xref: /dragonfly/sys/kern/vfs_subr.c (revision dd47d56c)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/eventhandler.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kernel.h>
55 #include <sys/kthread.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/mount.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/reboot.h>
62 #include <sys/socket.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/unistd.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 
70 #include <machine/limits.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vnode_pager.h>
81 #include <vm/vm_zone.h>
82 
83 #include <sys/buf2.h>
84 #include <sys/mplock2.h>
85 #include <vm/vm_page2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
90 
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 __read_mostly enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 __read_mostly int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 __read_mostly static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 	   &maxvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void	vfs_free_addrlist (struct netexport *nep);
126 static int	vfs_free_netcred (struct radix_node *rn, void *w);
127 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 	            const struct export_args *argp);
130 
131 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
132 
133 /*
134  * Red black tree functions
135  */
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
139 
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
142 {
143 	if (b1->b_loffset < b2->b_loffset)
144 		return(-1);
145 	if (b1->b_loffset > b2->b_loffset)
146 		return(1);
147 	return(0);
148 }
149 
150 /*
151  * Initialize the vnode management data structures.
152  *
153  * Called from vfsinit()
154  */
155 #define MAXVNBREAKMEM	(1L * 1024 * 1024 * 1024)
156 #define MINVNODES	2000
157 #define MAXVNODES	4000000
158 
159 void
160 vfs_subr_init(void)
161 {
162 	int factor1;	/* Limit based on ram (x 2 above 1GB) */
163 	int factor2;	/* Limit based on available KVM */
164 	size_t freemem;
165 
166 	/*
167 	 * Size maxvnodes to available memory.  Size significantly
168 	 * smaller on low-memory systems (calculations for the first
169 	 * 1GB of ram), and pump it up a bit when free memory is
170 	 * above 1GB.
171 	 *
172 	 * The general minimum is maxproc * 8 (we want someone pushing
173 	 * up maxproc a lot to also get more vnodes).  Usually maxproc
174 	 * does not affect this calculation.
175 	 *
176 	 * There isn't much of a point allowing maxvnodes to exceed a
177 	 * few million as our modern filesystems cache pages in the
178 	 * underlying block device and not so much hanging off of VM
179 	 * objects.
180 	 */
181 	factor1 = 50 * (sizeof(struct vm_object) + sizeof(struct vnode));
182 	factor2 = 30 * (sizeof(struct vm_object) + sizeof(struct vnode));
183 
184 	freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
185 
186 	maxvnodes = freemem / factor1;
187 	if (freemem > MAXVNBREAKMEM)
188 		maxvnodes += (freemem - MAXVNBREAKMEM) / factor1;
189 	maxvnodes = imax(maxvnodes, maxproc * 8);
190 	maxvnodes = imin(maxvnodes, KvaSize / factor2);
191 	maxvnodes = imin(maxvnodes, MAXVNODES);
192 	maxvnodes = imax(maxvnodes, MINVNODES);
193 
194 	lwkt_token_init(&spechash_token, "spechash");
195 }
196 
197 /*
198  * Knob to control the precision of file timestamps:
199  *
200  *   0 = seconds only; nanoseconds zeroed.
201  *   1 = seconds and nanoseconds, accurate within 1/HZ.
202  *   2 = seconds and nanoseconds, truncated to microseconds.
203  * >=3 = seconds and nanoseconds, maximum precision.
204  *
205  * Note that utimes() precision is microseconds because it takes a timeval
206  * structure, so its probably best to default to USEC and not NSEC.
207  */
208 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
209 
210 __read_mostly static int timestamp_precision = TSP_USEC;
211 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
212 		&timestamp_precision, 0, "Precision of file timestamps");
213 
214 /*
215  * Get a current timestamp.
216  *
217  * MPSAFE
218  */
219 void
220 vfs_timestamp(struct timespec *tsp)
221 {
222 	struct timeval tv;
223 
224 	switch (timestamp_precision) {
225 	case TSP_SEC:
226 		tsp->tv_sec = time_second;
227 		tsp->tv_nsec = 0;
228 		break;
229 	case TSP_HZ:
230 		getnanotime(tsp);
231 		break;
232 	case TSP_USEC:
233 		microtime(&tv);
234 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
235 		break;
236 	case TSP_NSEC:
237 	default:
238 		nanotime(tsp);
239 		break;
240 	}
241 }
242 
243 /*
244  * Set vnode attributes to VNOVAL
245  */
246 void
247 vattr_null(struct vattr *vap)
248 {
249 	vap->va_type = VNON;
250 	vap->va_size = VNOVAL;
251 	vap->va_bytes = VNOVAL;
252 	vap->va_mode = VNOVAL;
253 	vap->va_nlink = VNOVAL;
254 	vap->va_uid = VNOVAL;
255 	vap->va_gid = VNOVAL;
256 	vap->va_fsid = VNOVAL;
257 	vap->va_fileid = VNOVAL;
258 	vap->va_blocksize = VNOVAL;
259 	vap->va_rmajor = VNOVAL;
260 	vap->va_rminor = VNOVAL;
261 	vap->va_atime.tv_sec = VNOVAL;
262 	vap->va_atime.tv_nsec = VNOVAL;
263 	vap->va_mtime.tv_sec = VNOVAL;
264 	vap->va_mtime.tv_nsec = VNOVAL;
265 	vap->va_ctime.tv_sec = VNOVAL;
266 	vap->va_ctime.tv_nsec = VNOVAL;
267 	vap->va_flags = VNOVAL;
268 	vap->va_gen = VNOVAL;
269 	vap->va_vaflags = 0;
270 	/* va_*_uuid fields are only valid if related flags are set */
271 }
272 
273 /*
274  * Flush out and invalidate all buffers associated with a vnode.
275  *
276  * vp must be locked.
277  */
278 static int vinvalbuf_bp(struct buf *bp, void *data);
279 
280 struct vinvalbuf_bp_info {
281 	struct vnode *vp;
282 	int slptimeo;
283 	int lkflags;
284 	int flags;
285 	int clean;
286 };
287 
288 int
289 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
290 {
291 	struct vinvalbuf_bp_info info;
292 	vm_object_t object;
293 	int error;
294 
295 	lwkt_gettoken(&vp->v_token);
296 
297 	/*
298 	 * If we are being asked to save, call fsync to ensure that the inode
299 	 * is updated.
300 	 */
301 	if (flags & V_SAVE) {
302 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
303 		if (error)
304 			goto done;
305 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
306 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
307 				goto done;
308 #if 0
309 			/*
310 			 * Dirty bufs may be left or generated via races
311 			 * in circumstances where vinvalbuf() is called on
312 			 * a vnode not undergoing reclamation.   Only
313 			 * panic if we are trying to reclaim the vnode.
314 			 */
315 			if ((vp->v_flag & VRECLAIMED) &&
316 			    (bio_track_active(&vp->v_track_write) ||
317 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
318 				panic("vinvalbuf: dirty bufs");
319 			}
320 #endif
321 		}
322   	}
323 	info.slptimeo = slptimeo;
324 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
325 	if (slpflag & PCATCH)
326 		info.lkflags |= LK_PCATCH;
327 	info.flags = flags;
328 	info.vp = vp;
329 
330 	/*
331 	 * Flush the buffer cache until nothing is left, wait for all I/O
332 	 * to complete.  At least one pass is required.  We might block
333 	 * in the pip code so we have to re-check.  Order is important.
334 	 */
335 	do {
336 		/*
337 		 * Flush buffer cache
338 		 */
339 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
340 			info.clean = 1;
341 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
342 					NULL, vinvalbuf_bp, &info);
343 		}
344 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
345 			info.clean = 0;
346 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
347 					NULL, vinvalbuf_bp, &info);
348 		}
349 
350 		/*
351 		 * Wait for I/O completion.
352 		 */
353 		bio_track_wait(&vp->v_track_write, 0, 0);
354 		if ((object = vp->v_object) != NULL)
355 			refcount_wait(&object->paging_in_progress, "vnvlbx");
356 	} while (bio_track_active(&vp->v_track_write) ||
357 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
358 		 !RB_EMPTY(&vp->v_rbdirty_tree));
359 
360 	/*
361 	 * Destroy the copy in the VM cache, too.
362 	 */
363 	if ((object = vp->v_object) != NULL) {
364 		vm_object_page_remove(object, 0, 0,
365 			(flags & V_SAVE) ? TRUE : FALSE);
366 	}
367 
368 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
369 		panic("vinvalbuf: flush failed");
370 	if (!RB_EMPTY(&vp->v_rbhash_tree))
371 		panic("vinvalbuf: flush failed, buffers still present");
372 	error = 0;
373 done:
374 	lwkt_reltoken(&vp->v_token);
375 	return (error);
376 }
377 
378 static int
379 vinvalbuf_bp(struct buf *bp, void *data)
380 {
381 	struct vinvalbuf_bp_info *info = data;
382 	int error;
383 
384 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
385 		atomic_add_int(&bp->b_refs, 1);
386 		error = BUF_TIMELOCK(bp, info->lkflags,
387 				     "vinvalbuf", info->slptimeo);
388 		atomic_subtract_int(&bp->b_refs, 1);
389 		if (error == 0) {
390 			BUF_UNLOCK(bp);
391 			error = ENOLCK;
392 		}
393 		if (error == ENOLCK)
394 			return(0);
395 		return (-error);
396 	}
397 	KKASSERT(bp->b_vp == info->vp);
398 
399 	/*
400 	 * Must check clean/dirty status after successfully locking as
401 	 * it may race.
402 	 */
403 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
404 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
405 		BUF_UNLOCK(bp);
406 		return(0);
407 	}
408 
409 	/*
410 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
411 	 * check.  This code will write out the buffer, period.
412 	 */
413 	bremfree(bp);
414 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
415 	    (info->flags & V_SAVE)) {
416 		cluster_awrite(bp);
417 	} else if (info->flags & V_SAVE) {
418 		/*
419 		 * Cannot set B_NOCACHE on a clean buffer as this will
420 		 * destroy the VM backing store which might actually
421 		 * be dirty (and unsynchronized).
422 		 */
423 		bp->b_flags |= (B_INVAL | B_RELBUF);
424 		brelse(bp);
425 	} else {
426 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
427 		brelse(bp);
428 	}
429 	return(0);
430 }
431 
432 /*
433  * Truncate a file's buffer and pages to a specified length.  This
434  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
435  * sync activity.
436  *
437  * The vnode must be locked.
438  */
439 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
440 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
441 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
442 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
443 
444 struct vtruncbuf_info {
445 	struct vnode *vp;
446 	off_t	truncloffset;
447 	int	clean;
448 };
449 
450 int
451 vtruncbuf(struct vnode *vp, off_t length, int blksize)
452 {
453 	struct vtruncbuf_info info;
454 	const char *filename;
455 	int count;
456 
457 	/*
458 	 * Round up to the *next* block, then destroy the buffers in question.
459 	 * Since we are only removing some of the buffers we must rely on the
460 	 * scan count to determine whether a loop is necessary.
461 	 */
462 	if ((count = (int)(length % blksize)) != 0)
463 		info.truncloffset = length + (blksize - count);
464 	else
465 		info.truncloffset = length;
466 	info.vp = vp;
467 
468 	lwkt_gettoken(&vp->v_token);
469 	do {
470 		info.clean = 1;
471 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
472 				vtruncbuf_bp_trunc_cmp,
473 				vtruncbuf_bp_trunc, &info);
474 		info.clean = 0;
475 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
476 				vtruncbuf_bp_trunc_cmp,
477 				vtruncbuf_bp_trunc, &info);
478 	} while(count);
479 
480 	/*
481 	 * For safety, fsync any remaining metadata if the file is not being
482 	 * truncated to 0.  Since the metadata does not represent the entire
483 	 * dirty list we have to rely on the hit count to ensure that we get
484 	 * all of it.
485 	 */
486 	if (length > 0) {
487 		do {
488 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
489 					vtruncbuf_bp_metasync_cmp,
490 					vtruncbuf_bp_metasync, &info);
491 		} while (count);
492 	}
493 
494 	/*
495 	 * Clean out any left over VM backing store.
496 	 *
497 	 * It is possible to have in-progress I/O from buffers that were
498 	 * not part of the truncation.  This should not happen if we
499 	 * are truncating to 0-length.
500 	 */
501 	vnode_pager_setsize(vp, length);
502 	bio_track_wait(&vp->v_track_write, 0, 0);
503 
504 	/*
505 	 * Debugging only
506 	 */
507 	spin_lock(&vp->v_spin);
508 	filename = TAILQ_FIRST(&vp->v_namecache) ?
509 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
510 	spin_unlock(&vp->v_spin);
511 
512 	/*
513 	 * Make sure no buffers were instantiated while we were trying
514 	 * to clean out the remaining VM pages.  This could occur due
515 	 * to busy dirty VM pages being flushed out to disk.
516 	 */
517 	do {
518 		info.clean = 1;
519 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
520 				vtruncbuf_bp_trunc_cmp,
521 				vtruncbuf_bp_trunc, &info);
522 		info.clean = 0;
523 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
524 				vtruncbuf_bp_trunc_cmp,
525 				vtruncbuf_bp_trunc, &info);
526 		if (count) {
527 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
528 			       "left over buffers in %s\n", count, filename);
529 		}
530 	} while(count);
531 
532 	lwkt_reltoken(&vp->v_token);
533 
534 	return (0);
535 }
536 
537 /*
538  * The callback buffer is beyond the new file EOF and must be destroyed.
539  * Note that the compare function must conform to the RB_SCAN's requirements.
540  */
541 static
542 int
543 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
544 {
545 	struct vtruncbuf_info *info = data;
546 
547 	if (bp->b_loffset >= info->truncloffset)
548 		return(0);
549 	return(-1);
550 }
551 
552 static
553 int
554 vtruncbuf_bp_trunc(struct buf *bp, void *data)
555 {
556 	struct vtruncbuf_info *info = data;
557 
558 	/*
559 	 * Do not try to use a buffer we cannot immediately lock, but sleep
560 	 * anyway to prevent a livelock.  The code will loop until all buffers
561 	 * can be acted upon.
562 	 *
563 	 * We must always revalidate the buffer after locking it to deal
564 	 * with MP races.
565 	 */
566 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
567 		atomic_add_int(&bp->b_refs, 1);
568 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
569 			BUF_UNLOCK(bp);
570 		atomic_subtract_int(&bp->b_refs, 1);
571 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
572 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
573 		   bp->b_vp != info->vp ||
574 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
575 		BUF_UNLOCK(bp);
576 	} else {
577 		bremfree(bp);
578 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
579 		brelse(bp);
580 	}
581 	return(1);
582 }
583 
584 /*
585  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
586  * blocks (with a negative loffset) are scanned.
587  * Note that the compare function must conform to the RB_SCAN's requirements.
588  */
589 static int
590 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
591 {
592 	if (bp->b_loffset < 0)
593 		return(0);
594 	return(1);
595 }
596 
597 static int
598 vtruncbuf_bp_metasync(struct buf *bp, void *data)
599 {
600 	struct vtruncbuf_info *info = data;
601 
602 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
603 		atomic_add_int(&bp->b_refs, 1);
604 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
605 			BUF_UNLOCK(bp);
606 		atomic_subtract_int(&bp->b_refs, 1);
607 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
608 		   bp->b_vp != info->vp ||
609 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
610 		BUF_UNLOCK(bp);
611 	} else {
612 		bremfree(bp);
613 		if (bp->b_vp == info->vp)
614 			bawrite(bp);
615 		else
616 			bwrite(bp);
617 	}
618 	return(1);
619 }
620 
621 /*
622  * vfsync - implements a multipass fsync on a file which understands
623  * dependancies and meta-data.  The passed vnode must be locked.  The
624  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
625  *
626  * When fsyncing data asynchronously just do one consolidated pass starting
627  * with the most negative block number.  This may not get all the data due
628  * to dependancies.
629  *
630  * When fsyncing data synchronously do a data pass, then a metadata pass,
631  * then do additional data+metadata passes to try to get all the data out.
632  *
633  * Caller must ref the vnode but does not have to lock it.
634  */
635 static int vfsync_wait_output(struct vnode *vp,
636 			    int (*waitoutput)(struct vnode *, struct thread *));
637 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
638 static int vfsync_data_only_cmp(struct buf *bp, void *data);
639 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
640 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
641 static int vfsync_bp(struct buf *bp, void *data);
642 
643 struct vfsync_info {
644 	struct vnode *vp;
645 	int fastpass;
646 	int synchronous;
647 	int syncdeps;
648 	int lazycount;
649 	int lazylimit;
650 	int skippedbufs;
651 	int (*checkdef)(struct buf *);
652 	int (*cmpfunc)(struct buf *, void *);
653 };
654 
655 int
656 vfsync(struct vnode *vp, int waitfor, int passes,
657 	int (*checkdef)(struct buf *),
658 	int (*waitoutput)(struct vnode *, struct thread *))
659 {
660 	struct vfsync_info info;
661 	int error;
662 
663 	bzero(&info, sizeof(info));
664 	info.vp = vp;
665 	if ((info.checkdef = checkdef) == NULL)
666 		info.syncdeps = 1;
667 
668 	lwkt_gettoken(&vp->v_token);
669 
670 	switch(waitfor) {
671 	case MNT_LAZY | MNT_NOWAIT:
672 	case MNT_LAZY:
673 		/*
674 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
675 		 * number of data (not meta) pages we try to flush to 1MB.
676 		 * A non-zero return means that lazy limit was reached.
677 		 */
678 		info.lazylimit = 1024 * 1024;
679 		info.syncdeps = 1;
680 		info.cmpfunc = vfsync_lazy_range_cmp;
681 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
682 				vfsync_lazy_range_cmp, vfsync_bp, &info);
683 		info.cmpfunc = vfsync_meta_only_cmp;
684 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
685 			vfsync_meta_only_cmp, vfsync_bp, &info);
686 		if (error == 0)
687 			vp->v_lazyw = 0;
688 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
689 			vn_syncer_add(vp, 1);
690 		error = 0;
691 		break;
692 	case MNT_NOWAIT:
693 		/*
694 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
695 		 */
696 		info.syncdeps = 1;
697 		info.cmpfunc = vfsync_data_only_cmp;
698 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
699 			vfsync_bp, &info);
700 		info.cmpfunc = vfsync_meta_only_cmp;
701 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
702 			vfsync_bp, &info);
703 		error = 0;
704 		break;
705 	default:
706 		/*
707 		 * Synchronous.  Do a data-only pass, then a meta-data+data
708 		 * pass, then additional integrated passes to try to get
709 		 * all the dependancies flushed.
710 		 */
711 		info.cmpfunc = vfsync_data_only_cmp;
712 		info.fastpass = 1;
713 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
714 			vfsync_bp, &info);
715 		info.fastpass = 0;
716 		error = vfsync_wait_output(vp, waitoutput);
717 		if (error == 0) {
718 			info.skippedbufs = 0;
719 			info.cmpfunc = vfsync_dummy_cmp;
720 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
721 				vfsync_bp, &info);
722 			error = vfsync_wait_output(vp, waitoutput);
723 			if (info.skippedbufs) {
724 				kprintf("Warning: vfsync skipped %d dirty "
725 					"buf%s in pass2!\n",
726 					info.skippedbufs,
727 					((info.skippedbufs > 1) ? "s" : ""));
728 			}
729 		}
730 		while (error == 0 && passes > 0 &&
731 		       !RB_EMPTY(&vp->v_rbdirty_tree)
732 		) {
733 			info.skippedbufs = 0;
734 			if (--passes == 0) {
735 				info.synchronous = 1;
736 				info.syncdeps = 1;
737 			}
738 			info.cmpfunc = vfsync_dummy_cmp;
739 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
740 					vfsync_bp, &info);
741 			if (error < 0)
742 				error = -error;
743 			info.syncdeps = 1;
744 			if (error == 0)
745 				error = vfsync_wait_output(vp, waitoutput);
746 			if (info.skippedbufs && passes == 0) {
747 				kprintf("Warning: vfsync skipped %d dirty "
748 					"buf%s in final pass!\n",
749 					info.skippedbufs,
750 					((info.skippedbufs > 1) ? "s" : ""));
751 			}
752 		}
753 #if 0
754 		/*
755 		 * This case can occur normally because vnode lock might
756 		 * not be held.
757 		 */
758 		if (!RB_EMPTY(&vp->v_rbdirty_tree))
759 			kprintf("dirty bufs left after final pass\n");
760 #endif
761 		break;
762 	}
763 	lwkt_reltoken(&vp->v_token);
764 
765 	return(error);
766 }
767 
768 static int
769 vfsync_wait_output(struct vnode *vp,
770 		   int (*waitoutput)(struct vnode *, struct thread *))
771 {
772 	int error;
773 
774 	error = bio_track_wait(&vp->v_track_write, 0, 0);
775 	if (waitoutput)
776 		error = waitoutput(vp, curthread);
777 	return(error);
778 }
779 
780 static int
781 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
782 {
783 	return(0);
784 }
785 
786 static int
787 vfsync_data_only_cmp(struct buf *bp, void *data)
788 {
789 	if (bp->b_loffset < 0)
790 		return(-1);
791 	return(0);
792 }
793 
794 static int
795 vfsync_meta_only_cmp(struct buf *bp, void *data)
796 {
797 	if (bp->b_loffset < 0)
798 		return(0);
799 	return(1);
800 }
801 
802 static int
803 vfsync_lazy_range_cmp(struct buf *bp, void *data)
804 {
805 	struct vfsync_info *info = data;
806 
807 	if (bp->b_loffset < info->vp->v_lazyw)
808 		return(-1);
809 	return(0);
810 }
811 
812 static int
813 vfsync_bp(struct buf *bp, void *data)
814 {
815 	struct vfsync_info *info = data;
816 	struct vnode *vp = info->vp;
817 	int error;
818 
819 	if (info->fastpass) {
820 		/*
821 		 * Ignore buffers that we cannot immediately lock.
822 		 */
823 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
824 			/*
825 			 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
826 			 * delay can mess up performance
827 			 *
828 			 * Another reason is that during a dirty-buffer
829 			 * scan a clustered write can start I/O on buffers
830 			 * ahead of the scan, causing the scan to not
831 			 * get a lock here.  Usually this means the write
832 			 * is already in progress so, in fact, we *want*
833 			 * to skip the buffer.
834 			 */
835 			++info->skippedbufs;
836 			return(0);
837 		}
838 	} else if (info->synchronous == 0) {
839 		/*
840 		 * Normal pass, give the buffer a little time to become
841 		 * available to us.
842 		 */
843 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
844 			++info->skippedbufs;
845 			return(0);
846 		}
847 	} else {
848 		/*
849 		 * Synchronous pass, give the buffer a lot of time before
850 		 * giving up.
851 		 */
852 		if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
853 			++info->skippedbufs;
854 			return(0);
855 		}
856 	}
857 
858 	/*
859 	 * We must revalidate the buffer after locking.
860 	 */
861 	if ((bp->b_flags & B_DELWRI) == 0 ||
862 	    bp->b_vp != info->vp ||
863 	    info->cmpfunc(bp, data)) {
864 		BUF_UNLOCK(bp);
865 		return(0);
866 	}
867 
868 	/*
869 	 * If syncdeps is not set we do not try to write buffers which have
870 	 * dependancies.
871 	 */
872 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
873 		BUF_UNLOCK(bp);
874 		return(0);
875 	}
876 
877 	/*
878 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
879 	 * has been written but an additional handshake with the device
880 	 * is required before we can dispose of the buffer.  We have no idea
881 	 * how to do this so we have to skip these buffers.
882 	 */
883 	if (bp->b_flags & B_NEEDCOMMIT) {
884 		BUF_UNLOCK(bp);
885 		return(0);
886 	}
887 
888 	/*
889 	 * Ask bioops if it is ok to sync.  If not the VFS may have
890 	 * set B_LOCKED so we have to cycle the buffer.
891 	 */
892 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
893 		bremfree(bp);
894 		brelse(bp);
895 		return(0);
896 	}
897 
898 	if (info->synchronous) {
899 		/*
900 		 * Synchronous flush.  An error may be returned and will
901 		 * stop the scan.
902 		 */
903 		bremfree(bp);
904 		error = bwrite(bp);
905 	} else {
906 		/*
907 		 * Asynchronous flush.  We use the error return to support
908 		 * MNT_LAZY flushes.
909 		 *
910 		 * In low-memory situations we revert to synchronous
911 		 * operation.  This should theoretically prevent the I/O
912 		 * path from exhausting memory in a non-recoverable way.
913 		 */
914 		vp->v_lazyw = bp->b_loffset;
915 		bremfree(bp);
916 		if (vm_page_count_min(0)) {
917 			/* low memory */
918 			info->lazycount += bp->b_bufsize;
919 			bwrite(bp);
920 		} else {
921 			/* normal */
922 			info->lazycount += cluster_awrite(bp);
923 			waitrunningbufspace();
924 			/*vm_wait_nominal();*/
925 		}
926 		if (info->lazylimit && info->lazycount >= info->lazylimit)
927 			error = 1;
928 		else
929 			error = 0;
930 	}
931 	return(-error);
932 }
933 
934 /*
935  * Associate a buffer with a vnode.
936  *
937  * MPSAFE
938  */
939 int
940 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
941 {
942 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
943 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
944 
945 	/*
946 	 * Insert onto list for new vnode.
947 	 */
948 	lwkt_gettoken(&vp->v_token);
949 
950 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
951 		lwkt_reltoken(&vp->v_token);
952 		return (EEXIST);
953 	}
954 
955 	/*
956 	 * Diagnostics (mainly for HAMMER debugging).  Check for
957 	 * overlapping buffers.
958 	 */
959 	if (check_buf_overlap) {
960 		struct buf *bx;
961 		bx = buf_rb_hash_RB_PREV(bp);
962 		if (bx) {
963 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
964 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
965 					"bx %p bp %p\n",
966 					(intmax_t)bx->b_loffset,
967 					bx->b_bufsize,
968 					(intmax_t)bp->b_loffset,
969 					bx, bp);
970 				if (check_buf_overlap > 1)
971 					panic("bgetvp - overlapping buffer");
972 			}
973 		}
974 		bx = buf_rb_hash_RB_NEXT(bp);
975 		if (bx) {
976 			if (bp->b_loffset + testsize > bx->b_loffset) {
977 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
978 					"bp %p bx %p\n",
979 					(intmax_t)bp->b_loffset,
980 					testsize,
981 					(intmax_t)bx->b_loffset,
982 					bp, bx);
983 				if (check_buf_overlap > 1)
984 					panic("bgetvp - overlapping buffer");
985 			}
986 		}
987 	}
988 	bp->b_vp = vp;
989 	bp->b_flags |= B_HASHED;
990 	bp->b_flags |= B_VNCLEAN;
991 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
992 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
993 	/*vhold(vp);*/
994 	lwkt_reltoken(&vp->v_token);
995 	return(0);
996 }
997 
998 /*
999  * Disassociate a buffer from a vnode.
1000  *
1001  * MPSAFE
1002  */
1003 void
1004 brelvp(struct buf *bp)
1005 {
1006 	struct vnode *vp;
1007 
1008 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1009 
1010 	/*
1011 	 * Delete from old vnode list, if on one.
1012 	 */
1013 	vp = bp->b_vp;
1014 	lwkt_gettoken(&vp->v_token);
1015 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1016 		if (bp->b_flags & B_VNDIRTY)
1017 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1018 		else
1019 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1020 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1021 	}
1022 	if (bp->b_flags & B_HASHED) {
1023 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1024 		bp->b_flags &= ~B_HASHED;
1025 	}
1026 
1027 	/*
1028 	 * Only remove from synclist when no dirty buffers are left AND
1029 	 * the VFS has not flagged the vnode's inode as being dirty.
1030 	 */
1031 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1032 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1033 		vn_syncer_remove(vp, 0);
1034 	}
1035 	bp->b_vp = NULL;
1036 
1037 	lwkt_reltoken(&vp->v_token);
1038 
1039 	/*vdrop(vp);*/
1040 }
1041 
1042 /*
1043  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1044  * This routine is called when the state of the B_DELWRI bit is changed.
1045  *
1046  * Must be called with vp->v_token held.
1047  * MPSAFE
1048  */
1049 void
1050 reassignbuf(struct buf *bp)
1051 {
1052 	struct vnode *vp = bp->b_vp;
1053 	int delay;
1054 
1055 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1056 	++reassignbufcalls;
1057 
1058 	/*
1059 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1060 	 * is not fully linked in.
1061 	 */
1062 	if (bp->b_flags & B_PAGING)
1063 		panic("cannot reassign paging buffer");
1064 
1065 	if (bp->b_flags & B_DELWRI) {
1066 		/*
1067 		 * Move to the dirty list, add the vnode to the worklist
1068 		 */
1069 		if (bp->b_flags & B_VNCLEAN) {
1070 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1071 			bp->b_flags &= ~B_VNCLEAN;
1072 		}
1073 		if ((bp->b_flags & B_VNDIRTY) == 0) {
1074 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1075 				panic("reassignbuf: dup lblk vp %p bp %p",
1076 				      vp, bp);
1077 			}
1078 			bp->b_flags |= B_VNDIRTY;
1079 		}
1080 		if ((vp->v_flag & VONWORKLST) == 0) {
1081 			switch (vp->v_type) {
1082 			case VDIR:
1083 				delay = dirdelay;
1084 				break;
1085 			case VCHR:
1086 			case VBLK:
1087 				if (vp->v_rdev &&
1088 				    vp->v_rdev->si_mountpoint != NULL) {
1089 					delay = metadelay;
1090 					break;
1091 				}
1092 				/* fall through */
1093 			default:
1094 				delay = filedelay;
1095 			}
1096 			vn_syncer_add(vp, delay);
1097 		}
1098 	} else {
1099 		/*
1100 		 * Move to the clean list, remove the vnode from the worklist
1101 		 * if no dirty blocks remain.
1102 		 */
1103 		if (bp->b_flags & B_VNDIRTY) {
1104 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1105 			bp->b_flags &= ~B_VNDIRTY;
1106 		}
1107 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1108 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1109 				panic("reassignbuf: dup lblk vp %p bp %p",
1110 				      vp, bp);
1111 			}
1112 			bp->b_flags |= B_VNCLEAN;
1113 		}
1114 
1115 		/*
1116 		 * Only remove from synclist when no dirty buffers are left
1117 		 * AND the VFS has not flagged the vnode's inode as being
1118 		 * dirty.
1119 		 */
1120 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1121 		     VONWORKLST &&
1122 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1123 			vn_syncer_remove(vp, 0);
1124 		}
1125 	}
1126 }
1127 
1128 /*
1129  * Create a vnode for a block device.  Used for mounting the root file
1130  * system.
1131  *
1132  * A vref()'d vnode is returned.
1133  */
1134 extern struct vop_ops *devfs_vnode_dev_vops_p;
1135 int
1136 bdevvp(cdev_t dev, struct vnode **vpp)
1137 {
1138 	struct vnode *vp;
1139 	struct vnode *nvp;
1140 	int error;
1141 
1142 	if (dev == NULL) {
1143 		*vpp = NULLVP;
1144 		return (ENXIO);
1145 	}
1146 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1147 				&nvp, 0, 0);
1148 	if (error) {
1149 		*vpp = NULLVP;
1150 		return (error);
1151 	}
1152 	vp = nvp;
1153 	vp->v_type = VCHR;
1154 #if 0
1155 	vp->v_rdev = dev;
1156 #endif
1157 	v_associate_rdev(vp, dev);
1158 	vp->v_umajor = dev->si_umajor;
1159 	vp->v_uminor = dev->si_uminor;
1160 	vx_unlock(vp);
1161 	*vpp = vp;
1162 	return (0);
1163 }
1164 
1165 int
1166 v_associate_rdev(struct vnode *vp, cdev_t dev)
1167 {
1168 	if (dev == NULL)
1169 		return(ENXIO);
1170 	if (dev_is_good(dev) == 0)
1171 		return(ENXIO);
1172 	KKASSERT(vp->v_rdev == NULL);
1173 	vp->v_rdev = reference_dev(dev);
1174 	lwkt_gettoken(&spechash_token);
1175 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1176 	lwkt_reltoken(&spechash_token);
1177 	return(0);
1178 }
1179 
1180 void
1181 v_release_rdev(struct vnode *vp)
1182 {
1183 	cdev_t dev;
1184 
1185 	if ((dev = vp->v_rdev) != NULL) {
1186 		lwkt_gettoken(&spechash_token);
1187 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1188 		vp->v_rdev = NULL;
1189 		release_dev(dev);
1190 		lwkt_reltoken(&spechash_token);
1191 	}
1192 }
1193 
1194 /*
1195  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1196  * the device number with the vnode.  The actual device is not associated
1197  * until the vnode is opened (usually in spec_open()), and will be
1198  * disassociated on last close.
1199  */
1200 void
1201 addaliasu(struct vnode *nvp, int x, int y)
1202 {
1203 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1204 		panic("addaliasu on non-special vnode");
1205 	nvp->v_umajor = x;
1206 	nvp->v_uminor = y;
1207 }
1208 
1209 /*
1210  * Simple call that a filesystem can make to try to get rid of a
1211  * vnode.  It will fail if anyone is referencing the vnode (including
1212  * the caller).
1213  *
1214  * The filesystem can check whether its in-memory inode structure still
1215  * references the vp on return.
1216  *
1217  * May only be called if the vnode is in a known state (i.e. being prevented
1218  * from being deallocated by some other condition such as a vfs inode hold).
1219  */
1220 void
1221 vclean_unlocked(struct vnode *vp)
1222 {
1223 	vx_get(vp);
1224 	if (VREFCNT(vp) <= 1)
1225 		vgone_vxlocked(vp);
1226 	vx_put(vp);
1227 }
1228 
1229 /*
1230  * Disassociate a vnode from its underlying filesystem.
1231  *
1232  * The vnode must be VX locked and referenced.  In all normal situations
1233  * there are no active references.  If vclean_vxlocked() is called while
1234  * there are active references, the vnode is being ripped out and we have
1235  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1236  */
1237 void
1238 vclean_vxlocked(struct vnode *vp, int flags)
1239 {
1240 	int active;
1241 	int n;
1242 	vm_object_t object;
1243 	struct namecache *ncp;
1244 
1245 	/*
1246 	 * If the vnode has already been reclaimed we have nothing to do.
1247 	 */
1248 	if (vp->v_flag & VRECLAIMED)
1249 		return;
1250 
1251 	/*
1252 	 * Set flag to interlock operation, flag finalization to ensure
1253 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1254 	 */
1255 	vsetflags(vp, VRECLAIMED);
1256 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1257 	vp->v_act = 0;
1258 
1259 	if (verbose_reclaims) {
1260 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1261 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1262 	}
1263 
1264 	/*
1265 	 * Scrap the vfs cache
1266 	 */
1267 	while (cache_inval_vp(vp, 0) != 0) {
1268 		kprintf("Warning: vnode %p clean/cache_resolution "
1269 			"race detected\n", vp);
1270 		tsleep(vp, 0, "vclninv", 2);
1271 	}
1272 
1273 	/*
1274 	 * Check to see if the vnode is in use. If so we have to reference it
1275 	 * before we clean it out so that its count cannot fall to zero and
1276 	 * generate a race against ourselves to recycle it.
1277 	 */
1278 	active = (VREFCNT(vp) > 0);
1279 
1280 	/*
1281 	 * Clean out any buffers associated with the vnode and destroy its
1282 	 * object, if it has one.
1283 	 */
1284 	vinvalbuf(vp, V_SAVE, 0, 0);
1285 
1286 	/*
1287 	 * If purging an active vnode (typically during a forced unmount
1288 	 * or reboot), it must be closed and deactivated before being
1289 	 * reclaimed.  This isn't really all that safe, but what can
1290 	 * we do? XXX.
1291 	 *
1292 	 * Note that neither of these routines unlocks the vnode.
1293 	 */
1294 	if (active && (flags & DOCLOSE)) {
1295 		while ((n = vp->v_opencount) != 0) {
1296 			if (vp->v_writecount)
1297 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1298 			else
1299 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1300 			if (vp->v_opencount == n) {
1301 				kprintf("Warning: unable to force-close"
1302 				       " vnode %p\n", vp);
1303 				break;
1304 			}
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1310 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1311 	 * again to make sure they all get flushed.
1312 	 *
1313 	 * This can occur if a file with a link count of 0 needs to be
1314 	 * truncated.
1315 	 *
1316 	 * If the vnode is already dead don't try to deactivate it.
1317 	 */
1318 	if ((vp->v_flag & VINACTIVE) == 0) {
1319 		vsetflags(vp, VINACTIVE);
1320 		if (vp->v_mount)
1321 			VOP_INACTIVE(vp);
1322 		vinvalbuf(vp, V_SAVE, 0, 0);
1323 	}
1324 
1325 	/*
1326 	 * If the vnode has an object, destroy it.
1327 	 */
1328 	while ((object = vp->v_object) != NULL) {
1329 		vm_object_hold(object);
1330 		if (object == vp->v_object)
1331 			break;
1332 		vm_object_drop(object);
1333 	}
1334 
1335 	if (object != NULL) {
1336 		if (object->ref_count == 0) {
1337 			if ((object->flags & OBJ_DEAD) == 0)
1338 				vm_object_terminate(object);
1339 			vm_object_drop(object);
1340 			vclrflags(vp, VOBJBUF);
1341 		} else {
1342 			vm_pager_deallocate(object);
1343 			vclrflags(vp, VOBJBUF);
1344 			vm_object_drop(object);
1345 		}
1346 	}
1347 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1348 
1349 	if (vp->v_flag & VOBJDIRTY)
1350 		vclrobjdirty(vp);
1351 
1352 	/*
1353 	 * Reclaim the vnode if not already dead.
1354 	 */
1355 	if (vp->v_mount && VOP_RECLAIM(vp))
1356 		panic("vclean: cannot reclaim");
1357 
1358 	/*
1359 	 * Done with purge, notify sleepers of the grim news.
1360 	 */
1361 	vp->v_ops = &dead_vnode_vops_p;
1362 	vn_gone(vp);
1363 	vp->v_tag = VT_NON;
1364 
1365 	/*
1366 	 * If we are destroying an active vnode, reactivate it now that
1367 	 * we have reassociated it with deadfs.  This prevents the system
1368 	 * from crashing on the vnode due to it being unexpectedly marked
1369 	 * as inactive or reclaimed.
1370 	 */
1371 	if (active && (flags & DOCLOSE)) {
1372 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1373 	}
1374 }
1375 
1376 /*
1377  * Eliminate all activity associated with the requested vnode
1378  * and with all vnodes aliased to the requested vnode.
1379  *
1380  * The vnode must be referenced but should not be locked.
1381  */
1382 int
1383 vrevoke(struct vnode *vp, struct ucred *cred)
1384 {
1385 	struct vnode *vq;
1386 	struct vnode *vqn;
1387 	cdev_t dev;
1388 	int error;
1389 
1390 	/*
1391 	 * If the vnode has a device association, scrap all vnodes associated
1392 	 * with the device.  Don't let the device disappear on us while we
1393 	 * are scrapping the vnodes.
1394 	 *
1395 	 * The passed vp will probably show up in the list, do not VX lock
1396 	 * it twice!
1397 	 *
1398 	 * Releasing the vnode's rdev here can mess up specfs's call to
1399 	 * device close, so don't do it.  The vnode has been disassociated
1400 	 * and the device will be closed after the last ref on the related
1401 	 * fp goes away (if not still open by e.g. the kernel).
1402 	 */
1403 	if (vp->v_type != VCHR) {
1404 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1405 		return (error);
1406 	}
1407 	if ((dev = vp->v_rdev) == NULL) {
1408 		return(0);
1409 	}
1410 	reference_dev(dev);
1411 	lwkt_gettoken(&spechash_token);
1412 
1413 restart:
1414 	vqn = SLIST_FIRST(&dev->si_hlist);
1415 	if (vqn)
1416 		vhold(vqn);
1417 	while ((vq = vqn) != NULL) {
1418 		if (VREFCNT(vq) > 0) {
1419 			vref(vq);
1420 			fdrevoke(vq, DTYPE_VNODE, cred);
1421 			/*v_release_rdev(vq);*/
1422 			vrele(vq);
1423 			if (vq->v_rdev != dev) {
1424 				vdrop(vq);
1425 				goto restart;
1426 			}
1427 		}
1428 		vqn = SLIST_NEXT(vq, v_cdevnext);
1429 		if (vqn)
1430 			vhold(vqn);
1431 		vdrop(vq);
1432 	}
1433 	lwkt_reltoken(&spechash_token);
1434 	dev_drevoke(dev);
1435 	release_dev(dev);
1436 	return (0);
1437 }
1438 
1439 /*
1440  * This is called when the object underlying a vnode is being destroyed,
1441  * such as in a remove().  Try to recycle the vnode immediately if the
1442  * only active reference is our reference.
1443  *
1444  * Directory vnodes in the namecache with children cannot be immediately
1445  * recycled because numerous VOP_N*() ops require them to be stable.
1446  *
1447  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1448  * function is a NOP if VRECLAIMED is already set.
1449  */
1450 int
1451 vrecycle(struct vnode *vp)
1452 {
1453 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1454 		if (cache_inval_vp_nonblock(vp))
1455 			return(0);
1456 		vgone_vxlocked(vp);
1457 		return (1);
1458 	}
1459 	return (0);
1460 }
1461 
1462 /*
1463  * Return the maximum I/O size allowed for strategy calls on VP.
1464  *
1465  * If vp is VCHR or VBLK we dive the device, otherwise we use
1466  * the vp's mount info.
1467  *
1468  * The returned value is clamped at MAXPHYS as most callers cannot use
1469  * buffers larger than that size.
1470  */
1471 int
1472 vmaxiosize(struct vnode *vp)
1473 {
1474 	int maxiosize;
1475 
1476 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1477 		maxiosize = vp->v_rdev->si_iosize_max;
1478 	else
1479 		maxiosize = vp->v_mount->mnt_iosize_max;
1480 
1481 	if (maxiosize > MAXPHYS)
1482 		maxiosize = MAXPHYS;
1483 	return (maxiosize);
1484 }
1485 
1486 /*
1487  * Eliminate all activity associated with a vnode in preparation for
1488  * destruction.
1489  *
1490  * The vnode must be VX locked and refd and will remain VX locked and refd
1491  * on return.  This routine may be called with the vnode in any state, as
1492  * long as it is VX locked.  The vnode will be cleaned out and marked
1493  * VRECLAIMED but will not actually be reused until all existing refs and
1494  * holds go away.
1495  *
1496  * NOTE: This routine may be called on a vnode which has not yet been
1497  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1498  * already been reclaimed.
1499  *
1500  * This routine is not responsible for placing us back on the freelist.
1501  * Instead, it happens automatically when the caller releases the VX lock
1502  * (assuming there aren't any other references).
1503  */
1504 void
1505 vgone_vxlocked(struct vnode *vp)
1506 {
1507 	/*
1508 	 * assert that the VX lock is held.  This is an absolute requirement
1509 	 * now for vgone_vxlocked() to be called.
1510 	 */
1511 	KKASSERT(lockinuse(&vp->v_lock));
1512 
1513 	/*
1514 	 * Clean out the filesystem specific data and set the VRECLAIMED
1515 	 * bit.  Also deactivate the vnode if necessary.
1516 	 *
1517 	 * The vnode should have automatically been removed from the syncer
1518 	 * list as syncer/dirty flags cleared during the cleaning.
1519 	 */
1520 	vclean_vxlocked(vp, DOCLOSE);
1521 
1522 	/*
1523 	 * Normally panic if the vnode is still dirty, unless we are doing
1524 	 * a forced unmount (tmpfs typically).
1525 	 */
1526 	if (vp->v_flag & VONWORKLST) {
1527 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1528 			/* force removal */
1529 			vn_syncer_remove(vp, 1);
1530 		} else {
1531 			panic("vp %p still dirty in vgone after flush", vp);
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * Delete from old mount point vnode list, if on one.
1537 	 */
1538 	if (vp->v_mount != NULL) {
1539 		KKASSERT(vp->v_data == NULL);
1540 		insmntque(vp, NULL);
1541 	}
1542 
1543 	/*
1544 	 * If special device, remove it from special device alias list
1545 	 * if it is on one.  This should normally only occur if a vnode is
1546 	 * being revoked as the device should otherwise have been released
1547 	 * naturally.
1548 	 */
1549 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1550 		v_release_rdev(vp);
1551 	}
1552 
1553 	/*
1554 	 * Set us to VBAD
1555 	 */
1556 	vp->v_type = VBAD;
1557 }
1558 
1559 /*
1560  * Calculate the total number of references to a special device.  This
1561  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1562  * an overloaded field.  Since dev_from_devid() can now return NULL, we
1563  * have to check for a NULL v_rdev.
1564  */
1565 int
1566 count_dev(cdev_t dev)
1567 {
1568 	struct vnode *vp;
1569 	int count = 0;
1570 
1571 	if (SLIST_FIRST(&dev->si_hlist)) {
1572 		lwkt_gettoken(&spechash_token);
1573 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1574 			count += vp->v_opencount;
1575 		}
1576 		lwkt_reltoken(&spechash_token);
1577 	}
1578 	return(count);
1579 }
1580 
1581 int
1582 vcount(struct vnode *vp)
1583 {
1584 	if (vp->v_rdev == NULL)
1585 		return(0);
1586 	return(count_dev(vp->v_rdev));
1587 }
1588 
1589 /*
1590  * Initialize VMIO for a vnode.  This routine MUST be called before a
1591  * VFS can issue buffer cache ops on a vnode.  It is typically called
1592  * when a vnode is initialized from its inode.
1593  */
1594 int
1595 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1596 {
1597 	vm_object_t object;
1598 	int error = 0;
1599 
1600 	object = vp->v_object;
1601 	if (object) {
1602 		vm_object_hold(object);
1603 		KKASSERT(vp->v_object == object);
1604 	}
1605 
1606 	if (object == NULL) {
1607 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1608 
1609 		/*
1610 		 * Dereference the reference we just created.  This assumes
1611 		 * that the object is associated with the vp.  Allow it to
1612 		 * have zero refs.  It cannot be destroyed as long as it
1613 		 * is associated with the vnode.
1614 		 */
1615 		vm_object_hold(object);
1616 		atomic_add_int(&object->ref_count, -1);
1617 		vrele(vp);
1618 	} else {
1619 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1620 	}
1621 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1622 	vsetflags(vp, VOBJBUF);
1623 	vm_object_drop(object);
1624 
1625 	return (error);
1626 }
1627 
1628 
1629 /*
1630  * Print out a description of a vnode.
1631  */
1632 static char *typename[] =
1633 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1634 
1635 void
1636 vprint(char *label, struct vnode *vp)
1637 {
1638 	char buf[96];
1639 
1640 	if (label != NULL)
1641 		kprintf("%s: %p: ", label, (void *)vp);
1642 	else
1643 		kprintf("%p: ", (void *)vp);
1644 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1645 		typename[vp->v_type],
1646 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1647 	buf[0] = '\0';
1648 	if (vp->v_flag & VROOT)
1649 		strcat(buf, "|VROOT");
1650 	if (vp->v_flag & VPFSROOT)
1651 		strcat(buf, "|VPFSROOT");
1652 	if (vp->v_flag & VTEXT)
1653 		strcat(buf, "|VTEXT");
1654 	if (vp->v_flag & VSYSTEM)
1655 		strcat(buf, "|VSYSTEM");
1656 	if (vp->v_flag & VOBJBUF)
1657 		strcat(buf, "|VOBJBUF");
1658 	if (buf[0] != '\0')
1659 		kprintf(" flags (%s)", &buf[1]);
1660 	if (vp->v_data == NULL) {
1661 		kprintf("\n");
1662 	} else {
1663 		kprintf("\n\t");
1664 		VOP_PRINT(vp);
1665 	}
1666 }
1667 
1668 /*
1669  * Do the usual access checking.
1670  * file_mode, uid and gid are from the vnode in question,
1671  * while acc_mode and cred are from the VOP_ACCESS parameter list
1672  */
1673 int
1674 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1675     mode_t acc_mode, struct ucred *cred)
1676 {
1677 	mode_t mask;
1678 	int ismember;
1679 
1680 	/*
1681 	 * Super-user always gets read/write access, but execute access depends
1682 	 * on at least one execute bit being set.
1683 	 */
1684 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1685 		if ((acc_mode & VEXEC) && type != VDIR &&
1686 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1687 			return (EACCES);
1688 		return (0);
1689 	}
1690 
1691 	mask = 0;
1692 
1693 	/* Otherwise, check the owner. */
1694 	if (cred->cr_uid == uid) {
1695 		if (acc_mode & VEXEC)
1696 			mask |= S_IXUSR;
1697 		if (acc_mode & VREAD)
1698 			mask |= S_IRUSR;
1699 		if (acc_mode & VWRITE)
1700 			mask |= S_IWUSR;
1701 		return ((file_mode & mask) == mask ? 0 : EACCES);
1702 	}
1703 
1704 	/* Otherwise, check the groups. */
1705 	ismember = groupmember(gid, cred);
1706 	if (cred->cr_svgid == gid || ismember) {
1707 		if (acc_mode & VEXEC)
1708 			mask |= S_IXGRP;
1709 		if (acc_mode & VREAD)
1710 			mask |= S_IRGRP;
1711 		if (acc_mode & VWRITE)
1712 			mask |= S_IWGRP;
1713 		return ((file_mode & mask) == mask ? 0 : EACCES);
1714 	}
1715 
1716 	/* Otherwise, check everyone else. */
1717 	if (acc_mode & VEXEC)
1718 		mask |= S_IXOTH;
1719 	if (acc_mode & VREAD)
1720 		mask |= S_IROTH;
1721 	if (acc_mode & VWRITE)
1722 		mask |= S_IWOTH;
1723 	return ((file_mode & mask) == mask ? 0 : EACCES);
1724 }
1725 
1726 #ifdef DDB
1727 #include <ddb/ddb.h>
1728 
1729 static int db_show_locked_vnodes(struct mount *mp, void *data);
1730 
1731 /*
1732  * List all of the locked vnodes in the system.
1733  * Called when debugging the kernel.
1734  */
1735 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1736 {
1737 	kprintf("Locked vnodes\n");
1738 	mountlist_scan(db_show_locked_vnodes, NULL,
1739 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1740 }
1741 
1742 static int
1743 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1744 {
1745 	struct vnode *vp;
1746 
1747 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1748 		if (vn_islocked(vp))
1749 			vprint(NULL, vp);
1750 	}
1751 	return(0);
1752 }
1753 #endif
1754 
1755 /*
1756  * Top level filesystem related information gathering.
1757  */
1758 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1759 
1760 static int
1761 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1762 {
1763 	int *name = (int *)arg1 - 1;	/* XXX */
1764 	u_int namelen = arg2 + 1;	/* XXX */
1765 	struct vfsconf *vfsp;
1766 	int maxtypenum;
1767 
1768 #if 1 || defined(COMPAT_PRELITE2)
1769 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1770 	if (namelen == 1)
1771 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1772 #endif
1773 
1774 #ifdef notyet
1775 	/* all sysctl names at this level are at least name and field */
1776 	if (namelen < 2)
1777 		return (ENOTDIR);		/* overloaded */
1778 	if (name[0] != VFS_GENERIC) {
1779 		vfsp = vfsconf_find_by_typenum(name[0]);
1780 		if (vfsp == NULL)
1781 			return (EOPNOTSUPP);
1782 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1783 		    oldp, oldlenp, newp, newlen, p));
1784 	}
1785 #endif
1786 	switch (name[1]) {
1787 	case VFS_MAXTYPENUM:
1788 		if (namelen != 2)
1789 			return (ENOTDIR);
1790 		maxtypenum = vfsconf_get_maxtypenum();
1791 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1792 	case VFS_CONF:
1793 		if (namelen != 3)
1794 			return (ENOTDIR);	/* overloaded */
1795 		vfsp = vfsconf_find_by_typenum(name[2]);
1796 		if (vfsp == NULL)
1797 			return (EOPNOTSUPP);
1798 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1799 	}
1800 	return (EOPNOTSUPP);
1801 }
1802 
1803 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1804 	"Generic filesystem");
1805 
1806 #if 1 || defined(COMPAT_PRELITE2)
1807 
1808 static int
1809 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1810 {
1811 	int error;
1812 	struct ovfsconf ovfs;
1813 	struct sysctl_req *req = (struct sysctl_req*) data;
1814 
1815 	bzero(&ovfs, sizeof(ovfs));
1816 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1817 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1818 	ovfs.vfc_index = vfsp->vfc_typenum;
1819 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1820 	ovfs.vfc_flags = vfsp->vfc_flags;
1821 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1822 	if (error)
1823 		return error; /* abort iteration with error code */
1824 	else
1825 		return 0; /* continue iterating with next element */
1826 }
1827 
1828 static int
1829 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1830 {
1831 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1832 }
1833 
1834 #endif /* 1 || COMPAT_PRELITE2 */
1835 
1836 /*
1837  * Check to see if a filesystem is mounted on a block device.
1838  */
1839 int
1840 vfs_mountedon(struct vnode *vp)
1841 {
1842 	cdev_t dev;
1843 
1844 	if ((dev = vp->v_rdev) == NULL) {
1845 /*		if (vp->v_type != VBLK)
1846 			dev = get_dev(vp->v_uminor, vp->v_umajor); */
1847 	}
1848 	if (dev != NULL && dev->si_mountpoint)
1849 		return (EBUSY);
1850 	return (0);
1851 }
1852 
1853 /*
1854  * Unmount all filesystems. The list is traversed in reverse order
1855  * of mounting to avoid dependencies.
1856  *
1857  * We want the umountall to be able to break out of its loop if a
1858  * failure occurs, after scanning all possible mounts, so the callback
1859  * returns 0 on error.
1860  *
1861  * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1862  *	 confuse mountlist_scan()'s unbusy check.
1863  */
1864 static int vfs_umountall_callback(struct mount *mp, void *data);
1865 
1866 void
1867 vfs_unmountall(int halting)
1868 {
1869 	int count;
1870 
1871 	do {
1872 		count = mountlist_scan(vfs_umountall_callback, &halting,
1873 				       MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1874 	} while (count);
1875 }
1876 
1877 static
1878 int
1879 vfs_umountall_callback(struct mount *mp, void *data)
1880 {
1881 	int error;
1882 	int halting = *(int *)data;
1883 
1884 	/*
1885 	 * NOTE: When halting, dounmount will disconnect but leave
1886 	 *	 certain mount points intact.  e.g. devfs.
1887 	 */
1888 	error = dounmount(mp, MNT_FORCE, halting);
1889 	if (error) {
1890 		kprintf("unmount of filesystem mounted from %s failed (",
1891 			mp->mnt_stat.f_mntfromname);
1892 		if (error == EBUSY)
1893 			kprintf("BUSY)\n");
1894 		else
1895 			kprintf("%d)\n", error);
1896 		return 0;
1897 	} else {
1898 		return 1;
1899 	}
1900 }
1901 
1902 /*
1903  * Checks the mount flags for parameter mp and put the names comma-separated
1904  * into a string buffer buf with a size limit specified by len.
1905  *
1906  * It returns the number of bytes written into buf, and (*errorp) will be
1907  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1908  * not large enough).  The buffer will be 0-terminated if len was not 0.
1909  */
1910 size_t
1911 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1912 	       char *buf, size_t len, int *errorp)
1913 {
1914 	static const struct mountctl_opt optnames[] = {
1915 		{ MNT_RDONLY,           "read-only" },
1916 		{ MNT_SYNCHRONOUS,      "synchronous" },
1917 		{ MNT_NOEXEC,           "noexec" },
1918 		{ MNT_NOSUID,           "nosuid" },
1919 		{ MNT_NODEV,            "nodev" },
1920 		{ MNT_AUTOMOUNTED,      "automounted" },
1921 		{ MNT_ASYNC,            "asynchronous" },
1922 		{ MNT_SUIDDIR,          "suiddir" },
1923 		{ MNT_SOFTDEP,          "soft-updates" },
1924 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1925 		{ MNT_TRIM,             "trim" },
1926 		{ MNT_NOATIME,          "noatime" },
1927 		{ MNT_NOCLUSTERR,       "noclusterr" },
1928 		{ MNT_NOCLUSTERW,       "noclusterw" },
1929 		{ MNT_EXRDONLY,         "NFS read-only" },
1930 		{ MNT_EXPORTED,         "NFS exported" },
1931 		/* Remaining NFS flags could come here */
1932 		{ MNT_LOCAL,            "local" },
1933 		{ MNT_QUOTA,            "with-quotas" },
1934 		/* { MNT_ROOTFS,           "rootfs" }, */
1935 		/* { MNT_IGNORE,           "ignore" }, */
1936 		{ 0,			NULL}
1937 	};
1938 	int bwritten;
1939 	int bleft;
1940 	int optlen;
1941 	int actsize;
1942 
1943 	*errorp = 0;
1944 	bwritten = 0;
1945 	bleft = len - 1;	/* leave room for trailing \0 */
1946 
1947 	/*
1948 	 * Checks the size of the string. If it contains
1949 	 * any data, then we will append the new flags to
1950 	 * it.
1951 	 */
1952 	actsize = strlen(buf);
1953 	if (actsize > 0)
1954 		buf += actsize;
1955 
1956 	/* Default flags if no flags passed */
1957 	if (optp == NULL)
1958 		optp = optnames;
1959 
1960 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1961 		*errorp = EINVAL;
1962 		return(0);
1963 	}
1964 
1965 	for (; flags && optp->o_opt; ++optp) {
1966 		if ((flags & optp->o_opt) == 0)
1967 			continue;
1968 		optlen = strlen(optp->o_name);
1969 		if (bwritten || actsize > 0) {
1970 			if (bleft < 2) {
1971 				*errorp = ENOSPC;
1972 				break;
1973 			}
1974 			buf[bwritten++] = ',';
1975 			buf[bwritten++] = ' ';
1976 			bleft -= 2;
1977 		}
1978 		if (bleft < optlen) {
1979 			*errorp = ENOSPC;
1980 			break;
1981 		}
1982 		bcopy(optp->o_name, buf + bwritten, optlen);
1983 		bwritten += optlen;
1984 		bleft -= optlen;
1985 		flags &= ~optp->o_opt;
1986 	}
1987 
1988 	/*
1989 	 * Space already reserved for trailing \0
1990 	 */
1991 	buf[bwritten] = 0;
1992 	return (bwritten);
1993 }
1994 
1995 /*
1996  * Build hash lists of net addresses and hang them off the mount point.
1997  * Called by ufs_mount() to set up the lists of export addresses.
1998  */
1999 static int
2000 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2001 		const struct export_args *argp)
2002 {
2003 	struct netcred *np;
2004 	struct radix_node_head *rnh;
2005 	int i;
2006 	struct radix_node *rn;
2007 	struct sockaddr *saddr, *smask = NULL;
2008 	int error;
2009 
2010 	if (argp->ex_addrlen == 0) {
2011 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2012 			return (EPERM);
2013 		np = &nep->ne_defexported;
2014 		np->netc_exflags = argp->ex_flags;
2015 		np->netc_anon = argp->ex_anon;
2016 		np->netc_anon.cr_ref = 1;
2017 		mp->mnt_flag |= MNT_DEFEXPORTED;
2018 		return (0);
2019 	}
2020 
2021 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2022 		return (EINVAL);
2023 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2024 		return (EINVAL);
2025 
2026 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2027 	np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2028 	saddr = (struct sockaddr *) (np + 1);
2029 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2030 		goto out;
2031 	if (saddr->sa_len > argp->ex_addrlen)
2032 		saddr->sa_len = argp->ex_addrlen;
2033 	if (argp->ex_masklen) {
2034 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2035 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2036 		if (error)
2037 			goto out;
2038 		if (smask->sa_len > argp->ex_masklen)
2039 			smask->sa_len = argp->ex_masklen;
2040 	}
2041 	NE_LOCK(nep);
2042 	if (nep->ne_maskhead == NULL) {
2043 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2044 			error = ENOBUFS;
2045 			goto out;
2046 		}
2047 	}
2048 	if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2049 		error = ENOBUFS;
2050 		goto out;
2051 	}
2052 	rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2053 				 np->netc_rnodes);
2054 	NE_UNLOCK(nep);
2055 	if (rn == NULL || np != (struct netcred *)rn) {	/* already exists */
2056 		error = EPERM;
2057 		goto out;
2058 	}
2059 	np->netc_exflags = argp->ex_flags;
2060 	np->netc_anon = argp->ex_anon;
2061 	np->netc_anon.cr_ref = 1;
2062 	return (0);
2063 
2064 out:
2065 	kfree(np, M_NETCRED);
2066 	return (error);
2067 }
2068 
2069 /*
2070  * Free netcred structures installed in the netexport
2071  */
2072 static int
2073 vfs_free_netcred(struct radix_node *rn, void *w)
2074 {
2075 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2076 
2077 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2078 	kfree(rn, M_NETCRED);
2079 
2080 	return (0);
2081 }
2082 
2083 /*
2084  * callback to free an element of the mask table installed in the
2085  * netexport.  These may be created indirectly and are not netcred
2086  * structures.
2087  */
2088 static int
2089 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2090 {
2091 	struct radix_node_head *rnh = (struct radix_node_head *)w;
2092 
2093 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2094 	kfree(rn, M_RTABLE);
2095 
2096 	return (0);
2097 }
2098 
2099 static struct radix_node_head *
2100 vfs_create_addrlist_af(int af, struct netexport *nep)
2101 {
2102 	struct radix_node_head *rnh = NULL;
2103 #if defined(INET) || defined(INET6)
2104 	struct radix_node_head *maskhead = nep->ne_maskhead;
2105 	int off;
2106 #endif
2107 
2108 	NE_ASSERT_LOCKED(nep);
2109 #if defined(INET) || defined(INET6)
2110 	KKASSERT(maskhead != NULL);
2111 #endif
2112 	switch (af) {
2113 #ifdef INET
2114 	case AF_INET:
2115 		if ((rnh = nep->ne_inethead) == NULL) {
2116 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2117 			if (!rn_inithead((void **)&rnh, maskhead, off))
2118 				return (NULL);
2119 			nep->ne_inethead = rnh;
2120 		}
2121 		break;
2122 #endif
2123 #ifdef INET6
2124 	case AF_INET6:
2125 		if ((rnh = nep->ne_inet6head) == NULL) {
2126 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2127 			if (!rn_inithead((void **)&rnh, maskhead, off))
2128 				return (NULL);
2129 			nep->ne_inet6head = rnh;
2130 		}
2131 		break;
2132 #endif
2133 	}
2134 	return (rnh);
2135 }
2136 
2137 /*
2138  * helper function for freeing netcred elements
2139  */
2140 static void
2141 vfs_free_addrlist_af(struct radix_node_head **prnh)
2142 {
2143 	struct radix_node_head *rnh = *prnh;
2144 
2145 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2146 	kfree(rnh, M_RTABLE);
2147 	*prnh = NULL;
2148 }
2149 
2150 /*
2151  * helper function for freeing mask elements
2152  */
2153 static void
2154 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2155 {
2156 	struct radix_node_head *rnh = *prnh;
2157 
2158 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2159 	kfree(rnh, M_RTABLE);
2160 	*prnh = NULL;
2161 }
2162 
2163 /*
2164  * Free the net address hash lists that are hanging off the mount points.
2165  */
2166 static void
2167 vfs_free_addrlist(struct netexport *nep)
2168 {
2169 	NE_LOCK(nep);
2170 	if (nep->ne_inethead != NULL)
2171 		vfs_free_addrlist_af(&nep->ne_inethead);
2172 	if (nep->ne_inet6head != NULL)
2173 		vfs_free_addrlist_af(&nep->ne_inet6head);
2174 	if (nep->ne_maskhead)
2175 		vfs_free_addrlist_masks(&nep->ne_maskhead);
2176 	NE_UNLOCK(nep);
2177 }
2178 
2179 int
2180 vfs_export(struct mount *mp, struct netexport *nep,
2181 	   const struct export_args *argp)
2182 {
2183 	int error;
2184 
2185 	if (argp->ex_flags & MNT_DELEXPORT) {
2186 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2187 			vfs_setpublicfs(NULL, NULL, NULL);
2188 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2189 		}
2190 		vfs_free_addrlist(nep);
2191 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2192 	}
2193 	if (argp->ex_flags & MNT_EXPORTED) {
2194 		if (argp->ex_flags & MNT_EXPUBLIC) {
2195 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2196 				return (error);
2197 			mp->mnt_flag |= MNT_EXPUBLIC;
2198 		}
2199 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2200 			return (error);
2201 		mp->mnt_flag |= MNT_EXPORTED;
2202 	}
2203 	return (0);
2204 }
2205 
2206 
2207 /*
2208  * Set the publicly exported filesystem (WebNFS). Currently, only
2209  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2210  */
2211 int
2212 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2213 		const struct export_args *argp)
2214 {
2215 	int error;
2216 	struct vnode *rvp;
2217 	char *cp;
2218 
2219 	/*
2220 	 * mp == NULL -> invalidate the current info, the FS is
2221 	 * no longer exported. May be called from either vfs_export
2222 	 * or unmount, so check if it hasn't already been done.
2223 	 */
2224 	if (mp == NULL) {
2225 		if (nfs_pub.np_valid) {
2226 			nfs_pub.np_valid = 0;
2227 			if (nfs_pub.np_index != NULL) {
2228 				kfree(nfs_pub.np_index, M_TEMP);
2229 				nfs_pub.np_index = NULL;
2230 			}
2231 		}
2232 		return (0);
2233 	}
2234 
2235 	/*
2236 	 * Only one allowed at a time.
2237 	 */
2238 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2239 		return (EBUSY);
2240 
2241 	/*
2242 	 * Get real filehandle for root of exported FS.
2243 	 */
2244 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2245 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2246 
2247 	if ((error = VFS_ROOT(mp, &rvp)))
2248 		return (error);
2249 
2250 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2251 		return (error);
2252 
2253 	vput(rvp);
2254 
2255 	/*
2256 	 * If an indexfile was specified, pull it in.
2257 	 */
2258 	if (argp->ex_indexfile != NULL) {
2259 		int namelen;
2260 
2261 		error = vn_get_namelen(rvp, &namelen);
2262 		if (error)
2263 			return (error);
2264 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2265 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2266 		    namelen, NULL);
2267 		if (!error) {
2268 			/*
2269 			 * Check for illegal filenames.
2270 			 */
2271 			for (cp = nfs_pub.np_index; *cp; cp++) {
2272 				if (*cp == '/') {
2273 					error = EINVAL;
2274 					break;
2275 				}
2276 			}
2277 		}
2278 		if (error) {
2279 			kfree(nfs_pub.np_index, M_TEMP);
2280 			return (error);
2281 		}
2282 	}
2283 
2284 	nfs_pub.np_mount = mp;
2285 	nfs_pub.np_valid = 1;
2286 	return (0);
2287 }
2288 
2289 struct netcred *
2290 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2291 		struct sockaddr *nam)
2292 {
2293 	struct netcred *np;
2294 	struct radix_node_head *rnh;
2295 	struct sockaddr *saddr;
2296 
2297 	np = NULL;
2298 	if (mp->mnt_flag & MNT_EXPORTED) {
2299 		/*
2300 		 * Lookup in the export list first.
2301 		 */
2302 		NE_LOCK(nep);
2303 		if (nam != NULL) {
2304 			saddr = nam;
2305 			switch (saddr->sa_family) {
2306 #ifdef INET
2307 			case AF_INET:
2308 				rnh = nep->ne_inethead;
2309 				break;
2310 #endif
2311 #ifdef INET6
2312 			case AF_INET6:
2313 				rnh = nep->ne_inet6head;
2314 				break;
2315 #endif
2316 			default:
2317 				rnh = NULL;
2318 			}
2319 			if (rnh != NULL) {
2320 				np = (struct netcred *)
2321 					(*rnh->rnh_matchaddr)((char *)saddr,
2322 							      rnh);
2323 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2324 					np = NULL;
2325 			}
2326 		}
2327 		NE_UNLOCK(nep);
2328 		/*
2329 		 * If no address match, use the default if it exists.
2330 		 */
2331 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2332 			np = &nep->ne_defexported;
2333 	}
2334 	return (np);
2335 }
2336 
2337 /*
2338  * perform msync on all vnodes under a mount point.  The mount point must
2339  * be locked.  This code is also responsible for lazy-freeing unreferenced
2340  * vnodes whos VM objects no longer contain pages.
2341  *
2342  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2343  *
2344  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2345  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2346  * way up in this high level function.
2347  */
2348 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2349 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2350 
2351 void
2352 vfs_msync(struct mount *mp, int flags)
2353 {
2354 	int vmsc_flags;
2355 
2356 	/*
2357 	 * tmpfs sets this flag to prevent msync(), sync, and the
2358 	 * filesystem periodic syncer from trying to flush VM pages
2359 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2360 	 * to swap.
2361 	 */
2362 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2363 		return;
2364 
2365 	/*
2366 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2367 	 * syncer thread feature we can use vsyncscan() instead of
2368 	 * vmntvnodescan(), which is much faster.
2369 	 */
2370 	vmsc_flags = VMSC_GETVP;
2371 	if (flags != MNT_WAIT)
2372 		vmsc_flags |= VMSC_NOWAIT;
2373 
2374 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2375 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2376 			  (void *)(intptr_t)flags);
2377 	} else {
2378 		vmntvnodescan(mp, vmsc_flags,
2379 			      vfs_msync_scan1, vfs_msync_scan2,
2380 			      (void *)(intptr_t)flags);
2381 	}
2382 }
2383 
2384 /*
2385  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2386  * vnodes, we cannot afford to do anything heavy weight until we have a
2387  * fairly good indication that there is work to do.
2388  */
2389 static
2390 int
2391 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2392 {
2393 	int flags = (int)(intptr_t)data;
2394 
2395 	if ((vp->v_flag & VRECLAIMED) == 0) {
2396 		if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2397 		    vp->v_object) {
2398 			return(0);	/* call scan2 */
2399 		}
2400 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2401 		    (vp->v_flag & VOBJDIRTY) &&
2402 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2403 			return(0);	/* call scan2 */
2404 		}
2405 	}
2406 
2407 	/*
2408 	 * do not call scan2, continue the loop
2409 	 */
2410 	return(-1);
2411 }
2412 
2413 /*
2414  * This callback is handed a locked vnode.
2415  */
2416 static
2417 int
2418 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2419 {
2420 	vm_object_t obj;
2421 	int flags = (int)(intptr_t)data;
2422 	int opcflags;
2423 
2424 	if (vp->v_flag & VRECLAIMED)
2425 		return(0);
2426 
2427 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2428 		if ((obj = vp->v_object) != NULL) {
2429 			if (flags == MNT_WAIT) {
2430 				/*
2431 				 * VFS_MSYNC is called with MNT_WAIT when
2432 				 * unmounting.
2433 				 */
2434 				opcflags = OBJPC_SYNC;
2435 			} else if (vp->v_writecount || obj->ref_count) {
2436 				/*
2437 				 * VFS_MSYNC is otherwise called via the
2438 				 * periodic filesystem sync or the 'sync'
2439 				 * command.  Honor MADV_NOSYNC / MAP_NOSYNC
2440 				 * if the file is open for writing or memory
2441 				 * mapped.  Pages flagged PG_NOSYNC will not
2442 				 * be automatically flushed at this time.
2443 				 *
2444 				 * The obj->ref_count test is not perfect
2445 				 * since temporary refs may be present, but
2446 				 * the periodic filesystem sync will ultimately
2447 				 * catch it if the file is not open and not
2448 				 * mapped.
2449 				 */
2450 				opcflags = OBJPC_NOSYNC;
2451 			} else {
2452 				/*
2453 				 * If the file is no longer open for writing
2454 				 * and also no longer mapped, do not honor
2455 				 * MAP_NOSYNC.  That is, fully synchronize
2456 				 * the file.
2457 				 *
2458 				 * This still occurs on the periodic fs sync,
2459 				 * so frontend programs which turn the file
2460 				 * over quickly enough can still avoid the
2461 				 * sync, but ultimately we do want to flush
2462 				 * even MADV_NOSYNC pages once it is no longer
2463 				 * mapped or open for writing.
2464 				 */
2465 				opcflags = 0;
2466 			}
2467 			vm_object_page_clean(obj, 0, 0, opcflags);
2468 		}
2469 	}
2470 	return(0);
2471 }
2472 
2473 /*
2474  * Wake up anyone interested in vp because it is being revoked.
2475  */
2476 void
2477 vn_gone(struct vnode *vp)
2478 {
2479 	lwkt_gettoken(&vp->v_token);
2480 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2481 	lwkt_reltoken(&vp->v_token);
2482 }
2483 
2484 /*
2485  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2486  * (or v_rdev might be NULL).
2487  */
2488 cdev_t
2489 vn_todev(struct vnode *vp)
2490 {
2491 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2492 		return (NULL);
2493 	KKASSERT(vp->v_rdev != NULL);
2494 	return (vp->v_rdev);
2495 }
2496 
2497 /*
2498  * Check if vnode represents a disk device.  The vnode does not need to be
2499  * opened.
2500  *
2501  * MPALMOSTSAFE
2502  */
2503 int
2504 vn_isdisk(struct vnode *vp, int *errp)
2505 {
2506 	cdev_t dev;
2507 
2508 	if (vp->v_type != VCHR) {
2509 		if (errp != NULL)
2510 			*errp = ENOTBLK;
2511 		return (0);
2512 	}
2513 
2514 	dev = vp->v_rdev;
2515 
2516 	if (dev == NULL) {
2517 		if (errp != NULL)
2518 			*errp = ENXIO;
2519 		return (0);
2520 	}
2521 	if (dev_is_good(dev) == 0) {
2522 		if (errp != NULL)
2523 			*errp = ENXIO;
2524 		return (0);
2525 	}
2526 	if ((dev_dflags(dev) & D_DISK) == 0) {
2527 		if (errp != NULL)
2528 			*errp = ENOTBLK;
2529 		return (0);
2530 	}
2531 	if (errp != NULL)
2532 		*errp = 0;
2533 	return (1);
2534 }
2535 
2536 int
2537 vn_get_namelen(struct vnode *vp, int *namelen)
2538 {
2539 	int error;
2540 	register_t retval[2];
2541 
2542 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2543 	if (error)
2544 		return (error);
2545 	*namelen = (int)retval[0];
2546 	return (0);
2547 }
2548 
2549 int
2550 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2551 		uint16_t d_namlen, const char *d_name)
2552 {
2553 	struct dirent *dp;
2554 	size_t len;
2555 
2556 	len = _DIRENT_RECLEN(d_namlen);
2557 	if (len > uio->uio_resid)
2558 		return(1);
2559 
2560 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2561 
2562 	dp->d_ino = d_ino;
2563 	dp->d_namlen = d_namlen;
2564 	dp->d_type = d_type;
2565 	bcopy(d_name, dp->d_name, d_namlen);
2566 
2567 	*error = uiomove((caddr_t)dp, len, uio);
2568 
2569 	kfree(dp, M_TEMP);
2570 
2571 	return(0);
2572 }
2573 
2574 void
2575 vn_mark_atime(struct vnode *vp, struct thread *td)
2576 {
2577 	struct proc *p = td->td_proc;
2578 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2579 
2580 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2581 		VOP_MARKATIME(vp, cred);
2582 	}
2583 }
2584 
2585 /*
2586  * Calculate the number of entries in an inode-related chained hash table.
2587  * With today's memory sizes, maxvnodes can wind up being a very large
2588  * number.  There is no reason to waste memory, so tolerate some stacking.
2589  */
2590 int
2591 vfs_inodehashsize(void)
2592 {
2593 	int hsize;
2594 
2595 	hsize = 32;
2596 	while (hsize < maxvnodes)
2597 		hsize <<= 1;
2598 	while (hsize > maxvnodes * 2)
2599 		hsize >>= 1;		/* nominal 2x stacking */
2600 
2601 	if (maxvnodes > 1024 * 1024)
2602 		hsize >>= 1;		/* nominal 8x stacking */
2603 
2604 	if (maxvnodes > 128 * 1024)
2605 		hsize >>= 1;		/* nominal 4x stacking */
2606 
2607 	if (hsize < 16)
2608 		hsize = 16;
2609 
2610 	return hsize;
2611 }
2612 
2613 union _qcvt {
2614 	quad_t qcvt;
2615 	int32_t val[2];
2616 };
2617 
2618 #define SETHIGH(q, h) { \
2619 	union _qcvt tmp; \
2620 	tmp.qcvt = (q); \
2621 	tmp.val[_QUAD_HIGHWORD] = (h); \
2622 	(q) = tmp.qcvt; \
2623 }
2624 #define SETLOW(q, l) { \
2625 	union _qcvt tmp; \
2626 	tmp.qcvt = (q); \
2627 	tmp.val[_QUAD_LOWWORD] = (l); \
2628 	(q) = tmp.qcvt; \
2629 }
2630 
2631 u_quad_t
2632 init_va_filerev(void)
2633 {
2634 	struct timeval tv;
2635 	u_quad_t ret = 0;
2636 
2637 	getmicrouptime(&tv);
2638 	SETHIGH(ret, tv.tv_sec);
2639 	SETLOW(ret, tv.tv_usec * 4294);
2640 
2641 	return ret;
2642 }
2643