 * systems, to ~80K vnodes or so.
158 	 *
159 	 * WARNING!  For machines with 64-256M of ram we have to be sure
160 	 *	     that the default limit scales down well due to HAMMER
161 	 *	     taking up significantly more memory per-vnode vs UFS.
162 	 *	     We want around ~5800 on a 128M machine.
163 	 */
164 	factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
165 	factor2 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
166 	desiredvnodes =
167 		imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
168 		     KvaSize / factor2);
169 	desiredvnodes = imax(desiredvnodes, maxproc * 8);
170 
171 	lwkt_token_init(&spechash_token, "spechash");
172 }
173 
174 /*
175  * Knob to control the precision of file timestamps:
176  *
177  *   0 = seconds only; nanoseconds zeroed.
178  *   1 = seconds and nanoseconds, accurate within 1/HZ.
179  *   2 = seconds and nanoseconds, truncated to microseconds.
180  * >=3 = seconds and nanoseconds, maximum precision.
181  */
182 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
183 
184 static int timestamp_precision = TSP_SEC;
185 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
186 		&timestamp_precision, 0, "Precision of file timestamps");
187 
188 /*
189  * Get a current timestamp.
190  *
191  * MPSAFE
192  */
193 void
194 vfs_timestamp(struct timespec *tsp)
195 {
196 	struct timeval tv;
197 
198 	switch (timestamp_precision) {
199 	case TSP_SEC:
200 		tsp->tv_sec = time_second;
201 		tsp->tv_nsec = 0;
202 		break;
203 	case TSP_HZ:
204 		getnanotime(tsp);
205 		break;
206 	case TSP_USEC:
207 		microtime(&tv);
208 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
209 		break;
210 	case TSP_NSEC:
211 	default:
212 		nanotime(tsp);
213 		break;
214 	}
215 }
216 
217 /*
218  * Set vnode attributes to VNOVAL
219  */
220 void
221 vattr_null(struct vattr *vap)
222 {
223 	vap->va_type = VNON;
224 	vap->va_size = VNOVAL;
225 	vap->va_bytes = VNOVAL;
226 	vap->va_mode = VNOVAL;
227 	vap->va_nlink = VNOVAL;
228 	vap->va_uid = VNOVAL;
229 	vap->va_gid = VNOVAL;
230 	vap->va_fsid = VNOVAL;
231 	vap->va_fileid = VNOVAL;
232 	vap->va_blocksize = VNOVAL;
233 	vap->va_rmajor = VNOVAL;
234 	vap->va_rminor = VNOVAL;
235 	vap->va_atime.tv_sec = VNOVAL;
236 	vap->va_atime.tv_nsec = VNOVAL;
237 	vap->va_mtime.tv_sec = VNOVAL;
238 	vap->va_mtime.tv_nsec = VNOVAL;
239 	vap->va_ctime.tv_sec = VNOVAL;
240 	vap->va_ctime.tv_nsec = VNOVAL;
241 	vap->va_flags = VNOVAL;
242 	vap->va_gen = VNOVAL;
243 	vap->va_vaflags = 0;
244 	/* va_*_uuid fields are only valid if related flags are set */
245 }
246 
247 /*
248  * Flush out and invalidate all buffers associated with a vnode.
249  *
250  * vp must be locked.
251  */
252 static int vinvalbuf_bp(struct buf *bp, void *data);
253 
254 struct vinvalbuf_bp_info {
255 	struct vnode *vp;
256 	int slptimeo;
257 	int lkflags;
258 	int flags;
259 	int clean;
260 };
261 
262 int
263 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
264 {
265 	struct vinvalbuf_bp_info info;
266 	vm_object_t object;
267 	int error;
268 
269 	lwkt_gettoken(&vp->v_token);
270 
271 	/*
272 	 * If we are being asked to save, call fsync to ensure that the inode
273 	 * is updated.
274 	 */
275 	if (flags & V_SAVE) {
276 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
277 		if (error)
278 			goto done;
279 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
280 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
281 				goto done;
282 #if 0
283 			/*
284 			 * Dirty bufs may be left or generated via races
285 			 * in circumstances where vinvalbuf() is called on
286 			 * a vnode not undergoing reclamation.   Only
287 			 * panic if we are trying to reclaim the vnode.
288 			 */
289 			if ((vp->v_flag & VRECLAIMED) &&
290 			    (bio_track_active(&vp->v_track_write) ||
291 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
292 				panic("vinvalbuf: dirty bufs");
293 			}
294 #endif
295 		}
296   	}
297 	info.slptimeo = slptimeo;
298 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
299 	if (slpflag & PCATCH)
300 		info.lkflags |= LK_PCATCH;
301 	info.flags = flags;
302 	info.vp = vp;
303 
304 	/*
305 	 * Flush the buffer cache until nothing is left, wait for all I/O
306 	 * to complete.  At least one pass is required.  We might block
307 	 * in the pip code so we have to re-check.  Order is important.
308 	 */
309 	do {
310 		/*
311 		 * Flush buffer cache
312 		 */
313 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
314 			info.clean = 1;
315 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
316 					NULL, vinvalbuf_bp, &info);
317 		}
318 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
319 			info.clean = 0;
320 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
321 					NULL, vinvalbuf_bp, &info);
322 		}
323 
324 		/*
325 		 * Wait for I/O completion.
326 		 */
327 		bio_track_wait(&vp->v_track_write, 0, 0);
328 		if ((object = vp->v_object) != NULL)
329 			refcount_wait(&object->paging_in_progress, "vnvlbx");
330 	} while (bio_track_active(&vp->v_track_write) ||
331 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
332 		 !RB_EMPTY(&vp->v_rbdirty_tree));
333 
334 	/*
335 	 * Destroy the copy in the VM cache, too.
336 	 */
337 	if ((object = vp->v_object) != NULL) {
338 		vm_object_page_remove(object, 0, 0,
339 			(flags & V_SAVE) ? TRUE : FALSE);
340 	}
341 
342 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
343 		panic("vinvalbuf: flush failed");
344 	if (!RB_EMPTY(&vp->v_rbhash_tree))
345 		panic("vinvalbuf: flush failed, buffers still present");
346 	error = 0;
347 done:
348 	lwkt_reltoken(&vp->v_token);
349 	return (error);
350 }
351 
352 static int
353 vinvalbuf_bp(struct buf *bp, void *data)
354 {
355 	struct vinvalbuf_bp_info *info = data;
356 	int error;
357 
358 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
359 		atomic_add_int(&bp->b_refs, 1);
360 		error = BUF_TIMELOCK(bp, info->lkflags,
361 				     "vinvalbuf", info->slptimeo);
362 		atomic_subtract_int(&bp->b_refs, 1);
363 		if (error == 0) {
364 			BUF_UNLOCK(bp);
365 			error = ENOLCK;
366 		}
367 		if (error == ENOLCK)
368 			return(0);
369 		return (-error);
370 	}
371 	KKASSERT(bp->b_vp == info->vp);
372 
373 	/*
374 	 * Must check clean/dirty status after successfully locking as
375 	 * it may race.
376 	 */
377 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
378 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
379 		BUF_UNLOCK(bp);
380 		return(0);
381 	}
382 
383 	/*
384 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
385 	 * check.  This code will write out the buffer, period.
386 	 */
387 	bremfree(bp);
388 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
389 	    (info->flags & V_SAVE)) {
390 		cluster_awrite(bp);
391 	} else if (info->flags & V_SAVE) {
392 		/*
393 		 * Cannot set B_NOCACHE on a clean buffer as this will
394 		 * destroy the VM backing store which might actually
395 		 * be dirty (and unsynchronized).
396 		 */
397 		bp->b_flags |= (B_INVAL | B_RELBUF);
398 		brelse(bp);
399 	} else {
400 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
401 		brelse(bp);
402 	}
403 	return(0);
404 }
405 
406 /*
407  * Truncate a file's buffer and pages to a specified length.  This
408  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
409  * sync activity.
410  *
411  * The vnode must be locked.
412  */
413 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
414 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
415 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
416 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
417 
418 struct vtruncbuf_info {
419 	struct vnode *vp;
420 	off_t	truncloffset;
421 	int	clean;
422 };
423 
424 int
425 vtruncbuf(struct vnode *vp, off_t length, int blksize)
426 {
427 	struct vtruncbuf_info info;
428 	const char *filename;
429 	int count;
430 
431 	/*
432 	 * Round up to the *next* block, then destroy the buffers in question.
433 	 * Since we are only removing some of the buffers we must rely on the
434 	 * scan count to determine whether a loop is necessary.
435 	 */
436 	if ((count = (int)(length % blksize)) != 0)
437 		info.truncloffset = length + (blksize - count);
438 	else
439 		info.truncloffset = length;
440 	info.vp = vp;
441 
442 	lwkt_gettoken(&vp->v_token);
443 	do {
444 		info.clean = 1;
445 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
446 				vtruncbuf_bp_trunc_cmp,
447 				vtruncbuf_bp_trunc, &info);
448 		info.clean = 0;
449 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
450 				vtruncbuf_bp_trunc_cmp,
451 				vtruncbuf_bp_trunc, &info);
452 	} while(count);
453 
454 	/*
455 	 * For safety, fsync any remaining metadata if the file is not being
456 	 * truncated to 0.  Since the metadata does not represent the entire
457 	 * dirty list we have to rely on the hit count to ensure that we get
458 	 * all of it.
459 	 */
460 	if (length > 0) {
461 		do {
462 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
463 					vtruncbuf_bp_metasync_cmp,
464 					vtruncbuf_bp_metasync, &info);
465 		} while (count);
466 	}
467 
468 	/*
469 	 * Clean out any left over VM backing store.
470 	 *
471 	 * It is possible to have in-progress I/O from buffers that were
472 	 * not part of the truncation.  This should not happen if we
473 	 * are truncating to 0-length.
474 	 */
475 	vnode_pager_setsize(vp, length);
476 	bio_track_wait(&vp->v_track_write, 0, 0);
477 
478 	/*
479 	 * Debugging only
480 	 */
481 	spin_lock(&vp->v_spin);
482 	filename = TAILQ_FIRST(&vp->v_namecache) ?
483 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
484 	spin_unlock(&vp->v_spin);
485 
486 	/*
487 	 * Make sure no buffers were instantiated while we were trying
488 	 * to clean out the remaining VM pages.  This could occur due
489 	 * to busy dirty VM pages being flushed out to disk.
490 	 */
491 	do {
492 		info.clean = 1;
493 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
494 				vtruncbuf_bp_trunc_cmp,
495 				vtruncbuf_bp_trunc, &info);
496 		info.clean = 0;
497 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
498 				vtruncbuf_bp_trunc_cmp,
499 				vtruncbuf_bp_trunc, &info);
500 		if (count) {
501 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
502 			       "left over buffers in %s\n", count, filename);
503 		}
504 	} while(count);
505 
506 	lwkt_reltoken(&vp->v_token);
507 
508 	return (0);
509 }
510 
511 /*
512  * The callback buffer is beyond the new file EOF and must be destroyed.
513  * Note that the compare function must conform to the RB_SCAN's requirements.
514  */
515 static
516 int
517 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
518 {
519 	struct vtruncbuf_info *info = data;
520 
521 	if (bp->b_loffset >= info->truncloffset)
522 		return(0);
523 	return(-1);
524 }
525 
526 static
527 int
528 vtruncbuf_bp_trunc(struct buf *bp, void *data)
529 {
530 	struct vtruncbuf_info *info = data;
531 
532 	/*
533 	 * Do not try to use a buffer we cannot immediately lock, but sleep
534 	 * anyway to prevent a livelock.  The code will loop until all buffers
535 	 * can be acted upon.
536 	 *
537 	 * We must always revalidate the buffer after locking it to deal
538 	 * with MP races.
539 	 */
540 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
541 		atomic_add_int(&bp->b_refs, 1);
542 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
543 			BUF_UNLOCK(bp);
544 		atomic_subtract_int(&bp->b_refs, 1);
545 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
546 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
547 		   bp->b_vp != info->vp ||
548 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
549 		BUF_UNLOCK(bp);
550 	} else {
551 		bremfree(bp);
552 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
553 		brelse(bp);
554 	}
555 	return(1);
556 }
557 
558 /*
559  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
560  * blocks (with a negative loffset) are scanned.
561  * Note that the compare function must conform to the RB_SCAN's requirements.
562  */
563 static int
564 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
565 {
566 	if (bp->b_loffset < 0)
567 		return(0);
568 	return(1);
569 }
570 
571 static int
572 vtruncbuf_bp_metasync(struct buf *bp, void *data)
573 {
574 	struct vtruncbuf_info *info = data;
575 
576 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
577 		atomic_add_int(&bp->b_refs, 1);
578 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
579 			BUF_UNLOCK(bp);
580 		atomic_subtract_int(&bp->b_refs, 1);
581 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
582 		   bp->b_vp != info->vp ||
583 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
584 		BUF_UNLOCK(bp);
585 	} else {
586 		bremfree(bp);
587 		if (bp->b_vp == info->vp)
588 			bawrite(bp);
589 		else
590 			bwrite(bp);
591 	}
592 	return(1);
593 }
594 
595 /*
596  * vfsync - implements a multipass fsync on a file which understands
597  * dependancies and meta-data.  The passed vnode must be locked.  The
598  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
599  *
600  * When fsyncing data asynchronously just do one consolidated pass starting
601  * with the most negative block number.  This may not get all the data due
602  * to dependancies.
603  *
604  * When fsyncing data synchronously do a data pass, then a metadata pass,
605  * then do additional data+metadata passes to try to get all the data out.
606  */
607 static int vfsync_wait_output(struct vnode *vp,
608 			    int (*waitoutput)(struct vnode *, struct thread *));
609 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
610 static int vfsync_data_only_cmp(struct buf *bp, void *data);
611 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
612 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
613 static int vfsync_bp(struct buf *bp, void *data);
614 
615 struct vfsync_info {
616 	struct vnode *vp;
617 	int synchronous;
618 	int syncdeps;
619 	int lazycount;
620 	int lazylimit;
621 	int skippedbufs;
622 	int (*checkdef)(struct buf *);
623 	int (*cmpfunc)(struct buf *, void *);
624 };
625 
626 int
627 vfsync(struct vnode *vp, int waitfor, int passes,
628 	int (*checkdef)(struct buf *),
629 	int (*waitoutput)(struct vnode *, struct thread *))
630 {
631 	struct vfsync_info info;
632 	int error;
633 
634 	bzero(&info, sizeof(info));
635 	info.vp = vp;
636 	if ((info.checkdef = checkdef) == NULL)
637 		info.syncdeps = 1;
638 
639 	lwkt_gettoken(&vp->v_token);
640 
641 	switch(waitfor) {
642 	case MNT_LAZY | MNT_NOWAIT:
643 	case MNT_LAZY:
644 		/*
645 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
646 		 * number of data (not meta) pages we try to flush to 1MB.
647 		 * A non-zero return means that lazy limit was reached.
648 		 */
649 		info.lazylimit = 1024 * 1024;
650 		info.syncdeps = 1;
651 		info.cmpfunc = vfsync_lazy_range_cmp;
652 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
653 				vfsync_lazy_range_cmp, vfsync_bp, &info);
654 		info.cmpfunc = vfsync_meta_only_cmp;
655 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
656 			vfsync_meta_only_cmp, vfsync_bp, &info);
657 		if (error == 0)
658 			vp->v_lazyw = 0;
659 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
660 			vn_syncer_add(vp, 1);
661 		error = 0;
662 		break;
663 	case MNT_NOWAIT:
664 		/*
665 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
666 		 */
667 		info.syncdeps = 1;
668 		info.cmpfunc = vfsync_data_only_cmp;
669 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
670 			vfsync_bp, &info);
671 		info.cmpfunc = vfsync_meta_only_cmp;
672 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
673 			vfsync_bp, &info);
674 		error = 0;
675 		break;
676 	default:
677 		/*
678 		 * Synchronous.  Do a data-only pass, then a meta-data+data
679 		 * pass, then additional integrated passes to try to get
680 		 * all the dependancies flushed.
681 		 */
682 		info.cmpfunc = vfsync_data_only_cmp;
683 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
684 			vfsync_bp, &info);
685 		error = vfsync_wait_output(vp, waitoutput);
686 		if (error == 0) {
687 			info.skippedbufs = 0;
688 			info.cmpfunc = vfsync_dummy_cmp;
689 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
690 				vfsync_bp, &info);
691 			error = vfsync_wait_output(vp, waitoutput);
692 			if (info.skippedbufs) {
693 				kprintf("Warning: vfsync skipped %d dirty "
694 					"bufs in pass2!\n", info.skippedbufs);
695 			}
696 		}
697 		while (error == 0 && passes > 0 &&
698 		       !RB_EMPTY(&vp->v_rbdirty_tree)
699 		) {
700 			if (--passes == 0) {
701 				info.synchronous = 1;
702 				info.syncdeps = 1;
703 			}
704 			info.cmpfunc = vfsync_dummy_cmp;
705 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
706 					vfsync_bp, &info);
707 			if (error < 0)
708 				error = -error;
709 			info.syncdeps = 1;
710 			if (error == 0)
711 				error = vfsync_wait_output(vp, waitoutput);
712 		}
713 		break;
714 	}
715 	lwkt_reltoken(&vp->v_token);
716 	return(error);
717 }
718 
719 static int
720 vfsync_wait_output(struct vnode *vp,
721 		   int (*waitoutput)(struct vnode *, struct thread *))
722 {
723 	int error;
724 
725 	error = bio_track_wait(&vp->v_track_write, 0, 0);
726 	if (waitoutput)
727 		error = waitoutput(vp, curthread);
728 	return(error);
729 }
730 
731 static int
732 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
733 {
734 	return(0);
735 }
736 
737 static int
738 vfsync_data_only_cmp(struct buf *bp, void *data)
739 {
740 	if (bp->b_loffset < 0)
741 		return(-1);
742 	return(0);
743 }
744 
745 static int
746 vfsync_meta_only_cmp(struct buf *bp, void *data)
747 {
748 	if (bp->b_loffset < 0)
749 		return(0);
750 	return(1);
751 }
752 
753 static int
754 vfsync_lazy_range_cmp(struct buf *bp, void *data)
755 {
756 	struct vfsync_info *info = data;
757 
758 	if (bp->b_loffset < info->vp->v_lazyw)
759 		return(-1);
760 	return(0);
761 }
762 
763 static int
764 vfsync_bp(struct buf *bp, void *data)
765 {
766 	struct vfsync_info *info = data;
767 	struct vnode *vp = info->vp;
768 	int error;
769 
770 	/*
771 	 * Ignore buffers that we cannot immediately lock.
772 	 */
773 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
774 		++info->skippedbufs;
775 		return(0);
776 	}
777 
778 	/*
779 	 * We must revalidate the buffer after locking.
780 	 */
781 	if ((bp->b_flags & B_DELWRI) == 0 ||
782 	    bp->b_vp != info->vp ||
783 	    info->cmpfunc(bp, data)) {
784 		BUF_UNLOCK(bp);
785 		return(0);
786 	}
787 
788 	/*
789 	 * If syncdeps is not set we do not try to write buffers which have
790 	 * dependancies.
791 	 */
792 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
793 		BUF_UNLOCK(bp);
794 		return(0);
795 	}
796 
797 	/*
798 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
799 	 * has been written but an additional handshake with the device
800 	 * is required before we can dispose of the buffer.  We have no idea
801 	 * how to do this so we have to skip these buffers.
802 	 */
803 	if (bp->b_flags & B_NEEDCOMMIT) {
804 		BUF_UNLOCK(bp);
805 		return(0);
806 	}
807 
808 	/*
809 	 * Ask bioops if it is ok to sync.  If not the VFS may have
810 	 * set B_LOCKED so we have to cycle the buffer.
811 	 */
812 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
813 		bremfree(bp);
814 		brelse(bp);
815 		return(0);
816 	}
817 
818 	if (info->synchronous) {
819 		/*
820 		 * Synchronous flushing.  An error may be returned.
821 		 */
822 		bremfree(bp);
823 		error = bwrite(bp);
824 	} else {
825 		/*
826 		 * Asynchronous flushing.  A negative return value simply
827 		 * stops the scan and is not considered an error.  We use
828 		 * this to support limited MNT_LAZY flushes.
829 		 */
830 		vp->v_lazyw = bp->b_loffset;
831 		bremfree(bp);
832 		info->lazycount += cluster_awrite(bp);
833 		waitrunningbufspace();
834 		vm_wait_nominal();
835 		if (info->lazylimit && info->lazycount >= info->lazylimit)
836 			error = 1;
837 		else
838 			error = 0;
839 	}
840 	return(-error);
841 }
842 
843 /*
844  * Associate a buffer with a vnode.
845  *
846  * MPSAFE
847  */
848 int
849 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
850 {
851 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
852 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
853 
854 	/*
855 	 * Insert onto list for new vnode.
856 	 */
857 	lwkt_gettoken(&vp->v_token);
858 
859 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
860 		lwkt_reltoken(&vp->v_token);
861 		return (EEXIST);
862 	}
863 
864 	/*
865 	 * Diagnostics (mainly for HAMMER debugging).  Check for
866 	 * overlapping buffers.
867 	 */
868 	if (check_buf_overlap) {
869 		struct buf *bx;
870 		bx = buf_rb_hash_RB_PREV(bp);
871 		if (bx) {
872 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
873 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
874 					"bx %p bp %p\n",
875 					(intmax_t)bx->b_loffset,
876 					bx->b_bufsize,
877 					(intmax_t)bp->b_loffset,
878 					bx, bp);
879 				if (check_buf_overlap > 1)
880 					panic("bgetvp - overlapping buffer");
881 			}
882 		}
883 		bx = buf_rb_hash_RB_NEXT(bp);
884 		if (bx) {
885 			if (bp->b_loffset + testsize > bx->b_loffset) {
886 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
887 					"bp %p bx %p\n",
888 					(intmax_t)bp->b_loffset,
889 					testsize,
890 					(intmax_t)bx->b_loffset,
891 					bp, bx);
892 				if (check_buf_overlap > 1)
893 					panic("bgetvp - overlapping buffer");
894 			}
895 		}
896 	}
897 	bp->b_vp = vp;
898 	bp->b_flags |= B_HASHED;
899 	bp->b_flags |= B_VNCLEAN;
900 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
901 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
902 	/*vhold(vp);*/
903 	lwkt_reltoken(&vp->v_token);
904 	return(0);
905 }
906 
907 /*
908  * Disassociate a buffer from a vnode.
909  *
910  * MPSAFE
911  */
912 void
913 brelvp(struct buf *bp)
914 {
915 	struct vnode *vp;
916 
917 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
918 
919 	/*
920 	 * Delete from old vnode list, if on one.
921 	 */
922 	vp = bp->b_vp;
923 	lwkt_gettoken(&vp->v_token);
924 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
925 		if (bp->b_flags & B_VNDIRTY)
926 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
927 		else
928 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
929 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
930 	}
931 	if (bp->b_flags & B_HASHED) {
932 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
933 		bp->b_flags &= ~B_HASHED;
934 	}
935 
936 	/*
937 	 * Only remove from synclist when no dirty buffers are left AND
938 	 * the VFS has not flagged the vnode's inode as being dirty.
939 	 */
940 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
941 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
942 		vn_syncer_remove(vp);
943 	}
944 	bp->b_vp = NULL;
945 
946 	lwkt_reltoken(&vp->v_token);
947 
948 	/*vdrop(vp);*/
949 }
950 
951 /*
952  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
953  * This routine is called when the state of the B_DELWRI bit is changed.
954  *
955  * Must be called with vp->v_token held.
956  * MPSAFE
957  */
958 void
959 reassignbuf(struct buf *bp)
960 {
961 	struct vnode *vp = bp->b_vp;
962 	int delay;
963 
964 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
965 	++reassignbufcalls;
966 
967 	/*
968 	 * B_PAGING flagged buffers cannot be reassigned because their vp
969 	 * is not fully linked in.
970 	 */
971 	if (bp->b_flags & B_PAGING)
972 		panic("cannot reassign paging buffer");
973 
974 	if (bp->b_flags & B_DELWRI) {
975 		/*
976 		 * Move to the dirty list, add the vnode to the worklist
977 		 */
978 		if (bp->b_flags & B_VNCLEAN) {
979 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
980 			bp->b_flags &= ~B_VNCLEAN;
981 		}
982 		if ((bp->b_flags & B_VNDIRTY) == 0) {
983 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
984 				panic("reassignbuf: dup lblk vp %p bp %p",
985 				      vp, bp);
986 			}
987 			bp->b_flags |= B_VNDIRTY;
988 		}
989 		if ((vp->v_flag & VONWORKLST) == 0) {
990 			switch (vp->v_type) {
991 			case VDIR:
992 				delay = dirdelay;
993 				break;
994 			case VCHR:
995 			case VBLK:
996 				if (vp->v_rdev &&
997 				    vp->v_rdev->si_mountpoint != NULL) {
998 					delay = metadelay;
999 					break;
1000 				}
1001 				/* fall through */
1002 			default:
1003 				delay = filedelay;
1004 			}
1005 			vn_syncer_add(vp, delay);
1006 		}
1007 	} else {
1008 		/*
1009 		 * Move to the clean list, remove the vnode from the worklist
1010 		 * if no dirty blocks remain.
1011 		 */
1012 		if (bp->b_flags & B_VNDIRTY) {
1013 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1014 			bp->b_flags &= ~B_VNDIRTY;
1015 		}
1016 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1017 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1018 				panic("reassignbuf: dup lblk vp %p bp %p",
1019 				      vp, bp);
1020 			}
1021 			bp->b_flags |= B_VNCLEAN;
1022 		}
1023 
1024 		/*
1025 		 * Only remove from synclist when no dirty buffers are left
1026 		 * AND the VFS has not flagged the vnode's inode as being
1027 		 * dirty.
1028 		 */
1029 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1030 		     VONWORKLST &&
1031 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1032 			vn_syncer_remove(vp);
1033 		}
1034 	}
1035 }
1036 
1037 /*
1038  * Create a vnode for a block device.  Used for mounting the root file
1039  * system.
1040  *
1041  * A vref()'d vnode is returned.
1042  */
1043 extern struct vop_ops *devfs_vnode_dev_vops_p;
1044 int
1045 bdevvp(cdev_t dev, struct vnode **vpp)
1046 {
1047 	struct vnode *vp;
1048 	struct vnode *nvp;
1049 	int error;
1050 
1051 	if (dev == NULL) {
1052 		*vpp = NULLVP;
1053 		return (ENXIO);
1054 	}
1055 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1056 				&nvp, 0, 0);
1057 	if (error) {
1058 		*vpp = NULLVP;
1059 		return (error);
1060 	}
1061 	vp = nvp;
1062 	vp->v_type = VCHR;
1063 #if 0
1064 	vp->v_rdev = dev;
1065 #endif
1066 	v_associate_rdev(vp, dev);
1067 	vp->v_umajor = dev->si_umajor;
1068 	vp->v_uminor = dev->si_uminor;
1069 	vx_unlock(vp);
1070 	*vpp = vp;
1071 	return (0);
1072 }
1073 
1074 int
1075 v_associate_rdev(struct vnode *vp, cdev_t dev)
1076 {
1077 	if (dev == NULL)
1078 		return(ENXIO);
1079 	if (dev_is_good(dev) == 0)
1080 		return(ENXIO);
1081 	KKASSERT(vp->v_rdev == NULL);
1082 	vp->v_rdev = reference_dev(dev);
1083 	lwkt_gettoken(&spechash_token);
1084 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1085 	lwkt_reltoken(&spechash_token);
1086 	return(0);
1087 }
1088 
1089 void
1090 v_release_rdev(struct vnode *vp)
1091 {
1092 	cdev_t dev;
1093 
1094 	if ((dev = vp->v_rdev) != NULL) {
1095 		lwkt_gettoken(&spechash_token);
1096 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1097 		vp->v_rdev = NULL;
1098 		release_dev(dev);
1099 		lwkt_reltoken(&spechash_token);
1100 	}
1101 }
1102 
1103 /*
1104  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1105  * the device number with the vnode.  The actual device is not associated
1106  * until the vnode is opened (usually in spec_open()), and will be
1107  * disassociated on last close.
1108  */
1109 void
1110 addaliasu(struct vnode *nvp, int x, int y)
1111 {
1112 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1113 		panic("addaliasu on non-special vnode");
1114 	nvp->v_umajor = x;
1115 	nvp->v_uminor = y;
1116 }
1117 
1118 /*
1119  * Simple call that a filesystem can make to try to get rid of a
1120  * vnode.  It will fail if anyone is referencing the vnode (including
1121  * the caller).
1122  *
1123  * The filesystem can check whether its in-memory inode structure still
1124  * references the vp on return.
1125  *
1126  * May only be called if the vnode is in a known state (i.e. being prevented
1127  * from being deallocated by some other condition such as a vfs inode hold).
1128  */
1129 void
1130 vclean_unlocked(struct vnode *vp)
1131 {
1132 	vx_get(vp);
1133 	if (VREFCNT(vp) <= 1)
1134 		vgone_vxlocked(vp);
1135 	vx_put(vp);
1136 }
1137 
1138 /*
1139  * Disassociate a vnode from its underlying filesystem.
1140  *
1141  * The vnode must be VX locked and referenced.  In all normal situations
1142  * there are no active references.  If vclean_vxlocked() is called while
1143  * there are active references, the vnode is being ripped out and we have
1144  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1145  */
1146 void
1147 vclean_vxlocked(struct vnode *vp, int flags)
1148 {
1149 	int active;
1150 	int n;
1151 	vm_object_t object;
1152 	struct namecache *ncp;
1153 
1154 	/*
1155 	 * If the vnode has already been reclaimed we have nothing to do.
1156 	 */
1157 	if (vp->v_flag & VRECLAIMED)
1158 		return;
1159 
1160 	/*
1161 	 * Set flag to interlock operation, flag finalization to ensure
1162 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1163 	 */
1164 	vsetflags(vp, VRECLAIMED);
1165 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1166 	vp->v_act = 0;
1167 
1168 	if (verbose_reclaims) {
1169 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1170 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1171 	}
1172 
1173 	/*
1174 	 * Scrap the vfs cache
1175 	 */
1176 	while (cache_inval_vp(vp, 0) != 0) {
1177 		kprintf("Warning: vnode %p clean/cache_resolution "
1178 			"race detected\n", vp);
1179 		tsleep(vp, 0, "vclninv", 2);
1180 	}
1181 
1182 	/*
1183 	 * Check to see if the vnode is in use. If so we have to reference it
1184 	 * before we clean it out so that its count cannot fall to zero and
1185 	 * generate a race against ourselves to recycle it.
1186 	 */
1187 	active = (VREFCNT(vp) > 0);
1188 
1189 	/*
1190 	 * Clean out any buffers associated with the vnode and destroy its
1191 	 * object, if it has one.
1192 	 */
1193 	vinvalbuf(vp, V_SAVE, 0, 0);
1194 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1195 
1196 	/*
1197 	 * If purging an active vnode (typically during a forced unmount
1198 	 * or reboot), it must be closed and deactivated before being
1199 	 * reclaimed.  This isn't really all that safe, but what can
1200 	 * we do? XXX.
1201 	 *
1202 	 * Note that neither of these routines unlocks the vnode.
1203 	 */
1204 	if (active && (flags & DOCLOSE)) {
1205 		while ((n = vp->v_opencount) != 0) {
1206 			if (vp->v_writecount)
1207 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1208 			else
1209 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1210 			if (vp->v_opencount == n) {
1211 				kprintf("Warning: unable to force-close"
1212 				       " vnode %p\n", vp);
1213 				break;
1214 			}
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1220 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1221 	 * again to make sure they all get flushed.
1222 	 *
1223 	 * This can occur if a file with a link count of 0 needs to be
1224 	 * truncated.
1225 	 *
1226 	 * If the vnode is already dead don't try to deactivate it.
1227 	 */
1228 	if ((vp->v_flag & VINACTIVE) == 0) {
1229 		vsetflags(vp, VINACTIVE);
1230 		if (vp->v_mount)
1231 			VOP_INACTIVE(vp);
1232 		vinvalbuf(vp, V_SAVE, 0, 0);
1233 	}
1234 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1235 
1236 	/*
1237 	 * If the vnode has an object, destroy it.
1238 	 */
1239 	while ((object = vp->v_object) != NULL) {
1240 		vm_object_hold(object);
1241 		if (object == vp->v_object)
1242 			break;
1243 		vm_object_drop(object);
1244 	}
1245 
1246 	if (object != NULL) {
1247 		if (object->ref_count == 0) {
1248 			if ((object->flags & OBJ_DEAD) == 0)
1249 				vm_object_terminate(object);
1250 			vm_object_drop(object);
1251 			vclrflags(vp, VOBJBUF);
1252 		} else {
1253 			vm_pager_deallocate(object);
1254 			vclrflags(vp, VOBJBUF);
1255 			vm_object_drop(object);
1256 		}
1257 	}
1258 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1259 
1260 	/*
1261 	 * Reclaim the vnode if not already dead.
1262 	 */
1263 	if (vp->v_mount && VOP_RECLAIM(vp))
1264 		panic("vclean: cannot reclaim");
1265 
1266 	/*
1267 	 * Done with purge, notify sleepers of the grim news.
1268 	 */
1269 	vp->v_ops = &dead_vnode_vops_p;
1270 	vn_gone(vp);
1271 	vp->v_tag = VT_NON;
1272 
1273 	/*
1274 	 * If we are destroying an active vnode, reactivate it now that
1275 	 * we have reassociated it with deadfs.  This prevents the system
1276 	 * from crashing on the vnode due to it being unexpectedly marked
1277 	 * as inactive or reclaimed.
1278 	 */
1279 	if (active && (flags & DOCLOSE)) {
1280 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1281 	}
1282 }
1283 
1284 /*
1285  * Eliminate all activity associated with the requested vnode
1286  * and with all vnodes aliased to the requested vnode.
1287  *
1288  * The vnode must be referenced but should not be locked.
1289  */
1290 int
1291 vrevoke(struct vnode *vp, struct ucred *cred)
1292 {
1293 	struct vnode *vq;
1294 	struct vnode *vqn;
1295 	cdev_t dev;
1296 	int error;
1297 
1298 	/*
1299 	 * If the vnode has a device association, scrap all vnodes associated
1300 	 * with the device.  Don't let the device disappear on us while we
1301 	 * are scrapping the vnodes.
1302 	 *
1303 	 * The passed vp will probably show up in the list, do not VX lock
1304 	 * it twice!
1305 	 *
1306 	 * Releasing the vnode's rdev here can mess up specfs's call to
1307 	 * device close, so don't do it.  The vnode has been disassociated
1308 	 * and the device will be closed after the last ref on the related
1309 	 * fp goes away (if not still open by e.g. the kernel).
1310 	 */
1311 	if (vp->v_type != VCHR) {
1312 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1313 		return (error);
1314 	}
1315 	if ((dev = vp->v_rdev) == NULL) {
1316 		return(0);
1317 	}
1318 	reference_dev(dev);
1319 	lwkt_gettoken(&spechash_token);
1320 
1321 restart:
1322 	vqn = SLIST_FIRST(&dev->si_hlist);
1323 	if (vqn)
1324 		vhold(vqn);
1325 	while ((vq = vqn) != NULL) {
1326 		if (VREFCNT(vq) > 0) {
1327 			vref(vq);
1328 			fdrevoke(vq, DTYPE_VNODE, cred);
1329 			/*v_release_rdev(vq);*/
1330 			vrele(vq);
1331 			if (vq->v_rdev != dev) {
1332 				vdrop(vq);
1333 				goto restart;
1334 			}
1335 		}
1336 		vqn = SLIST_NEXT(vq, v_cdevnext);
1337 		if (vqn)
1338 			vhold(vqn);
1339 		vdrop(vq);
1340 	}
1341 	lwkt_reltoken(&spechash_token);
1342 	dev_drevoke(dev);
1343 	release_dev(dev);
1344 	return (0);
1345 }
1346 
1347 /*
1348  * This is called when the object underlying a vnode is being destroyed,
1349  * such as in a remove().  Try to recycle the vnode immediately if the
1350  * only active reference is our reference.
1351  *
1352  * Directory vnodes in the namecache with children cannot be immediately
1353  * recycled because numerous VOP_N*() ops require them to be stable.
1354  *
1355  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1356  * function is a NOP if VRECLAIMED is already set.
1357  */
1358 int
1359 vrecycle(struct vnode *vp)
1360 {
1361 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1362 		if (cache_inval_vp_nonblock(vp))
1363 			return(0);
1364 		vgone_vxlocked(vp);
1365 		return (1);
1366 	}
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Return the maximum I/O size allowed for strategy calls on VP.
1372  *
1373  * If vp is VCHR or VBLK we dive the device, otherwise we use
1374  * the vp's mount info.
1375  *
1376  * The returned value is clamped at MAXPHYS as most callers cannot use
1377  * buffers larger than that size.
1378  */
1379 int
1380 vmaxiosize(struct vnode *vp)
1381 {
1382 	int maxiosize;
1383 
1384 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1385 		maxiosize = vp->v_rdev->si_iosize_max;
1386 	else
1387 		maxiosize = vp->v_mount->mnt_iosize_max;
1388 
1389 	if (maxiosize > MAXPHYS)
1390 		maxiosize = MAXPHYS;
1391 	return (maxiosize);
1392 }
1393 
1394 /*
1395  * Eliminate all activity associated with a vnode in preparation for
1396  * destruction.
1397  *
1398  * The vnode must be VX locked and refd and will remain VX locked and refd
1399  * on return.  This routine may be called with the vnode in any state, as
1400  * long as it is VX locked.  The vnode will be cleaned out and marked
1401  * VRECLAIMED but will not actually be reused until all existing refs and
1402  * holds go away.
1403  *
1404  * NOTE: This routine may be called on a vnode which has not yet been
1405  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1406  * already been reclaimed.
1407  *
1408  * This routine is not responsible for placing us back on the freelist.
1409  * Instead, it happens automatically when the caller releases the VX lock
1410  * (assuming there aren't any other references).
1411  */
1412 void
1413 vgone_vxlocked(struct vnode *vp)
1414 {
1415 	/*
1416 	 * assert that the VX lock is held.  This is an absolute requirement
1417 	 * now for vgone_vxlocked() to be called.
1418 	 */
1419 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1420 
1421 	/*
1422 	 * Clean out the filesystem specific data and set the VRECLAIMED
1423 	 * bit.  Also deactivate the vnode if necessary.
1424 	 *
1425 	 * The vnode should have automatically been removed from the syncer
1426 	 * list as syncer/dirty flags cleared during the cleaning.
1427 	 */
1428 	vclean_vxlocked(vp, DOCLOSE);
1429 	KKASSERT((vp->v_flag & VONWORKLST) == 0);
1430 
1431 	/*
1432 	 * Delete from old mount point vnode list, if on one.
1433 	 */
1434 	if (vp->v_mount != NULL) {
1435 		KKASSERT(vp->v_data == NULL);
1436 		insmntque(vp, NULL);
1437 	}
1438 
1439 	/*
1440 	 * If special device, remove it from special device alias list
1441 	 * if it is on one.  This should normally only occur if a vnode is
1442 	 * being revoked as the device should otherwise have been released
1443 	 * naturally.
1444 	 */
1445 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1446 		v_release_rdev(vp);
1447 	}
1448 
1449 	/*
1450 	 * Set us to VBAD
1451 	 */
1452 	vp->v_type = VBAD;
1453 }
1454 
1455 /*
1456  * Lookup a vnode by device number.
1457  *
1458  * Returns non-zero and *vpp set to a vref'd vnode on success.
1459  * Returns zero on failure.
1460  */
1461 int
1462 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1463 {
1464 	struct vnode *vp;
1465 
1466 	lwkt_gettoken(&spechash_token);
1467 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1468 		if (type == vp->v_type) {
1469 			*vpp = vp;
1470 			vref(vp);
1471 			lwkt_reltoken(&spechash_token);
1472 			return (1);
1473 		}
1474 	}
1475 	lwkt_reltoken(&spechash_token);
1476 	return (0);
1477 }
1478 
1479 /*
1480  * Calculate the total number of references to a special device.  This
1481  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1482  * an overloaded field.  Since udev2dev can now return NULL, we have
1483  * to check for a NULL v_rdev.
1484  */
1485 int
1486 count_dev(cdev_t dev)
1487 {
1488 	struct vnode *vp;
1489 	int count = 0;
1490 
1491 	if (SLIST_FIRST(&dev->si_hlist)) {
1492 		lwkt_gettoken(&spechash_token);
1493 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1494 			count += vp->v_opencount;
1495 		}
1496 		lwkt_reltoken(&spechash_token);
1497 	}
1498 	return(count);
1499 }
1500 
1501 int
1502 vcount(struct vnode *vp)
1503 {
1504 	if (vp->v_rdev == NULL)
1505 		return(0);
1506 	return(count_dev(vp->v_rdev));
1507 }
1508 
1509 /*
1510  * Initialize VMIO for a vnode.  This routine MUST be called before a
1511  * VFS can issue buffer cache ops on a vnode.  It is typically called
1512  * when a vnode is initialized from its inode.
1513  */
1514 int
1515 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1516 {
1517 	vm_object_t object;
1518 	int error = 0;
1519 
1520 	object = vp->v_object;
1521 	if (object) {
1522 		vm_object_hold(object);
1523 		KKASSERT(vp->v_object == object);
1524 	}
1525 
1526 	if (object == NULL) {
1527 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1528 
1529 		/*
1530 		 * Dereference the reference we just created.  This assumes
1531 		 * that the object is associated with the vp.  Allow it to
1532 		 * have zero refs.  It cannot be destroyed as long as it
1533 		 * is associated with the vnode.
1534 		 */
1535 		vm_object_hold(object);
1536 		atomic_add_int(&object->ref_count, -1);
1537 		vrele(vp);
1538 	} else {
1539 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1540 	}
1541 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1542 	vsetflags(vp, VOBJBUF);
1543 	vm_object_drop(object);
1544 
1545 	return (error);
1546 }
1547 
1548 
1549 /*
1550  * Print out a description of a vnode.
1551  */
1552 static char *typename[] =
1553 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1554 
1555 void
1556 vprint(char *label, struct vnode *vp)
1557 {
1558 	char buf[96];
1559 
1560 	if (label != NULL)
1561 		kprintf("%s: %p: ", label, (void *)vp);
1562 	else
1563 		kprintf("%p: ", (void *)vp);
1564 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1565 		typename[vp->v_type],
1566 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1567 	buf[0] = '\0';
1568 	if (vp->v_flag & VROOT)
1569 		strcat(buf, "|VROOT");
1570 	if (vp->v_flag & VPFSROOT)
1571 		strcat(buf, "|VPFSROOT");
1572 	if (vp->v_flag & VTEXT)
1573 		strcat(buf, "|VTEXT");
1574 	if (vp->v_flag & VSYSTEM)
1575 		strcat(buf, "|VSYSTEM");
1576 	if (vp->v_flag & VOBJBUF)
1577 		strcat(buf, "|VOBJBUF");
1578 	if (buf[0] != '\0')
1579 		kprintf(" flags (%s)", &buf[1]);
1580 	if (vp->v_data == NULL) {
1581 		kprintf("\n");
1582 	} else {
1583 		kprintf("\n\t");
1584 		VOP_PRINT(vp);
1585 	}
1586 }
1587 
1588 /*
1589  * Do the usual access checking.
1590  * file_mode, uid and gid are from the vnode in question,
1591  * while acc_mode and cred are from the VOP_ACCESS parameter list
1592  */
1593 int
1594 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1595     mode_t acc_mode, struct ucred *cred)
1596 {
1597 	mode_t mask;
1598 	int ismember;
1599 
1600 	/*
1601 	 * Super-user always gets read/write access, but execute access depends
1602 	 * on at least one execute bit being set.
1603 	 */
1604 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1605 		if ((acc_mode & VEXEC) && type != VDIR &&
1606 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1607 			return (EACCES);
1608 		return (0);
1609 	}
1610 
1611 	mask = 0;
1612 
1613 	/* Otherwise, check the owner. */
1614 	if (cred->cr_uid == uid) {
1615 		if (acc_mode & VEXEC)
1616 			mask |= S_IXUSR;
1617 		if (acc_mode & VREAD)
1618 			mask |= S_IRUSR;
1619 		if (acc_mode & VWRITE)
1620 			mask |= S_IWUSR;
1621 		return ((file_mode & mask) == mask ? 0 : EACCES);
1622 	}
1623 
1624 	/* Otherwise, check the groups. */
1625 	ismember = groupmember(gid, cred);
1626 	if (cred->cr_svgid == gid || ismember) {
1627 		if (acc_mode & VEXEC)
1628 			mask |= S_IXGRP;
1629 		if (acc_mode & VREAD)
1630 			mask |= S_IRGRP;
1631 		if (acc_mode & VWRITE)
1632 			mask |= S_IWGRP;
1633 		return ((file_mode & mask) == mask ? 0 : EACCES);
1634 	}
1635 
1636 	/* Otherwise, check everyone else. */
1637 	if (acc_mode & VEXEC)
1638 		mask |= S_IXOTH;
1639 	if (acc_mode & VREAD)
1640 		mask |= S_IROTH;
1641 	if (acc_mode & VWRITE)
1642 		mask |= S_IWOTH;
1643 	return ((file_mode & mask) == mask ? 0 : EACCES);
1644 }
1645 
1646 #ifdef DDB
1647 #include <ddb/ddb.h>
1648 
1649 static int db_show_locked_vnodes(struct mount *mp, void *data);
1650 
1651 /*
1652  * List all of the locked vnodes in the system.
1653  * Called when debugging the kernel.
1654  */
1655 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1656 {
1657 	kprintf("Locked vnodes\n");
1658 	mountlist_scan(db_show_locked_vnodes, NULL,
1659 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1660 }
1661 
1662 static int
1663 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1664 {
1665 	struct vnode *vp;
1666 
1667 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1668 		if (vn_islocked(vp))
1669 			vprint(NULL, vp);
1670 	}
1671 	return(0);
1672 }
1673 #endif
1674 
1675 /*
1676  * Top level filesystem related information gathering.
1677  */
1678 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1679 
1680 static int
1681 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1682 {
1683 	int *name = (int *)arg1 - 1;	/* XXX */
1684 	u_int namelen = arg2 + 1;	/* XXX */
1685 	struct vfsconf *vfsp;
1686 	int maxtypenum;
1687 
1688 #if 1 || defined(COMPAT_PRELITE2)
1689 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1690 	if (namelen == 1)
1691 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1692 #endif
1693 
1694 #ifdef notyet
1695 	/* all sysctl names at this level are at least name and field */
1696 	if (namelen < 2)
1697 		return (ENOTDIR);		/* overloaded */
1698 	if (name[0] != VFS_GENERIC) {
1699 		vfsp = vfsconf_find_by_typenum(name[0]);
1700 		if (vfsp == NULL)
1701 			return (EOPNOTSUPP);
1702 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1703 		    oldp, oldlenp, newp, newlen, p));
1704 	}
1705 #endif
1706 	switch (name[1]) {
1707 	case VFS_MAXTYPENUM:
1708 		if (namelen != 2)
1709 			return (ENOTDIR);
1710 		maxtypenum = vfsconf_get_maxtypenum();
1711 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1712 	case VFS_CONF:
1713 		if (namelen != 3)
1714 			return (ENOTDIR);	/* overloaded */
1715 		vfsp = vfsconf_find_by_typenum(name[2]);
1716 		if (vfsp == NULL)
1717 			return (EOPNOTSUPP);
1718 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1719 	}
1720 	return (EOPNOTSUPP);
1721 }
1722 
1723 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1724 	"Generic filesystem");
1725 
1726 #if 1 || defined(COMPAT_PRELITE2)
1727 
1728 static int
1729 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1730 {
1731 	int error;
1732 	struct ovfsconf ovfs;
1733 	struct sysctl_req *req = (struct sysctl_req*) data;
1734 
1735 	bzero(&ovfs, sizeof(ovfs));
1736 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1737 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1738 	ovfs.vfc_index = vfsp->vfc_typenum;
1739 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1740 	ovfs.vfc_flags = vfsp->vfc_flags;
1741 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1742 	if (error)
1743 		return error; /* abort iteration with error code */
1744 	else
1745 		return 0; /* continue iterating with next element */
1746 }
1747 
1748 static int
1749 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1750 {
1751 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1752 }
1753 
1754 #endif /* 1 || COMPAT_PRELITE2 */
1755 
1756 /*
1757  * Check to see if a filesystem is mounted on a block device.
1758  */
1759 int
1760 vfs_mountedon(struct vnode *vp)
1761 {
1762 	cdev_t dev;
1763 
1764 	if ((dev = vp->v_rdev) == NULL) {
1765 /*		if (vp->v_type != VBLK)
1766 			dev = get_dev(vp->v_uminor, vp->v_umajor); */
1767 	}
1768 	if (dev != NULL && dev->si_mountpoint)
1769 		return (EBUSY);
1770 	return (0);
1771 }
1772 
1773 /*
1774  * Unmount all filesystems. The list is traversed in reverse order
1775  * of mounting to avoid dependencies.
1776  */
1777 
1778 static int vfs_umountall_callback(struct mount *mp, void *data);
1779 
1780 void
1781 vfs_unmountall(void)
1782 {
1783 	int count;
1784 
1785 	do {
1786 		count = mountlist_scan(vfs_umountall_callback,
1787 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1788 	} while (count);
1789 }
1790 
1791 static
1792 int
1793 vfs_umountall_callback(struct mount *mp, void *data)
1794 {
1795 	int error;
1796 
1797 	error = dounmount(mp, MNT_FORCE);
1798 	if (error) {
1799 		mountlist_remove(mp);
1800 		kprintf("unmount of filesystem mounted from %s failed (",
1801 			mp->mnt_stat.f_mntfromname);
1802 		if (error == EBUSY)
1803 			kprintf("BUSY)\n");
1804 		else
1805 			kprintf("%d)\n", error);
1806 	}
1807 	return(1);
1808 }
1809 
1810 /*
1811  * Checks the mount flags for parameter mp and put the names comma-separated
1812  * into a string buffer buf with a size limit specified by len.
1813  *
1814  * It returns the number of bytes written into buf, and (*errorp) will be
1815  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1816  * not large enough).  The buffer will be 0-terminated if len was not 0.
1817  */
1818 size_t
1819 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1820 	       char *buf, size_t len, int *errorp)
1821 {
1822 	static const struct mountctl_opt optnames[] = {
1823 		{ MNT_ASYNC,            "asynchronous" },
1824 		{ MNT_EXPORTED,         "NFS exported" },
1825 		{ MNT_LOCAL,            "local" },
1826 		{ MNT_NOATIME,          "noatime" },
1827 		{ MNT_NODEV,            "nodev" },
1828 		{ MNT_NOEXEC,           "noexec" },
1829 		{ MNT_NOSUID,           "nosuid" },
1830 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1831 		{ MNT_QUOTA,            "with-quotas" },
1832 		{ MNT_RDONLY,           "read-only" },
1833 		{ MNT_SYNCHRONOUS,      "synchronous" },
1834 		{ MNT_UNION,            "union" },
1835 		{ MNT_NOCLUSTERR,       "noclusterr" },
1836 		{ MNT_NOCLUSTERW,       "noclusterw" },
1837 		{ MNT_SUIDDIR,          "suiddir" },
1838 		{ MNT_SOFTDEP,          "soft-updates" },
1839 		{ MNT_IGNORE,           "ignore" },
1840 		{ 0,			NULL}
1841 	};
1842 	int bwritten;
1843 	int bleft;
1844 	int optlen;
1845 	int actsize;
1846 
1847 	*errorp = 0;
1848 	bwritten = 0;
1849 	bleft = len - 1;	/* leave room for trailing \0 */
1850 
1851 	/*
1852 	 * Checks the size of the string. If it contains
1853 	 * any data, then we will append the new flags to
1854 	 * it.
1855 	 */
1856 	actsize = strlen(buf);
1857 	if (actsize > 0)
1858 		buf += actsize;
1859 
1860 	/* Default flags if no flags passed */
1861 	if (optp == NULL)
1862 		optp = optnames;
1863 
1864 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1865 		*errorp = EINVAL;
1866 		return(0);
1867 	}
1868 
1869 	for (; flags && optp->o_opt; ++optp) {
1870 		if ((flags & optp->o_opt) == 0)
1871 			continue;
1872 		optlen = strlen(optp->o_name);
1873 		if (bwritten || actsize > 0) {
1874 			if (bleft < 2) {
1875 				*errorp = ENOSPC;
1876 				break;
1877 			}
1878 			buf[bwritten++] = ',';
1879 			buf[bwritten++] = ' ';
1880 			bleft -= 2;
1881 		}
1882 		if (bleft < optlen) {
1883 			*errorp = ENOSPC;
1884 			break;
1885 		}
1886 		bcopy(optp->o_name, buf + bwritten, optlen);
1887 		bwritten += optlen;
1888 		bleft -= optlen;
1889 		flags &= ~optp->o_opt;
1890 	}
1891 
1892 	/*
1893 	 * Space already reserved for trailing \0
1894 	 */
1895 	buf[bwritten] = 0;
1896 	return (bwritten);
1897 }
1898 
1899 /*
1900  * Build hash lists of net addresses and hang them off the mount point.
1901  * Called by ufs_mount() to set up the lists of export addresses.
1902  */
1903 static int
1904 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1905 		const struct export_args *argp)
1906 {
1907 	struct netcred *np;
1908 	struct radix_node_head *rnh;
1909 	int i;
1910 	struct radix_node *rn;
1911 	struct sockaddr *saddr, *smask = NULL;
1912 	struct domain *dom;
1913 	int error;
1914 
1915 	if (argp->ex_addrlen == 0) {
1916 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1917 			return (EPERM);
1918 		np = &nep->ne_defexported;
1919 		np->netc_exflags = argp->ex_flags;
1920 		np->netc_anon = argp->ex_anon;
1921 		np->netc_anon.cr_ref = 1;
1922 		mp->mnt_flag |= MNT_DEFEXPORTED;
1923 		return (0);
1924 	}
1925 
1926 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1927 		return (EINVAL);
1928 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1929 		return (EINVAL);
1930 
1931 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1932 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1933 	saddr = (struct sockaddr *) (np + 1);
1934 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1935 		goto out;
1936 	if (saddr->sa_len > argp->ex_addrlen)
1937 		saddr->sa_len = argp->ex_addrlen;
1938 	if (argp->ex_masklen) {
1939 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1940 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1941 		if (error)
1942 			goto out;
1943 		if (smask->sa_len > argp->ex_masklen)
1944 			smask->sa_len = argp->ex_masklen;
1945 	}
1946 	i = saddr->sa_family;
1947 	if ((rnh = nep->ne_rtable[i]) == NULL) {
1948 		/*
1949 		 * Seems silly to initialize every AF when most are not used,
1950 		 * do so on demand here
1951 		 */
1952 		SLIST_FOREACH(dom, &domains, dom_next)
1953 			if (dom->dom_family == i && dom->dom_rtattach) {
1954 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1955 				    dom->dom_rtoffset);
1956 				break;
1957 			}
1958 		if ((rnh = nep->ne_rtable[i]) == NULL) {
1959 			error = ENOBUFS;
1960 			goto out;
1961 		}
1962 	}
1963 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1964 	    np->netc_rnodes);
1965 	if (rn == NULL || np != (struct netcred *) rn) {	/* already exists */
1966 		error = EPERM;
1967 		goto out;
1968 	}
1969 	np->netc_exflags = argp->ex_flags;
1970 	np->netc_anon = argp->ex_anon;
1971 	np->netc_anon.cr_ref = 1;
1972 	return (0);
1973 out:
1974 	kfree(np, M_NETADDR);
1975 	return (error);
1976 }
1977 
1978 /* ARGSUSED */
1979 static int
1980 vfs_free_netcred(struct radix_node *rn, void *w)
1981 {
1982 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1983 
1984 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1985 	kfree((caddr_t) rn, M_NETADDR);
1986 	return (0);
1987 }
1988 
1989 /*
1990  * Free the net address hash lists that are hanging off the mount points.
1991  */
1992 static void
1993 vfs_free_addrlist(struct netexport *nep)
1994 {
1995 	int i;
1996 	struct radix_node_head *rnh;
1997 
1998 	for (i = 0; i <= AF_MAX; i++)
1999 		if ((rnh = nep->ne_rtable[i])) {
2000 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2001 			    (caddr_t) rnh);
2002 			kfree((caddr_t) rnh, M_RTABLE);
2003 			nep->ne_rtable[i] = 0;
2004 		}
2005 }
2006 
2007 int
2008 vfs_export(struct mount *mp, struct netexport *nep,
2009 	   const struct export_args *argp)
2010 {
2011 	int error;
2012 
2013 	if (argp->ex_flags & MNT_DELEXPORT) {
2014 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2015 			vfs_setpublicfs(NULL, NULL, NULL);
2016 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2017 		}
2018 		vfs_free_addrlist(nep);
2019 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2020 	}
2021 	if (argp->ex_flags & MNT_EXPORTED) {
2022 		if (argp->ex_flags & MNT_EXPUBLIC) {
2023 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2024 				return (error);
2025 			mp->mnt_flag |= MNT_EXPUBLIC;
2026 		}
2027 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2028 			return (error);
2029 		mp->mnt_flag |= MNT_EXPORTED;
2030 	}
2031 	return (0);
2032 }
2033 
2034 
2035 /*
2036  * Set the publicly exported filesystem (WebNFS). Currently, only
2037  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2038  */
2039 int
2040 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2041 		const struct export_args *argp)
2042 {
2043 	int error;
2044 	struct vnode *rvp;
2045 	char *cp;
2046 
2047 	/*
2048 	 * mp == NULL -> invalidate the current info, the FS is
2049 	 * no longer exported. May be called from either vfs_export
2050 	 * or unmount, so check if it hasn't already been done.
2051 	 */
2052 	if (mp == NULL) {
2053 		if (nfs_pub.np_valid) {
2054 			nfs_pub.np_valid = 0;
2055 			if (nfs_pub.np_index != NULL) {
2056 				kfree(nfs_pub.np_index, M_TEMP);
2057 				nfs_pub.np_index = NULL;
2058 			}
2059 		}
2060 		return (0);
2061 	}
2062 
2063 	/*
2064 	 * Only one allowed at a time.
2065 	 */
2066 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2067 		return (EBUSY);
2068 
2069 	/*
2070 	 * Get real filehandle for root of exported FS.
2071 	 */
2072 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2073 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2074 
2075 	if ((error = VFS_ROOT(mp, &rvp)))
2076 		return (error);
2077 
2078 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2079 		return (error);
2080 
2081 	vput(rvp);
2082 
2083 	/*
2084 	 * If an indexfile was specified, pull it in.
2085 	 */
2086 	if (argp->ex_indexfile != NULL) {
2087 		int namelen;
2088 
2089 		error = vn_get_namelen(rvp, &namelen);
2090 		if (error)
2091 			return (error);
2092 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2093 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2094 		    namelen, NULL);
2095 		if (!error) {
2096 			/*
2097 			 * Check for illegal filenames.
2098 			 */
2099 			for (cp = nfs_pub.np_index; *cp; cp++) {
2100 				if (*cp == '/') {
2101 					error = EINVAL;
2102 					break;
2103 				}
2104 			}
2105 		}
2106 		if (error) {
2107 			kfree(nfs_pub.np_index, M_TEMP);
2108 			return (error);
2109 		}
2110 	}
2111 
2112 	nfs_pub.np_mount = mp;
2113 	nfs_pub.np_valid = 1;
2114 	return (0);
2115 }
2116 
2117 struct netcred *
2118 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2119 		struct sockaddr *nam)
2120 {
2121 	struct netcred *np;
2122 	struct radix_node_head *rnh;
2123 	struct sockaddr *saddr;
2124 
2125 	np = NULL;
2126 	if (mp->mnt_flag & MNT_EXPORTED) {
2127 		/*
2128 		 * Lookup in the export list first.
2129 		 */
2130 		if (nam != NULL) {
2131 			saddr = nam;
2132 			rnh = nep->ne_rtable[saddr->sa_family];
2133 			if (rnh != NULL) {
2134 				np = (struct netcred *)
2135 					(*rnh->rnh_matchaddr)((char *)saddr,
2136 							      rnh);
2137 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2138 					np = NULL;
2139 			}
2140 		}
2141 		/*
2142 		 * If no address match, use the default if it exists.
2143 		 */
2144 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2145 			np = &nep->ne_defexported;
2146 	}
2147 	return (np);
2148 }
2149 
2150 /*
2151  * perform msync on all vnodes under a mount point.  The mount point must
2152  * be locked.  This code is also responsible for lazy-freeing unreferenced
2153  * vnodes whos VM objects no longer contain pages.
2154  *
2155  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2156  *
2157  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2158  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2159  * way up in this high level function.
2160  */
2161 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2162 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2163 
2164 void
2165 vfs_msync(struct mount *mp, int flags)
2166 {
2167 	int vmsc_flags;
2168 
2169 	/*
2170 	 * tmpfs sets this flag to prevent msync(), sync, and the
2171 	 * filesystem periodic syncer from trying to flush VM pages
2172 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2173 	 * to swap.
2174 	 */
2175 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2176 		return;
2177 
2178 	/*
2179 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2180 	 * syncer thread feature we can use vsyncscan() instead of
2181 	 * vmntvnodescan(), which is much faster.
2182 	 */
2183 	vmsc_flags = VMSC_GETVP;
2184 	if (flags != MNT_WAIT)
2185 		vmsc_flags |= VMSC_NOWAIT;
2186 
2187 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2188 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2189 			  (void *)(intptr_t)flags);
2190 	} else {
2191 		vmntvnodescan(mp, vmsc_flags,
2192 			      vfs_msync_scan1, vfs_msync_scan2,
2193 			      (void *)(intptr_t)flags);
2194 	}
2195 }
2196 
2197 /*
2198  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2199  * vnodes, we cannot afford to do anything heavy weight until we have a
2200  * fairly good indication that there is work to do.
2201  */
2202 static
2203 int
2204 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2205 {
2206 	int flags = (int)(intptr_t)data;
2207 
2208 	if ((vp->v_flag & VRECLAIMED) == 0) {
2209 		if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2210 		    vp->v_object) {
2211 			return(0);	/* call scan2 */
2212 		}
2213 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2214 		    (vp->v_flag & VOBJDIRTY) &&
2215 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2216 			return(0);	/* call scan2 */
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * do not call scan2, continue the loop
2222 	 */
2223 	return(-1);
2224 }
2225 
2226 /*
2227  * This callback is handed a locked vnode.
2228  */
2229 static
2230 int
2231 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2232 {
2233 	vm_object_t obj;
2234 	int flags = (int)(intptr_t)data;
2235 
2236 	if (vp->v_flag & VRECLAIMED)
2237 		return(0);
2238 
2239 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2240 		if ((obj = vp->v_object) != NULL) {
2241 			vm_object_page_clean(obj, 0, 0,
2242 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2243 		}
2244 	}
2245 	return(0);
2246 }
2247 
2248 /*
2249  * Wake up anyone interested in vp because it is being revoked.
2250  */
2251 void
2252 vn_gone(struct vnode *vp)
2253 {
2254 	lwkt_gettoken(&vp->v_token);
2255 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2256 	lwkt_reltoken(&vp->v_token);
2257 }
2258 
2259 /*
2260  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2261  * (or v_rdev might be NULL).
2262  */
2263 cdev_t
2264 vn_todev(struct vnode *vp)
2265 {
2266 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2267 		return (NULL);
2268 	KKASSERT(vp->v_rdev != NULL);
2269 	return (vp->v_rdev);
2270 }
2271 
2272 /*
2273  * Check if vnode represents a disk device.  The vnode does not need to be
2274  * opened.
2275  *
2276  * MPALMOSTSAFE
2277  */
2278 int
2279 vn_isdisk(struct vnode *vp, int *errp)
2280 {
2281 	cdev_t dev;
2282 
2283 	if (vp->v_type != VCHR) {
2284 		if (errp != NULL)
2285 			*errp = ENOTBLK;
2286 		return (0);
2287 	}
2288 
2289 	dev = vp->v_rdev;
2290 
2291 	if (dev == NULL) {
2292 		if (errp != NULL)
2293 			*errp = ENXIO;
2294 		return (0);
2295 	}
2296 	if (dev_is_good(dev) == 0) {
2297 		if (errp != NULL)
2298 			*errp = ENXIO;
2299 		return (0);
2300 	}
2301 	if ((dev_dflags(dev) & D_DISK) == 0) {
2302 		if (errp != NULL)
2303 			*errp = ENOTBLK;
2304 		return (0);
2305 	}
2306 	if (errp != NULL)
2307 		*errp = 0;
2308 	return (1);
2309 }
2310 
2311 int
2312 vn_get_namelen(struct vnode *vp, int *namelen)
2313 {
2314 	int error;
2315 	register_t retval[2];
2316 
2317 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2318 	if (error)
2319 		return (error);
2320 	*namelen = (int)retval[0];
2321 	return (0);
2322 }
2323 
2324 int
2325 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2326 		uint16_t d_namlen, const char *d_name)
2327 {
2328 	struct dirent *dp;
2329 	size_t len;
2330 
2331 	len = _DIRENT_RECLEN(d_namlen);
2332 	if (len > uio->uio_resid)
2333 		return(1);
2334 
2335 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2336 
2337 	dp->d_ino = d_ino;
2338 	dp->d_namlen = d_namlen;
2339 	dp->d_type = d_type;
2340 	bcopy(d_name, dp->d_name, d_namlen);
2341 
2342 	*error = uiomove((caddr_t)dp, len, uio);
2343 
2344 	kfree(dp, M_TEMP);
2345 
2346 	return(0);
2347 }
2348 
2349 void
2350 vn_mark_atime(struct vnode *vp, struct thread *td)
2351 {
2352 	struct proc *p = td->td_proc;
2353 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2354 
2355 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2356 		VOP_MARKATIME(vp, cred);
2357 	}
2358 }
2359