xref: /dragonfly/sys/kern/vfs_subr.c (revision dca3c15d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mount.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/reboot.h>
65 #include <sys/socket.h>
66 #include <sys/stat.h>
67 #include <sys/sysctl.h>
68 #include <sys/syslog.h>
69 #include <sys/unistd.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
72 
73 #include <machine/limits.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vnode_pager.h>
84 #include <vm/vm_zone.h>
85 
86 #include <sys/buf2.h>
87 #include <sys/thread2.h>
88 #include <sys/sysref2.h>
89 
90 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
91 
92 int numvnodes;
93 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
94 int vfs_fastdev = 1;
95 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
96 
97 enum vtype iftovt_tab[16] = {
98 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
99 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
100 };
101 int vttoif_tab[9] = {
102 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
103 	S_IFSOCK, S_IFIFO, S_IFMT,
104 };
105 
106 static int reassignbufcalls;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
108 		&reassignbufcalls, 0, "");
109 static int reassignbufloops;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
111 		&reassignbufloops, 0, "");
112 static int reassignbufsortgood;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
114 		&reassignbufsortgood, 0, "");
115 static int reassignbufsortbad;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
117 		&reassignbufsortbad, 0, "");
118 static int reassignbufmethod = 1;
119 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
120 		&reassignbufmethod, 0, "");
121 
122 int	nfs_mount_type = -1;
123 static struct lwkt_token spechash_token;
124 struct nfs_public nfs_pub;	/* publicly exported FS */
125 
126 int desiredvnodes;
127 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
128 		&desiredvnodes, 0, "Maximum number of vnodes");
129 
130 static void	vfs_free_addrlist (struct netexport *nep);
131 static int	vfs_free_netcred (struct radix_node *rn, void *w);
132 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
133 				       const struct export_args *argp);
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
144 {
145 	if (b1->b_loffset < b2->b_loffset)
146 		return(-1);
147 	if (b1->b_loffset > b2->b_loffset)
148 		return(1);
149 	return(0);
150 }
151 
152 /*
153  * Returns non-zero if the vnode is a candidate for lazy msyncing.
154  */
155 static __inline int
156 vshouldmsync(struct vnode *vp)
157 {
158 	if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
159 		return (0);		/* other holders */
160 	if (vp->v_object &&
161 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
162 		return (0);
163 	}
164 	return (1);
165 }
166 
167 /*
168  * Initialize the vnode management data structures.
169  *
170  * Called from vfsinit()
171  */
172 void
173 vfs_subr_init(void)
174 {
175 	/*
176 	 * Desiredvnodes is kern.maxvnodes.  We want to scale it
177 	 * according to available system memory but we may also have
178 	 * to limit it based on available KVM, which is capped on 32 bit
179 	 * systems.
180 	 */
181 	desiredvnodes = min(maxproc + vmstats.v_page_count / 4,
182 			    KvaSize / (20 *
183 			    (sizeof(struct vm_object) + sizeof(struct vnode))));
184 
185 	lwkt_token_init(&spechash_token);
186 }
187 
188 /*
189  * Knob to control the precision of file timestamps:
190  *
191  *   0 = seconds only; nanoseconds zeroed.
192  *   1 = seconds and nanoseconds, accurate within 1/HZ.
193  *   2 = seconds and nanoseconds, truncated to microseconds.
194  * >=3 = seconds and nanoseconds, maximum precision.
195  */
196 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
197 
198 static int timestamp_precision = TSP_SEC;
199 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
200 		&timestamp_precision, 0, "");
201 
202 /*
203  * Get a current timestamp.
204  *
205  * MPSAFE
206  */
207 void
208 vfs_timestamp(struct timespec *tsp)
209 {
210 	struct timeval tv;
211 
212 	switch (timestamp_precision) {
213 	case TSP_SEC:
214 		tsp->tv_sec = time_second;
215 		tsp->tv_nsec = 0;
216 		break;
217 	case TSP_HZ:
218 		getnanotime(tsp);
219 		break;
220 	case TSP_USEC:
221 		microtime(&tv);
222 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
223 		break;
224 	case TSP_NSEC:
225 	default:
226 		nanotime(tsp);
227 		break;
228 	}
229 }
230 
231 /*
232  * Set vnode attributes to VNOVAL
233  */
234 void
235 vattr_null(struct vattr *vap)
236 {
237 	vap->va_type = VNON;
238 	vap->va_size = VNOVAL;
239 	vap->va_bytes = VNOVAL;
240 	vap->va_mode = VNOVAL;
241 	vap->va_nlink = VNOVAL;
242 	vap->va_uid = VNOVAL;
243 	vap->va_gid = VNOVAL;
244 	vap->va_fsid = VNOVAL;
245 	vap->va_fileid = VNOVAL;
246 	vap->va_blocksize = VNOVAL;
247 	vap->va_rmajor = VNOVAL;
248 	vap->va_rminor = VNOVAL;
249 	vap->va_atime.tv_sec = VNOVAL;
250 	vap->va_atime.tv_nsec = VNOVAL;
251 	vap->va_mtime.tv_sec = VNOVAL;
252 	vap->va_mtime.tv_nsec = VNOVAL;
253 	vap->va_ctime.tv_sec = VNOVAL;
254 	vap->va_ctime.tv_nsec = VNOVAL;
255 	vap->va_flags = VNOVAL;
256 	vap->va_gen = VNOVAL;
257 	vap->va_vaflags = 0;
258 	vap->va_fsmid = VNOVAL;
259 	/* va_*_uuid fields are only valid if related flags are set */
260 }
261 
262 /*
263  * Flush out and invalidate all buffers associated with a vnode.
264  *
265  * vp must be locked.
266  */
267 static int vinvalbuf_bp(struct buf *bp, void *data);
268 
269 struct vinvalbuf_bp_info {
270 	struct vnode *vp;
271 	int slptimeo;
272 	int lkflags;
273 	int flags;
274 };
275 
276 void
277 vupdatefsmid(struct vnode *vp)
278 {
279 	atomic_set_int(&vp->v_flag, VFSMID);
280 }
281 
282 int
283 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
284 {
285 	struct vinvalbuf_bp_info info;
286 	vm_object_t object;
287 	lwkt_tokref vlock;
288 	int error;
289 
290 	lwkt_gettoken(&vlock, &vp->v_token);
291 
292 	/*
293 	 * If we are being asked to save, call fsync to ensure that the inode
294 	 * is updated.
295 	 */
296 	if (flags & V_SAVE) {
297 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
298 		if (error)
299 			goto done;
300 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
301 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
302 				goto done;
303 
304 			/*
305 			 * Dirty bufs may be left or generated via races
306 			 * in circumstances where vinvalbuf() is called on
307 			 * a vnode not undergoing reclamation.   Only
308 			 * panic if we are trying to reclaim the vnode.
309 			 */
310 			if ((vp->v_flag & VRECLAIMED) &&
311 			    (bio_track_active(&vp->v_track_write) ||
312 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
313 				panic("vinvalbuf: dirty bufs");
314 			}
315 		}
316   	}
317 	info.slptimeo = slptimeo;
318 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
319 	if (slpflag & PCATCH)
320 		info.lkflags |= LK_PCATCH;
321 	info.flags = flags;
322 	info.vp = vp;
323 
324 	/*
325 	 * Flush the buffer cache until nothing is left.
326 	 */
327 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
328 	       !RB_EMPTY(&vp->v_rbdirty_tree)) {
329 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
330 				vinvalbuf_bp, &info);
331 		if (error == 0) {
332 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
333 					vinvalbuf_bp, &info);
334 		}
335 	}
336 
337 	/*
338 	 * Wait for I/O completion.  We may block in the pip code so we have
339 	 * to re-check.
340 	 */
341 	do {
342 		bio_track_wait(&vp->v_track_write, 0, 0);
343 		if ((object = vp->v_object) != NULL) {
344 			while (object->paging_in_progress)
345 				vm_object_pip_sleep(object, "vnvlbx");
346 		}
347 	} while (bio_track_active(&vp->v_track_write));
348 
349 	/*
350 	 * Destroy the copy in the VM cache, too.
351 	 */
352 	if ((object = vp->v_object) != NULL) {
353 		vm_object_page_remove(object, 0, 0,
354 			(flags & V_SAVE) ? TRUE : FALSE);
355 	}
356 
357 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
358 		panic("vinvalbuf: flush failed");
359 	if (!RB_EMPTY(&vp->v_rbhash_tree))
360 		panic("vinvalbuf: flush failed, buffers still present");
361 	error = 0;
362 done:
363 	lwkt_reltoken(&vlock);
364 	return (error);
365 }
366 
367 static int
368 vinvalbuf_bp(struct buf *bp, void *data)
369 {
370 	struct vinvalbuf_bp_info *info = data;
371 	int error;
372 
373 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
374 		error = BUF_TIMELOCK(bp, info->lkflags,
375 				     "vinvalbuf", info->slptimeo);
376 		if (error == 0) {
377 			BUF_UNLOCK(bp);
378 			error = ENOLCK;
379 		}
380 		if (error == ENOLCK)
381 			return(0);
382 		return (-error);
383 	}
384 
385 	KKASSERT(bp->b_vp == info->vp);
386 
387 	/*
388 	 * XXX Since there are no node locks for NFS, I
389 	 * believe there is a slight chance that a delayed
390 	 * write will occur while sleeping just above, so
391 	 * check for it.  Note that vfs_bio_awrite expects
392 	 * buffers to reside on a queue, while bwrite() and
393 	 * brelse() do not.
394 	 *
395 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
396 	 * check.  This code will write out the buffer, period.
397 	 */
398 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
399 	    (info->flags & V_SAVE)) {
400 		if (bp->b_vp == info->vp) {
401 			if (bp->b_flags & B_CLUSTEROK) {
402 				vfs_bio_awrite(bp);
403 			} else {
404 				bremfree(bp);
405 				bawrite(bp);
406 			}
407 		} else {
408 			bremfree(bp);
409 			bwrite(bp);
410 		}
411 	} else if (info->flags & V_SAVE) {
412 		/*
413 		 * Cannot set B_NOCACHE on a clean buffer as this will
414 		 * destroy the VM backing store which might actually
415 		 * be dirty (and unsynchronized).
416 		 */
417 		bremfree(bp);
418 		bp->b_flags |= (B_INVAL | B_RELBUF);
419 		brelse(bp);
420 	} else {
421 		bremfree(bp);
422 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
423 		brelse(bp);
424 	}
425 	return(0);
426 }
427 
428 /*
429  * Truncate a file's buffer and pages to a specified length.  This
430  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
431  * sync activity.
432  *
433  * The vnode must be locked.
434  */
435 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
436 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
437 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
438 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
439 
440 int
441 vtruncbuf(struct vnode *vp, off_t length, int blksize)
442 {
443 	off_t truncloffset;
444 	const char *filename;
445 	lwkt_tokref vlock;
446 	int count;
447 
448 	/*
449 	 * Round up to the *next* block, then destroy the buffers in question.
450 	 * Since we are only removing some of the buffers we must rely on the
451 	 * scan count to determine whether a loop is necessary.
452 	 */
453 	if ((count = (int)(length % blksize)) != 0)
454 		truncloffset = length + (blksize - count);
455 	else
456 		truncloffset = length;
457 
458 	lwkt_gettoken(&vlock, &vp->v_token);
459 	do {
460 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
461 				vtruncbuf_bp_trunc_cmp,
462 				vtruncbuf_bp_trunc, &truncloffset);
463 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
464 				vtruncbuf_bp_trunc_cmp,
465 				vtruncbuf_bp_trunc, &truncloffset);
466 	} while(count);
467 
468 	/*
469 	 * For safety, fsync any remaining metadata if the file is not being
470 	 * truncated to 0.  Since the metadata does not represent the entire
471 	 * dirty list we have to rely on the hit count to ensure that we get
472 	 * all of it.
473 	 */
474 	if (length > 0) {
475 		do {
476 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
477 					vtruncbuf_bp_metasync_cmp,
478 					vtruncbuf_bp_metasync, vp);
479 		} while (count);
480 	}
481 
482 	/*
483 	 * Clean out any left over VM backing store.
484 	 *
485 	 * It is possible to have in-progress I/O from buffers that were
486 	 * not part of the truncation.  This should not happen if we
487 	 * are truncating to 0-length.
488 	 */
489 	vnode_pager_setsize(vp, length);
490 	bio_track_wait(&vp->v_track_write, 0, 0);
491 
492 	filename = TAILQ_FIRST(&vp->v_namecache) ?
493 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
494 
495 	/*
496 	 * Make sure no buffers were instantiated while we were trying
497 	 * to clean out the remaining VM pages.  This could occur due
498 	 * to busy dirty VM pages being flushed out to disk.
499 	 */
500 	do {
501 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
502 				vtruncbuf_bp_trunc_cmp,
503 				vtruncbuf_bp_trunc, &truncloffset);
504 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
505 				vtruncbuf_bp_trunc_cmp,
506 				vtruncbuf_bp_trunc, &truncloffset);
507 		if (count) {
508 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
509 			       "left over buffers in %s\n", count, filename);
510 		}
511 	} while(count);
512 
513 	lwkt_reltoken(&vlock);
514 
515 	return (0);
516 }
517 
518 /*
519  * The callback buffer is beyond the new file EOF and must be destroyed.
520  * Note that the compare function must conform to the RB_SCAN's requirements.
521  */
522 static
523 int
524 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
525 {
526 	if (bp->b_loffset >= *(off_t *)data)
527 		return(0);
528 	return(-1);
529 }
530 
531 static
532 int
533 vtruncbuf_bp_trunc(struct buf *bp, void *data)
534 {
535 	/*
536 	 * Do not try to use a buffer we cannot immediately lock, but sleep
537 	 * anyway to prevent a livelock.  The code will loop until all buffers
538 	 * can be acted upon.
539 	 */
540 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
541 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
542 			BUF_UNLOCK(bp);
543 	} else {
544 		bremfree(bp);
545 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
546 		brelse(bp);
547 	}
548 	return(1);
549 }
550 
551 /*
552  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
553  * blocks (with a negative loffset) are scanned.
554  * Note that the compare function must conform to the RB_SCAN's requirements.
555  */
556 static int
557 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
558 {
559 	if (bp->b_loffset < 0)
560 		return(0);
561 	return(1);
562 }
563 
564 static int
565 vtruncbuf_bp_metasync(struct buf *bp, void *data)
566 {
567 	struct vnode *vp = data;
568 
569 	if (bp->b_flags & B_DELWRI) {
570 		/*
571 		 * Do not try to use a buffer we cannot immediately lock,
572 		 * but sleep anyway to prevent a livelock.  The code will
573 		 * loop until all buffers can be acted upon.
574 		 */
575 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
576 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
577 				BUF_UNLOCK(bp);
578 		} else {
579 			bremfree(bp);
580 			if (bp->b_vp == vp)
581 				bawrite(bp);
582 			else
583 				bwrite(bp);
584 		}
585 		return(1);
586 	} else {
587 		return(0);
588 	}
589 }
590 
591 /*
592  * vfsync - implements a multipass fsync on a file which understands
593  * dependancies and meta-data.  The passed vnode must be locked.  The
594  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
595  *
596  * When fsyncing data asynchronously just do one consolidated pass starting
597  * with the most negative block number.  This may not get all the data due
598  * to dependancies.
599  *
600  * When fsyncing data synchronously do a data pass, then a metadata pass,
601  * then do additional data+metadata passes to try to get all the data out.
602  */
603 static int vfsync_wait_output(struct vnode *vp,
604 			    int (*waitoutput)(struct vnode *, struct thread *));
605 static int vfsync_data_only_cmp(struct buf *bp, void *data);
606 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
607 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
608 static int vfsync_bp(struct buf *bp, void *data);
609 
610 struct vfsync_info {
611 	struct vnode *vp;
612 	int synchronous;
613 	int syncdeps;
614 	int lazycount;
615 	int lazylimit;
616 	int skippedbufs;
617 	int (*checkdef)(struct buf *);
618 };
619 
620 int
621 vfsync(struct vnode *vp, int waitfor, int passes,
622 	int (*checkdef)(struct buf *),
623 	int (*waitoutput)(struct vnode *, struct thread *))
624 {
625 	struct vfsync_info info;
626 	lwkt_tokref vlock;
627 	int error;
628 
629 	bzero(&info, sizeof(info));
630 	info.vp = vp;
631 	if ((info.checkdef = checkdef) == NULL)
632 		info.syncdeps = 1;
633 
634 	lwkt_gettoken(&vlock, &vp->v_token);
635 
636 	switch(waitfor) {
637 	case MNT_LAZY:
638 		/*
639 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
640 		 * number of data (not meta) pages we try to flush to 1MB.
641 		 * A non-zero return means that lazy limit was reached.
642 		 */
643 		info.lazylimit = 1024 * 1024;
644 		info.syncdeps = 1;
645 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
646 				vfsync_lazy_range_cmp, vfsync_bp, &info);
647 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
648 				vfsync_meta_only_cmp, vfsync_bp, &info);
649 		if (error == 0)
650 			vp->v_lazyw = 0;
651 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
652 			vn_syncer_add_to_worklist(vp, 1);
653 		error = 0;
654 		break;
655 	case MNT_NOWAIT:
656 		/*
657 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
658 		 */
659 		info.syncdeps = 1;
660 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
661 			vfsync_bp, &info);
662 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
663 			vfsync_bp, &info);
664 		error = 0;
665 		break;
666 	default:
667 		/*
668 		 * Synchronous.  Do a data-only pass, then a meta-data+data
669 		 * pass, then additional integrated passes to try to get
670 		 * all the dependancies flushed.
671 		 */
672 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
673 			vfsync_bp, &info);
674 		error = vfsync_wait_output(vp, waitoutput);
675 		if (error == 0) {
676 			info.skippedbufs = 0;
677 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
678 				vfsync_bp, &info);
679 			error = vfsync_wait_output(vp, waitoutput);
680 			if (info.skippedbufs)
681 				kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
682 		}
683 		while (error == 0 && passes > 0 &&
684 		       !RB_EMPTY(&vp->v_rbdirty_tree)
685 		) {
686 			if (--passes == 0) {
687 				info.synchronous = 1;
688 				info.syncdeps = 1;
689 			}
690 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
691 				vfsync_bp, &info);
692 			if (error < 0)
693 				error = -error;
694 			info.syncdeps = 1;
695 			if (error == 0)
696 				error = vfsync_wait_output(vp, waitoutput);
697 		}
698 		break;
699 	}
700 	lwkt_reltoken(&vlock);
701 	return(error);
702 }
703 
704 static int
705 vfsync_wait_output(struct vnode *vp,
706 		   int (*waitoutput)(struct vnode *, struct thread *))
707 {
708 	int error;
709 
710 	error = bio_track_wait(&vp->v_track_write, 0, 0);
711 	if (waitoutput)
712 		error = waitoutput(vp, curthread);
713 	return(error);
714 }
715 
716 static int
717 vfsync_data_only_cmp(struct buf *bp, void *data)
718 {
719 	if (bp->b_loffset < 0)
720 		return(-1);
721 	return(0);
722 }
723 
724 static int
725 vfsync_meta_only_cmp(struct buf *bp, void *data)
726 {
727 	if (bp->b_loffset < 0)
728 		return(0);
729 	return(1);
730 }
731 
732 static int
733 vfsync_lazy_range_cmp(struct buf *bp, void *data)
734 {
735 	struct vfsync_info *info = data;
736 	if (bp->b_loffset < info->vp->v_lazyw)
737 		return(-1);
738 	return(0);
739 }
740 
741 static int
742 vfsync_bp(struct buf *bp, void *data)
743 {
744 	struct vfsync_info *info = data;
745 	struct vnode *vp = info->vp;
746 	int error;
747 
748 	/*
749 	 * if syncdeps is not set we do not try to write buffers which have
750 	 * dependancies.
751 	 */
752 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
753 		return(0);
754 
755 	/*
756 	 * Ignore buffers that we cannot immediately lock.  XXX
757 	 */
758 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
759 		kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
760 		++info->skippedbufs;
761 		return(0);
762 	}
763 	if ((bp->b_flags & B_DELWRI) == 0)
764 		panic("vfsync_bp: buffer not dirty");
765 	if (vp != bp->b_vp)
766 		panic("vfsync_bp: buffer vp mismatch");
767 
768 	/*
769 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
770 	 * has been written but an additional handshake with the device
771 	 * is required before we can dispose of the buffer.  We have no idea
772 	 * how to do this so we have to skip these buffers.
773 	 */
774 	if (bp->b_flags & B_NEEDCOMMIT) {
775 		BUF_UNLOCK(bp);
776 		return(0);
777 	}
778 
779 	/*
780 	 * Ask bioops if it is ok to sync
781 	 */
782 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
783 		bremfree(bp);
784 		brelse(bp);
785 		return(0);
786 	}
787 
788 	if (info->synchronous) {
789 		/*
790 		 * Synchronous flushing.  An error may be returned.
791 		 */
792 		bremfree(bp);
793 		error = bwrite(bp);
794 	} else {
795 		/*
796 		 * Asynchronous flushing.  A negative return value simply
797 		 * stops the scan and is not considered an error.  We use
798 		 * this to support limited MNT_LAZY flushes.
799 		 */
800 		vp->v_lazyw = bp->b_loffset;
801 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
802 			info->lazycount += vfs_bio_awrite(bp);
803 		} else {
804 			info->lazycount += bp->b_bufsize;
805 			bremfree(bp);
806 			bawrite(bp);
807 		}
808 		if (info->lazylimit && info->lazycount >= info->lazylimit)
809 			error = 1;
810 		else
811 			error = 0;
812 	}
813 	return(-error);
814 }
815 
816 /*
817  * Associate a buffer with a vnode.
818  *
819  * MPSAFE
820  */
821 int
822 bgetvp(struct vnode *vp, struct buf *bp)
823 {
824 	lwkt_tokref vlock;
825 
826 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
827 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
828 
829 	/*
830 	 * Insert onto list for new vnode.
831 	 */
832 	lwkt_gettoken(&vlock, &vp->v_token);
833 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
834 		lwkt_reltoken(&vlock);
835 		return (EEXIST);
836 	}
837 	bp->b_vp = vp;
838 	bp->b_flags |= B_HASHED;
839 	bp->b_flags |= B_VNCLEAN;
840 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
841 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
842 	vhold(vp);
843 	lwkt_reltoken(&vlock);
844 	return(0);
845 }
846 
847 /*
848  * Disassociate a buffer from a vnode.
849  */
850 void
851 brelvp(struct buf *bp)
852 {
853 	struct vnode *vp;
854 	lwkt_tokref vlock;
855 
856 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
857 
858 	/*
859 	 * Delete from old vnode list, if on one.
860 	 */
861 	vp = bp->b_vp;
862 	lwkt_gettoken(&vlock, &vp->v_token);
863 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
864 		if (bp->b_flags & B_VNDIRTY)
865 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
866 		else
867 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
868 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
869 	}
870 	if (bp->b_flags & B_HASHED) {
871 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
872 		bp->b_flags &= ~B_HASHED;
873 	}
874 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
875 		vp->v_flag &= ~VONWORKLST;
876 		LIST_REMOVE(vp, v_synclist);
877 	}
878 	bp->b_vp = NULL;
879 	lwkt_reltoken(&vlock);
880 
881 	vdrop(vp);
882 }
883 
884 /*
885  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
886  * This routine is called when the state of the B_DELWRI bit is changed.
887  *
888  * MPSAFE
889  */
890 void
891 reassignbuf(struct buf *bp)
892 {
893 	struct vnode *vp = bp->b_vp;
894 	lwkt_tokref vlock;
895 	int delay;
896 
897 	KKASSERT(vp != NULL);
898 	++reassignbufcalls;
899 
900 	/*
901 	 * B_PAGING flagged buffers cannot be reassigned because their vp
902 	 * is not fully linked in.
903 	 */
904 	if (bp->b_flags & B_PAGING)
905 		panic("cannot reassign paging buffer");
906 
907 	lwkt_gettoken(&vlock, &vp->v_token);
908 	if (bp->b_flags & B_DELWRI) {
909 		/*
910 		 * Move to the dirty list, add the vnode to the worklist
911 		 */
912 		if (bp->b_flags & B_VNCLEAN) {
913 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
914 			bp->b_flags &= ~B_VNCLEAN;
915 		}
916 		if ((bp->b_flags & B_VNDIRTY) == 0) {
917 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
918 				panic("reassignbuf: dup lblk vp %p bp %p",
919 				      vp, bp);
920 			}
921 			bp->b_flags |= B_VNDIRTY;
922 		}
923 		if ((vp->v_flag & VONWORKLST) == 0) {
924 			switch (vp->v_type) {
925 			case VDIR:
926 				delay = dirdelay;
927 				break;
928 			case VCHR:
929 			case VBLK:
930 				if (vp->v_rdev &&
931 				    vp->v_rdev->si_mountpoint != NULL) {
932 					delay = metadelay;
933 					break;
934 				}
935 				/* fall through */
936 			default:
937 				delay = filedelay;
938 			}
939 			vn_syncer_add_to_worklist(vp, delay);
940 		}
941 	} else {
942 		/*
943 		 * Move to the clean list, remove the vnode from the worklist
944 		 * if no dirty blocks remain.
945 		 */
946 		if (bp->b_flags & B_VNDIRTY) {
947 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
948 			bp->b_flags &= ~B_VNDIRTY;
949 		}
950 		if ((bp->b_flags & B_VNCLEAN) == 0) {
951 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
952 				panic("reassignbuf: dup lblk vp %p bp %p",
953 				      vp, bp);
954 			}
955 			bp->b_flags |= B_VNCLEAN;
956 		}
957 		if ((vp->v_flag & VONWORKLST) &&
958 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
959 			vp->v_flag &= ~VONWORKLST;
960 			LIST_REMOVE(vp, v_synclist);
961 		}
962 	}
963 	lwkt_reltoken(&vlock);
964 }
965 
966 /*
967  * Create a vnode for a block device.
968  * Used for mounting the root file system.
969  */
970 extern struct vop_ops *devfs_vnode_dev_vops_p;
971 int
972 bdevvp(cdev_t dev, struct vnode **vpp)
973 {
974 	struct vnode *vp;
975 	struct vnode *nvp;
976 	int error;
977 
978 	if (dev == NULL) {
979 		*vpp = NULLVP;
980 		return (ENXIO);
981 	}
982 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
983 				&nvp, 0, 0);
984 	if (error) {
985 		*vpp = NULLVP;
986 		return (error);
987 	}
988 	vp = nvp;
989 	vp->v_type = VCHR;
990 #if 0
991 	vp->v_rdev = dev;
992 #endif
993 	v_associate_rdev(vp, dev);
994 	vp->v_umajor = dev->si_umajor;
995 	vp->v_uminor = dev->si_uminor;
996 	vx_unlock(vp);
997 	*vpp = vp;
998 	return (0);
999 }
1000 
1001 int
1002 v_associate_rdev(struct vnode *vp, cdev_t dev)
1003 {
1004 	lwkt_tokref ilock;
1005 
1006 	if (dev == NULL)
1007 		return(ENXIO);
1008 	if (dev_is_good(dev) == 0)
1009 		return(ENXIO);
1010 	KKASSERT(vp->v_rdev == NULL);
1011 	vp->v_rdev = reference_dev(dev);
1012 	lwkt_gettoken(&ilock, &spechash_token);
1013 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1014 	lwkt_reltoken(&ilock);
1015 	return(0);
1016 }
1017 
1018 void
1019 v_release_rdev(struct vnode *vp)
1020 {
1021 	lwkt_tokref ilock;
1022 	cdev_t dev;
1023 
1024 	if ((dev = vp->v_rdev) != NULL) {
1025 		lwkt_gettoken(&ilock, &spechash_token);
1026 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1027 		vp->v_rdev = NULL;
1028 		release_dev(dev);
1029 		lwkt_reltoken(&ilock);
1030 	}
1031 }
1032 
1033 /*
1034  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1035  * the device number with the vnode.  The actual device is not associated
1036  * until the vnode is opened (usually in spec_open()), and will be
1037  * disassociated on last close.
1038  */
1039 void
1040 addaliasu(struct vnode *nvp, int x, int y)
1041 {
1042 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1043 		panic("addaliasu on non-special vnode");
1044 	nvp->v_umajor = x;
1045 	nvp->v_uminor = y;
1046 }
1047 
1048 /*
1049  * Simple call that a filesystem can make to try to get rid of a
1050  * vnode.  It will fail if anyone is referencing the vnode (including
1051  * the caller).
1052  *
1053  * The filesystem can check whether its in-memory inode structure still
1054  * references the vp on return.
1055  */
1056 void
1057 vclean_unlocked(struct vnode *vp)
1058 {
1059 	vx_get(vp);
1060 	if (sysref_isactive(&vp->v_sysref) == 0)
1061 		vgone_vxlocked(vp);
1062 	vx_put(vp);
1063 }
1064 
1065 /*
1066  * Disassociate a vnode from its underlying filesystem.
1067  *
1068  * The vnode must be VX locked and referenced.  In all normal situations
1069  * there are no active references.  If vclean_vxlocked() is called while
1070  * there are active references, the vnode is being ripped out and we have
1071  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1072  */
1073 void
1074 vclean_vxlocked(struct vnode *vp, int flags)
1075 {
1076 	int active;
1077 	int n;
1078 	vm_object_t object;
1079 
1080 	/*
1081 	 * If the vnode has already been reclaimed we have nothing to do.
1082 	 */
1083 	if (vp->v_flag & VRECLAIMED)
1084 		return;
1085 	vp->v_flag |= VRECLAIMED;
1086 
1087 	/*
1088 	 * Scrap the vfs cache
1089 	 */
1090 	while (cache_inval_vp(vp, 0) != 0) {
1091 		kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1092 		tsleep(vp, 0, "vclninv", 2);
1093 	}
1094 
1095 	/*
1096 	 * Check to see if the vnode is in use. If so we have to reference it
1097 	 * before we clean it out so that its count cannot fall to zero and
1098 	 * generate a race against ourselves to recycle it.
1099 	 */
1100 	active = sysref_isactive(&vp->v_sysref);
1101 
1102 	/*
1103 	 * Clean out any buffers associated with the vnode and destroy its
1104 	 * object, if it has one.
1105 	 */
1106 	vinvalbuf(vp, V_SAVE, 0, 0);
1107 
1108 	/*
1109 	 * If purging an active vnode (typically during a forced unmount
1110 	 * or reboot), it must be closed and deactivated before being
1111 	 * reclaimed.  This isn't really all that safe, but what can
1112 	 * we do? XXX.
1113 	 *
1114 	 * Note that neither of these routines unlocks the vnode.
1115 	 */
1116 	if (active && (flags & DOCLOSE)) {
1117 		while ((n = vp->v_opencount) != 0) {
1118 			if (vp->v_writecount)
1119 				VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1120 			else
1121 				VOP_CLOSE(vp, FNONBLOCK);
1122 			if (vp->v_opencount == n) {
1123 				kprintf("Warning: unable to force-close"
1124 				       " vnode %p\n", vp);
1125 				break;
1126 			}
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1132 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1133 	 * again to make sure they all get flushed.
1134 	 *
1135 	 * This can occur if a file with a link count of 0 needs to be
1136 	 * truncated.
1137 	 */
1138 	if ((vp->v_flag & VINACTIVE) == 0) {
1139 		vp->v_flag |= VINACTIVE;
1140 		VOP_INACTIVE(vp);
1141 		vinvalbuf(vp, V_SAVE, 0, 0);
1142 	}
1143 
1144 	/*
1145 	 * If the vnode has an object, destroy it.
1146 	 */
1147 	if ((object = vp->v_object) != NULL) {
1148 		if (object->ref_count == 0) {
1149 			if ((object->flags & OBJ_DEAD) == 0)
1150 				vm_object_terminate(object);
1151 		} else {
1152 			vm_pager_deallocate(object);
1153 		}
1154 		vp->v_flag &= ~VOBJBUF;
1155 	}
1156 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1157 
1158 	/*
1159 	 * Reclaim the vnode.
1160 	 */
1161 	if (VOP_RECLAIM(vp))
1162 		panic("vclean: cannot reclaim");
1163 
1164 	/*
1165 	 * Done with purge, notify sleepers of the grim news.
1166 	 */
1167 	vp->v_ops = &dead_vnode_vops_p;
1168 	vn_pollgone(vp);
1169 	vp->v_tag = VT_NON;
1170 
1171 	/*
1172 	 * If we are destroying an active vnode, reactivate it now that
1173 	 * we have reassociated it with deadfs.  This prevents the system
1174 	 * from crashing on the vnode due to it being unexpectedly marked
1175 	 * as inactive or reclaimed.
1176 	 */
1177 	if (active && (flags & DOCLOSE)) {
1178 		vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1179 	}
1180 }
1181 
1182 /*
1183  * Eliminate all activity associated with the requested vnode
1184  * and with all vnodes aliased to the requested vnode.
1185  *
1186  * The vnode must be referenced but should not be locked.
1187  */
1188 int
1189 vrevoke(struct vnode *vp, struct ucred *cred)
1190 {
1191 	struct vnode *vq;
1192 	struct vnode *vqn;
1193 	lwkt_tokref ilock;
1194 	cdev_t dev;
1195 	int error;
1196 
1197 	/*
1198 	 * If the vnode has a device association, scrap all vnodes associated
1199 	 * with the device.  Don't let the device disappear on us while we
1200 	 * are scrapping the vnodes.
1201 	 *
1202 	 * The passed vp will probably show up in the list, do not VX lock
1203 	 * it twice!
1204 	 *
1205 	 * Releasing the vnode's rdev here can mess up specfs's call to
1206 	 * device close, so don't do it.  The vnode has been disassociated
1207 	 * and the device will be closed after the last ref on the related
1208 	 * fp goes away (if not still open by e.g. the kernel).
1209 	 */
1210 	if (vp->v_type != VCHR) {
1211 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1212 		return (error);
1213 	}
1214 	if ((dev = vp->v_rdev) == NULL) {
1215 		return(0);
1216 	}
1217 	reference_dev(dev);
1218 	lwkt_gettoken(&ilock, &spechash_token);
1219 
1220 	vqn = SLIST_FIRST(&dev->si_hlist);
1221 	if (vqn)
1222 		vref(vqn);
1223 	while ((vq = vqn) != NULL) {
1224 		vqn = SLIST_NEXT(vqn, v_cdevnext);
1225 		if (vqn)
1226 			vref(vqn);
1227 		fdrevoke(vq, DTYPE_VNODE, cred);
1228 		/*v_release_rdev(vq);*/
1229 		vrele(vq);
1230 	}
1231 	lwkt_reltoken(&ilock);
1232 	dev_drevoke(dev);
1233 	release_dev(dev);
1234 	return (0);
1235 }
1236 
1237 /*
1238  * This is called when the object underlying a vnode is being destroyed,
1239  * such as in a remove().  Try to recycle the vnode immediately if the
1240  * only active reference is our reference.
1241  *
1242  * Directory vnodes in the namecache with children cannot be immediately
1243  * recycled because numerous VOP_N*() ops require them to be stable.
1244  */
1245 int
1246 vrecycle(struct vnode *vp)
1247 {
1248 	if (vp->v_sysref.refcnt <= 1) {
1249 		if (cache_inval_vp_nonblock(vp))
1250 			return(0);
1251 		vgone_vxlocked(vp);
1252 		return (1);
1253 	}
1254 	return (0);
1255 }
1256 
1257 /*
1258  * Return the maximum I/O size allowed for strategy calls on VP.
1259  *
1260  * If vp is VCHR or VBLK we dive the device, otherwise we use
1261  * the vp's mount info.
1262  */
1263 int
1264 vmaxiosize(struct vnode *vp)
1265 {
1266 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
1267 		return(vp->v_rdev->si_iosize_max);
1268 	} else {
1269 		return(vp->v_mount->mnt_iosize_max);
1270 	}
1271 }
1272 
1273 /*
1274  * Eliminate all activity associated with a vnode in preparation for reuse.
1275  *
1276  * The vnode must be VX locked and refd and will remain VX locked and refd
1277  * on return.  This routine may be called with the vnode in any state, as
1278  * long as it is VX locked.  The vnode will be cleaned out and marked
1279  * VRECLAIMED but will not actually be reused until all existing refs and
1280  * holds go away.
1281  *
1282  * NOTE: This routine may be called on a vnode which has not yet been
1283  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1284  * already been reclaimed.
1285  *
1286  * This routine is not responsible for placing us back on the freelist.
1287  * Instead, it happens automatically when the caller releases the VX lock
1288  * (assuming there aren't any other references).
1289  */
1290 
1291 void
1292 vgone_vxlocked(struct vnode *vp)
1293 {
1294 	/*
1295 	 * assert that the VX lock is held.  This is an absolute requirement
1296 	 * now for vgone_vxlocked() to be called.
1297 	 */
1298 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1299 
1300 	/*
1301 	 * Clean out the filesystem specific data and set the VRECLAIMED
1302 	 * bit.  Also deactivate the vnode if necessary.
1303 	 */
1304 	vclean_vxlocked(vp, DOCLOSE);
1305 
1306 	/*
1307 	 * Delete from old mount point vnode list, if on one.
1308 	 */
1309 	if (vp->v_mount != NULL)
1310 		insmntque(vp, NULL);
1311 
1312 	/*
1313 	 * If special device, remove it from special device alias list
1314 	 * if it is on one.  This should normally only occur if a vnode is
1315 	 * being revoked as the device should otherwise have been released
1316 	 * naturally.
1317 	 */
1318 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1319 		v_release_rdev(vp);
1320 	}
1321 
1322 	/*
1323 	 * Set us to VBAD
1324 	 */
1325 	vp->v_type = VBAD;
1326 }
1327 
1328 /*
1329  * Lookup a vnode by device number.
1330  *
1331  * Returns non-zero and *vpp set to a vref'd vnode on success.
1332  * Returns zero on failure.
1333  */
1334 int
1335 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1336 {
1337 	lwkt_tokref ilock;
1338 	struct vnode *vp;
1339 
1340 	lwkt_gettoken(&ilock, &spechash_token);
1341 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1342 		if (type == vp->v_type) {
1343 			*vpp = vp;
1344 			vref(vp);
1345 			lwkt_reltoken(&ilock);
1346 			return (1);
1347 		}
1348 	}
1349 	lwkt_reltoken(&ilock);
1350 	return (0);
1351 }
1352 
1353 /*
1354  * Calculate the total number of references to a special device.  This
1355  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1356  * an overloaded field.  Since udev2dev can now return NULL, we have
1357  * to check for a NULL v_rdev.
1358  */
1359 int
1360 count_dev(cdev_t dev)
1361 {
1362 	lwkt_tokref ilock;
1363 	struct vnode *vp;
1364 	int count = 0;
1365 
1366 	if (SLIST_FIRST(&dev->si_hlist)) {
1367 		lwkt_gettoken(&ilock, &spechash_token);
1368 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1369 			count += vp->v_opencount;
1370 		}
1371 		lwkt_reltoken(&ilock);
1372 	}
1373 	return(count);
1374 }
1375 
1376 int
1377 vcount(struct vnode *vp)
1378 {
1379 	if (vp->v_rdev == NULL)
1380 		return(0);
1381 	return(count_dev(vp->v_rdev));
1382 }
1383 
1384 /*
1385  * Initialize VMIO for a vnode.  This routine MUST be called before a
1386  * VFS can issue buffer cache ops on a vnode.  It is typically called
1387  * when a vnode is initialized from its inode.
1388  */
1389 int
1390 vinitvmio(struct vnode *vp, off_t filesize)
1391 {
1392 	vm_object_t object;
1393 	int error = 0;
1394 
1395 retry:
1396 	if ((object = vp->v_object) == NULL) {
1397 		object = vnode_pager_alloc(vp, filesize, 0, 0);
1398 		/*
1399 		 * Dereference the reference we just created.  This assumes
1400 		 * that the object is associated with the vp.
1401 		 */
1402 		object->ref_count--;
1403 		vrele(vp);
1404 	} else {
1405 		if (object->flags & OBJ_DEAD) {
1406 			vn_unlock(vp);
1407 			vm_object_dead_sleep(object, "vodead");
1408 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1409 			goto retry;
1410 		}
1411 	}
1412 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1413 	vp->v_flag |= VOBJBUF;
1414 	return (error);
1415 }
1416 
1417 
1418 /*
1419  * Print out a description of a vnode.
1420  */
1421 static char *typename[] =
1422 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1423 
1424 void
1425 vprint(char *label, struct vnode *vp)
1426 {
1427 	char buf[96];
1428 
1429 	if (label != NULL)
1430 		kprintf("%s: %p: ", label, (void *)vp);
1431 	else
1432 		kprintf("%p: ", (void *)vp);
1433 	kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1434 		typename[vp->v_type],
1435 		vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1436 	buf[0] = '\0';
1437 	if (vp->v_flag & VROOT)
1438 		strcat(buf, "|VROOT");
1439 	if (vp->v_flag & VPFSROOT)
1440 		strcat(buf, "|VPFSROOT");
1441 	if (vp->v_flag & VTEXT)
1442 		strcat(buf, "|VTEXT");
1443 	if (vp->v_flag & VSYSTEM)
1444 		strcat(buf, "|VSYSTEM");
1445 	if (vp->v_flag & VFREE)
1446 		strcat(buf, "|VFREE");
1447 	if (vp->v_flag & VOBJBUF)
1448 		strcat(buf, "|VOBJBUF");
1449 	if (buf[0] != '\0')
1450 		kprintf(" flags (%s)", &buf[1]);
1451 	if (vp->v_data == NULL) {
1452 		kprintf("\n");
1453 	} else {
1454 		kprintf("\n\t");
1455 		VOP_PRINT(vp);
1456 	}
1457 }
1458 
1459 /*
1460  * Do the usual access checking.
1461  * file_mode, uid and gid are from the vnode in question,
1462  * while acc_mode and cred are from the VOP_ACCESS parameter list
1463  */
1464 int
1465 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1466     mode_t acc_mode, struct ucred *cred)
1467 {
1468 	mode_t mask;
1469 	int ismember;
1470 
1471 	/*
1472 	 * Super-user always gets read/write access, but execute access depends
1473 	 * on at least one execute bit being set.
1474 	 */
1475 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1476 		if ((acc_mode & VEXEC) && type != VDIR &&
1477 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1478 			return (EACCES);
1479 		return (0);
1480 	}
1481 
1482 	mask = 0;
1483 
1484 	/* Otherwise, check the owner. */
1485 	if (cred->cr_uid == uid) {
1486 		if (acc_mode & VEXEC)
1487 			mask |= S_IXUSR;
1488 		if (acc_mode & VREAD)
1489 			mask |= S_IRUSR;
1490 		if (acc_mode & VWRITE)
1491 			mask |= S_IWUSR;
1492 		return ((file_mode & mask) == mask ? 0 : EACCES);
1493 	}
1494 
1495 	/* Otherwise, check the groups. */
1496 	ismember = groupmember(gid, cred);
1497 	if (cred->cr_svgid == gid || ismember) {
1498 		if (acc_mode & VEXEC)
1499 			mask |= S_IXGRP;
1500 		if (acc_mode & VREAD)
1501 			mask |= S_IRGRP;
1502 		if (acc_mode & VWRITE)
1503 			mask |= S_IWGRP;
1504 		return ((file_mode & mask) == mask ? 0 : EACCES);
1505 	}
1506 
1507 	/* Otherwise, check everyone else. */
1508 	if (acc_mode & VEXEC)
1509 		mask |= S_IXOTH;
1510 	if (acc_mode & VREAD)
1511 		mask |= S_IROTH;
1512 	if (acc_mode & VWRITE)
1513 		mask |= S_IWOTH;
1514 	return ((file_mode & mask) == mask ? 0 : EACCES);
1515 }
1516 
1517 #ifdef DDB
1518 #include <ddb/ddb.h>
1519 
1520 static int db_show_locked_vnodes(struct mount *mp, void *data);
1521 
1522 /*
1523  * List all of the locked vnodes in the system.
1524  * Called when debugging the kernel.
1525  */
1526 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1527 {
1528 	kprintf("Locked vnodes\n");
1529 	mountlist_scan(db_show_locked_vnodes, NULL,
1530 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1531 }
1532 
1533 static int
1534 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1535 {
1536 	struct vnode *vp;
1537 
1538 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1539 		if (vn_islocked(vp))
1540 			vprint(NULL, vp);
1541 	}
1542 	return(0);
1543 }
1544 #endif
1545 
1546 /*
1547  * Top level filesystem related information gathering.
1548  */
1549 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1550 
1551 static int
1552 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1553 {
1554 	int *name = (int *)arg1 - 1;	/* XXX */
1555 	u_int namelen = arg2 + 1;	/* XXX */
1556 	struct vfsconf *vfsp;
1557 	int maxtypenum;
1558 
1559 #if 1 || defined(COMPAT_PRELITE2)
1560 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1561 	if (namelen == 1)
1562 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1563 #endif
1564 
1565 #ifdef notyet
1566 	/* all sysctl names at this level are at least name and field */
1567 	if (namelen < 2)
1568 		return (ENOTDIR);		/* overloaded */
1569 	if (name[0] != VFS_GENERIC) {
1570 		vfsp = vfsconf_find_by_typenum(name[0]);
1571 		if (vfsp == NULL)
1572 			return (EOPNOTSUPP);
1573 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1574 		    oldp, oldlenp, newp, newlen, p));
1575 	}
1576 #endif
1577 	switch (name[1]) {
1578 	case VFS_MAXTYPENUM:
1579 		if (namelen != 2)
1580 			return (ENOTDIR);
1581 		maxtypenum = vfsconf_get_maxtypenum();
1582 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1583 	case VFS_CONF:
1584 		if (namelen != 3)
1585 			return (ENOTDIR);	/* overloaded */
1586 		vfsp = vfsconf_find_by_typenum(name[2]);
1587 		if (vfsp == NULL)
1588 			return (EOPNOTSUPP);
1589 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1590 	}
1591 	return (EOPNOTSUPP);
1592 }
1593 
1594 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1595 	"Generic filesystem");
1596 
1597 #if 1 || defined(COMPAT_PRELITE2)
1598 
1599 static int
1600 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1601 {
1602 	int error;
1603 	struct ovfsconf ovfs;
1604 	struct sysctl_req *req = (struct sysctl_req*) data;
1605 
1606 	bzero(&ovfs, sizeof(ovfs));
1607 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1608 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1609 	ovfs.vfc_index = vfsp->vfc_typenum;
1610 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1611 	ovfs.vfc_flags = vfsp->vfc_flags;
1612 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1613 	if (error)
1614 		return error; /* abort iteration with error code */
1615 	else
1616 		return 0; /* continue iterating with next element */
1617 }
1618 
1619 static int
1620 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1621 {
1622 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1623 }
1624 
1625 #endif /* 1 || COMPAT_PRELITE2 */
1626 
1627 /*
1628  * Check to see if a filesystem is mounted on a block device.
1629  */
1630 int
1631 vfs_mountedon(struct vnode *vp)
1632 {
1633 	cdev_t dev;
1634 
1635 	if ((dev = vp->v_rdev) == NULL) {
1636 /*		if (vp->v_type != VBLK)
1637 			dev = get_dev(vp->v_uminor, vp->v_umajor); */
1638 	}
1639 	if (dev != NULL && dev->si_mountpoint)
1640 		return (EBUSY);
1641 	return (0);
1642 }
1643 
1644 /*
1645  * Unmount all filesystems. The list is traversed in reverse order
1646  * of mounting to avoid dependencies.
1647  */
1648 
1649 static int vfs_umountall_callback(struct mount *mp, void *data);
1650 
1651 void
1652 vfs_unmountall(void)
1653 {
1654 	int count;
1655 
1656 	do {
1657 		count = mountlist_scan(vfs_umountall_callback,
1658 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1659 	} while (count);
1660 }
1661 
1662 static
1663 int
1664 vfs_umountall_callback(struct mount *mp, void *data)
1665 {
1666 	int error;
1667 
1668 	error = dounmount(mp, MNT_FORCE);
1669 	if (error) {
1670 		mountlist_remove(mp);
1671 		kprintf("unmount of filesystem mounted from %s failed (",
1672 			mp->mnt_stat.f_mntfromname);
1673 		if (error == EBUSY)
1674 			kprintf("BUSY)\n");
1675 		else
1676 			kprintf("%d)\n", error);
1677 	}
1678 	return(1);
1679 }
1680 
1681 /*
1682  * Checks the mount flags for parameter mp and put the names comma-separated
1683  * into a string buffer buf with a size limit specified by len.
1684  *
1685  * It returns the number of bytes written into buf, and (*errorp) will be
1686  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1687  * not large enough).  The buffer will be 0-terminated if len was not 0.
1688  */
1689 size_t
1690 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1691 	       char *buf, size_t len, int *errorp)
1692 {
1693 	static const struct mountctl_opt optnames[] = {
1694 		{ MNT_ASYNC,            "asynchronous" },
1695 		{ MNT_EXPORTED,         "NFS exported" },
1696 		{ MNT_LOCAL,            "local" },
1697 		{ MNT_NOATIME,          "noatime" },
1698 		{ MNT_NODEV,            "nodev" },
1699 		{ MNT_NOEXEC,           "noexec" },
1700 		{ MNT_NOSUID,           "nosuid" },
1701 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1702 		{ MNT_QUOTA,            "with-quotas" },
1703 		{ MNT_RDONLY,           "read-only" },
1704 		{ MNT_SYNCHRONOUS,      "synchronous" },
1705 		{ MNT_UNION,            "union" },
1706 		{ MNT_NOCLUSTERR,       "noclusterr" },
1707 		{ MNT_NOCLUSTERW,       "noclusterw" },
1708 		{ MNT_SUIDDIR,          "suiddir" },
1709 		{ MNT_SOFTDEP,          "soft-updates" },
1710 		{ MNT_IGNORE,           "ignore" },
1711 		{ 0,			NULL}
1712 	};
1713 	int bwritten;
1714 	int bleft;
1715 	int optlen;
1716 	int actsize;
1717 
1718 	*errorp = 0;
1719 	bwritten = 0;
1720 	bleft = len - 1;	/* leave room for trailing \0 */
1721 
1722 	/*
1723 	 * Checks the size of the string. If it contains
1724 	 * any data, then we will append the new flags to
1725 	 * it.
1726 	 */
1727 	actsize = strlen(buf);
1728 	if (actsize > 0)
1729 		buf += actsize;
1730 
1731 	/* Default flags if no flags passed */
1732 	if (optp == NULL)
1733 		optp = optnames;
1734 
1735 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1736 		*errorp = EINVAL;
1737 		return(0);
1738 	}
1739 
1740 	for (; flags && optp->o_opt; ++optp) {
1741 		if ((flags & optp->o_opt) == 0)
1742 			continue;
1743 		optlen = strlen(optp->o_name);
1744 		if (bwritten || actsize > 0) {
1745 			if (bleft < 2) {
1746 				*errorp = ENOSPC;
1747 				break;
1748 			}
1749 			buf[bwritten++] = ',';
1750 			buf[bwritten++] = ' ';
1751 			bleft -= 2;
1752 		}
1753 		if (bleft < optlen) {
1754 			*errorp = ENOSPC;
1755 			break;
1756 		}
1757 		bcopy(optp->o_name, buf + bwritten, optlen);
1758 		bwritten += optlen;
1759 		bleft -= optlen;
1760 		flags &= ~optp->o_opt;
1761 	}
1762 
1763 	/*
1764 	 * Space already reserved for trailing \0
1765 	 */
1766 	buf[bwritten] = 0;
1767 	return (bwritten);
1768 }
1769 
1770 /*
1771  * Build hash lists of net addresses and hang them off the mount point.
1772  * Called by ufs_mount() to set up the lists of export addresses.
1773  */
1774 static int
1775 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1776 		const struct export_args *argp)
1777 {
1778 	struct netcred *np;
1779 	struct radix_node_head *rnh;
1780 	int i;
1781 	struct radix_node *rn;
1782 	struct sockaddr *saddr, *smask = 0;
1783 	struct domain *dom;
1784 	int error;
1785 
1786 	if (argp->ex_addrlen == 0) {
1787 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1788 			return (EPERM);
1789 		np = &nep->ne_defexported;
1790 		np->netc_exflags = argp->ex_flags;
1791 		np->netc_anon = argp->ex_anon;
1792 		np->netc_anon.cr_ref = 1;
1793 		mp->mnt_flag |= MNT_DEFEXPORTED;
1794 		return (0);
1795 	}
1796 
1797 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1798 		return (EINVAL);
1799 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1800 		return (EINVAL);
1801 
1802 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1803 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1804 	saddr = (struct sockaddr *) (np + 1);
1805 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1806 		goto out;
1807 	if (saddr->sa_len > argp->ex_addrlen)
1808 		saddr->sa_len = argp->ex_addrlen;
1809 	if (argp->ex_masklen) {
1810 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1811 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1812 		if (error)
1813 			goto out;
1814 		if (smask->sa_len > argp->ex_masklen)
1815 			smask->sa_len = argp->ex_masklen;
1816 	}
1817 	i = saddr->sa_family;
1818 	if ((rnh = nep->ne_rtable[i]) == 0) {
1819 		/*
1820 		 * Seems silly to initialize every AF when most are not used,
1821 		 * do so on demand here
1822 		 */
1823 		SLIST_FOREACH(dom, &domains, dom_next)
1824 			if (dom->dom_family == i && dom->dom_rtattach) {
1825 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1826 				    dom->dom_rtoffset);
1827 				break;
1828 			}
1829 		if ((rnh = nep->ne_rtable[i]) == 0) {
1830 			error = ENOBUFS;
1831 			goto out;
1832 		}
1833 	}
1834 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1835 	    np->netc_rnodes);
1836 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1837 		error = EPERM;
1838 		goto out;
1839 	}
1840 	np->netc_exflags = argp->ex_flags;
1841 	np->netc_anon = argp->ex_anon;
1842 	np->netc_anon.cr_ref = 1;
1843 	return (0);
1844 out:
1845 	kfree(np, M_NETADDR);
1846 	return (error);
1847 }
1848 
1849 /* ARGSUSED */
1850 static int
1851 vfs_free_netcred(struct radix_node *rn, void *w)
1852 {
1853 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1854 
1855 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1856 	kfree((caddr_t) rn, M_NETADDR);
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Free the net address hash lists that are hanging off the mount points.
1862  */
1863 static void
1864 vfs_free_addrlist(struct netexport *nep)
1865 {
1866 	int i;
1867 	struct radix_node_head *rnh;
1868 
1869 	for (i = 0; i <= AF_MAX; i++)
1870 		if ((rnh = nep->ne_rtable[i])) {
1871 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1872 			    (caddr_t) rnh);
1873 			kfree((caddr_t) rnh, M_RTABLE);
1874 			nep->ne_rtable[i] = 0;
1875 		}
1876 }
1877 
1878 int
1879 vfs_export(struct mount *mp, struct netexport *nep,
1880 	   const struct export_args *argp)
1881 {
1882 	int error;
1883 
1884 	if (argp->ex_flags & MNT_DELEXPORT) {
1885 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1886 			vfs_setpublicfs(NULL, NULL, NULL);
1887 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1888 		}
1889 		vfs_free_addrlist(nep);
1890 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1891 	}
1892 	if (argp->ex_flags & MNT_EXPORTED) {
1893 		if (argp->ex_flags & MNT_EXPUBLIC) {
1894 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1895 				return (error);
1896 			mp->mnt_flag |= MNT_EXPUBLIC;
1897 		}
1898 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1899 			return (error);
1900 		mp->mnt_flag |= MNT_EXPORTED;
1901 	}
1902 	return (0);
1903 }
1904 
1905 
1906 /*
1907  * Set the publicly exported filesystem (WebNFS). Currently, only
1908  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1909  */
1910 int
1911 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1912 		const struct export_args *argp)
1913 {
1914 	int error;
1915 	struct vnode *rvp;
1916 	char *cp;
1917 
1918 	/*
1919 	 * mp == NULL -> invalidate the current info, the FS is
1920 	 * no longer exported. May be called from either vfs_export
1921 	 * or unmount, so check if it hasn't already been done.
1922 	 */
1923 	if (mp == NULL) {
1924 		if (nfs_pub.np_valid) {
1925 			nfs_pub.np_valid = 0;
1926 			if (nfs_pub.np_index != NULL) {
1927 				FREE(nfs_pub.np_index, M_TEMP);
1928 				nfs_pub.np_index = NULL;
1929 			}
1930 		}
1931 		return (0);
1932 	}
1933 
1934 	/*
1935 	 * Only one allowed at a time.
1936 	 */
1937 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1938 		return (EBUSY);
1939 
1940 	/*
1941 	 * Get real filehandle for root of exported FS.
1942 	 */
1943 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1944 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1945 
1946 	if ((error = VFS_ROOT(mp, &rvp)))
1947 		return (error);
1948 
1949 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1950 		return (error);
1951 
1952 	vput(rvp);
1953 
1954 	/*
1955 	 * If an indexfile was specified, pull it in.
1956 	 */
1957 	if (argp->ex_indexfile != NULL) {
1958 		int namelen;
1959 
1960 		error = vn_get_namelen(rvp, &namelen);
1961 		if (error)
1962 			return (error);
1963 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1964 		    M_WAITOK);
1965 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1966 		    namelen, NULL);
1967 		if (!error) {
1968 			/*
1969 			 * Check for illegal filenames.
1970 			 */
1971 			for (cp = nfs_pub.np_index; *cp; cp++) {
1972 				if (*cp == '/') {
1973 					error = EINVAL;
1974 					break;
1975 				}
1976 			}
1977 		}
1978 		if (error) {
1979 			FREE(nfs_pub.np_index, M_TEMP);
1980 			return (error);
1981 		}
1982 	}
1983 
1984 	nfs_pub.np_mount = mp;
1985 	nfs_pub.np_valid = 1;
1986 	return (0);
1987 }
1988 
1989 struct netcred *
1990 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1991 		struct sockaddr *nam)
1992 {
1993 	struct netcred *np;
1994 	struct radix_node_head *rnh;
1995 	struct sockaddr *saddr;
1996 
1997 	np = NULL;
1998 	if (mp->mnt_flag & MNT_EXPORTED) {
1999 		/*
2000 		 * Lookup in the export list first.
2001 		 */
2002 		if (nam != NULL) {
2003 			saddr = nam;
2004 			rnh = nep->ne_rtable[saddr->sa_family];
2005 			if (rnh != NULL) {
2006 				np = (struct netcred *)
2007 					(*rnh->rnh_matchaddr)((char *)saddr,
2008 							      rnh);
2009 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2010 					np = NULL;
2011 			}
2012 		}
2013 		/*
2014 		 * If no address match, use the default if it exists.
2015 		 */
2016 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2017 			np = &nep->ne_defexported;
2018 	}
2019 	return (np);
2020 }
2021 
2022 /*
2023  * perform msync on all vnodes under a mount point.  The mount point must
2024  * be locked.  This code is also responsible for lazy-freeing unreferenced
2025  * vnodes whos VM objects no longer contain pages.
2026  *
2027  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2028  *
2029  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2030  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2031  * way up in this high level function.
2032  */
2033 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2034 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2035 
2036 void
2037 vfs_msync(struct mount *mp, int flags)
2038 {
2039 	int vmsc_flags;
2040 
2041 	vmsc_flags = VMSC_GETVP;
2042 	if (flags != MNT_WAIT)
2043 		vmsc_flags |= VMSC_NOWAIT;
2044 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
2045 			(void *)(intptr_t)flags);
2046 }
2047 
2048 /*
2049  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2050  * vnodes, we cannot afford to do anything heavy weight until we have a
2051  * fairly good indication that there is work to do.
2052  */
2053 static
2054 int
2055 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2056 {
2057 	int flags = (int)(intptr_t)data;
2058 
2059 	if ((vp->v_flag & VRECLAIMED) == 0) {
2060 		if (vshouldmsync(vp))
2061 			return(0);	/* call scan2 */
2062 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2063 		    (vp->v_flag & VOBJDIRTY) &&
2064 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2065 			return(0);	/* call scan2 */
2066 		}
2067 	}
2068 
2069 	/*
2070 	 * do not call scan2, continue the loop
2071 	 */
2072 	return(-1);
2073 }
2074 
2075 /*
2076  * This callback is handed a locked vnode.
2077  */
2078 static
2079 int
2080 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2081 {
2082 	vm_object_t obj;
2083 	int flags = (int)(intptr_t)data;
2084 
2085 	if (vp->v_flag & VRECLAIMED)
2086 		return(0);
2087 
2088 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2089 		if ((obj = vp->v_object) != NULL) {
2090 			vm_object_page_clean(obj, 0, 0,
2091 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2092 		}
2093 	}
2094 	return(0);
2095 }
2096 
2097 /*
2098  * Record a process's interest in events which might happen to
2099  * a vnode.  Because poll uses the historic select-style interface
2100  * internally, this routine serves as both the ``check for any
2101  * pending events'' and the ``record my interest in future events''
2102  * functions.  (These are done together, while the lock is held,
2103  * to avoid race conditions.)
2104  */
2105 int
2106 vn_pollrecord(struct vnode *vp, int events)
2107 {
2108 	lwkt_tokref vlock;
2109 
2110 	KKASSERT(curthread->td_proc != NULL);
2111 
2112 	lwkt_gettoken(&vlock, &vp->v_token);
2113 	if (vp->v_pollinfo.vpi_revents & events) {
2114 		/*
2115 		 * This leaves events we are not interested
2116 		 * in available for the other process which
2117 		 * which presumably had requested them
2118 		 * (otherwise they would never have been
2119 		 * recorded).
2120 		 */
2121 		events &= vp->v_pollinfo.vpi_revents;
2122 		vp->v_pollinfo.vpi_revents &= ~events;
2123 
2124 		lwkt_reltoken(&vlock);
2125 		return events;
2126 	}
2127 	vp->v_pollinfo.vpi_events |= events;
2128 	selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
2129 	lwkt_reltoken(&vlock);
2130 	return 0;
2131 }
2132 
2133 /*
2134  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2135  * it is possible for us to miss an event due to race conditions, but
2136  * that condition is expected to be rare, so for the moment it is the
2137  * preferred interface.
2138  */
2139 void
2140 vn_pollevent(struct vnode *vp, int events)
2141 {
2142 	lwkt_tokref vlock;
2143 
2144 	lwkt_gettoken(&vlock, &vp->v_token);
2145 	if (vp->v_pollinfo.vpi_events & events) {
2146 		/*
2147 		 * We clear vpi_events so that we don't
2148 		 * call selwakeup() twice if two events are
2149 		 * posted before the polling process(es) is
2150 		 * awakened.  This also ensures that we take at
2151 		 * most one selwakeup() if the polling process
2152 		 * is no longer interested.  However, it does
2153 		 * mean that only one event can be noticed at
2154 		 * a time.  (Perhaps we should only clear those
2155 		 * event bits which we note?) XXX
2156 		 */
2157 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2158 		vp->v_pollinfo.vpi_revents |= events;
2159 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2160 	}
2161 	lwkt_reltoken(&vlock);
2162 }
2163 
2164 /*
2165  * Wake up anyone polling on vp because it is being revoked.
2166  * This depends on dead_poll() returning POLLHUP for correct
2167  * behavior.
2168  */
2169 void
2170 vn_pollgone(struct vnode *vp)
2171 {
2172 	lwkt_tokref vlock;
2173 
2174 	lwkt_gettoken(&vlock, &vp->v_token);
2175 	if (vp->v_pollinfo.vpi_events) {
2176 		vp->v_pollinfo.vpi_events = 0;
2177 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2178 	}
2179 	lwkt_reltoken(&vlock);
2180 }
2181 
2182 /*
2183  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2184  * (or v_rdev might be NULL).
2185  */
2186 cdev_t
2187 vn_todev(struct vnode *vp)
2188 {
2189 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2190 		return (NULL);
2191 	KKASSERT(vp->v_rdev != NULL);
2192 	return (vp->v_rdev);
2193 }
2194 
2195 /*
2196  * Check if vnode represents a disk device.  The vnode does not need to be
2197  * opened.
2198  *
2199  * MPALMOSTSAFE
2200  */
2201 int
2202 vn_isdisk(struct vnode *vp, int *errp)
2203 {
2204 	cdev_t dev;
2205 
2206 	if (vp->v_type != VCHR) {
2207 		if (errp != NULL)
2208 			*errp = ENOTBLK;
2209 		return (0);
2210 	}
2211 
2212 	dev = vp->v_rdev;
2213 
2214 	if (dev == NULL) {
2215 		if (errp != NULL)
2216 			*errp = ENXIO;
2217 		return (0);
2218 	}
2219 	if (dev_is_good(dev) == 0) {
2220 		if (errp != NULL)
2221 			*errp = ENXIO;
2222 		return (0);
2223 	}
2224 	if ((dev_dflags(dev) & D_DISK) == 0) {
2225 		if (errp != NULL)
2226 			*errp = ENOTBLK;
2227 		return (0);
2228 	}
2229 	if (errp != NULL)
2230 		*errp = 0;
2231 	return (1);
2232 }
2233 
2234 int
2235 vn_get_namelen(struct vnode *vp, int *namelen)
2236 {
2237 	int error;
2238 	register_t retval[2];
2239 
2240 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2241 	if (error)
2242 		return (error);
2243 	*namelen = (int)retval[0];
2244 	return (0);
2245 }
2246 
2247 int
2248 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2249 		uint16_t d_namlen, const char *d_name)
2250 {
2251 	struct dirent *dp;
2252 	size_t len;
2253 
2254 	len = _DIRENT_RECLEN(d_namlen);
2255 	if (len > uio->uio_resid)
2256 		return(1);
2257 
2258 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2259 
2260 	dp->d_ino = d_ino;
2261 	dp->d_namlen = d_namlen;
2262 	dp->d_type = d_type;
2263 	bcopy(d_name, dp->d_name, d_namlen);
2264 
2265 	*error = uiomove((caddr_t)dp, len, uio);
2266 
2267 	kfree(dp, M_TEMP);
2268 
2269 	return(0);
2270 }
2271 
2272 void
2273 vn_mark_atime(struct vnode *vp, struct thread *td)
2274 {
2275 	struct proc *p = td->td_proc;
2276 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2277 
2278 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2279 		VOP_MARKATIME(vp, cred);
2280 	}
2281 }
2282