xref: /dragonfly/sys/kern/vfs_subr.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mount.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/reboot.h>
65 #include <sys/socket.h>
66 #include <sys/stat.h>
67 #include <sys/sysctl.h>
68 #include <sys/syslog.h>
69 #include <sys/unistd.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
72 
73 #include <machine/limits.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vnode_pager.h>
84 #include <vm/vm_zone.h>
85 
86 #include <sys/buf2.h>
87 #include <sys/thread2.h>
88 #include <sys/sysref2.h>
89 #include <sys/mplock2.h>
90 
91 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
92 
93 int numvnodes;
94 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95 
96 enum vtype iftovt_tab[16] = {
97 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 };
100 int vttoif_tab[9] = {
101 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 	S_IFSOCK, S_IFIFO, S_IFMT,
103 };
104 
105 static int reassignbufcalls;
106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
107 		&reassignbufcalls, 0, "");
108 static int reassignbufloops;
109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
110 		&reassignbufloops, 0, "");
111 static int reassignbufsortgood;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
113 		&reassignbufsortgood, 0, "");
114 static int reassignbufsortbad;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
116 		&reassignbufsortbad, 0, "");
117 static int reassignbufmethod = 1;
118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
119 		&reassignbufmethod, 0, "");
120 
121 int	nfs_mount_type = -1;
122 static struct lwkt_token spechash_token;
123 struct nfs_public nfs_pub;	/* publicly exported FS */
124 
125 int desiredvnodes;
126 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
127 		&desiredvnodes, 0, "Maximum number of vnodes");
128 
129 static void	vfs_free_addrlist (struct netexport *nep);
130 static int	vfs_free_netcred (struct radix_node *rn, void *w);
131 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
132 				       const struct export_args *argp);
133 
134 /*
135  * Red black tree functions
136  */
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
140 
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
143 {
144 	if (b1->b_loffset < b2->b_loffset)
145 		return(-1);
146 	if (b1->b_loffset > b2->b_loffset)
147 		return(1);
148 	return(0);
149 }
150 
151 /*
152  * Returns non-zero if the vnode is a candidate for lazy msyncing.
153  */
154 static __inline int
155 vshouldmsync(struct vnode *vp)
156 {
157 	if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
158 		return (0);		/* other holders */
159 	if (vp->v_object &&
160 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
161 		return (0);
162 	}
163 	return (1);
164 }
165 
166 /*
167  * Initialize the vnode management data structures.
168  *
169  * Called from vfsinit()
170  */
171 void
172 vfs_subr_init(void)
173 {
174 	int factor1;
175 	int factor2;
176 
177 	/*
178 	 * Desiredvnodes is kern.maxvnodes.  We want to scale it
179 	 * according to available system memory but we may also have
180 	 * to limit it based on available KVM, which is capped on 32 bit
181 	 * systems.
182 	 *
183 	 * WARNING!  For machines with 64-256M of ram we have to be sure
184 	 *	     that the default limit scales down well due to HAMMER
185 	 *	     taking up significantly more memory per-vnode vs UFS.
186 	 *	     We want around ~5800 on a 128M machine.
187 	 */
188 	factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
189 	factor2 = 22 * (sizeof(struct vm_object) + sizeof(struct vnode));
190 	desiredvnodes =
191 		imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
192 		     KvaSize / factor2);
193 	desiredvnodes = imax(desiredvnodes, maxproc * 8);
194 
195 	lwkt_token_init(&spechash_token, 1);
196 }
197 
198 /*
199  * Knob to control the precision of file timestamps:
200  *
201  *   0 = seconds only; nanoseconds zeroed.
202  *   1 = seconds and nanoseconds, accurate within 1/HZ.
203  *   2 = seconds and nanoseconds, truncated to microseconds.
204  * >=3 = seconds and nanoseconds, maximum precision.
205  */
206 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
207 
208 static int timestamp_precision = TSP_SEC;
209 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
210 		&timestamp_precision, 0, "");
211 
212 /*
213  * Get a current timestamp.
214  *
215  * MPSAFE
216  */
217 void
218 vfs_timestamp(struct timespec *tsp)
219 {
220 	struct timeval tv;
221 
222 	switch (timestamp_precision) {
223 	case TSP_SEC:
224 		tsp->tv_sec = time_second;
225 		tsp->tv_nsec = 0;
226 		break;
227 	case TSP_HZ:
228 		getnanotime(tsp);
229 		break;
230 	case TSP_USEC:
231 		microtime(&tv);
232 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
233 		break;
234 	case TSP_NSEC:
235 	default:
236 		nanotime(tsp);
237 		break;
238 	}
239 }
240 
241 /*
242  * Set vnode attributes to VNOVAL
243  */
244 void
245 vattr_null(struct vattr *vap)
246 {
247 	vap->va_type = VNON;
248 	vap->va_size = VNOVAL;
249 	vap->va_bytes = VNOVAL;
250 	vap->va_mode = VNOVAL;
251 	vap->va_nlink = VNOVAL;
252 	vap->va_uid = VNOVAL;
253 	vap->va_gid = VNOVAL;
254 	vap->va_fsid = VNOVAL;
255 	vap->va_fileid = VNOVAL;
256 	vap->va_blocksize = VNOVAL;
257 	vap->va_rmajor = VNOVAL;
258 	vap->va_rminor = VNOVAL;
259 	vap->va_atime.tv_sec = VNOVAL;
260 	vap->va_atime.tv_nsec = VNOVAL;
261 	vap->va_mtime.tv_sec = VNOVAL;
262 	vap->va_mtime.tv_nsec = VNOVAL;
263 	vap->va_ctime.tv_sec = VNOVAL;
264 	vap->va_ctime.tv_nsec = VNOVAL;
265 	vap->va_flags = VNOVAL;
266 	vap->va_gen = VNOVAL;
267 	vap->va_vaflags = 0;
268 	/* va_*_uuid fields are only valid if related flags are set */
269 }
270 
271 /*
272  * Flush out and invalidate all buffers associated with a vnode.
273  *
274  * vp must be locked.
275  */
276 static int vinvalbuf_bp(struct buf *bp, void *data);
277 
278 struct vinvalbuf_bp_info {
279 	struct vnode *vp;
280 	int slptimeo;
281 	int lkflags;
282 	int flags;
283 };
284 
285 int
286 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
287 {
288 	struct vinvalbuf_bp_info info;
289 	vm_object_t object;
290 	int error;
291 
292 	lwkt_gettoken(&vp->v_token);
293 
294 	/*
295 	 * If we are being asked to save, call fsync to ensure that the inode
296 	 * is updated.
297 	 */
298 	if (flags & V_SAVE) {
299 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
300 		if (error)
301 			goto done;
302 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
303 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
304 				goto done;
305 
306 			/*
307 			 * Dirty bufs may be left or generated via races
308 			 * in circumstances where vinvalbuf() is called on
309 			 * a vnode not undergoing reclamation.   Only
310 			 * panic if we are trying to reclaim the vnode.
311 			 */
312 			if ((vp->v_flag & VRECLAIMED) &&
313 			    (bio_track_active(&vp->v_track_write) ||
314 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
315 				panic("vinvalbuf: dirty bufs");
316 			}
317 		}
318   	}
319 	info.slptimeo = slptimeo;
320 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
321 	if (slpflag & PCATCH)
322 		info.lkflags |= LK_PCATCH;
323 	info.flags = flags;
324 	info.vp = vp;
325 
326 	/*
327 	 * Flush the buffer cache until nothing is left.
328 	 */
329 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
330 	       !RB_EMPTY(&vp->v_rbdirty_tree)) {
331 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
332 				vinvalbuf_bp, &info);
333 		if (error == 0) {
334 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
335 					vinvalbuf_bp, &info);
336 		}
337 	}
338 
339 	/*
340 	 * Wait for I/O completion.  We may block in the pip code so we have
341 	 * to re-check.
342 	 */
343 	do {
344 		bio_track_wait(&vp->v_track_write, 0, 0);
345 		if ((object = vp->v_object) != NULL) {
346 			while (object->paging_in_progress)
347 				vm_object_pip_sleep(object, "vnvlbx");
348 		}
349 	} while (bio_track_active(&vp->v_track_write));
350 
351 	/*
352 	 * Destroy the copy in the VM cache, too.
353 	 */
354 	if ((object = vp->v_object) != NULL) {
355 		vm_object_page_remove(object, 0, 0,
356 			(flags & V_SAVE) ? TRUE : FALSE);
357 	}
358 
359 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
360 		panic("vinvalbuf: flush failed");
361 	if (!RB_EMPTY(&vp->v_rbhash_tree))
362 		panic("vinvalbuf: flush failed, buffers still present");
363 	error = 0;
364 done:
365 	lwkt_reltoken(&vp->v_token);
366 	return (error);
367 }
368 
369 static int
370 vinvalbuf_bp(struct buf *bp, void *data)
371 {
372 	struct vinvalbuf_bp_info *info = data;
373 	int error;
374 
375 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
376 		error = BUF_TIMELOCK(bp, info->lkflags,
377 				     "vinvalbuf", info->slptimeo);
378 		if (error == 0) {
379 			BUF_UNLOCK(bp);
380 			error = ENOLCK;
381 		}
382 		if (error == ENOLCK)
383 			return(0);
384 		return (-error);
385 	}
386 
387 	KKASSERT(bp->b_vp == info->vp);
388 
389 	/*
390 	 * XXX Since there are no node locks for NFS, I
391 	 * believe there is a slight chance that a delayed
392 	 * write will occur while sleeping just above, so
393 	 * check for it.  Note that vfs_bio_awrite expects
394 	 * buffers to reside on a queue, while bwrite() and
395 	 * brelse() do not.
396 	 *
397 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
398 	 * check.  This code will write out the buffer, period.
399 	 */
400 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
401 	    (info->flags & V_SAVE)) {
402 		if (bp->b_vp == info->vp) {
403 			if (bp->b_flags & B_CLUSTEROK) {
404 				vfs_bio_awrite(bp);
405 			} else {
406 				bremfree(bp);
407 				bawrite(bp);
408 			}
409 		} else {
410 			bremfree(bp);
411 			bwrite(bp);
412 		}
413 	} else if (info->flags & V_SAVE) {
414 		/*
415 		 * Cannot set B_NOCACHE on a clean buffer as this will
416 		 * destroy the VM backing store which might actually
417 		 * be dirty (and unsynchronized).
418 		 */
419 		bremfree(bp);
420 		bp->b_flags |= (B_INVAL | B_RELBUF);
421 		brelse(bp);
422 	} else {
423 		bremfree(bp);
424 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
425 		brelse(bp);
426 	}
427 	return(0);
428 }
429 
430 /*
431  * Truncate a file's buffer and pages to a specified length.  This
432  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
433  * sync activity.
434  *
435  * The vnode must be locked.
436  */
437 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
438 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
439 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
440 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
441 
442 int
443 vtruncbuf(struct vnode *vp, off_t length, int blksize)
444 {
445 	off_t truncloffset;
446 	const char *filename;
447 	int count;
448 
449 	/*
450 	 * Round up to the *next* block, then destroy the buffers in question.
451 	 * Since we are only removing some of the buffers we must rely on the
452 	 * scan count to determine whether a loop is necessary.
453 	 */
454 	if ((count = (int)(length % blksize)) != 0)
455 		truncloffset = length + (blksize - count);
456 	else
457 		truncloffset = length;
458 
459 	lwkt_gettoken(&vp->v_token);
460 	do {
461 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
462 				vtruncbuf_bp_trunc_cmp,
463 				vtruncbuf_bp_trunc, &truncloffset);
464 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
465 				vtruncbuf_bp_trunc_cmp,
466 				vtruncbuf_bp_trunc, &truncloffset);
467 	} while(count);
468 
469 	/*
470 	 * For safety, fsync any remaining metadata if the file is not being
471 	 * truncated to 0.  Since the metadata does not represent the entire
472 	 * dirty list we have to rely on the hit count to ensure that we get
473 	 * all of it.
474 	 */
475 	if (length > 0) {
476 		do {
477 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
478 					vtruncbuf_bp_metasync_cmp,
479 					vtruncbuf_bp_metasync, vp);
480 		} while (count);
481 	}
482 
483 	/*
484 	 * Clean out any left over VM backing store.
485 	 *
486 	 * It is possible to have in-progress I/O from buffers that were
487 	 * not part of the truncation.  This should not happen if we
488 	 * are truncating to 0-length.
489 	 */
490 	vnode_pager_setsize(vp, length);
491 	bio_track_wait(&vp->v_track_write, 0, 0);
492 
493 	/*
494 	 * Debugging only
495 	 */
496 	spin_lock_wr(&vp->v_spinlock);
497 	filename = TAILQ_FIRST(&vp->v_namecache) ?
498 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
499 	spin_unlock_wr(&vp->v_spinlock);
500 
501 	/*
502 	 * Make sure no buffers were instantiated while we were trying
503 	 * to clean out the remaining VM pages.  This could occur due
504 	 * to busy dirty VM pages being flushed out to disk.
505 	 */
506 	do {
507 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
508 				vtruncbuf_bp_trunc_cmp,
509 				vtruncbuf_bp_trunc, &truncloffset);
510 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
511 				vtruncbuf_bp_trunc_cmp,
512 				vtruncbuf_bp_trunc, &truncloffset);
513 		if (count) {
514 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
515 			       "left over buffers in %s\n", count, filename);
516 		}
517 	} while(count);
518 
519 	lwkt_reltoken(&vp->v_token);
520 
521 	return (0);
522 }
523 
524 /*
525  * The callback buffer is beyond the new file EOF and must be destroyed.
526  * Note that the compare function must conform to the RB_SCAN's requirements.
527  */
528 static
529 int
530 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
531 {
532 	if (bp->b_loffset >= *(off_t *)data)
533 		return(0);
534 	return(-1);
535 }
536 
537 static
538 int
539 vtruncbuf_bp_trunc(struct buf *bp, void *data)
540 {
541 	/*
542 	 * Do not try to use a buffer we cannot immediately lock, but sleep
543 	 * anyway to prevent a livelock.  The code will loop until all buffers
544 	 * can be acted upon.
545 	 */
546 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
547 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
548 			BUF_UNLOCK(bp);
549 	} else {
550 		bremfree(bp);
551 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
552 		brelse(bp);
553 	}
554 	return(1);
555 }
556 
557 /*
558  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
559  * blocks (with a negative loffset) are scanned.
560  * Note that the compare function must conform to the RB_SCAN's requirements.
561  */
562 static int
563 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
564 {
565 	if (bp->b_loffset < 0)
566 		return(0);
567 	return(1);
568 }
569 
570 static int
571 vtruncbuf_bp_metasync(struct buf *bp, void *data)
572 {
573 	struct vnode *vp = data;
574 
575 	if (bp->b_flags & B_DELWRI) {
576 		/*
577 		 * Do not try to use a buffer we cannot immediately lock,
578 		 * but sleep anyway to prevent a livelock.  The code will
579 		 * loop until all buffers can be acted upon.
580 		 */
581 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
582 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
583 				BUF_UNLOCK(bp);
584 		} else {
585 			bremfree(bp);
586 			if (bp->b_vp == vp)
587 				bawrite(bp);
588 			else
589 				bwrite(bp);
590 		}
591 		return(1);
592 	} else {
593 		return(0);
594 	}
595 }
596 
597 /*
598  * vfsync - implements a multipass fsync on a file which understands
599  * dependancies and meta-data.  The passed vnode must be locked.  The
600  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
601  *
602  * When fsyncing data asynchronously just do one consolidated pass starting
603  * with the most negative block number.  This may not get all the data due
604  * to dependancies.
605  *
606  * When fsyncing data synchronously do a data pass, then a metadata pass,
607  * then do additional data+metadata passes to try to get all the data out.
608  */
609 static int vfsync_wait_output(struct vnode *vp,
610 			    int (*waitoutput)(struct vnode *, struct thread *));
611 static int vfsync_data_only_cmp(struct buf *bp, void *data);
612 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
613 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
614 static int vfsync_bp(struct buf *bp, void *data);
615 
616 struct vfsync_info {
617 	struct vnode *vp;
618 	int synchronous;
619 	int syncdeps;
620 	int lazycount;
621 	int lazylimit;
622 	int skippedbufs;
623 	int (*checkdef)(struct buf *);
624 };
625 
626 int
627 vfsync(struct vnode *vp, int waitfor, int passes,
628 	int (*checkdef)(struct buf *),
629 	int (*waitoutput)(struct vnode *, struct thread *))
630 {
631 	struct vfsync_info info;
632 	int error;
633 
634 	bzero(&info, sizeof(info));
635 	info.vp = vp;
636 	if ((info.checkdef = checkdef) == NULL)
637 		info.syncdeps = 1;
638 
639 	lwkt_gettoken(&vp->v_token);
640 
641 	switch(waitfor) {
642 	case MNT_LAZY:
643 		/*
644 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
645 		 * number of data (not meta) pages we try to flush to 1MB.
646 		 * A non-zero return means that lazy limit was reached.
647 		 */
648 		info.lazylimit = 1024 * 1024;
649 		info.syncdeps = 1;
650 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
651 				vfsync_lazy_range_cmp, vfsync_bp, &info);
652 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
653 				vfsync_meta_only_cmp, vfsync_bp, &info);
654 		if (error == 0)
655 			vp->v_lazyw = 0;
656 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
657 			vn_syncer_add_to_worklist(vp, 1);
658 		error = 0;
659 		break;
660 	case MNT_NOWAIT:
661 		/*
662 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
663 		 */
664 		info.syncdeps = 1;
665 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
666 			vfsync_bp, &info);
667 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
668 			vfsync_bp, &info);
669 		error = 0;
670 		break;
671 	default:
672 		/*
673 		 * Synchronous.  Do a data-only pass, then a meta-data+data
674 		 * pass, then additional integrated passes to try to get
675 		 * all the dependancies flushed.
676 		 */
677 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
678 			vfsync_bp, &info);
679 		error = vfsync_wait_output(vp, waitoutput);
680 		if (error == 0) {
681 			info.skippedbufs = 0;
682 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
683 				vfsync_bp, &info);
684 			error = vfsync_wait_output(vp, waitoutput);
685 			if (info.skippedbufs)
686 				kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
687 		}
688 		while (error == 0 && passes > 0 &&
689 		       !RB_EMPTY(&vp->v_rbdirty_tree)
690 		) {
691 			if (--passes == 0) {
692 				info.synchronous = 1;
693 				info.syncdeps = 1;
694 			}
695 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
696 				vfsync_bp, &info);
697 			if (error < 0)
698 				error = -error;
699 			info.syncdeps = 1;
700 			if (error == 0)
701 				error = vfsync_wait_output(vp, waitoutput);
702 		}
703 		break;
704 	}
705 	lwkt_reltoken(&vp->v_token);
706 	return(error);
707 }
708 
709 static int
710 vfsync_wait_output(struct vnode *vp,
711 		   int (*waitoutput)(struct vnode *, struct thread *))
712 {
713 	int error;
714 
715 	error = bio_track_wait(&vp->v_track_write, 0, 0);
716 	if (waitoutput)
717 		error = waitoutput(vp, curthread);
718 	return(error);
719 }
720 
721 static int
722 vfsync_data_only_cmp(struct buf *bp, void *data)
723 {
724 	if (bp->b_loffset < 0)
725 		return(-1);
726 	return(0);
727 }
728 
729 static int
730 vfsync_meta_only_cmp(struct buf *bp, void *data)
731 {
732 	if (bp->b_loffset < 0)
733 		return(0);
734 	return(1);
735 }
736 
737 static int
738 vfsync_lazy_range_cmp(struct buf *bp, void *data)
739 {
740 	struct vfsync_info *info = data;
741 	if (bp->b_loffset < info->vp->v_lazyw)
742 		return(-1);
743 	return(0);
744 }
745 
746 static int
747 vfsync_bp(struct buf *bp, void *data)
748 {
749 	struct vfsync_info *info = data;
750 	struct vnode *vp = info->vp;
751 	int error;
752 
753 	/*
754 	 * if syncdeps is not set we do not try to write buffers which have
755 	 * dependancies.
756 	 */
757 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
758 		return(0);
759 
760 	/*
761 	 * Ignore buffers that we cannot immediately lock.  XXX
762 	 */
763 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
764 		kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
765 		++info->skippedbufs;
766 		return(0);
767 	}
768 	if ((bp->b_flags & B_DELWRI) == 0)
769 		panic("vfsync_bp: buffer not dirty");
770 	if (vp != bp->b_vp)
771 		panic("vfsync_bp: buffer vp mismatch");
772 
773 	/*
774 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
775 	 * has been written but an additional handshake with the device
776 	 * is required before we can dispose of the buffer.  We have no idea
777 	 * how to do this so we have to skip these buffers.
778 	 */
779 	if (bp->b_flags & B_NEEDCOMMIT) {
780 		BUF_UNLOCK(bp);
781 		return(0);
782 	}
783 
784 	/*
785 	 * Ask bioops if it is ok to sync
786 	 */
787 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
788 		bremfree(bp);
789 		brelse(bp);
790 		return(0);
791 	}
792 
793 	if (info->synchronous) {
794 		/*
795 		 * Synchronous flushing.  An error may be returned.
796 		 */
797 		bremfree(bp);
798 		error = bwrite(bp);
799 	} else {
800 		/*
801 		 * Asynchronous flushing.  A negative return value simply
802 		 * stops the scan and is not considered an error.  We use
803 		 * this to support limited MNT_LAZY flushes.
804 		 */
805 		vp->v_lazyw = bp->b_loffset;
806 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
807 			info->lazycount += vfs_bio_awrite(bp);
808 		} else {
809 			info->lazycount += bp->b_bufsize;
810 			bremfree(bp);
811 			bawrite(bp);
812 		}
813 		if (info->lazylimit && info->lazycount >= info->lazylimit)
814 			error = 1;
815 		else
816 			error = 0;
817 	}
818 	return(-error);
819 }
820 
821 /*
822  * Associate a buffer with a vnode.
823  *
824  * MPSAFE
825  */
826 int
827 bgetvp(struct vnode *vp, struct buf *bp)
828 {
829 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
830 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
831 
832 	/*
833 	 * Insert onto list for new vnode.
834 	 */
835 	lwkt_gettoken(&vp->v_token);
836 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
837 		lwkt_reltoken(&vp->v_token);
838 		return (EEXIST);
839 	}
840 	bp->b_vp = vp;
841 	bp->b_flags |= B_HASHED;
842 	bp->b_flags |= B_VNCLEAN;
843 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
844 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
845 	vhold(vp);
846 	lwkt_reltoken(&vp->v_token);
847 	return(0);
848 }
849 
850 /*
851  * Disassociate a buffer from a vnode.
852  */
853 void
854 brelvp(struct buf *bp)
855 {
856 	struct vnode *vp;
857 
858 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
859 
860 	/*
861 	 * Delete from old vnode list, if on one.
862 	 */
863 	vp = bp->b_vp;
864 	lwkt_gettoken(&vp->v_token);
865 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
866 		if (bp->b_flags & B_VNDIRTY)
867 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
868 		else
869 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
870 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
871 	}
872 	if (bp->b_flags & B_HASHED) {
873 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
874 		bp->b_flags &= ~B_HASHED;
875 	}
876 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
877 		vclrflags(vp, VONWORKLST);
878 		LIST_REMOVE(vp, v_synclist);
879 	}
880 	bp->b_vp = NULL;
881 	lwkt_reltoken(&vp->v_token);
882 
883 	vdrop(vp);
884 }
885 
886 /*
887  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
888  * This routine is called when the state of the B_DELWRI bit is changed.
889  *
890  * MPSAFE
891  */
892 void
893 reassignbuf(struct buf *bp)
894 {
895 	struct vnode *vp = bp->b_vp;
896 	int delay;
897 
898 	KKASSERT(vp != NULL);
899 	++reassignbufcalls;
900 
901 	/*
902 	 * B_PAGING flagged buffers cannot be reassigned because their vp
903 	 * is not fully linked in.
904 	 */
905 	if (bp->b_flags & B_PAGING)
906 		panic("cannot reassign paging buffer");
907 
908 	lwkt_gettoken(&vp->v_token);
909 	if (bp->b_flags & B_DELWRI) {
910 		/*
911 		 * Move to the dirty list, add the vnode to the worklist
912 		 */
913 		if (bp->b_flags & B_VNCLEAN) {
914 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
915 			bp->b_flags &= ~B_VNCLEAN;
916 		}
917 		if ((bp->b_flags & B_VNDIRTY) == 0) {
918 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
919 				panic("reassignbuf: dup lblk vp %p bp %p",
920 				      vp, bp);
921 			}
922 			bp->b_flags |= B_VNDIRTY;
923 		}
924 		if ((vp->v_flag & VONWORKLST) == 0) {
925 			switch (vp->v_type) {
926 			case VDIR:
927 				delay = dirdelay;
928 				break;
929 			case VCHR:
930 			case VBLK:
931 				if (vp->v_rdev &&
932 				    vp->v_rdev->si_mountpoint != NULL) {
933 					delay = metadelay;
934 					break;
935 				}
936 				/* fall through */
937 			default:
938 				delay = filedelay;
939 			}
940 			vn_syncer_add_to_worklist(vp, delay);
941 		}
942 	} else {
943 		/*
944 		 * Move to the clean list, remove the vnode from the worklist
945 		 * if no dirty blocks remain.
946 		 */
947 		if (bp->b_flags & B_VNDIRTY) {
948 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
949 			bp->b_flags &= ~B_VNDIRTY;
950 		}
951 		if ((bp->b_flags & B_VNCLEAN) == 0) {
952 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
953 				panic("reassignbuf: dup lblk vp %p bp %p",
954 				      vp, bp);
955 			}
956 			bp->b_flags |= B_VNCLEAN;
957 		}
958 		if ((vp->v_flag & VONWORKLST) &&
959 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
960 			vclrflags(vp, VONWORKLST);
961 			LIST_REMOVE(vp, v_synclist);
962 		}
963 	}
964 	lwkt_reltoken(&vp->v_token);
965 }
966 
967 /*
968  * Create a vnode for a block device.
969  * Used for mounting the root file system.
970  */
971 extern struct vop_ops *devfs_vnode_dev_vops_p;
972 int
973 bdevvp(cdev_t dev, struct vnode **vpp)
974 {
975 	struct vnode *vp;
976 	struct vnode *nvp;
977 	int error;
978 
979 	if (dev == NULL) {
980 		*vpp = NULLVP;
981 		return (ENXIO);
982 	}
983 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
984 				&nvp, 0, 0);
985 	if (error) {
986 		*vpp = NULLVP;
987 		return (error);
988 	}
989 	vp = nvp;
990 	vp->v_type = VCHR;
991 #if 0
992 	vp->v_rdev = dev;
993 #endif
994 	v_associate_rdev(vp, dev);
995 	vp->v_umajor = dev->si_umajor;
996 	vp->v_uminor = dev->si_uminor;
997 	vx_unlock(vp);
998 	*vpp = vp;
999 	return (0);
1000 }
1001 
1002 int
1003 v_associate_rdev(struct vnode *vp, cdev_t dev)
1004 {
1005 	if (dev == NULL)
1006 		return(ENXIO);
1007 	if (dev_is_good(dev) == 0)
1008 		return(ENXIO);
1009 	KKASSERT(vp->v_rdev == NULL);
1010 	vp->v_rdev = reference_dev(dev);
1011 	lwkt_gettoken(&spechash_token);
1012 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1013 	lwkt_reltoken(&spechash_token);
1014 	return(0);
1015 }
1016 
1017 void
1018 v_release_rdev(struct vnode *vp)
1019 {
1020 	cdev_t dev;
1021 
1022 	if ((dev = vp->v_rdev) != NULL) {
1023 		lwkt_gettoken(&spechash_token);
1024 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1025 		vp->v_rdev = NULL;
1026 		release_dev(dev);
1027 		lwkt_reltoken(&spechash_token);
1028 	}
1029 }
1030 
1031 /*
1032  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1033  * the device number with the vnode.  The actual device is not associated
1034  * until the vnode is opened (usually in spec_open()), and will be
1035  * disassociated on last close.
1036  */
1037 void
1038 addaliasu(struct vnode *nvp, int x, int y)
1039 {
1040 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1041 		panic("addaliasu on non-special vnode");
1042 	nvp->v_umajor = x;
1043 	nvp->v_uminor = y;
1044 }
1045 
1046 /*
1047  * Simple call that a filesystem can make to try to get rid of a
1048  * vnode.  It will fail if anyone is referencing the vnode (including
1049  * the caller).
1050  *
1051  * The filesystem can check whether its in-memory inode structure still
1052  * references the vp on return.
1053  */
1054 void
1055 vclean_unlocked(struct vnode *vp)
1056 {
1057 	vx_get(vp);
1058 	if (sysref_isactive(&vp->v_sysref) == 0)
1059 		vgone_vxlocked(vp);
1060 	vx_put(vp);
1061 }
1062 
1063 /*
1064  * Disassociate a vnode from its underlying filesystem.
1065  *
1066  * The vnode must be VX locked and referenced.  In all normal situations
1067  * there are no active references.  If vclean_vxlocked() is called while
1068  * there are active references, the vnode is being ripped out and we have
1069  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1070  */
1071 void
1072 vclean_vxlocked(struct vnode *vp, int flags)
1073 {
1074 	int active;
1075 	int n;
1076 	vm_object_t object;
1077 
1078 	/*
1079 	 * If the vnode has already been reclaimed we have nothing to do.
1080 	 */
1081 	if (vp->v_flag & VRECLAIMED)
1082 		return;
1083 	vsetflags(vp, VRECLAIMED);
1084 
1085 	/*
1086 	 * Scrap the vfs cache
1087 	 */
1088 	while (cache_inval_vp(vp, 0) != 0) {
1089 		kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1090 		tsleep(vp, 0, "vclninv", 2);
1091 	}
1092 
1093 	/*
1094 	 * Check to see if the vnode is in use. If so we have to reference it
1095 	 * before we clean it out so that its count cannot fall to zero and
1096 	 * generate a race against ourselves to recycle it.
1097 	 */
1098 	active = sysref_isactive(&vp->v_sysref);
1099 
1100 	/*
1101 	 * Clean out any buffers associated with the vnode and destroy its
1102 	 * object, if it has one.
1103 	 */
1104 	vinvalbuf(vp, V_SAVE, 0, 0);
1105 
1106 	/*
1107 	 * If purging an active vnode (typically during a forced unmount
1108 	 * or reboot), it must be closed and deactivated before being
1109 	 * reclaimed.  This isn't really all that safe, but what can
1110 	 * we do? XXX.
1111 	 *
1112 	 * Note that neither of these routines unlocks the vnode.
1113 	 */
1114 	if (active && (flags & DOCLOSE)) {
1115 		while ((n = vp->v_opencount) != 0) {
1116 			if (vp->v_writecount)
1117 				VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1118 			else
1119 				VOP_CLOSE(vp, FNONBLOCK);
1120 			if (vp->v_opencount == n) {
1121 				kprintf("Warning: unable to force-close"
1122 				       " vnode %p\n", vp);
1123 				break;
1124 			}
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1130 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1131 	 * again to make sure they all get flushed.
1132 	 *
1133 	 * This can occur if a file with a link count of 0 needs to be
1134 	 * truncated.
1135 	 *
1136 	 * If the vnode is already dead don't try to deactivate it.
1137 	 */
1138 	if ((vp->v_flag & VINACTIVE) == 0) {
1139 		vsetflags(vp, VINACTIVE);
1140 		if (vp->v_mount)
1141 			VOP_INACTIVE(vp);
1142 		vinvalbuf(vp, V_SAVE, 0, 0);
1143 	}
1144 
1145 	/*
1146 	 * If the vnode has an object, destroy it.
1147 	 */
1148 	if ((object = vp->v_object) != NULL) {
1149 		lwkt_gettoken(&vm_token);
1150 		KKASSERT(object == vp->v_object);
1151 		if (object->ref_count == 0) {
1152 			if ((object->flags & OBJ_DEAD) == 0)
1153 				vm_object_terminate(object);
1154 		} else {
1155 			vm_pager_deallocate(object);
1156 		}
1157 		vclrflags(vp, VOBJBUF);
1158 		lwkt_reltoken(&vm_token);
1159 	}
1160 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1161 
1162 	/*
1163 	 * Reclaim the vnode if not already dead.
1164 	 */
1165 	if (vp->v_mount && VOP_RECLAIM(vp))
1166 		panic("vclean: cannot reclaim");
1167 
1168 	/*
1169 	 * Done with purge, notify sleepers of the grim news.
1170 	 */
1171 	vp->v_ops = &dead_vnode_vops_p;
1172 	vn_gone(vp);
1173 	vp->v_tag = VT_NON;
1174 
1175 	/*
1176 	 * If we are destroying an active vnode, reactivate it now that
1177 	 * we have reassociated it with deadfs.  This prevents the system
1178 	 * from crashing on the vnode due to it being unexpectedly marked
1179 	 * as inactive or reclaimed.
1180 	 */
1181 	if (active && (flags & DOCLOSE)) {
1182 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1183 	}
1184 }
1185 
1186 /*
1187  * Eliminate all activity associated with the requested vnode
1188  * and with all vnodes aliased to the requested vnode.
1189  *
1190  * The vnode must be referenced but should not be locked.
1191  */
1192 int
1193 vrevoke(struct vnode *vp, struct ucred *cred)
1194 {
1195 	struct vnode *vq;
1196 	struct vnode *vqn;
1197 	cdev_t dev;
1198 	int error;
1199 
1200 	/*
1201 	 * If the vnode has a device association, scrap all vnodes associated
1202 	 * with the device.  Don't let the device disappear on us while we
1203 	 * are scrapping the vnodes.
1204 	 *
1205 	 * The passed vp will probably show up in the list, do not VX lock
1206 	 * it twice!
1207 	 *
1208 	 * Releasing the vnode's rdev here can mess up specfs's call to
1209 	 * device close, so don't do it.  The vnode has been disassociated
1210 	 * and the device will be closed after the last ref on the related
1211 	 * fp goes away (if not still open by e.g. the kernel).
1212 	 */
1213 	if (vp->v_type != VCHR) {
1214 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1215 		return (error);
1216 	}
1217 	if ((dev = vp->v_rdev) == NULL) {
1218 		return(0);
1219 	}
1220 	reference_dev(dev);
1221 	lwkt_gettoken(&spechash_token);
1222 
1223 	vqn = SLIST_FIRST(&dev->si_hlist);
1224 	if (vqn)
1225 		vref(vqn);
1226 	while ((vq = vqn) != NULL) {
1227 		vqn = SLIST_NEXT(vqn, v_cdevnext);
1228 		if (vqn)
1229 			vref(vqn);
1230 		fdrevoke(vq, DTYPE_VNODE, cred);
1231 		/*v_release_rdev(vq);*/
1232 		vrele(vq);
1233 	}
1234 	lwkt_reltoken(&spechash_token);
1235 	dev_drevoke(dev);
1236 	release_dev(dev);
1237 	return (0);
1238 }
1239 
1240 /*
1241  * This is called when the object underlying a vnode is being destroyed,
1242  * such as in a remove().  Try to recycle the vnode immediately if the
1243  * only active reference is our reference.
1244  *
1245  * Directory vnodes in the namecache with children cannot be immediately
1246  * recycled because numerous VOP_N*() ops require them to be stable.
1247  *
1248  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1249  * function is a NOP if VRECLAIMED is already set.
1250  */
1251 int
1252 vrecycle(struct vnode *vp)
1253 {
1254 	if (vp->v_sysref.refcnt <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1255 		if (cache_inval_vp_nonblock(vp))
1256 			return(0);
1257 		vgone_vxlocked(vp);
1258 		return (1);
1259 	}
1260 	return (0);
1261 }
1262 
1263 /*
1264  * Return the maximum I/O size allowed for strategy calls on VP.
1265  *
1266  * If vp is VCHR or VBLK we dive the device, otherwise we use
1267  * the vp's mount info.
1268  */
1269 int
1270 vmaxiosize(struct vnode *vp)
1271 {
1272 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
1273 		return(vp->v_rdev->si_iosize_max);
1274 	} else {
1275 		return(vp->v_mount->mnt_iosize_max);
1276 	}
1277 }
1278 
1279 /*
1280  * Eliminate all activity associated with a vnode in preparation for reuse.
1281  *
1282  * The vnode must be VX locked and refd and will remain VX locked and refd
1283  * on return.  This routine may be called with the vnode in any state, as
1284  * long as it is VX locked.  The vnode will be cleaned out and marked
1285  * VRECLAIMED but will not actually be reused until all existing refs and
1286  * holds go away.
1287  *
1288  * NOTE: This routine may be called on a vnode which has not yet been
1289  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1290  * already been reclaimed.
1291  *
1292  * This routine is not responsible for placing us back on the freelist.
1293  * Instead, it happens automatically when the caller releases the VX lock
1294  * (assuming there aren't any other references).
1295  */
1296 void
1297 vgone_vxlocked(struct vnode *vp)
1298 {
1299 	/*
1300 	 * assert that the VX lock is held.  This is an absolute requirement
1301 	 * now for vgone_vxlocked() to be called.
1302 	 */
1303 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1304 
1305 	get_mplock();
1306 
1307 	/*
1308 	 * Clean out the filesystem specific data and set the VRECLAIMED
1309 	 * bit.  Also deactivate the vnode if necessary.
1310 	 */
1311 	vclean_vxlocked(vp, DOCLOSE);
1312 
1313 	/*
1314 	 * Delete from old mount point vnode list, if on one.
1315 	 */
1316 	if (vp->v_mount != NULL) {
1317 		KKASSERT(vp->v_data == NULL);
1318 		insmntque(vp, NULL);
1319 	}
1320 
1321 	/*
1322 	 * If special device, remove it from special device alias list
1323 	 * if it is on one.  This should normally only occur if a vnode is
1324 	 * being revoked as the device should otherwise have been released
1325 	 * naturally.
1326 	 */
1327 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1328 		v_release_rdev(vp);
1329 	}
1330 
1331 	/*
1332 	 * Set us to VBAD
1333 	 */
1334 	vp->v_type = VBAD;
1335 	rel_mplock();
1336 }
1337 
1338 /*
1339  * Lookup a vnode by device number.
1340  *
1341  * Returns non-zero and *vpp set to a vref'd vnode on success.
1342  * Returns zero on failure.
1343  */
1344 int
1345 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1346 {
1347 	struct vnode *vp;
1348 
1349 	lwkt_gettoken(&spechash_token);
1350 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1351 		if (type == vp->v_type) {
1352 			*vpp = vp;
1353 			vref(vp);
1354 			lwkt_reltoken(&spechash_token);
1355 			return (1);
1356 		}
1357 	}
1358 	lwkt_reltoken(&spechash_token);
1359 	return (0);
1360 }
1361 
1362 /*
1363  * Calculate the total number of references to a special device.  This
1364  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1365  * an overloaded field.  Since udev2dev can now return NULL, we have
1366  * to check for a NULL v_rdev.
1367  */
1368 int
1369 count_dev(cdev_t dev)
1370 {
1371 	struct vnode *vp;
1372 	int count = 0;
1373 
1374 	if (SLIST_FIRST(&dev->si_hlist)) {
1375 		lwkt_gettoken(&spechash_token);
1376 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1377 			count += vp->v_opencount;
1378 		}
1379 		lwkt_reltoken(&spechash_token);
1380 	}
1381 	return(count);
1382 }
1383 
1384 int
1385 vcount(struct vnode *vp)
1386 {
1387 	if (vp->v_rdev == NULL)
1388 		return(0);
1389 	return(count_dev(vp->v_rdev));
1390 }
1391 
1392 /*
1393  * Initialize VMIO for a vnode.  This routine MUST be called before a
1394  * VFS can issue buffer cache ops on a vnode.  It is typically called
1395  * when a vnode is initialized from its inode.
1396  */
1397 int
1398 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1399 {
1400 	vm_object_t object;
1401 	int error = 0;
1402 
1403 retry:
1404 	if ((object = vp->v_object) == NULL) {
1405 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1406 		/*
1407 		 * Dereference the reference we just created.  This assumes
1408 		 * that the object is associated with the vp.
1409 		 */
1410 		object->ref_count--;
1411 		vrele(vp);
1412 	} else {
1413 		if (object->flags & OBJ_DEAD) {
1414 			vn_unlock(vp);
1415 			vm_object_dead_sleep(object, "vodead");
1416 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1417 			goto retry;
1418 		}
1419 	}
1420 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1421 	vsetflags(vp, VOBJBUF);
1422 	return (error);
1423 }
1424 
1425 
1426 /*
1427  * Print out a description of a vnode.
1428  */
1429 static char *typename[] =
1430 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1431 
1432 void
1433 vprint(char *label, struct vnode *vp)
1434 {
1435 	char buf[96];
1436 
1437 	if (label != NULL)
1438 		kprintf("%s: %p: ", label, (void *)vp);
1439 	else
1440 		kprintf("%p: ", (void *)vp);
1441 	kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1442 		typename[vp->v_type],
1443 		vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1444 	buf[0] = '\0';
1445 	if (vp->v_flag & VROOT)
1446 		strcat(buf, "|VROOT");
1447 	if (vp->v_flag & VPFSROOT)
1448 		strcat(buf, "|VPFSROOT");
1449 	if (vp->v_flag & VTEXT)
1450 		strcat(buf, "|VTEXT");
1451 	if (vp->v_flag & VSYSTEM)
1452 		strcat(buf, "|VSYSTEM");
1453 	if (vp->v_flag & VFREE)
1454 		strcat(buf, "|VFREE");
1455 	if (vp->v_flag & VOBJBUF)
1456 		strcat(buf, "|VOBJBUF");
1457 	if (buf[0] != '\0')
1458 		kprintf(" flags (%s)", &buf[1]);
1459 	if (vp->v_data == NULL) {
1460 		kprintf("\n");
1461 	} else {
1462 		kprintf("\n\t");
1463 		VOP_PRINT(vp);
1464 	}
1465 }
1466 
1467 /*
1468  * Do the usual access checking.
1469  * file_mode, uid and gid are from the vnode in question,
1470  * while acc_mode and cred are from the VOP_ACCESS parameter list
1471  */
1472 int
1473 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1474     mode_t acc_mode, struct ucred *cred)
1475 {
1476 	mode_t mask;
1477 	int ismember;
1478 
1479 	/*
1480 	 * Super-user always gets read/write access, but execute access depends
1481 	 * on at least one execute bit being set.
1482 	 */
1483 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1484 		if ((acc_mode & VEXEC) && type != VDIR &&
1485 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1486 			return (EACCES);
1487 		return (0);
1488 	}
1489 
1490 	mask = 0;
1491 
1492 	/* Otherwise, check the owner. */
1493 	if (cred->cr_uid == uid) {
1494 		if (acc_mode & VEXEC)
1495 			mask |= S_IXUSR;
1496 		if (acc_mode & VREAD)
1497 			mask |= S_IRUSR;
1498 		if (acc_mode & VWRITE)
1499 			mask |= S_IWUSR;
1500 		return ((file_mode & mask) == mask ? 0 : EACCES);
1501 	}
1502 
1503 	/* Otherwise, check the groups. */
1504 	ismember = groupmember(gid, cred);
1505 	if (cred->cr_svgid == gid || ismember) {
1506 		if (acc_mode & VEXEC)
1507 			mask |= S_IXGRP;
1508 		if (acc_mode & VREAD)
1509 			mask |= S_IRGRP;
1510 		if (acc_mode & VWRITE)
1511 			mask |= S_IWGRP;
1512 		return ((file_mode & mask) == mask ? 0 : EACCES);
1513 	}
1514 
1515 	/* Otherwise, check everyone else. */
1516 	if (acc_mode & VEXEC)
1517 		mask |= S_IXOTH;
1518 	if (acc_mode & VREAD)
1519 		mask |= S_IROTH;
1520 	if (acc_mode & VWRITE)
1521 		mask |= S_IWOTH;
1522 	return ((file_mode & mask) == mask ? 0 : EACCES);
1523 }
1524 
1525 #ifdef DDB
1526 #include <ddb/ddb.h>
1527 
1528 static int db_show_locked_vnodes(struct mount *mp, void *data);
1529 
1530 /*
1531  * List all of the locked vnodes in the system.
1532  * Called when debugging the kernel.
1533  */
1534 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1535 {
1536 	kprintf("Locked vnodes\n");
1537 	mountlist_scan(db_show_locked_vnodes, NULL,
1538 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1539 }
1540 
1541 static int
1542 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1543 {
1544 	struct vnode *vp;
1545 
1546 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1547 		if (vn_islocked(vp))
1548 			vprint(NULL, vp);
1549 	}
1550 	return(0);
1551 }
1552 #endif
1553 
1554 /*
1555  * Top level filesystem related information gathering.
1556  */
1557 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1558 
1559 static int
1560 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1561 {
1562 	int *name = (int *)arg1 - 1;	/* XXX */
1563 	u_int namelen = arg2 + 1;	/* XXX */
1564 	struct vfsconf *vfsp;
1565 	int maxtypenum;
1566 
1567 #if 1 || defined(COMPAT_PRELITE2)
1568 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1569 	if (namelen == 1)
1570 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1571 #endif
1572 
1573 #ifdef notyet
1574 	/* all sysctl names at this level are at least name and field */
1575 	if (namelen < 2)
1576 		return (ENOTDIR);		/* overloaded */
1577 	if (name[0] != VFS_GENERIC) {
1578 		vfsp = vfsconf_find_by_typenum(name[0]);
1579 		if (vfsp == NULL)
1580 			return (EOPNOTSUPP);
1581 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1582 		    oldp, oldlenp, newp, newlen, p));
1583 	}
1584 #endif
1585 	switch (name[1]) {
1586 	case VFS_MAXTYPENUM:
1587 		if (namelen != 2)
1588 			return (ENOTDIR);
1589 		maxtypenum = vfsconf_get_maxtypenum();
1590 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1591 	case VFS_CONF:
1592 		if (namelen != 3)
1593 			return (ENOTDIR);	/* overloaded */
1594 		vfsp = vfsconf_find_by_typenum(name[2]);
1595 		if (vfsp == NULL)
1596 			return (EOPNOTSUPP);
1597 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1598 	}
1599 	return (EOPNOTSUPP);
1600 }
1601 
1602 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1603 	"Generic filesystem");
1604 
1605 #if 1 || defined(COMPAT_PRELITE2)
1606 
1607 static int
1608 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1609 {
1610 	int error;
1611 	struct ovfsconf ovfs;
1612 	struct sysctl_req *req = (struct sysctl_req*) data;
1613 
1614 	bzero(&ovfs, sizeof(ovfs));
1615 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1616 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1617 	ovfs.vfc_index = vfsp->vfc_typenum;
1618 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1619 	ovfs.vfc_flags = vfsp->vfc_flags;
1620 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1621 	if (error)
1622 		return error; /* abort iteration with error code */
1623 	else
1624 		return 0; /* continue iterating with next element */
1625 }
1626 
1627 static int
1628 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1629 {
1630 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1631 }
1632 
1633 #endif /* 1 || COMPAT_PRELITE2 */
1634 
1635 /*
1636  * Check to see if a filesystem is mounted on a block device.
1637  */
1638 int
1639 vfs_mountedon(struct vnode *vp)
1640 {
1641 	cdev_t dev;
1642 
1643 	if ((dev = vp->v_rdev) == NULL) {
1644 /*		if (vp->v_type != VBLK)
1645 			dev = get_dev(vp->v_uminor, vp->v_umajor); */
1646 	}
1647 	if (dev != NULL && dev->si_mountpoint)
1648 		return (EBUSY);
1649 	return (0);
1650 }
1651 
1652 /*
1653  * Unmount all filesystems. The list is traversed in reverse order
1654  * of mounting to avoid dependencies.
1655  */
1656 
1657 static int vfs_umountall_callback(struct mount *mp, void *data);
1658 
1659 void
1660 vfs_unmountall(void)
1661 {
1662 	int count;
1663 
1664 	do {
1665 		count = mountlist_scan(vfs_umountall_callback,
1666 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1667 	} while (count);
1668 }
1669 
1670 static
1671 int
1672 vfs_umountall_callback(struct mount *mp, void *data)
1673 {
1674 	int error;
1675 
1676 	error = dounmount(mp, MNT_FORCE);
1677 	if (error) {
1678 		mountlist_remove(mp);
1679 		kprintf("unmount of filesystem mounted from %s failed (",
1680 			mp->mnt_stat.f_mntfromname);
1681 		if (error == EBUSY)
1682 			kprintf("BUSY)\n");
1683 		else
1684 			kprintf("%d)\n", error);
1685 	}
1686 	return(1);
1687 }
1688 
1689 /*
1690  * Checks the mount flags for parameter mp and put the names comma-separated
1691  * into a string buffer buf with a size limit specified by len.
1692  *
1693  * It returns the number of bytes written into buf, and (*errorp) will be
1694  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1695  * not large enough).  The buffer will be 0-terminated if len was not 0.
1696  */
1697 size_t
1698 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1699 	       char *buf, size_t len, int *errorp)
1700 {
1701 	static const struct mountctl_opt optnames[] = {
1702 		{ MNT_ASYNC,            "asynchronous" },
1703 		{ MNT_EXPORTED,         "NFS exported" },
1704 		{ MNT_LOCAL,            "local" },
1705 		{ MNT_NOATIME,          "noatime" },
1706 		{ MNT_NODEV,            "nodev" },
1707 		{ MNT_NOEXEC,           "noexec" },
1708 		{ MNT_NOSUID,           "nosuid" },
1709 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1710 		{ MNT_QUOTA,            "with-quotas" },
1711 		{ MNT_RDONLY,           "read-only" },
1712 		{ MNT_SYNCHRONOUS,      "synchronous" },
1713 		{ MNT_UNION,            "union" },
1714 		{ MNT_NOCLUSTERR,       "noclusterr" },
1715 		{ MNT_NOCLUSTERW,       "noclusterw" },
1716 		{ MNT_SUIDDIR,          "suiddir" },
1717 		{ MNT_SOFTDEP,          "soft-updates" },
1718 		{ MNT_IGNORE,           "ignore" },
1719 		{ 0,			NULL}
1720 	};
1721 	int bwritten;
1722 	int bleft;
1723 	int optlen;
1724 	int actsize;
1725 
1726 	*errorp = 0;
1727 	bwritten = 0;
1728 	bleft = len - 1;	/* leave room for trailing \0 */
1729 
1730 	/*
1731 	 * Checks the size of the string. If it contains
1732 	 * any data, then we will append the new flags to
1733 	 * it.
1734 	 */
1735 	actsize = strlen(buf);
1736 	if (actsize > 0)
1737 		buf += actsize;
1738 
1739 	/* Default flags if no flags passed */
1740 	if (optp == NULL)
1741 		optp = optnames;
1742 
1743 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1744 		*errorp = EINVAL;
1745 		return(0);
1746 	}
1747 
1748 	for (; flags && optp->o_opt; ++optp) {
1749 		if ((flags & optp->o_opt) == 0)
1750 			continue;
1751 		optlen = strlen(optp->o_name);
1752 		if (bwritten || actsize > 0) {
1753 			if (bleft < 2) {
1754 				*errorp = ENOSPC;
1755 				break;
1756 			}
1757 			buf[bwritten++] = ',';
1758 			buf[bwritten++] = ' ';
1759 			bleft -= 2;
1760 		}
1761 		if (bleft < optlen) {
1762 			*errorp = ENOSPC;
1763 			break;
1764 		}
1765 		bcopy(optp->o_name, buf + bwritten, optlen);
1766 		bwritten += optlen;
1767 		bleft -= optlen;
1768 		flags &= ~optp->o_opt;
1769 	}
1770 
1771 	/*
1772 	 * Space already reserved for trailing \0
1773 	 */
1774 	buf[bwritten] = 0;
1775 	return (bwritten);
1776 }
1777 
1778 /*
1779  * Build hash lists of net addresses and hang them off the mount point.
1780  * Called by ufs_mount() to set up the lists of export addresses.
1781  */
1782 static int
1783 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1784 		const struct export_args *argp)
1785 {
1786 	struct netcred *np;
1787 	struct radix_node_head *rnh;
1788 	int i;
1789 	struct radix_node *rn;
1790 	struct sockaddr *saddr, *smask = 0;
1791 	struct domain *dom;
1792 	int error;
1793 
1794 	if (argp->ex_addrlen == 0) {
1795 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1796 			return (EPERM);
1797 		np = &nep->ne_defexported;
1798 		np->netc_exflags = argp->ex_flags;
1799 		np->netc_anon = argp->ex_anon;
1800 		np->netc_anon.cr_ref = 1;
1801 		mp->mnt_flag |= MNT_DEFEXPORTED;
1802 		return (0);
1803 	}
1804 
1805 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1806 		return (EINVAL);
1807 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1808 		return (EINVAL);
1809 
1810 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1811 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1812 	saddr = (struct sockaddr *) (np + 1);
1813 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1814 		goto out;
1815 	if (saddr->sa_len > argp->ex_addrlen)
1816 		saddr->sa_len = argp->ex_addrlen;
1817 	if (argp->ex_masklen) {
1818 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1819 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1820 		if (error)
1821 			goto out;
1822 		if (smask->sa_len > argp->ex_masklen)
1823 			smask->sa_len = argp->ex_masklen;
1824 	}
1825 	i = saddr->sa_family;
1826 	if ((rnh = nep->ne_rtable[i]) == 0) {
1827 		/*
1828 		 * Seems silly to initialize every AF when most are not used,
1829 		 * do so on demand here
1830 		 */
1831 		SLIST_FOREACH(dom, &domains, dom_next)
1832 			if (dom->dom_family == i && dom->dom_rtattach) {
1833 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1834 				    dom->dom_rtoffset);
1835 				break;
1836 			}
1837 		if ((rnh = nep->ne_rtable[i]) == 0) {
1838 			error = ENOBUFS;
1839 			goto out;
1840 		}
1841 	}
1842 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1843 	    np->netc_rnodes);
1844 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1845 		error = EPERM;
1846 		goto out;
1847 	}
1848 	np->netc_exflags = argp->ex_flags;
1849 	np->netc_anon = argp->ex_anon;
1850 	np->netc_anon.cr_ref = 1;
1851 	return (0);
1852 out:
1853 	kfree(np, M_NETADDR);
1854 	return (error);
1855 }
1856 
1857 /* ARGSUSED */
1858 static int
1859 vfs_free_netcred(struct radix_node *rn, void *w)
1860 {
1861 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1862 
1863 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1864 	kfree((caddr_t) rn, M_NETADDR);
1865 	return (0);
1866 }
1867 
1868 /*
1869  * Free the net address hash lists that are hanging off the mount points.
1870  */
1871 static void
1872 vfs_free_addrlist(struct netexport *nep)
1873 {
1874 	int i;
1875 	struct radix_node_head *rnh;
1876 
1877 	for (i = 0; i <= AF_MAX; i++)
1878 		if ((rnh = nep->ne_rtable[i])) {
1879 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1880 			    (caddr_t) rnh);
1881 			kfree((caddr_t) rnh, M_RTABLE);
1882 			nep->ne_rtable[i] = 0;
1883 		}
1884 }
1885 
1886 int
1887 vfs_export(struct mount *mp, struct netexport *nep,
1888 	   const struct export_args *argp)
1889 {
1890 	int error;
1891 
1892 	if (argp->ex_flags & MNT_DELEXPORT) {
1893 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1894 			vfs_setpublicfs(NULL, NULL, NULL);
1895 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1896 		}
1897 		vfs_free_addrlist(nep);
1898 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1899 	}
1900 	if (argp->ex_flags & MNT_EXPORTED) {
1901 		if (argp->ex_flags & MNT_EXPUBLIC) {
1902 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1903 				return (error);
1904 			mp->mnt_flag |= MNT_EXPUBLIC;
1905 		}
1906 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1907 			return (error);
1908 		mp->mnt_flag |= MNT_EXPORTED;
1909 	}
1910 	return (0);
1911 }
1912 
1913 
1914 /*
1915  * Set the publicly exported filesystem (WebNFS). Currently, only
1916  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1917  */
1918 int
1919 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1920 		const struct export_args *argp)
1921 {
1922 	int error;
1923 	struct vnode *rvp;
1924 	char *cp;
1925 
1926 	/*
1927 	 * mp == NULL -> invalidate the current info, the FS is
1928 	 * no longer exported. May be called from either vfs_export
1929 	 * or unmount, so check if it hasn't already been done.
1930 	 */
1931 	if (mp == NULL) {
1932 		if (nfs_pub.np_valid) {
1933 			nfs_pub.np_valid = 0;
1934 			if (nfs_pub.np_index != NULL) {
1935 				FREE(nfs_pub.np_index, M_TEMP);
1936 				nfs_pub.np_index = NULL;
1937 			}
1938 		}
1939 		return (0);
1940 	}
1941 
1942 	/*
1943 	 * Only one allowed at a time.
1944 	 */
1945 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1946 		return (EBUSY);
1947 
1948 	/*
1949 	 * Get real filehandle for root of exported FS.
1950 	 */
1951 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1952 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1953 
1954 	if ((error = VFS_ROOT(mp, &rvp)))
1955 		return (error);
1956 
1957 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1958 		return (error);
1959 
1960 	vput(rvp);
1961 
1962 	/*
1963 	 * If an indexfile was specified, pull it in.
1964 	 */
1965 	if (argp->ex_indexfile != NULL) {
1966 		int namelen;
1967 
1968 		error = vn_get_namelen(rvp, &namelen);
1969 		if (error)
1970 			return (error);
1971 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1972 		    M_WAITOK);
1973 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1974 		    namelen, NULL);
1975 		if (!error) {
1976 			/*
1977 			 * Check for illegal filenames.
1978 			 */
1979 			for (cp = nfs_pub.np_index; *cp; cp++) {
1980 				if (*cp == '/') {
1981 					error = EINVAL;
1982 					break;
1983 				}
1984 			}
1985 		}
1986 		if (error) {
1987 			FREE(nfs_pub.np_index, M_TEMP);
1988 			return (error);
1989 		}
1990 	}
1991 
1992 	nfs_pub.np_mount = mp;
1993 	nfs_pub.np_valid = 1;
1994 	return (0);
1995 }
1996 
1997 struct netcred *
1998 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1999 		struct sockaddr *nam)
2000 {
2001 	struct netcred *np;
2002 	struct radix_node_head *rnh;
2003 	struct sockaddr *saddr;
2004 
2005 	np = NULL;
2006 	if (mp->mnt_flag & MNT_EXPORTED) {
2007 		/*
2008 		 * Lookup in the export list first.
2009 		 */
2010 		if (nam != NULL) {
2011 			saddr = nam;
2012 			rnh = nep->ne_rtable[saddr->sa_family];
2013 			if (rnh != NULL) {
2014 				np = (struct netcred *)
2015 					(*rnh->rnh_matchaddr)((char *)saddr,
2016 							      rnh);
2017 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2018 					np = NULL;
2019 			}
2020 		}
2021 		/*
2022 		 * If no address match, use the default if it exists.
2023 		 */
2024 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2025 			np = &nep->ne_defexported;
2026 	}
2027 	return (np);
2028 }
2029 
2030 /*
2031  * perform msync on all vnodes under a mount point.  The mount point must
2032  * be locked.  This code is also responsible for lazy-freeing unreferenced
2033  * vnodes whos VM objects no longer contain pages.
2034  *
2035  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2036  *
2037  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2038  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2039  * way up in this high level function.
2040  */
2041 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2042 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2043 
2044 void
2045 vfs_msync(struct mount *mp, int flags)
2046 {
2047 	int vmsc_flags;
2048 
2049 	/*
2050 	 * tmpfs sets this flag to prevent msync(), sync, and the
2051 	 * filesystem periodic syncer from trying to flush VM pages
2052 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2053 	 * to swap.
2054 	 */
2055 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2056 		return;
2057 
2058 	/*
2059 	 * Ok, scan the vnodes for work.
2060 	 */
2061 	vmsc_flags = VMSC_GETVP;
2062 	if (flags != MNT_WAIT)
2063 		vmsc_flags |= VMSC_NOWAIT;
2064 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
2065 			(void *)(intptr_t)flags);
2066 }
2067 
2068 /*
2069  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2070  * vnodes, we cannot afford to do anything heavy weight until we have a
2071  * fairly good indication that there is work to do.
2072  */
2073 static
2074 int
2075 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2076 {
2077 	int flags = (int)(intptr_t)data;
2078 
2079 	if ((vp->v_flag & VRECLAIMED) == 0) {
2080 		if (vshouldmsync(vp))
2081 			return(0);	/* call scan2 */
2082 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2083 		    (vp->v_flag & VOBJDIRTY) &&
2084 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2085 			return(0);	/* call scan2 */
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * do not call scan2, continue the loop
2091 	 */
2092 	return(-1);
2093 }
2094 
2095 /*
2096  * This callback is handed a locked vnode.
2097  */
2098 static
2099 int
2100 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2101 {
2102 	vm_object_t obj;
2103 	int flags = (int)(intptr_t)data;
2104 
2105 	if (vp->v_flag & VRECLAIMED)
2106 		return(0);
2107 
2108 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2109 		if ((obj = vp->v_object) != NULL) {
2110 			vm_object_page_clean(obj, 0, 0,
2111 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2112 		}
2113 	}
2114 	return(0);
2115 }
2116 
2117 /*
2118  * Wake up anyone interested in vp because it is being revoked.
2119  */
2120 void
2121 vn_gone(struct vnode *vp)
2122 {
2123 	lwkt_gettoken(&vp->v_token);
2124 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2125 	lwkt_reltoken(&vp->v_token);
2126 }
2127 
2128 /*
2129  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2130  * (or v_rdev might be NULL).
2131  */
2132 cdev_t
2133 vn_todev(struct vnode *vp)
2134 {
2135 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2136 		return (NULL);
2137 	KKASSERT(vp->v_rdev != NULL);
2138 	return (vp->v_rdev);
2139 }
2140 
2141 /*
2142  * Check if vnode represents a disk device.  The vnode does not need to be
2143  * opened.
2144  *
2145  * MPALMOSTSAFE
2146  */
2147 int
2148 vn_isdisk(struct vnode *vp, int *errp)
2149 {
2150 	cdev_t dev;
2151 
2152 	if (vp->v_type != VCHR) {
2153 		if (errp != NULL)
2154 			*errp = ENOTBLK;
2155 		return (0);
2156 	}
2157 
2158 	dev = vp->v_rdev;
2159 
2160 	if (dev == NULL) {
2161 		if (errp != NULL)
2162 			*errp = ENXIO;
2163 		return (0);
2164 	}
2165 	if (dev_is_good(dev) == 0) {
2166 		if (errp != NULL)
2167 			*errp = ENXIO;
2168 		return (0);
2169 	}
2170 	if ((dev_dflags(dev) & D_DISK) == 0) {
2171 		if (errp != NULL)
2172 			*errp = ENOTBLK;
2173 		return (0);
2174 	}
2175 	if (errp != NULL)
2176 		*errp = 0;
2177 	return (1);
2178 }
2179 
2180 int
2181 vn_get_namelen(struct vnode *vp, int *namelen)
2182 {
2183 	int error;
2184 	register_t retval[2];
2185 
2186 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2187 	if (error)
2188 		return (error);
2189 	*namelen = (int)retval[0];
2190 	return (0);
2191 }
2192 
2193 int
2194 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2195 		uint16_t d_namlen, const char *d_name)
2196 {
2197 	struct dirent *dp;
2198 	size_t len;
2199 
2200 	len = _DIRENT_RECLEN(d_namlen);
2201 	if (len > uio->uio_resid)
2202 		return(1);
2203 
2204 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2205 
2206 	dp->d_ino = d_ino;
2207 	dp->d_namlen = d_namlen;
2208 	dp->d_type = d_type;
2209 	bcopy(d_name, dp->d_name, d_namlen);
2210 
2211 	*error = uiomove((caddr_t)dp, len, uio);
2212 
2213 	kfree(dp, M_TEMP);
2214 
2215 	return(0);
2216 }
2217 
2218 void
2219 vn_mark_atime(struct vnode *vp, struct thread *td)
2220 {
2221 	struct proc *p = td->td_proc;
2222 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2223 
2224 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2225 		VOP_MARKATIME(vp, cred);
2226 	}
2227 }
2228