xref: /dragonfly/sys/kern/vfs_subr.c (revision ef2687d4)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/buf.h>
48 #include <sys/conf.h>
49 #include <sys/dirent.h>
50 #include <sys/eventhandler.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/mount.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/reboot.h>
61 #include <sys/socket.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/unistd.h>
66 #include <sys/vmmeter.h>
67 #include <sys/vnode.h>
68 
69 #include <machine/limits.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_pager.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_zone.h>
81 
82 #include <sys/buf2.h>
83 #include <sys/thread2.h>
84 #include <sys/sysref2.h>
85 #include <sys/mplock2.h>
86 
87 #include <netinet/in.h>
88 
89 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
90 
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93     "Number of vnodes allocated");
94 int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96     "Output filename of reclaimed vnode(s)");
97 
98 enum vtype iftovt_tab[16] = {
99 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101 };
102 int vttoif_tab[9] = {
103 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 	S_IFSOCK, S_IFIFO, S_IFMT,
105 };
106 
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109     0, "Number of times buffers have been reassigned to the proper list");
110 
111 static int check_buf_overlap = 2;	/* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113     0, "Enable overlapping buffer checks");
114 
115 int	nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub;	/* publicly exported FS */
118 
119 int desiredvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 		&desiredvnodes, 0, "Maximum number of vnodes");
122 
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 		    struct netexport *nep);
125 static void	vfs_free_addrlist (struct netexport *nep);
126 static int	vfs_free_netcred (struct radix_node *rn, void *w);
127 static void	vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 	            const struct export_args *argp);
130 
131 int	prtactive = 0;		/* 1 => print out reclaim of active vnodes */
132 
133 /*
134  * Red black tree functions
135  */
136 static int rb_buf_compare(struct buf *b1, struct buf *b2);
137 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
138 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
139 
140 static int
141 rb_buf_compare(struct buf *b1, struct buf *b2)
142 {
143 	if (b1->b_loffset < b2->b_loffset)
144 		return(-1);
145 	if (b1->b_loffset > b2->b_loffset)
146 		return(1);
147 	return(0);
148 }
149 
150 /*
151  * Initialize the vnode management data structures.
152  *
153  * Called from vfsinit()
154  */
155 void
156 vfs_subr_init(void)
157 {
158 	int factor1;
159 	int factor2;
160 
161 	/*
162 	 * Desiredvnodes is kern.maxvnodes.  We want to scale it
163 	 * according to available system memory but we may also have
164 	 * to limit it based on available KVM, which is capped on 32 bit
165 	 * systems, to ~80K vnodes or so.
166 	 *
167 	 * WARNING!  For machines with 64-256M of ram we have to be sure
168 	 *	     that the default limit scales down well due to HAMMER
169 	 *	     taking up significantly more memory per-vnode vs UFS.
170 	 *	     We want around ~5800 on a 128M machine.
171 	 */
172 	factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
173 	factor2 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
174 	desiredvnodes =
175 		imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
176 		     KvaSize / factor2);
177 	desiredvnodes = imax(desiredvnodes, maxproc * 8);
178 
179 	lwkt_token_init(&spechash_token, "spechash");
180 }
181 
182 /*
183  * Knob to control the precision of file timestamps:
184  *
185  *   0 = seconds only; nanoseconds zeroed.
186  *   1 = seconds and nanoseconds, accurate within 1/HZ.
187  *   2 = seconds and nanoseconds, truncated to microseconds.
188  * >=3 = seconds and nanoseconds, maximum precision.
189  */
190 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
191 
192 static int timestamp_precision = TSP_SEC;
193 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
194 		&timestamp_precision, 0, "Precision of file timestamps");
195 
196 /*
197  * Get a current timestamp.
198  *
199  * MPSAFE
200  */
201 void
202 vfs_timestamp(struct timespec *tsp)
203 {
204 	struct timeval tv;
205 
206 	switch (timestamp_precision) {
207 	case TSP_SEC:
208 		tsp->tv_sec = time_second;
209 		tsp->tv_nsec = 0;
210 		break;
211 	case TSP_HZ:
212 		getnanotime(tsp);
213 		break;
214 	case TSP_USEC:
215 		microtime(&tv);
216 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
217 		break;
218 	case TSP_NSEC:
219 	default:
220 		nanotime(tsp);
221 		break;
222 	}
223 }
224 
225 /*
226  * Set vnode attributes to VNOVAL
227  */
228 void
229 vattr_null(struct vattr *vap)
230 {
231 	vap->va_type = VNON;
232 	vap->va_size = VNOVAL;
233 	vap->va_bytes = VNOVAL;
234 	vap->va_mode = VNOVAL;
235 	vap->va_nlink = VNOVAL;
236 	vap->va_uid = VNOVAL;
237 	vap->va_gid = VNOVAL;
238 	vap->va_fsid = VNOVAL;
239 	vap->va_fileid = VNOVAL;
240 	vap->va_blocksize = VNOVAL;
241 	vap->va_rmajor = VNOVAL;
242 	vap->va_rminor = VNOVAL;
243 	vap->va_atime.tv_sec = VNOVAL;
244 	vap->va_atime.tv_nsec = VNOVAL;
245 	vap->va_mtime.tv_sec = VNOVAL;
246 	vap->va_mtime.tv_nsec = VNOVAL;
247 	vap->va_ctime.tv_sec = VNOVAL;
248 	vap->va_ctime.tv_nsec = VNOVAL;
249 	vap->va_flags = VNOVAL;
250 	vap->va_gen = VNOVAL;
251 	vap->va_vaflags = 0;
252 	/* va_*_uuid fields are only valid if related flags are set */
253 }
254 
255 /*
256  * Flush out and invalidate all buffers associated with a vnode.
257  *
258  * vp must be locked.
259  */
260 static int vinvalbuf_bp(struct buf *bp, void *data);
261 
262 struct vinvalbuf_bp_info {
263 	struct vnode *vp;
264 	int slptimeo;
265 	int lkflags;
266 	int flags;
267 	int clean;
268 };
269 
270 int
271 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
272 {
273 	struct vinvalbuf_bp_info info;
274 	vm_object_t object;
275 	int error;
276 
277 	lwkt_gettoken(&vp->v_token);
278 
279 	/*
280 	 * If we are being asked to save, call fsync to ensure that the inode
281 	 * is updated.
282 	 */
283 	if (flags & V_SAVE) {
284 		error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
285 		if (error)
286 			goto done;
287 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
288 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
289 				goto done;
290 #if 0
291 			/*
292 			 * Dirty bufs may be left or generated via races
293 			 * in circumstances where vinvalbuf() is called on
294 			 * a vnode not undergoing reclamation.   Only
295 			 * panic if we are trying to reclaim the vnode.
296 			 */
297 			if ((vp->v_flag & VRECLAIMED) &&
298 			    (bio_track_active(&vp->v_track_write) ||
299 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
300 				panic("vinvalbuf: dirty bufs");
301 			}
302 #endif
303 		}
304   	}
305 	info.slptimeo = slptimeo;
306 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
307 	if (slpflag & PCATCH)
308 		info.lkflags |= LK_PCATCH;
309 	info.flags = flags;
310 	info.vp = vp;
311 
312 	/*
313 	 * Flush the buffer cache until nothing is left, wait for all I/O
314 	 * to complete.  At least one pass is required.  We might block
315 	 * in the pip code so we have to re-check.  Order is important.
316 	 */
317 	do {
318 		/*
319 		 * Flush buffer cache
320 		 */
321 		if (!RB_EMPTY(&vp->v_rbclean_tree)) {
322 			info.clean = 1;
323 			error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
324 					NULL, vinvalbuf_bp, &info);
325 		}
326 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
327 			info.clean = 0;
328 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
329 					NULL, vinvalbuf_bp, &info);
330 		}
331 
332 		/*
333 		 * Wait for I/O completion.
334 		 */
335 		bio_track_wait(&vp->v_track_write, 0, 0);
336 		if ((object = vp->v_object) != NULL)
337 			refcount_wait(&object->paging_in_progress, "vnvlbx");
338 	} while (bio_track_active(&vp->v_track_write) ||
339 		 !RB_EMPTY(&vp->v_rbclean_tree) ||
340 		 !RB_EMPTY(&vp->v_rbdirty_tree));
341 
342 	/*
343 	 * Destroy the copy in the VM cache, too.
344 	 */
345 	if ((object = vp->v_object) != NULL) {
346 		vm_object_page_remove(object, 0, 0,
347 			(flags & V_SAVE) ? TRUE : FALSE);
348 	}
349 
350 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
351 		panic("vinvalbuf: flush failed");
352 	if (!RB_EMPTY(&vp->v_rbhash_tree))
353 		panic("vinvalbuf: flush failed, buffers still present");
354 	error = 0;
355 done:
356 	lwkt_reltoken(&vp->v_token);
357 	return (error);
358 }
359 
360 static int
361 vinvalbuf_bp(struct buf *bp, void *data)
362 {
363 	struct vinvalbuf_bp_info *info = data;
364 	int error;
365 
366 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
367 		atomic_add_int(&bp->b_refs, 1);
368 		error = BUF_TIMELOCK(bp, info->lkflags,
369 				     "vinvalbuf", info->slptimeo);
370 		atomic_subtract_int(&bp->b_refs, 1);
371 		if (error == 0) {
372 			BUF_UNLOCK(bp);
373 			error = ENOLCK;
374 		}
375 		if (error == ENOLCK)
376 			return(0);
377 		return (-error);
378 	}
379 	KKASSERT(bp->b_vp == info->vp);
380 
381 	/*
382 	 * Must check clean/dirty status after successfully locking as
383 	 * it may race.
384 	 */
385 	if ((info->clean && (bp->b_flags & B_DELWRI)) ||
386 	    (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
387 		BUF_UNLOCK(bp);
388 		return(0);
389 	}
390 
391 	/*
392 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
393 	 * check.  This code will write out the buffer, period.
394 	 */
395 	bremfree(bp);
396 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
397 	    (info->flags & V_SAVE)) {
398 		cluster_awrite(bp);
399 	} else if (info->flags & V_SAVE) {
400 		/*
401 		 * Cannot set B_NOCACHE on a clean buffer as this will
402 		 * destroy the VM backing store which might actually
403 		 * be dirty (and unsynchronized).
404 		 */
405 		bp->b_flags |= (B_INVAL | B_RELBUF);
406 		brelse(bp);
407 	} else {
408 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
409 		brelse(bp);
410 	}
411 	return(0);
412 }
413 
414 /*
415  * Truncate a file's buffer and pages to a specified length.  This
416  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
417  * sync activity.
418  *
419  * The vnode must be locked.
420  */
421 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
422 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
423 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
424 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
425 
426 struct vtruncbuf_info {
427 	struct vnode *vp;
428 	off_t	truncloffset;
429 	int	clean;
430 };
431 
432 int
433 vtruncbuf(struct vnode *vp, off_t length, int blksize)
434 {
435 	struct vtruncbuf_info info;
436 	const char *filename;
437 	int count;
438 
439 	/*
440 	 * Round up to the *next* block, then destroy the buffers in question.
441 	 * Since we are only removing some of the buffers we must rely on the
442 	 * scan count to determine whether a loop is necessary.
443 	 */
444 	if ((count = (int)(length % blksize)) != 0)
445 		info.truncloffset = length + (blksize - count);
446 	else
447 		info.truncloffset = length;
448 	info.vp = vp;
449 
450 	lwkt_gettoken(&vp->v_token);
451 	do {
452 		info.clean = 1;
453 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
454 				vtruncbuf_bp_trunc_cmp,
455 				vtruncbuf_bp_trunc, &info);
456 		info.clean = 0;
457 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
458 				vtruncbuf_bp_trunc_cmp,
459 				vtruncbuf_bp_trunc, &info);
460 	} while(count);
461 
462 	/*
463 	 * For safety, fsync any remaining metadata if the file is not being
464 	 * truncated to 0.  Since the metadata does not represent the entire
465 	 * dirty list we have to rely on the hit count to ensure that we get
466 	 * all of it.
467 	 */
468 	if (length > 0) {
469 		do {
470 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
471 					vtruncbuf_bp_metasync_cmp,
472 					vtruncbuf_bp_metasync, &info);
473 		} while (count);
474 	}
475 
476 	/*
477 	 * Clean out any left over VM backing store.
478 	 *
479 	 * It is possible to have in-progress I/O from buffers that were
480 	 * not part of the truncation.  This should not happen if we
481 	 * are truncating to 0-length.
482 	 */
483 	vnode_pager_setsize(vp, length);
484 	bio_track_wait(&vp->v_track_write, 0, 0);
485 
486 	/*
487 	 * Debugging only
488 	 */
489 	spin_lock(&vp->v_spin);
490 	filename = TAILQ_FIRST(&vp->v_namecache) ?
491 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
492 	spin_unlock(&vp->v_spin);
493 
494 	/*
495 	 * Make sure no buffers were instantiated while we were trying
496 	 * to clean out the remaining VM pages.  This could occur due
497 	 * to busy dirty VM pages being flushed out to disk.
498 	 */
499 	do {
500 		info.clean = 1;
501 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
502 				vtruncbuf_bp_trunc_cmp,
503 				vtruncbuf_bp_trunc, &info);
504 		info.clean = 0;
505 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
506 				vtruncbuf_bp_trunc_cmp,
507 				vtruncbuf_bp_trunc, &info);
508 		if (count) {
509 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
510 			       "left over buffers in %s\n", count, filename);
511 		}
512 	} while(count);
513 
514 	lwkt_reltoken(&vp->v_token);
515 
516 	return (0);
517 }
518 
519 /*
520  * The callback buffer is beyond the new file EOF and must be destroyed.
521  * Note that the compare function must conform to the RB_SCAN's requirements.
522  */
523 static
524 int
525 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
526 {
527 	struct vtruncbuf_info *info = data;
528 
529 	if (bp->b_loffset >= info->truncloffset)
530 		return(0);
531 	return(-1);
532 }
533 
534 static
535 int
536 vtruncbuf_bp_trunc(struct buf *bp, void *data)
537 {
538 	struct vtruncbuf_info *info = data;
539 
540 	/*
541 	 * Do not try to use a buffer we cannot immediately lock, but sleep
542 	 * anyway to prevent a livelock.  The code will loop until all buffers
543 	 * can be acted upon.
544 	 *
545 	 * We must always revalidate the buffer after locking it to deal
546 	 * with MP races.
547 	 */
548 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
549 		atomic_add_int(&bp->b_refs, 1);
550 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
551 			BUF_UNLOCK(bp);
552 		atomic_subtract_int(&bp->b_refs, 1);
553 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
554 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
555 		   bp->b_vp != info->vp ||
556 		   vtruncbuf_bp_trunc_cmp(bp, data)) {
557 		BUF_UNLOCK(bp);
558 	} else {
559 		bremfree(bp);
560 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
561 		brelse(bp);
562 	}
563 	return(1);
564 }
565 
566 /*
567  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
568  * blocks (with a negative loffset) are scanned.
569  * Note that the compare function must conform to the RB_SCAN's requirements.
570  */
571 static int
572 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
573 {
574 	if (bp->b_loffset < 0)
575 		return(0);
576 	return(1);
577 }
578 
579 static int
580 vtruncbuf_bp_metasync(struct buf *bp, void *data)
581 {
582 	struct vtruncbuf_info *info = data;
583 
584 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
585 		atomic_add_int(&bp->b_refs, 1);
586 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
587 			BUF_UNLOCK(bp);
588 		atomic_subtract_int(&bp->b_refs, 1);
589 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
590 		   bp->b_vp != info->vp ||
591 		   vtruncbuf_bp_metasync_cmp(bp, data)) {
592 		BUF_UNLOCK(bp);
593 	} else {
594 		bremfree(bp);
595 		if (bp->b_vp == info->vp)
596 			bawrite(bp);
597 		else
598 			bwrite(bp);
599 	}
600 	return(1);
601 }
602 
603 /*
604  * vfsync - implements a multipass fsync on a file which understands
605  * dependancies and meta-data.  The passed vnode must be locked.  The
606  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
607  *
608  * When fsyncing data asynchronously just do one consolidated pass starting
609  * with the most negative block number.  This may not get all the data due
610  * to dependancies.
611  *
612  * When fsyncing data synchronously do a data pass, then a metadata pass,
613  * then do additional data+metadata passes to try to get all the data out.
614  *
615  * Caller must ref the vnode but does not have to lock it.
616  */
617 static int vfsync_wait_output(struct vnode *vp,
618 			    int (*waitoutput)(struct vnode *, struct thread *));
619 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
620 static int vfsync_data_only_cmp(struct buf *bp, void *data);
621 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
622 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
623 static int vfsync_bp(struct buf *bp, void *data);
624 
625 struct vfsync_info {
626 	struct vnode *vp;
627 	int synchronous;
628 	int syncdeps;
629 	int lazycount;
630 	int lazylimit;
631 	int skippedbufs;
632 	int (*checkdef)(struct buf *);
633 	int (*cmpfunc)(struct buf *, void *);
634 };
635 
636 int
637 vfsync(struct vnode *vp, int waitfor, int passes,
638 	int (*checkdef)(struct buf *),
639 	int (*waitoutput)(struct vnode *, struct thread *))
640 {
641 	struct vfsync_info info;
642 	int error;
643 
644 	bzero(&info, sizeof(info));
645 	info.vp = vp;
646 	if ((info.checkdef = checkdef) == NULL)
647 		info.syncdeps = 1;
648 
649 	lwkt_gettoken(&vp->v_token);
650 
651 	switch(waitfor) {
652 	case MNT_LAZY | MNT_NOWAIT:
653 	case MNT_LAZY:
654 		/*
655 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
656 		 * number of data (not meta) pages we try to flush to 1MB.
657 		 * A non-zero return means that lazy limit was reached.
658 		 */
659 		info.lazylimit = 1024 * 1024;
660 		info.syncdeps = 1;
661 		info.cmpfunc = vfsync_lazy_range_cmp;
662 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
663 				vfsync_lazy_range_cmp, vfsync_bp, &info);
664 		info.cmpfunc = vfsync_meta_only_cmp;
665 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
666 			vfsync_meta_only_cmp, vfsync_bp, &info);
667 		if (error == 0)
668 			vp->v_lazyw = 0;
669 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
670 			vn_syncer_add(vp, 1);
671 		error = 0;
672 		break;
673 	case MNT_NOWAIT:
674 		/*
675 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
676 		 */
677 		info.syncdeps = 1;
678 		info.cmpfunc = vfsync_data_only_cmp;
679 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
680 			vfsync_bp, &info);
681 		info.cmpfunc = vfsync_meta_only_cmp;
682 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
683 			vfsync_bp, &info);
684 		error = 0;
685 		break;
686 	default:
687 		/*
688 		 * Synchronous.  Do a data-only pass, then a meta-data+data
689 		 * pass, then additional integrated passes to try to get
690 		 * all the dependancies flushed.
691 		 */
692 		info.cmpfunc = vfsync_data_only_cmp;
693 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
694 			vfsync_bp, &info);
695 		error = vfsync_wait_output(vp, waitoutput);
696 		if (error == 0) {
697 			info.skippedbufs = 0;
698 			info.cmpfunc = vfsync_dummy_cmp;
699 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
700 				vfsync_bp, &info);
701 			error = vfsync_wait_output(vp, waitoutput);
702 			if (info.skippedbufs) {
703 				kprintf("Warning: vfsync skipped %d dirty "
704 					"bufs in pass2!\n", info.skippedbufs);
705 			}
706 		}
707 		while (error == 0 && passes > 0 &&
708 		       !RB_EMPTY(&vp->v_rbdirty_tree)
709 		) {
710 			if (--passes == 0) {
711 				info.synchronous = 1;
712 				info.syncdeps = 1;
713 			}
714 			info.cmpfunc = vfsync_dummy_cmp;
715 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
716 					vfsync_bp, &info);
717 			if (error < 0)
718 				error = -error;
719 			info.syncdeps = 1;
720 			if (error == 0)
721 				error = vfsync_wait_output(vp, waitoutput);
722 		}
723 		break;
724 	}
725 	lwkt_reltoken(&vp->v_token);
726 	return(error);
727 }
728 
729 static int
730 vfsync_wait_output(struct vnode *vp,
731 		   int (*waitoutput)(struct vnode *, struct thread *))
732 {
733 	int error;
734 
735 	error = bio_track_wait(&vp->v_track_write, 0, 0);
736 	if (waitoutput)
737 		error = waitoutput(vp, curthread);
738 	return(error);
739 }
740 
741 static int
742 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
743 {
744 	return(0);
745 }
746 
747 static int
748 vfsync_data_only_cmp(struct buf *bp, void *data)
749 {
750 	if (bp->b_loffset < 0)
751 		return(-1);
752 	return(0);
753 }
754 
755 static int
756 vfsync_meta_only_cmp(struct buf *bp, void *data)
757 {
758 	if (bp->b_loffset < 0)
759 		return(0);
760 	return(1);
761 }
762 
763 static int
764 vfsync_lazy_range_cmp(struct buf *bp, void *data)
765 {
766 	struct vfsync_info *info = data;
767 
768 	if (bp->b_loffset < info->vp->v_lazyw)
769 		return(-1);
770 	return(0);
771 }
772 
773 static int
774 vfsync_bp(struct buf *bp, void *data)
775 {
776 	struct vfsync_info *info = data;
777 	struct vnode *vp = info->vp;
778 	int error;
779 
780 	/*
781 	 * Ignore buffers that we cannot immediately lock.
782 	 */
783 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
784 		++info->skippedbufs;
785 		return(0);
786 	}
787 
788 	/*
789 	 * We must revalidate the buffer after locking.
790 	 */
791 	if ((bp->b_flags & B_DELWRI) == 0 ||
792 	    bp->b_vp != info->vp ||
793 	    info->cmpfunc(bp, data)) {
794 		BUF_UNLOCK(bp);
795 		return(0);
796 	}
797 
798 	/*
799 	 * If syncdeps is not set we do not try to write buffers which have
800 	 * dependancies.
801 	 */
802 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
803 		BUF_UNLOCK(bp);
804 		return(0);
805 	}
806 
807 	/*
808 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
809 	 * has been written but an additional handshake with the device
810 	 * is required before we can dispose of the buffer.  We have no idea
811 	 * how to do this so we have to skip these buffers.
812 	 */
813 	if (bp->b_flags & B_NEEDCOMMIT) {
814 		BUF_UNLOCK(bp);
815 		return(0);
816 	}
817 
818 	/*
819 	 * Ask bioops if it is ok to sync.  If not the VFS may have
820 	 * set B_LOCKED so we have to cycle the buffer.
821 	 */
822 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
823 		bremfree(bp);
824 		brelse(bp);
825 		return(0);
826 	}
827 
828 	if (info->synchronous) {
829 		/*
830 		 * Synchronous flushing.  An error may be returned.
831 		 */
832 		bremfree(bp);
833 		error = bwrite(bp);
834 	} else {
835 		/*
836 		 * Asynchronous flushing.  A negative return value simply
837 		 * stops the scan and is not considered an error.  We use
838 		 * this to support limited MNT_LAZY flushes.
839 		 */
840 		vp->v_lazyw = bp->b_loffset;
841 		bremfree(bp);
842 		info->lazycount += cluster_awrite(bp);
843 		waitrunningbufspace();
844 		vm_wait_nominal();
845 		if (info->lazylimit && info->lazycount >= info->lazylimit)
846 			error = 1;
847 		else
848 			error = 0;
849 	}
850 	return(-error);
851 }
852 
853 /*
854  * Associate a buffer with a vnode.
855  *
856  * MPSAFE
857  */
858 int
859 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
860 {
861 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
862 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
863 
864 	/*
865 	 * Insert onto list for new vnode.
866 	 */
867 	lwkt_gettoken(&vp->v_token);
868 
869 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
870 		lwkt_reltoken(&vp->v_token);
871 		return (EEXIST);
872 	}
873 
874 	/*
875 	 * Diagnostics (mainly for HAMMER debugging).  Check for
876 	 * overlapping buffers.
877 	 */
878 	if (check_buf_overlap) {
879 		struct buf *bx;
880 		bx = buf_rb_hash_RB_PREV(bp);
881 		if (bx) {
882 			if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
883 				kprintf("bgetvp: overlapl %016jx/%d %016jx "
884 					"bx %p bp %p\n",
885 					(intmax_t)bx->b_loffset,
886 					bx->b_bufsize,
887 					(intmax_t)bp->b_loffset,
888 					bx, bp);
889 				if (check_buf_overlap > 1)
890 					panic("bgetvp - overlapping buffer");
891 			}
892 		}
893 		bx = buf_rb_hash_RB_NEXT(bp);
894 		if (bx) {
895 			if (bp->b_loffset + testsize > bx->b_loffset) {
896 				kprintf("bgetvp: overlapr %016jx/%d %016jx "
897 					"bp %p bx %p\n",
898 					(intmax_t)bp->b_loffset,
899 					testsize,
900 					(intmax_t)bx->b_loffset,
901 					bp, bx);
902 				if (check_buf_overlap > 1)
903 					panic("bgetvp - overlapping buffer");
904 			}
905 		}
906 	}
907 	bp->b_vp = vp;
908 	bp->b_flags |= B_HASHED;
909 	bp->b_flags |= B_VNCLEAN;
910 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
911 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
912 	/*vhold(vp);*/
913 	lwkt_reltoken(&vp->v_token);
914 	return(0);
915 }
916 
917 /*
918  * Disassociate a buffer from a vnode.
919  *
920  * MPSAFE
921  */
922 void
923 brelvp(struct buf *bp)
924 {
925 	struct vnode *vp;
926 
927 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
928 
929 	/*
930 	 * Delete from old vnode list, if on one.
931 	 */
932 	vp = bp->b_vp;
933 	lwkt_gettoken(&vp->v_token);
934 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
935 		if (bp->b_flags & B_VNDIRTY)
936 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
937 		else
938 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
939 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
940 	}
941 	if (bp->b_flags & B_HASHED) {
942 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
943 		bp->b_flags &= ~B_HASHED;
944 	}
945 
946 	/*
947 	 * Only remove from synclist when no dirty buffers are left AND
948 	 * the VFS has not flagged the vnode's inode as being dirty.
949 	 */
950 	if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
951 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
952 		vn_syncer_remove(vp);
953 	}
954 	bp->b_vp = NULL;
955 
956 	lwkt_reltoken(&vp->v_token);
957 
958 	/*vdrop(vp);*/
959 }
960 
961 /*
962  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
963  * This routine is called when the state of the B_DELWRI bit is changed.
964  *
965  * Must be called with vp->v_token held.
966  * MPSAFE
967  */
968 void
969 reassignbuf(struct buf *bp)
970 {
971 	struct vnode *vp = bp->b_vp;
972 	int delay;
973 
974 	ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
975 	++reassignbufcalls;
976 
977 	/*
978 	 * B_PAGING flagged buffers cannot be reassigned because their vp
979 	 * is not fully linked in.
980 	 */
981 	if (bp->b_flags & B_PAGING)
982 		panic("cannot reassign paging buffer");
983 
984 	if (bp->b_flags & B_DELWRI) {
985 		/*
986 		 * Move to the dirty list, add the vnode to the worklist
987 		 */
988 		if (bp->b_flags & B_VNCLEAN) {
989 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
990 			bp->b_flags &= ~B_VNCLEAN;
991 		}
992 		if ((bp->b_flags & B_VNDIRTY) == 0) {
993 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
994 				panic("reassignbuf: dup lblk vp %p bp %p",
995 				      vp, bp);
996 			}
997 			bp->b_flags |= B_VNDIRTY;
998 		}
999 		if ((vp->v_flag & VONWORKLST) == 0) {
1000 			switch (vp->v_type) {
1001 			case VDIR:
1002 				delay = dirdelay;
1003 				break;
1004 			case VCHR:
1005 			case VBLK:
1006 				if (vp->v_rdev &&
1007 				    vp->v_rdev->si_mountpoint != NULL) {
1008 					delay = metadelay;
1009 					break;
1010 				}
1011 				/* fall through */
1012 			default:
1013 				delay = filedelay;
1014 			}
1015 			vn_syncer_add(vp, delay);
1016 		}
1017 	} else {
1018 		/*
1019 		 * Move to the clean list, remove the vnode from the worklist
1020 		 * if no dirty blocks remain.
1021 		 */
1022 		if (bp->b_flags & B_VNDIRTY) {
1023 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1024 			bp->b_flags &= ~B_VNDIRTY;
1025 		}
1026 		if ((bp->b_flags & B_VNCLEAN) == 0) {
1027 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1028 				panic("reassignbuf: dup lblk vp %p bp %p",
1029 				      vp, bp);
1030 			}
1031 			bp->b_flags |= B_VNCLEAN;
1032 		}
1033 
1034 		/*
1035 		 * Only remove from synclist when no dirty buffers are left
1036 		 * AND the VFS has not flagged the vnode's inode as being
1037 		 * dirty.
1038 		 */
1039 		if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1040 		     VONWORKLST &&
1041 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
1042 			vn_syncer_remove(vp);
1043 		}
1044 	}
1045 }
1046 
1047 /*
1048  * Create a vnode for a block device.  Used for mounting the root file
1049  * system.
1050  *
1051  * A vref()'d vnode is returned.
1052  */
1053 extern struct vop_ops *devfs_vnode_dev_vops_p;
1054 int
1055 bdevvp(cdev_t dev, struct vnode **vpp)
1056 {
1057 	struct vnode *vp;
1058 	struct vnode *nvp;
1059 	int error;
1060 
1061 	if (dev == NULL) {
1062 		*vpp = NULLVP;
1063 		return (ENXIO);
1064 	}
1065 	error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1066 				&nvp, 0, 0);
1067 	if (error) {
1068 		*vpp = NULLVP;
1069 		return (error);
1070 	}
1071 	vp = nvp;
1072 	vp->v_type = VCHR;
1073 #if 0
1074 	vp->v_rdev = dev;
1075 #endif
1076 	v_associate_rdev(vp, dev);
1077 	vp->v_umajor = dev->si_umajor;
1078 	vp->v_uminor = dev->si_uminor;
1079 	vx_unlock(vp);
1080 	*vpp = vp;
1081 	return (0);
1082 }
1083 
1084 int
1085 v_associate_rdev(struct vnode *vp, cdev_t dev)
1086 {
1087 	if (dev == NULL)
1088 		return(ENXIO);
1089 	if (dev_is_good(dev) == 0)
1090 		return(ENXIO);
1091 	KKASSERT(vp->v_rdev == NULL);
1092 	vp->v_rdev = reference_dev(dev);
1093 	lwkt_gettoken(&spechash_token);
1094 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1095 	lwkt_reltoken(&spechash_token);
1096 	return(0);
1097 }
1098 
1099 void
1100 v_release_rdev(struct vnode *vp)
1101 {
1102 	cdev_t dev;
1103 
1104 	if ((dev = vp->v_rdev) != NULL) {
1105 		lwkt_gettoken(&spechash_token);
1106 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1107 		vp->v_rdev = NULL;
1108 		release_dev(dev);
1109 		lwkt_reltoken(&spechash_token);
1110 	}
1111 }
1112 
1113 /*
1114  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1115  * the device number with the vnode.  The actual device is not associated
1116  * until the vnode is opened (usually in spec_open()), and will be
1117  * disassociated on last close.
1118  */
1119 void
1120 addaliasu(struct vnode *nvp, int x, int y)
1121 {
1122 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1123 		panic("addaliasu on non-special vnode");
1124 	nvp->v_umajor = x;
1125 	nvp->v_uminor = y;
1126 }
1127 
1128 /*
1129  * Simple call that a filesystem can make to try to get rid of a
1130  * vnode.  It will fail if anyone is referencing the vnode (including
1131  * the caller).
1132  *
1133  * The filesystem can check whether its in-memory inode structure still
1134  * references the vp on return.
1135  *
1136  * May only be called if the vnode is in a known state (i.e. being prevented
1137  * from being deallocated by some other condition such as a vfs inode hold).
1138  */
1139 void
1140 vclean_unlocked(struct vnode *vp)
1141 {
1142 	vx_get(vp);
1143 	if (VREFCNT(vp) <= 1)
1144 		vgone_vxlocked(vp);
1145 	vx_put(vp);
1146 }
1147 
1148 /*
1149  * Disassociate a vnode from its underlying filesystem.
1150  *
1151  * The vnode must be VX locked and referenced.  In all normal situations
1152  * there are no active references.  If vclean_vxlocked() is called while
1153  * there are active references, the vnode is being ripped out and we have
1154  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1155  */
1156 void
1157 vclean_vxlocked(struct vnode *vp, int flags)
1158 {
1159 	int active;
1160 	int n;
1161 	vm_object_t object;
1162 	struct namecache *ncp;
1163 
1164 	/*
1165 	 * If the vnode has already been reclaimed we have nothing to do.
1166 	 */
1167 	if (vp->v_flag & VRECLAIMED)
1168 		return;
1169 
1170 	/*
1171 	 * Set flag to interlock operation, flag finalization to ensure
1172 	 * that the vnode winds up on the inactive list, and set v_act to 0.
1173 	 */
1174 	vsetflags(vp, VRECLAIMED);
1175 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1176 	vp->v_act = 0;
1177 
1178 	if (verbose_reclaims) {
1179 		if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1180 			kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1181 	}
1182 
1183 	/*
1184 	 * Scrap the vfs cache
1185 	 */
1186 	while (cache_inval_vp(vp, 0) != 0) {
1187 		kprintf("Warning: vnode %p clean/cache_resolution "
1188 			"race detected\n", vp);
1189 		tsleep(vp, 0, "vclninv", 2);
1190 	}
1191 
1192 	/*
1193 	 * Check to see if the vnode is in use. If so we have to reference it
1194 	 * before we clean it out so that its count cannot fall to zero and
1195 	 * generate a race against ourselves to recycle it.
1196 	 */
1197 	active = (VREFCNT(vp) > 0);
1198 
1199 	/*
1200 	 * Clean out any buffers associated with the vnode and destroy its
1201 	 * object, if it has one.
1202 	 */
1203 	vinvalbuf(vp, V_SAVE, 0, 0);
1204 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1205 
1206 	/*
1207 	 * If purging an active vnode (typically during a forced unmount
1208 	 * or reboot), it must be closed and deactivated before being
1209 	 * reclaimed.  This isn't really all that safe, but what can
1210 	 * we do? XXX.
1211 	 *
1212 	 * Note that neither of these routines unlocks the vnode.
1213 	 */
1214 	if (active && (flags & DOCLOSE)) {
1215 		while ((n = vp->v_opencount) != 0) {
1216 			if (vp->v_writecount)
1217 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1218 			else
1219 				VOP_CLOSE(vp, FNONBLOCK, NULL);
1220 			if (vp->v_opencount == n) {
1221 				kprintf("Warning: unable to force-close"
1222 				       " vnode %p\n", vp);
1223 				break;
1224 			}
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1230 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1231 	 * again to make sure they all get flushed.
1232 	 *
1233 	 * This can occur if a file with a link count of 0 needs to be
1234 	 * truncated.
1235 	 *
1236 	 * If the vnode is already dead don't try to deactivate it.
1237 	 */
1238 	if ((vp->v_flag & VINACTIVE) == 0) {
1239 		vsetflags(vp, VINACTIVE);
1240 		if (vp->v_mount)
1241 			VOP_INACTIVE(vp);
1242 		vinvalbuf(vp, V_SAVE, 0, 0);
1243 	}
1244 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1245 
1246 	/*
1247 	 * If the vnode has an object, destroy it.
1248 	 */
1249 	while ((object = vp->v_object) != NULL) {
1250 		vm_object_hold(object);
1251 		if (object == vp->v_object)
1252 			break;
1253 		vm_object_drop(object);
1254 	}
1255 
1256 	if (object != NULL) {
1257 		if (object->ref_count == 0) {
1258 			if ((object->flags & OBJ_DEAD) == 0)
1259 				vm_object_terminate(object);
1260 			vm_object_drop(object);
1261 			vclrflags(vp, VOBJBUF);
1262 		} else {
1263 			vm_pager_deallocate(object);
1264 			vclrflags(vp, VOBJBUF);
1265 			vm_object_drop(object);
1266 		}
1267 	}
1268 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1269 
1270 	/*
1271 	 * Reclaim the vnode if not already dead.
1272 	 */
1273 	if (vp->v_mount && VOP_RECLAIM(vp))
1274 		panic("vclean: cannot reclaim");
1275 
1276 	/*
1277 	 * Done with purge, notify sleepers of the grim news.
1278 	 */
1279 	vp->v_ops = &dead_vnode_vops_p;
1280 	vn_gone(vp);
1281 	vp->v_tag = VT_NON;
1282 
1283 	/*
1284 	 * If we are destroying an active vnode, reactivate it now that
1285 	 * we have reassociated it with deadfs.  This prevents the system
1286 	 * from crashing on the vnode due to it being unexpectedly marked
1287 	 * as inactive or reclaimed.
1288 	 */
1289 	if (active && (flags & DOCLOSE)) {
1290 		vclrflags(vp, VINACTIVE | VRECLAIMED);
1291 	}
1292 }
1293 
1294 /*
1295  * Eliminate all activity associated with the requested vnode
1296  * and with all vnodes aliased to the requested vnode.
1297  *
1298  * The vnode must be referenced but should not be locked.
1299  */
1300 int
1301 vrevoke(struct vnode *vp, struct ucred *cred)
1302 {
1303 	struct vnode *vq;
1304 	struct vnode *vqn;
1305 	cdev_t dev;
1306 	int error;
1307 
1308 	/*
1309 	 * If the vnode has a device association, scrap all vnodes associated
1310 	 * with the device.  Don't let the device disappear on us while we
1311 	 * are scrapping the vnodes.
1312 	 *
1313 	 * The passed vp will probably show up in the list, do not VX lock
1314 	 * it twice!
1315 	 *
1316 	 * Releasing the vnode's rdev here can mess up specfs's call to
1317 	 * device close, so don't do it.  The vnode has been disassociated
1318 	 * and the device will be closed after the last ref on the related
1319 	 * fp goes away (if not still open by e.g. the kernel).
1320 	 */
1321 	if (vp->v_type != VCHR) {
1322 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1323 		return (error);
1324 	}
1325 	if ((dev = vp->v_rdev) == NULL) {
1326 		return(0);
1327 	}
1328 	reference_dev(dev);
1329 	lwkt_gettoken(&spechash_token);
1330 
1331 restart:
1332 	vqn = SLIST_FIRST(&dev->si_hlist);
1333 	if (vqn)
1334 		vhold(vqn);
1335 	while ((vq = vqn) != NULL) {
1336 		if (VREFCNT(vq) > 0) {
1337 			vref(vq);
1338 			fdrevoke(vq, DTYPE_VNODE, cred);
1339 			/*v_release_rdev(vq);*/
1340 			vrele(vq);
1341 			if (vq->v_rdev != dev) {
1342 				vdrop(vq);
1343 				goto restart;
1344 			}
1345 		}
1346 		vqn = SLIST_NEXT(vq, v_cdevnext);
1347 		if (vqn)
1348 			vhold(vqn);
1349 		vdrop(vq);
1350 	}
1351 	lwkt_reltoken(&spechash_token);
1352 	dev_drevoke(dev);
1353 	release_dev(dev);
1354 	return (0);
1355 }
1356 
1357 /*
1358  * This is called when the object underlying a vnode is being destroyed,
1359  * such as in a remove().  Try to recycle the vnode immediately if the
1360  * only active reference is our reference.
1361  *
1362  * Directory vnodes in the namecache with children cannot be immediately
1363  * recycled because numerous VOP_N*() ops require them to be stable.
1364  *
1365  * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1366  * function is a NOP if VRECLAIMED is already set.
1367  */
1368 int
1369 vrecycle(struct vnode *vp)
1370 {
1371 	if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1372 		if (cache_inval_vp_nonblock(vp))
1373 			return(0);
1374 		vgone_vxlocked(vp);
1375 		return (1);
1376 	}
1377 	return (0);
1378 }
1379 
1380 /*
1381  * Return the maximum I/O size allowed for strategy calls on VP.
1382  *
1383  * If vp is VCHR or VBLK we dive the device, otherwise we use
1384  * the vp's mount info.
1385  *
1386  * The returned value is clamped at MAXPHYS as most callers cannot use
1387  * buffers larger than that size.
1388  */
1389 int
1390 vmaxiosize(struct vnode *vp)
1391 {
1392 	int maxiosize;
1393 
1394 	if (vp->v_type == VBLK || vp->v_type == VCHR)
1395 		maxiosize = vp->v_rdev->si_iosize_max;
1396 	else
1397 		maxiosize = vp->v_mount->mnt_iosize_max;
1398 
1399 	if (maxiosize > MAXPHYS)
1400 		maxiosize = MAXPHYS;
1401 	return (maxiosize);
1402 }
1403 
1404 /*
1405  * Eliminate all activity associated with a vnode in preparation for
1406  * destruction.
1407  *
1408  * The vnode must be VX locked and refd and will remain VX locked and refd
1409  * on return.  This routine may be called with the vnode in any state, as
1410  * long as it is VX locked.  The vnode will be cleaned out and marked
1411  * VRECLAIMED but will not actually be reused until all existing refs and
1412  * holds go away.
1413  *
1414  * NOTE: This routine may be called on a vnode which has not yet been
1415  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1416  * already been reclaimed.
1417  *
1418  * This routine is not responsible for placing us back on the freelist.
1419  * Instead, it happens automatically when the caller releases the VX lock
1420  * (assuming there aren't any other references).
1421  */
1422 void
1423 vgone_vxlocked(struct vnode *vp)
1424 {
1425 	/*
1426 	 * assert that the VX lock is held.  This is an absolute requirement
1427 	 * now for vgone_vxlocked() to be called.
1428 	 */
1429 	KKASSERT(lockcountnb(&vp->v_lock) == 1);
1430 
1431 	/*
1432 	 * Clean out the filesystem specific data and set the VRECLAIMED
1433 	 * bit.  Also deactivate the vnode if necessary.
1434 	 *
1435 	 * The vnode should have automatically been removed from the syncer
1436 	 * list as syncer/dirty flags cleared during the cleaning.
1437 	 */
1438 	vclean_vxlocked(vp, DOCLOSE);
1439 	KKASSERT((vp->v_flag & VONWORKLST) == 0);
1440 
1441 	/*
1442 	 * Delete from old mount point vnode list, if on one.
1443 	 */
1444 	if (vp->v_mount != NULL) {
1445 		KKASSERT(vp->v_data == NULL);
1446 		insmntque(vp, NULL);
1447 	}
1448 
1449 	/*
1450 	 * If special device, remove it from special device alias list
1451 	 * if it is on one.  This should normally only occur if a vnode is
1452 	 * being revoked as the device should otherwise have been released
1453 	 * naturally.
1454 	 */
1455 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1456 		v_release_rdev(vp);
1457 	}
1458 
1459 	/*
1460 	 * Set us to VBAD
1461 	 */
1462 	vp->v_type = VBAD;
1463 }
1464 
1465 /*
1466  * Lookup a vnode by device number.
1467  *
1468  * Returns non-zero and *vpp set to a vref'd vnode on success.
1469  * Returns zero on failure.
1470  */
1471 int
1472 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1473 {
1474 	struct vnode *vp;
1475 
1476 	lwkt_gettoken(&spechash_token);
1477 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1478 		if (type == vp->v_type) {
1479 			*vpp = vp;
1480 			vref(vp);
1481 			lwkt_reltoken(&spechash_token);
1482 			return (1);
1483 		}
1484 	}
1485 	lwkt_reltoken(&spechash_token);
1486 	return (0);
1487 }
1488 
1489 /*
1490  * Calculate the total number of references to a special device.  This
1491  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1492  * an overloaded field.  Since udev2dev can now return NULL, we have
1493  * to check for a NULL v_rdev.
1494  */
1495 int
1496 count_dev(cdev_t dev)
1497 {
1498 	struct vnode *vp;
1499 	int count = 0;
1500 
1501 	if (SLIST_FIRST(&dev->si_hlist)) {
1502 		lwkt_gettoken(&spechash_token);
1503 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1504 			count += vp->v_opencount;
1505 		}
1506 		lwkt_reltoken(&spechash_token);
1507 	}
1508 	return(count);
1509 }
1510 
1511 int
1512 vcount(struct vnode *vp)
1513 {
1514 	if (vp->v_rdev == NULL)
1515 		return(0);
1516 	return(count_dev(vp->v_rdev));
1517 }
1518 
1519 /*
1520  * Initialize VMIO for a vnode.  This routine MUST be called before a
1521  * VFS can issue buffer cache ops on a vnode.  It is typically called
1522  * when a vnode is initialized from its inode.
1523  */
1524 int
1525 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1526 {
1527 	vm_object_t object;
1528 	int error = 0;
1529 
1530 	object = vp->v_object;
1531 	if (object) {
1532 		vm_object_hold(object);
1533 		KKASSERT(vp->v_object == object);
1534 	}
1535 
1536 	if (object == NULL) {
1537 		object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1538 
1539 		/*
1540 		 * Dereference the reference we just created.  This assumes
1541 		 * that the object is associated with the vp.  Allow it to
1542 		 * have zero refs.  It cannot be destroyed as long as it
1543 		 * is associated with the vnode.
1544 		 */
1545 		vm_object_hold(object);
1546 		atomic_add_int(&object->ref_count, -1);
1547 		vrele(vp);
1548 	} else {
1549 		KKASSERT((object->flags & OBJ_DEAD) == 0);
1550 	}
1551 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1552 	vsetflags(vp, VOBJBUF);
1553 	vm_object_drop(object);
1554 
1555 	return (error);
1556 }
1557 
1558 
1559 /*
1560  * Print out a description of a vnode.
1561  */
1562 static char *typename[] =
1563 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1564 
1565 void
1566 vprint(char *label, struct vnode *vp)
1567 {
1568 	char buf[96];
1569 
1570 	if (label != NULL)
1571 		kprintf("%s: %p: ", label, (void *)vp);
1572 	else
1573 		kprintf("%p: ", (void *)vp);
1574 	kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1575 		typename[vp->v_type],
1576 		vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1577 	buf[0] = '\0';
1578 	if (vp->v_flag & VROOT)
1579 		strcat(buf, "|VROOT");
1580 	if (vp->v_flag & VPFSROOT)
1581 		strcat(buf, "|VPFSROOT");
1582 	if (vp->v_flag & VTEXT)
1583 		strcat(buf, "|VTEXT");
1584 	if (vp->v_flag & VSYSTEM)
1585 		strcat(buf, "|VSYSTEM");
1586 	if (vp->v_flag & VOBJBUF)
1587 		strcat(buf, "|VOBJBUF");
1588 	if (buf[0] != '\0')
1589 		kprintf(" flags (%s)", &buf[1]);
1590 	if (vp->v_data == NULL) {
1591 		kprintf("\n");
1592 	} else {
1593 		kprintf("\n\t");
1594 		VOP_PRINT(vp);
1595 	}
1596 }
1597 
1598 /*
1599  * Do the usual access checking.
1600  * file_mode, uid and gid are from the vnode in question,
1601  * while acc_mode and cred are from the VOP_ACCESS parameter list
1602  */
1603 int
1604 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1605     mode_t acc_mode, struct ucred *cred)
1606 {
1607 	mode_t mask;
1608 	int ismember;
1609 
1610 	/*
1611 	 * Super-user always gets read/write access, but execute access depends
1612 	 * on at least one execute bit being set.
1613 	 */
1614 	if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1615 		if ((acc_mode & VEXEC) && type != VDIR &&
1616 		    (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1617 			return (EACCES);
1618 		return (0);
1619 	}
1620 
1621 	mask = 0;
1622 
1623 	/* Otherwise, check the owner. */
1624 	if (cred->cr_uid == uid) {
1625 		if (acc_mode & VEXEC)
1626 			mask |= S_IXUSR;
1627 		if (acc_mode & VREAD)
1628 			mask |= S_IRUSR;
1629 		if (acc_mode & VWRITE)
1630 			mask |= S_IWUSR;
1631 		return ((file_mode & mask) == mask ? 0 : EACCES);
1632 	}
1633 
1634 	/* Otherwise, check the groups. */
1635 	ismember = groupmember(gid, cred);
1636 	if (cred->cr_svgid == gid || ismember) {
1637 		if (acc_mode & VEXEC)
1638 			mask |= S_IXGRP;
1639 		if (acc_mode & VREAD)
1640 			mask |= S_IRGRP;
1641 		if (acc_mode & VWRITE)
1642 			mask |= S_IWGRP;
1643 		return ((file_mode & mask) == mask ? 0 : EACCES);
1644 	}
1645 
1646 	/* Otherwise, check everyone else. */
1647 	if (acc_mode & VEXEC)
1648 		mask |= S_IXOTH;
1649 	if (acc_mode & VREAD)
1650 		mask |= S_IROTH;
1651 	if (acc_mode & VWRITE)
1652 		mask |= S_IWOTH;
1653 	return ((file_mode & mask) == mask ? 0 : EACCES);
1654 }
1655 
1656 #ifdef DDB
1657 #include <ddb/ddb.h>
1658 
1659 static int db_show_locked_vnodes(struct mount *mp, void *data);
1660 
1661 /*
1662  * List all of the locked vnodes in the system.
1663  * Called when debugging the kernel.
1664  */
1665 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1666 {
1667 	kprintf("Locked vnodes\n");
1668 	mountlist_scan(db_show_locked_vnodes, NULL,
1669 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1670 }
1671 
1672 static int
1673 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1674 {
1675 	struct vnode *vp;
1676 
1677 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1678 		if (vn_islocked(vp))
1679 			vprint(NULL, vp);
1680 	}
1681 	return(0);
1682 }
1683 #endif
1684 
1685 /*
1686  * Top level filesystem related information gathering.
1687  */
1688 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1689 
1690 static int
1691 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1692 {
1693 	int *name = (int *)arg1 - 1;	/* XXX */
1694 	u_int namelen = arg2 + 1;	/* XXX */
1695 	struct vfsconf *vfsp;
1696 	int maxtypenum;
1697 
1698 #if 1 || defined(COMPAT_PRELITE2)
1699 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1700 	if (namelen == 1)
1701 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1702 #endif
1703 
1704 #ifdef notyet
1705 	/* all sysctl names at this level are at least name and field */
1706 	if (namelen < 2)
1707 		return (ENOTDIR);		/* overloaded */
1708 	if (name[0] != VFS_GENERIC) {
1709 		vfsp = vfsconf_find_by_typenum(name[0]);
1710 		if (vfsp == NULL)
1711 			return (EOPNOTSUPP);
1712 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1713 		    oldp, oldlenp, newp, newlen, p));
1714 	}
1715 #endif
1716 	switch (name[1]) {
1717 	case VFS_MAXTYPENUM:
1718 		if (namelen != 2)
1719 			return (ENOTDIR);
1720 		maxtypenum = vfsconf_get_maxtypenum();
1721 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1722 	case VFS_CONF:
1723 		if (namelen != 3)
1724 			return (ENOTDIR);	/* overloaded */
1725 		vfsp = vfsconf_find_by_typenum(name[2]);
1726 		if (vfsp == NULL)
1727 			return (EOPNOTSUPP);
1728 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1729 	}
1730 	return (EOPNOTSUPP);
1731 }
1732 
1733 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1734 	"Generic filesystem");
1735 
1736 #if 1 || defined(COMPAT_PRELITE2)
1737 
1738 static int
1739 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1740 {
1741 	int error;
1742 	struct ovfsconf ovfs;
1743 	struct sysctl_req *req = (struct sysctl_req*) data;
1744 
1745 	bzero(&ovfs, sizeof(ovfs));
1746 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1747 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1748 	ovfs.vfc_index = vfsp->vfc_typenum;
1749 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1750 	ovfs.vfc_flags = vfsp->vfc_flags;
1751 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1752 	if (error)
1753 		return error; /* abort iteration with error code */
1754 	else
1755 		return 0; /* continue iterating with next element */
1756 }
1757 
1758 static int
1759 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1760 {
1761 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1762 }
1763 
1764 #endif /* 1 || COMPAT_PRELITE2 */
1765 
1766 /*
1767  * Check to see if a filesystem is mounted on a block device.
1768  */
1769 int
1770 vfs_mountedon(struct vnode *vp)
1771 {
1772 	cdev_t dev;
1773 
1774 	if ((dev = vp->v_rdev) == NULL) {
1775 /*		if (vp->v_type != VBLK)
1776 			dev = get_dev(vp->v_uminor, vp->v_umajor); */
1777 	}
1778 	if (dev != NULL && dev->si_mountpoint)
1779 		return (EBUSY);
1780 	return (0);
1781 }
1782 
1783 /*
1784  * Unmount all filesystems. The list is traversed in reverse order
1785  * of mounting to avoid dependencies.
1786  */
1787 
1788 static int vfs_umountall_callback(struct mount *mp, void *data);
1789 
1790 void
1791 vfs_unmountall(void)
1792 {
1793 	int count;
1794 
1795 	do {
1796 		count = mountlist_scan(vfs_umountall_callback,
1797 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1798 	} while (count);
1799 }
1800 
1801 static
1802 int
1803 vfs_umountall_callback(struct mount *mp, void *data)
1804 {
1805 	int error;
1806 
1807 	error = dounmount(mp, MNT_FORCE);
1808 	if (error) {
1809 		mountlist_remove(mp);
1810 		kprintf("unmount of filesystem mounted from %s failed (",
1811 			mp->mnt_stat.f_mntfromname);
1812 		if (error == EBUSY)
1813 			kprintf("BUSY)\n");
1814 		else
1815 			kprintf("%d)\n", error);
1816 	}
1817 	return(1);
1818 }
1819 
1820 /*
1821  * Checks the mount flags for parameter mp and put the names comma-separated
1822  * into a string buffer buf with a size limit specified by len.
1823  *
1824  * It returns the number of bytes written into buf, and (*errorp) will be
1825  * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1826  * not large enough).  The buffer will be 0-terminated if len was not 0.
1827  */
1828 size_t
1829 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1830 	       char *buf, size_t len, int *errorp)
1831 {
1832 	static const struct mountctl_opt optnames[] = {
1833 		{ MNT_ASYNC,            "asynchronous" },
1834 		{ MNT_EXPORTED,         "NFS exported" },
1835 		{ MNT_LOCAL,            "local" },
1836 		{ MNT_NOATIME,          "noatime" },
1837 		{ MNT_NODEV,            "nodev" },
1838 		{ MNT_NOEXEC,           "noexec" },
1839 		{ MNT_NOSUID,           "nosuid" },
1840 		{ MNT_NOSYMFOLLOW,      "nosymfollow" },
1841 		{ MNT_QUOTA,            "with-quotas" },
1842 		{ MNT_RDONLY,           "read-only" },
1843 		{ MNT_SYNCHRONOUS,      "synchronous" },
1844 		{ MNT_UNION,            "union" },
1845 		{ MNT_NOCLUSTERR,       "noclusterr" },
1846 		{ MNT_NOCLUSTERW,       "noclusterw" },
1847 		{ MNT_SUIDDIR,          "suiddir" },
1848 		{ MNT_SOFTDEP,          "soft-updates" },
1849 		{ MNT_IGNORE,           "ignore" },
1850 		{ 0,			NULL}
1851 	};
1852 	int bwritten;
1853 	int bleft;
1854 	int optlen;
1855 	int actsize;
1856 
1857 	*errorp = 0;
1858 	bwritten = 0;
1859 	bleft = len - 1;	/* leave room for trailing \0 */
1860 
1861 	/*
1862 	 * Checks the size of the string. If it contains
1863 	 * any data, then we will append the new flags to
1864 	 * it.
1865 	 */
1866 	actsize = strlen(buf);
1867 	if (actsize > 0)
1868 		buf += actsize;
1869 
1870 	/* Default flags if no flags passed */
1871 	if (optp == NULL)
1872 		optp = optnames;
1873 
1874 	if (bleft < 0) {	/* degenerate case, 0-length buffer */
1875 		*errorp = EINVAL;
1876 		return(0);
1877 	}
1878 
1879 	for (; flags && optp->o_opt; ++optp) {
1880 		if ((flags & optp->o_opt) == 0)
1881 			continue;
1882 		optlen = strlen(optp->o_name);
1883 		if (bwritten || actsize > 0) {
1884 			if (bleft < 2) {
1885 				*errorp = ENOSPC;
1886 				break;
1887 			}
1888 			buf[bwritten++] = ',';
1889 			buf[bwritten++] = ' ';
1890 			bleft -= 2;
1891 		}
1892 		if (bleft < optlen) {
1893 			*errorp = ENOSPC;
1894 			break;
1895 		}
1896 		bcopy(optp->o_name, buf + bwritten, optlen);
1897 		bwritten += optlen;
1898 		bleft -= optlen;
1899 		flags &= ~optp->o_opt;
1900 	}
1901 
1902 	/*
1903 	 * Space already reserved for trailing \0
1904 	 */
1905 	buf[bwritten] = 0;
1906 	return (bwritten);
1907 }
1908 
1909 /*
1910  * Build hash lists of net addresses and hang them off the mount point.
1911  * Called by ufs_mount() to set up the lists of export addresses.
1912  */
1913 static int
1914 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1915 		const struct export_args *argp)
1916 {
1917 	struct netcred *np;
1918 	struct radix_node_head *rnh;
1919 	int i;
1920 	struct radix_node *rn;
1921 	struct sockaddr *saddr, *smask = NULL;
1922 	int error;
1923 
1924 	if (argp->ex_addrlen == 0) {
1925 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1926 			return (EPERM);
1927 		np = &nep->ne_defexported;
1928 		np->netc_exflags = argp->ex_flags;
1929 		np->netc_anon = argp->ex_anon;
1930 		np->netc_anon.cr_ref = 1;
1931 		mp->mnt_flag |= MNT_DEFEXPORTED;
1932 		return (0);
1933 	}
1934 
1935 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1936 		return (EINVAL);
1937 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1938 		return (EINVAL);
1939 
1940 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1941 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1942 	saddr = (struct sockaddr *) (np + 1);
1943 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1944 		goto out;
1945 	if (saddr->sa_len > argp->ex_addrlen)
1946 		saddr->sa_len = argp->ex_addrlen;
1947 	if (argp->ex_masklen) {
1948 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1949 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1950 		if (error)
1951 			goto out;
1952 		if (smask->sa_len > argp->ex_masklen)
1953 			smask->sa_len = argp->ex_masklen;
1954 	}
1955 	NE_LOCK(nep);
1956 	if (nep->ne_maskhead == NULL) {
1957 		if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
1958 			error = ENOBUFS;
1959 			goto out;
1960 		}
1961 	}
1962 	if((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
1963 		error = ENOBUFS;
1964 		goto out;
1965 	}
1966 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1967 	    np->netc_rnodes);
1968 	NE_UNLOCK(nep);
1969 	if (rn == NULL || np != (struct netcred *) rn) {	/* already exists */
1970 		error = EPERM;
1971 		goto out;
1972 	}
1973 	np->netc_exflags = argp->ex_flags;
1974 	np->netc_anon = argp->ex_anon;
1975 	np->netc_anon.cr_ref = 1;
1976 	return (0);
1977 out:
1978 	kfree(np, M_NETADDR);
1979 	return (error);
1980 }
1981 
1982 /* ARGSUSED */
1983 static int
1984 vfs_free_netcred(struct radix_node *rn, void *w)
1985 {
1986 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1987 
1988 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1989 	kfree((caddr_t) rn, M_NETADDR);
1990 	return (0);
1991 }
1992 
1993 static struct radix_node_head *
1994 vfs_create_addrlist_af(int af, struct netexport *nep)
1995 {
1996 	struct radix_node_head *rnh = NULL;
1997 #if defined(INET) || defined(INET6)
1998 	struct radix_node_head *maskhead = nep->ne_maskhead;
1999 	int off;
2000 #endif
2001 
2002 	NE_ASSERT_LOCKED(nep);
2003 	KKASSERT(maskhead != NULL);
2004 	switch (af) {
2005 #ifdef INET
2006 	case AF_INET:
2007 		if ((rnh = nep->ne_inethead) == NULL) {
2008 			off = offsetof(struct sockaddr_in, sin_addr) << 3;
2009 			if (!rn_inithead((void **)&rnh, maskhead, off))
2010 				return (NULL);
2011 			nep->ne_inethead = rnh;
2012 		}
2013 		break;
2014 #endif
2015 #ifdef INET6
2016 	case AF_INET6:
2017 		if ((rnh = nep->ne_inet6head) == NULL) {
2018 			off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2019 			if (!rn_inithead((void **)&rnh, maskhead, off))
2020 				return (NULL);
2021 			nep->ne_inet6head = rnh;
2022 		}
2023 		break;
2024 #endif
2025 	}
2026 	return (rnh);
2027 }
2028 
2029 static void
2030 vfs_free_addrlist_af(struct radix_node_head **prnh)
2031 {
2032 	struct radix_node_head *rnh = *prnh;
2033 
2034 	(*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2035 	kfree(rnh, M_RTABLE);
2036 	*prnh = NULL;
2037 }
2038 
2039 /*
2040  * Free the net address hash lists that are hanging off the mount points.
2041  */
2042 static void
2043 vfs_free_addrlist(struct netexport *nep)
2044 {
2045 	NE_LOCK(nep);
2046 	if (nep->ne_inethead != NULL)
2047 		vfs_free_addrlist_af(&nep->ne_inethead);
2048 	if (nep->ne_inet6head != NULL)
2049 		vfs_free_addrlist_af(&nep->ne_inet6head);
2050 	if (nep->ne_maskhead)
2051 		vfs_free_addrlist_af(&nep->ne_maskhead);
2052 	NE_UNLOCK(nep);
2053 }
2054 
2055 int
2056 vfs_export(struct mount *mp, struct netexport *nep,
2057 	   const struct export_args *argp)
2058 {
2059 	int error;
2060 
2061 	if (argp->ex_flags & MNT_DELEXPORT) {
2062 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2063 			vfs_setpublicfs(NULL, NULL, NULL);
2064 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2065 		}
2066 		vfs_free_addrlist(nep);
2067 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2068 	}
2069 	if (argp->ex_flags & MNT_EXPORTED) {
2070 		if (argp->ex_flags & MNT_EXPUBLIC) {
2071 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2072 				return (error);
2073 			mp->mnt_flag |= MNT_EXPUBLIC;
2074 		}
2075 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2076 			return (error);
2077 		mp->mnt_flag |= MNT_EXPORTED;
2078 	}
2079 	return (0);
2080 }
2081 
2082 
2083 /*
2084  * Set the publicly exported filesystem (WebNFS). Currently, only
2085  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2086  */
2087 int
2088 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2089 		const struct export_args *argp)
2090 {
2091 	int error;
2092 	struct vnode *rvp;
2093 	char *cp;
2094 
2095 	/*
2096 	 * mp == NULL -> invalidate the current info, the FS is
2097 	 * no longer exported. May be called from either vfs_export
2098 	 * or unmount, so check if it hasn't already been done.
2099 	 */
2100 	if (mp == NULL) {
2101 		if (nfs_pub.np_valid) {
2102 			nfs_pub.np_valid = 0;
2103 			if (nfs_pub.np_index != NULL) {
2104 				kfree(nfs_pub.np_index, M_TEMP);
2105 				nfs_pub.np_index = NULL;
2106 			}
2107 		}
2108 		return (0);
2109 	}
2110 
2111 	/*
2112 	 * Only one allowed at a time.
2113 	 */
2114 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2115 		return (EBUSY);
2116 
2117 	/*
2118 	 * Get real filehandle for root of exported FS.
2119 	 */
2120 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2121 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2122 
2123 	if ((error = VFS_ROOT(mp, &rvp)))
2124 		return (error);
2125 
2126 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2127 		return (error);
2128 
2129 	vput(rvp);
2130 
2131 	/*
2132 	 * If an indexfile was specified, pull it in.
2133 	 */
2134 	if (argp->ex_indexfile != NULL) {
2135 		int namelen;
2136 
2137 		error = vn_get_namelen(rvp, &namelen);
2138 		if (error)
2139 			return (error);
2140 		nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2141 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2142 		    namelen, NULL);
2143 		if (!error) {
2144 			/*
2145 			 * Check for illegal filenames.
2146 			 */
2147 			for (cp = nfs_pub.np_index; *cp; cp++) {
2148 				if (*cp == '/') {
2149 					error = EINVAL;
2150 					break;
2151 				}
2152 			}
2153 		}
2154 		if (error) {
2155 			kfree(nfs_pub.np_index, M_TEMP);
2156 			return (error);
2157 		}
2158 	}
2159 
2160 	nfs_pub.np_mount = mp;
2161 	nfs_pub.np_valid = 1;
2162 	return (0);
2163 }
2164 
2165 struct netcred *
2166 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2167 		struct sockaddr *nam)
2168 {
2169 	struct netcred *np;
2170 	struct radix_node_head *rnh;
2171 	struct sockaddr *saddr;
2172 
2173 	np = NULL;
2174 	if (mp->mnt_flag & MNT_EXPORTED) {
2175 		/*
2176 		 * Lookup in the export list first.
2177 		 */
2178 		NE_LOCK(nep);
2179 		if (nam != NULL) {
2180 			saddr = nam;
2181 			switch (saddr->sa_family) {
2182 #ifdef INET
2183 			case AF_INET:
2184 				rnh = nep->ne_inethead;
2185 				break;
2186 #endif
2187 #ifdef INET6
2188 			case AF_INET6:
2189 				rnh = nep->ne_inet6head;
2190 				break;
2191 #endif
2192 			default:
2193 				rnh = NULL;
2194 			}
2195 			if (rnh != NULL) {
2196 				np = (struct netcred *)
2197 					(*rnh->rnh_matchaddr)((char *)saddr,
2198 							      rnh);
2199 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2200 					np = NULL;
2201 			}
2202 		}
2203 		NE_UNLOCK(nep);
2204 		/*
2205 		 * If no address match, use the default if it exists.
2206 		 */
2207 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2208 			np = &nep->ne_defexported;
2209 	}
2210 	return (np);
2211 }
2212 
2213 /*
2214  * perform msync on all vnodes under a mount point.  The mount point must
2215  * be locked.  This code is also responsible for lazy-freeing unreferenced
2216  * vnodes whos VM objects no longer contain pages.
2217  *
2218  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2219  *
2220  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2221  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
2222  * way up in this high level function.
2223  */
2224 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2225 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2226 
2227 void
2228 vfs_msync(struct mount *mp, int flags)
2229 {
2230 	int vmsc_flags;
2231 
2232 	/*
2233 	 * tmpfs sets this flag to prevent msync(), sync, and the
2234 	 * filesystem periodic syncer from trying to flush VM pages
2235 	 * to swap.  Only pure memory pressure flushes tmpfs VM pages
2236 	 * to swap.
2237 	 */
2238 	if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2239 		return;
2240 
2241 	/*
2242 	 * Ok, scan the vnodes for work.  If the filesystem is using the
2243 	 * syncer thread feature we can use vsyncscan() instead of
2244 	 * vmntvnodescan(), which is much faster.
2245 	 */
2246 	vmsc_flags = VMSC_GETVP;
2247 	if (flags != MNT_WAIT)
2248 		vmsc_flags |= VMSC_NOWAIT;
2249 
2250 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2251 		vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2252 			  (void *)(intptr_t)flags);
2253 	} else {
2254 		vmntvnodescan(mp, vmsc_flags,
2255 			      vfs_msync_scan1, vfs_msync_scan2,
2256 			      (void *)(intptr_t)flags);
2257 	}
2258 }
2259 
2260 /*
2261  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2262  * vnodes, we cannot afford to do anything heavy weight until we have a
2263  * fairly good indication that there is work to do.
2264  */
2265 static
2266 int
2267 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2268 {
2269 	int flags = (int)(intptr_t)data;
2270 
2271 	if ((vp->v_flag & VRECLAIMED) == 0) {
2272 		if (vp->v_auxrefs == 0 && VREFCNT(vp) <= 0 &&
2273 		    vp->v_object) {
2274 			return(0);	/* call scan2 */
2275 		}
2276 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2277 		    (vp->v_flag & VOBJDIRTY) &&
2278 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2279 			return(0);	/* call scan2 */
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * do not call scan2, continue the loop
2285 	 */
2286 	return(-1);
2287 }
2288 
2289 /*
2290  * This callback is handed a locked vnode.
2291  */
2292 static
2293 int
2294 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2295 {
2296 	vm_object_t obj;
2297 	int flags = (int)(intptr_t)data;
2298 
2299 	if (vp->v_flag & VRECLAIMED)
2300 		return(0);
2301 
2302 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2303 		if ((obj = vp->v_object) != NULL) {
2304 			vm_object_page_clean(obj, 0, 0,
2305 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2306 		}
2307 	}
2308 	return(0);
2309 }
2310 
2311 /*
2312  * Wake up anyone interested in vp because it is being revoked.
2313  */
2314 void
2315 vn_gone(struct vnode *vp)
2316 {
2317 	lwkt_gettoken(&vp->v_token);
2318 	KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2319 	lwkt_reltoken(&vp->v_token);
2320 }
2321 
2322 /*
2323  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2324  * (or v_rdev might be NULL).
2325  */
2326 cdev_t
2327 vn_todev(struct vnode *vp)
2328 {
2329 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2330 		return (NULL);
2331 	KKASSERT(vp->v_rdev != NULL);
2332 	return (vp->v_rdev);
2333 }
2334 
2335 /*
2336  * Check if vnode represents a disk device.  The vnode does not need to be
2337  * opened.
2338  *
2339  * MPALMOSTSAFE
2340  */
2341 int
2342 vn_isdisk(struct vnode *vp, int *errp)
2343 {
2344 	cdev_t dev;
2345 
2346 	if (vp->v_type != VCHR) {
2347 		if (errp != NULL)
2348 			*errp = ENOTBLK;
2349 		return (0);
2350 	}
2351 
2352 	dev = vp->v_rdev;
2353 
2354 	if (dev == NULL) {
2355 		if (errp != NULL)
2356 			*errp = ENXIO;
2357 		return (0);
2358 	}
2359 	if (dev_is_good(dev) == 0) {
2360 		if (errp != NULL)
2361 			*errp = ENXIO;
2362 		return (0);
2363 	}
2364 	if ((dev_dflags(dev) & D_DISK) == 0) {
2365 		if (errp != NULL)
2366 			*errp = ENOTBLK;
2367 		return (0);
2368 	}
2369 	if (errp != NULL)
2370 		*errp = 0;
2371 	return (1);
2372 }
2373 
2374 int
2375 vn_get_namelen(struct vnode *vp, int *namelen)
2376 {
2377 	int error;
2378 	register_t retval[2];
2379 
2380 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2381 	if (error)
2382 		return (error);
2383 	*namelen = (int)retval[0];
2384 	return (0);
2385 }
2386 
2387 int
2388 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2389 		uint16_t d_namlen, const char *d_name)
2390 {
2391 	struct dirent *dp;
2392 	size_t len;
2393 
2394 	len = _DIRENT_RECLEN(d_namlen);
2395 	if (len > uio->uio_resid)
2396 		return(1);
2397 
2398 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2399 
2400 	dp->d_ino = d_ino;
2401 	dp->d_namlen = d_namlen;
2402 	dp->d_type = d_type;
2403 	bcopy(d_name, dp->d_name, d_namlen);
2404 
2405 	*error = uiomove((caddr_t)dp, len, uio);
2406 
2407 	kfree(dp, M_TEMP);
2408 
2409 	return(0);
2410 }
2411 
2412 void
2413 vn_mark_atime(struct vnode *vp, struct thread *td)
2414 {
2415 	struct proc *p = td->td_proc;
2416 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2417 
2418 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2419 		VOP_MARKATIME(vp, cred);
2420 	}
2421 }
2422