xref: /dragonfly/sys/kern/vfs_subr.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.89 2006/06/05 21:03:02 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 int numvnodes;
90 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91 int vfs_fastdev = 1;
92 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
93 
94 enum vtype iftovt_tab[16] = {
95 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97 };
98 int vttoif_tab[9] = {
99 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 	S_IFSOCK, S_IFIFO, S_IFMT,
101 };
102 
103 static int reassignbufcalls;
104 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 		&reassignbufcalls, 0, "");
106 static int reassignbufloops;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 		&reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 		&reassignbufsortgood, 0, "");
112 static int reassignbufsortbad;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 		&reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 		&reassignbufmethod, 0, "");
118 
119 int	nfs_mount_type = -1;
120 static struct lwkt_token spechash_token;
121 struct nfs_public nfs_pub;	/* publicly exported FS */
122 
123 int desiredvnodes;
124 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 		&desiredvnodes, 0, "Maximum number of vnodes");
126 
127 static void	vfs_free_addrlist (struct netexport *nep);
128 static int	vfs_free_netcred (struct radix_node *rn, void *w);
129 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 				       struct export_args *argp);
131 
132 extern int dev_ref_debug;
133 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
144 {
145 	if (b1->b_loffset < b2->b_loffset)
146 		return(-1);
147 	if (b1->b_loffset > b2->b_loffset)
148 		return(1);
149 	return(0);
150 }
151 
152 /*
153  * Return 0 if the vnode is already on the free list or cannot be placed
154  * on the free list.  Return 1 if the vnode can be placed on the free list.
155  */
156 static __inline int
157 vshouldfree(struct vnode *vp, int usecount)
158 {
159 	if (vp->v_flag & VFREE)
160 		return (0);		/* already free */
161 	if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
162 		return (0);		/* other holderse */
163 	if (vp->v_object &&
164 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
165 		return (0);
166 	}
167 	return (1);
168 }
169 
170 /*
171  * Initialize the vnode management data structures.
172  *
173  * Called from vfsinit()
174  */
175 void
176 vfs_subr_init(void)
177 {
178 	/*
179 	 * Desired vnodes is a result of the physical page count
180 	 * and the size of kernel's heap.  It scales in proportion
181 	 * to the amount of available physical memory.  This can
182 	 * cause trouble on 64-bit and large memory platforms.
183 	 */
184 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
185 	desiredvnodes =
186 		min(maxproc + vmstats.v_page_count /4,
187 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
188 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
189 
190 	lwkt_token_init(&spechash_token);
191 }
192 
193 /*
194  * Knob to control the precision of file timestamps:
195  *
196  *   0 = seconds only; nanoseconds zeroed.
197  *   1 = seconds and nanoseconds, accurate within 1/HZ.
198  *   2 = seconds and nanoseconds, truncated to microseconds.
199  * >=3 = seconds and nanoseconds, maximum precision.
200  */
201 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
202 
203 static int timestamp_precision = TSP_SEC;
204 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
205 		&timestamp_precision, 0, "");
206 
207 /*
208  * Get a current timestamp.
209  */
210 void
211 vfs_timestamp(struct timespec *tsp)
212 {
213 	struct timeval tv;
214 
215 	switch (timestamp_precision) {
216 	case TSP_SEC:
217 		tsp->tv_sec = time_second;
218 		tsp->tv_nsec = 0;
219 		break;
220 	case TSP_HZ:
221 		getnanotime(tsp);
222 		break;
223 	case TSP_USEC:
224 		microtime(&tv);
225 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
226 		break;
227 	case TSP_NSEC:
228 	default:
229 		nanotime(tsp);
230 		break;
231 	}
232 }
233 
234 /*
235  * Set vnode attributes to VNOVAL
236  */
237 void
238 vattr_null(struct vattr *vap)
239 {
240 	vap->va_type = VNON;
241 	vap->va_size = VNOVAL;
242 	vap->va_bytes = VNOVAL;
243 	vap->va_mode = VNOVAL;
244 	vap->va_nlink = VNOVAL;
245 	vap->va_uid = VNOVAL;
246 	vap->va_gid = VNOVAL;
247 	vap->va_fsid = VNOVAL;
248 	vap->va_fileid = VNOVAL;
249 	vap->va_blocksize = VNOVAL;
250 	vap->va_rdev = VNOVAL;
251 	vap->va_atime.tv_sec = VNOVAL;
252 	vap->va_atime.tv_nsec = VNOVAL;
253 	vap->va_mtime.tv_sec = VNOVAL;
254 	vap->va_mtime.tv_nsec = VNOVAL;
255 	vap->va_ctime.tv_sec = VNOVAL;
256 	vap->va_ctime.tv_nsec = VNOVAL;
257 	vap->va_flags = VNOVAL;
258 	vap->va_gen = VNOVAL;
259 	vap->va_vaflags = 0;
260 	vap->va_fsmid = VNOVAL;
261 }
262 
263 /*
264  * Flush out and invalidate all buffers associated with a vnode.
265  *
266  * vp must be locked.
267  */
268 static int vinvalbuf_bp(struct buf *bp, void *data);
269 
270 struct vinvalbuf_bp_info {
271 	struct vnode *vp;
272 	int slptimeo;
273 	int lkflags;
274 	int flags;
275 };
276 
277 void
278 vupdatefsmid(struct vnode *vp)
279 {
280 	atomic_set_int(&vp->v_flag, VFSMID);
281 }
282 
283 int
284 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
285 {
286 	struct vinvalbuf_bp_info info;
287 	int error;
288 	vm_object_t object;
289 
290 	/*
291 	 * If we are being asked to save, call fsync to ensure that the inode
292 	 * is updated.
293 	 */
294 	if (flags & V_SAVE) {
295 		crit_enter();
296 		while (vp->v_track_write.bk_active) {
297 			vp->v_track_write.bk_waitflag = 1;
298 			error = tsleep(&vp->v_track_write, slpflag,
299 					"vinvlbuf", slptimeo);
300 			if (error) {
301 				crit_exit();
302 				return (error);
303 			}
304 		}
305 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
306 			crit_exit();
307 			if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
308 				return (error);
309 			crit_enter();
310 			if (vp->v_track_write.bk_active > 0 ||
311 			    !RB_EMPTY(&vp->v_rbdirty_tree))
312 				panic("vinvalbuf: dirty bufs");
313 		}
314 		crit_exit();
315   	}
316 	crit_enter();
317 	info.slptimeo = slptimeo;
318 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
319 	if (slpflag & PCATCH)
320 		info.lkflags |= LK_PCATCH;
321 	info.flags = flags;
322 	info.vp = vp;
323 
324 	/*
325 	 * Flush the buffer cache until nothing is left.
326 	 */
327 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
328 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
329 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
330 				vinvalbuf_bp, &info);
331 		if (error == 0) {
332 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
333 					vinvalbuf_bp, &info);
334 		}
335 	}
336 
337 	/*
338 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
339 	 * have write I/O in-progress but if there is a VM object then the
340 	 * VM object can also have read-I/O in-progress.
341 	 */
342 	do {
343 		while (vp->v_track_write.bk_active > 0) {
344 			vp->v_track_write.bk_waitflag = 1;
345 			tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
346 		}
347 		if ((object = vp->v_object) != NULL) {
348 			while (object->paging_in_progress)
349 				vm_object_pip_sleep(object, "vnvlbx");
350 		}
351 	} while (vp->v_track_write.bk_active > 0);
352 
353 	crit_exit();
354 
355 	/*
356 	 * Destroy the copy in the VM cache, too.
357 	 */
358 	if ((object = vp->v_object) != NULL) {
359 		vm_object_page_remove(object, 0, 0,
360 			(flags & V_SAVE) ? TRUE : FALSE);
361 	}
362 
363 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
364 		panic("vinvalbuf: flush failed");
365 	if (!RB_EMPTY(&vp->v_rbhash_tree))
366 		panic("vinvalbuf: flush failed, buffers still present");
367 	return (0);
368 }
369 
370 static int
371 vinvalbuf_bp(struct buf *bp, void *data)
372 {
373 	struct vinvalbuf_bp_info *info = data;
374 	int error;
375 
376 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
377 		error = BUF_TIMELOCK(bp, info->lkflags,
378 				     "vinvalbuf", info->slptimeo);
379 		if (error == 0) {
380 			BUF_UNLOCK(bp);
381 			error = ENOLCK;
382 		}
383 		if (error == ENOLCK)
384 			return(0);
385 		return (-error);
386 	}
387 
388 	KKASSERT(bp->b_vp == info->vp);
389 
390 	/*
391 	 * XXX Since there are no node locks for NFS, I
392 	 * believe there is a slight chance that a delayed
393 	 * write will occur while sleeping just above, so
394 	 * check for it.  Note that vfs_bio_awrite expects
395 	 * buffers to reside on a queue, while bwrite() and
396 	 * brelse() do not.
397 	 */
398 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
399 	    (info->flags & V_SAVE)) {
400 		if (bp->b_vp == info->vp) {
401 			if (bp->b_flags & B_CLUSTEROK) {
402 				vfs_bio_awrite(bp);
403 			} else {
404 				bremfree(bp);
405 				bp->b_flags |= B_ASYNC;
406 				bwrite(bp);
407 			}
408 		} else {
409 			bremfree(bp);
410 			bwrite(bp);
411 		}
412 	} else if (info->flags & V_SAVE) {
413 		/*
414 		 * Cannot set B_NOCACHE on a clean buffer as this will
415 		 * destroy the VM backing store which might actually
416 		 * be dirty (and unsynchronized).
417 		 */
418 		bremfree(bp);
419 		bp->b_flags |= (B_INVAL | B_RELBUF);
420 		bp->b_flags &= ~B_ASYNC;
421 		brelse(bp);
422 	} else {
423 		bremfree(bp);
424 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
425 		bp->b_flags &= ~B_ASYNC;
426 		brelse(bp);
427 	}
428 	return(0);
429 }
430 
431 /*
432  * Truncate a file's buffer and pages to a specified length.  This
433  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
434  * sync activity.
435  *
436  * The vnode must be locked.
437  */
438 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
439 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
440 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
441 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
442 
443 int
444 vtruncbuf(struct vnode *vp, off_t length, int blksize)
445 {
446 	off_t truncloffset;
447 	int count;
448 	const char *filename;
449 
450 	/*
451 	 * Round up to the *next* block, then destroy the buffers in question.
452 	 * Since we are only removing some of the buffers we must rely on the
453 	 * scan count to determine whether a loop is necessary.
454 	 */
455 	if ((count = (int)(length % blksize)) != 0)
456 		truncloffset = length + (blksize - count);
457 	else
458 		truncloffset = length;
459 
460 	crit_enter();
461 	do {
462 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
463 				vtruncbuf_bp_trunc_cmp,
464 				vtruncbuf_bp_trunc, &truncloffset);
465 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
466 				vtruncbuf_bp_trunc_cmp,
467 				vtruncbuf_bp_trunc, &truncloffset);
468 	} while(count);
469 
470 	/*
471 	 * For safety, fsync any remaining metadata if the file is not being
472 	 * truncated to 0.  Since the metadata does not represent the entire
473 	 * dirty list we have to rely on the hit count to ensure that we get
474 	 * all of it.
475 	 */
476 	if (length > 0) {
477 		do {
478 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
479 					vtruncbuf_bp_metasync_cmp,
480 					vtruncbuf_bp_metasync, vp);
481 		} while (count);
482 	}
483 
484 	/*
485 	 * Clean out any left over VM backing store.
486 	 */
487 	crit_exit();
488 
489 	vnode_pager_setsize(vp, length);
490 
491 	crit_enter();
492 
493 	/*
494 	 * It is possible to have in-progress I/O from buffers that were
495 	 * not part of the truncation.  This should not happen if we
496 	 * are truncating to 0-length.
497 	 */
498 	filename = TAILQ_FIRST(&vp->v_namecache) ?
499 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
500 
501 	while ((count = vp->v_track_write.bk_active) > 0) {
502 		vp->v_track_write.bk_waitflag = 1;
503 		tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
504 		if (length == 0) {
505 			printf("Warning: vtruncbuf(): Had to wait for "
506 			       "%d buffer I/Os to finish in %s\n",
507 			       count, filename);
508 		}
509 	}
510 
511 	/*
512 	 * Make sure no buffers were instantiated while we were trying
513 	 * to clean out the remaining VM pages.  This could occur due
514 	 * to busy dirty VM pages being flushed out to disk.
515 	 */
516 	do {
517 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
518 				vtruncbuf_bp_trunc_cmp,
519 				vtruncbuf_bp_trunc, &truncloffset);
520 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
521 				vtruncbuf_bp_trunc_cmp,
522 				vtruncbuf_bp_trunc, &truncloffset);
523 		if (count) {
524 			printf("Warning: vtruncbuf():  Had to re-clean %d "
525 			       "left over buffers in %s\n", count, filename);
526 		}
527 	} while(count);
528 
529 	crit_exit();
530 
531 	return (0);
532 }
533 
534 /*
535  * The callback buffer is beyond the new file EOF and must be destroyed.
536  * Note that the compare function must conform to the RB_SCAN's requirements.
537  */
538 static
539 int
540 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
541 {
542 	if (bp->b_loffset >= *(off_t *)data)
543 		return(0);
544 	return(-1);
545 }
546 
547 static
548 int
549 vtruncbuf_bp_trunc(struct buf *bp, void *data)
550 {
551 	/*
552 	 * Do not try to use a buffer we cannot immediately lock, but sleep
553 	 * anyway to prevent a livelock.  The code will loop until all buffers
554 	 * can be acted upon.
555 	 */
556 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
557 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
558 			BUF_UNLOCK(bp);
559 	} else {
560 		bremfree(bp);
561 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
562 		bp->b_flags &= ~B_ASYNC;
563 		brelse(bp);
564 	}
565 	return(1);
566 }
567 
568 /*
569  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
570  * blocks (with a negative loffset) are scanned.
571  * Note that the compare function must conform to the RB_SCAN's requirements.
572  */
573 static int
574 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
575 {
576 	if (bp->b_loffset < 0)
577 		return(0);
578 	return(1);
579 }
580 
581 static int
582 vtruncbuf_bp_metasync(struct buf *bp, void *data)
583 {
584 	struct vnode *vp = data;
585 
586 	if (bp->b_flags & B_DELWRI) {
587 		/*
588 		 * Do not try to use a buffer we cannot immediately lock,
589 		 * but sleep anyway to prevent a livelock.  The code will
590 		 * loop until all buffers can be acted upon.
591 		 */
592 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
593 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
594 				BUF_UNLOCK(bp);
595 		} else {
596 			bremfree(bp);
597 			if (bp->b_vp == vp) {
598 				bp->b_flags |= B_ASYNC;
599 			} else {
600 				bp->b_flags &= ~B_ASYNC;
601 			}
602 			bwrite(bp);
603 		}
604 		return(1);
605 	} else {
606 		return(0);
607 	}
608 }
609 
610 /*
611  * vfsync - implements a multipass fsync on a file which understands
612  * dependancies and meta-data.  The passed vnode must be locked.  The
613  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
614  *
615  * When fsyncing data asynchronously just do one consolidated pass starting
616  * with the most negative block number.  This may not get all the data due
617  * to dependancies.
618  *
619  * When fsyncing data synchronously do a data pass, then a metadata pass,
620  * then do additional data+metadata passes to try to get all the data out.
621  */
622 static int vfsync_wait_output(struct vnode *vp,
623 			    int (*waitoutput)(struct vnode *, struct thread *));
624 static int vfsync_data_only_cmp(struct buf *bp, void *data);
625 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
626 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
627 static int vfsync_bp(struct buf *bp, void *data);
628 
629 struct vfsync_info {
630 	struct vnode *vp;
631 	int synchronous;
632 	int syncdeps;
633 	int lazycount;
634 	int lazylimit;
635 	int skippedbufs;
636 	int (*checkdef)(struct buf *);
637 };
638 
639 int
640 vfsync(struct vnode *vp, int waitfor, int passes,
641 	int (*checkdef)(struct buf *),
642 	int (*waitoutput)(struct vnode *, struct thread *))
643 {
644 	struct vfsync_info info;
645 	int error;
646 
647 	bzero(&info, sizeof(info));
648 	info.vp = vp;
649 	if ((info.checkdef = checkdef) == NULL)
650 		info.syncdeps = 1;
651 
652 	crit_enter_id("vfsync");
653 
654 	switch(waitfor) {
655 	case MNT_LAZY:
656 		/*
657 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
658 		 * number of data (not meta) pages we try to flush to 1MB.
659 		 * A non-zero return means that lazy limit was reached.
660 		 */
661 		info.lazylimit = 1024 * 1024;
662 		info.syncdeps = 1;
663 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
664 				vfsync_lazy_range_cmp, vfsync_bp, &info);
665 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
666 				vfsync_meta_only_cmp, vfsync_bp, &info);
667 		if (error == 0)
668 			vp->v_lazyw = 0;
669 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
670 			vn_syncer_add_to_worklist(vp, 1);
671 		error = 0;
672 		break;
673 	case MNT_NOWAIT:
674 		/*
675 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
676 		 */
677 		info.syncdeps = 1;
678 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
679 			vfsync_bp, &info);
680 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
681 			vfsync_bp, &info);
682 		error = 0;
683 		break;
684 	default:
685 		/*
686 		 * Synchronous.  Do a data-only pass, then a meta-data+data
687 		 * pass, then additional integrated passes to try to get
688 		 * all the dependancies flushed.
689 		 */
690 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
691 			vfsync_bp, &info);
692 		error = vfsync_wait_output(vp, waitoutput);
693 		if (error == 0) {
694 			info.skippedbufs = 0;
695 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
696 				vfsync_bp, &info);
697 			error = vfsync_wait_output(vp, waitoutput);
698 			if (info.skippedbufs)
699 				printf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
700 		}
701 		while (error == 0 && passes > 0 &&
702 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
703 			if (--passes == 0) {
704 				info.synchronous = 1;
705 				info.syncdeps = 1;
706 			}
707 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
708 				vfsync_bp, &info);
709 			if (error < 0)
710 				error = -error;
711 			info.syncdeps = 1;
712 			if (error == 0)
713 				error = vfsync_wait_output(vp, waitoutput);
714 		}
715 		break;
716 	}
717 	crit_exit_id("vfsync");
718 	return(error);
719 }
720 
721 static int
722 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
723 {
724 	int error = 0;
725 
726 	while (vp->v_track_write.bk_active) {
727 		vp->v_track_write.bk_waitflag = 1;
728 		tsleep(&vp->v_track_write, 0, "fsfsn", 0);
729 	}
730 	if (waitoutput)
731 		error = waitoutput(vp, curthread);
732 	return(error);
733 }
734 
735 static int
736 vfsync_data_only_cmp(struct buf *bp, void *data)
737 {
738 	if (bp->b_loffset < 0)
739 		return(-1);
740 	return(0);
741 }
742 
743 static int
744 vfsync_meta_only_cmp(struct buf *bp, void *data)
745 {
746 	if (bp->b_loffset < 0)
747 		return(0);
748 	return(1);
749 }
750 
751 static int
752 vfsync_lazy_range_cmp(struct buf *bp, void *data)
753 {
754 	struct vfsync_info *info = data;
755 	if (bp->b_loffset < info->vp->v_lazyw)
756 		return(-1);
757 	return(0);
758 }
759 
760 static int
761 vfsync_bp(struct buf *bp, void *data)
762 {
763 	struct vfsync_info *info = data;
764 	struct vnode *vp = info->vp;
765 	int error;
766 
767 	/*
768 	 * if syncdeps is not set we do not try to write buffers which have
769 	 * dependancies.
770 	 */
771 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
772 		return(0);
773 
774 	/*
775 	 * Ignore buffers that we cannot immediately lock.  XXX
776 	 */
777 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
778 		printf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
779 		++info->skippedbufs;
780 		return(0);
781 	}
782 	if ((bp->b_flags & B_DELWRI) == 0)
783 		panic("vfsync_bp: buffer not dirty");
784 	if (vp != bp->b_vp)
785 		panic("vfsync_bp: buffer vp mismatch");
786 
787 	/*
788 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
789 	 * has been written but an additional handshake with the device
790 	 * is required before we can dispose of the buffer.  We have no idea
791 	 * how to do this so we have to skip these buffers.
792 	 */
793 	if (bp->b_flags & B_NEEDCOMMIT) {
794 		BUF_UNLOCK(bp);
795 		return(0);
796 	}
797 
798 	if (info->synchronous) {
799 		/*
800 		 * Synchronous flushing.  An error may be returned.
801 		 */
802 		bremfree(bp);
803 		crit_exit_id("vfsync");
804 		error = bwrite(bp);
805 		crit_enter_id("vfsync");
806 	} else {
807 		/*
808 		 * Asynchronous flushing.  A negative return value simply
809 		 * stops the scan and is not considered an error.  We use
810 		 * this to support limited MNT_LAZY flushes.
811 		 */
812 		vp->v_lazyw = bp->b_loffset;
813 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
814 			info->lazycount += vfs_bio_awrite(bp);
815 		} else {
816 			info->lazycount += bp->b_bufsize;
817 			bremfree(bp);
818 			crit_exit_id("vfsync");
819 			bawrite(bp);
820 			crit_enter_id("vfsync");
821 		}
822 		if (info->lazylimit && info->lazycount >= info->lazylimit)
823 			error = 1;
824 		else
825 			error = 0;
826 	}
827 	return(-error);
828 }
829 
830 /*
831  * Associate a buffer with a vnode.
832  */
833 void
834 bgetvp(struct vnode *vp, struct buf *bp)
835 {
836 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
837 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
838 
839 	vhold(vp);
840 	/*
841 	 * Insert onto list for new vnode.
842 	 */
843 	crit_enter();
844 	bp->b_vp = vp;
845 	bp->b_flags |= B_HASHED;
846 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
847 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
848 
849 	bp->b_flags |= B_VNCLEAN;
850 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
851 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
852 	crit_exit();
853 }
854 
855 /*
856  * Disassociate a buffer from a vnode.
857  */
858 void
859 brelvp(struct buf *bp)
860 {
861 	struct vnode *vp;
862 
863 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
864 
865 	/*
866 	 * Delete from old vnode list, if on one.
867 	 */
868 	vp = bp->b_vp;
869 	crit_enter();
870 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
871 		if (bp->b_flags & B_VNDIRTY)
872 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
873 		else
874 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
875 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
876 	}
877 	if (bp->b_flags & B_HASHED) {
878 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
879 		bp->b_flags &= ~B_HASHED;
880 	}
881 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
882 		vp->v_flag &= ~VONWORKLST;
883 		LIST_REMOVE(vp, v_synclist);
884 	}
885 	crit_exit();
886 	bp->b_vp = NULL;
887 	vdrop(vp);
888 }
889 
890 /*
891  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
892  * This routine is called when the state of the B_DELWRI bit is changed.
893  */
894 void
895 reassignbuf(struct buf *bp)
896 {
897 	struct vnode *vp = bp->b_vp;
898 	int delay;
899 
900 	KKASSERT(vp != NULL);
901 	++reassignbufcalls;
902 
903 	/*
904 	 * B_PAGING flagged buffers cannot be reassigned because their vp
905 	 * is not fully linked in.
906 	 */
907 	if (bp->b_flags & B_PAGING)
908 		panic("cannot reassign paging buffer");
909 
910 	crit_enter();
911 	if (bp->b_flags & B_DELWRI) {
912 		/*
913 		 * Move to the dirty list, add the vnode to the worklist
914 		 */
915 		if (bp->b_flags & B_VNCLEAN) {
916 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
917 			bp->b_flags &= ~B_VNCLEAN;
918 		}
919 		if ((bp->b_flags & B_VNDIRTY) == 0) {
920 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
921 				panic("reassignbuf: dup lblk vp %p bp %p",
922 				      vp, bp);
923 			}
924 			bp->b_flags |= B_VNDIRTY;
925 		}
926 		if ((vp->v_flag & VONWORKLST) == 0) {
927 			switch (vp->v_type) {
928 			case VDIR:
929 				delay = dirdelay;
930 				break;
931 			case VCHR:
932 			case VBLK:
933 				if (vp->v_rdev &&
934 				    vp->v_rdev->si_mountpoint != NULL) {
935 					delay = metadelay;
936 					break;
937 				}
938 				/* fall through */
939 			default:
940 				delay = filedelay;
941 			}
942 			vn_syncer_add_to_worklist(vp, delay);
943 		}
944 	} else {
945 		/*
946 		 * Move to the clean list, remove the vnode from the worklist
947 		 * if no dirty blocks remain.
948 		 */
949 		if (bp->b_flags & B_VNDIRTY) {
950 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
951 			bp->b_flags &= ~B_VNDIRTY;
952 		}
953 		if ((bp->b_flags & B_VNCLEAN) == 0) {
954 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
955 				panic("reassignbuf: dup lblk vp %p bp %p",
956 				      vp, bp);
957 			}
958 			bp->b_flags |= B_VNCLEAN;
959 		}
960 		if ((vp->v_flag & VONWORKLST) &&
961 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
962 			vp->v_flag &= ~VONWORKLST;
963 			LIST_REMOVE(vp, v_synclist);
964 		}
965 	}
966 	crit_exit();
967 }
968 
969 /*
970  * Create a vnode for a block device.
971  * Used for mounting the root file system.
972  */
973 int
974 bdevvp(dev_t dev, struct vnode **vpp)
975 {
976 	struct vnode *vp;
977 	struct vnode *nvp;
978 	int error;
979 
980 	if (dev == NODEV) {
981 		*vpp = NULLVP;
982 		return (ENXIO);
983 	}
984 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
985 	if (error) {
986 		*vpp = NULLVP;
987 		return (error);
988 	}
989 	vp = nvp;
990 	vp->v_type = VCHR;
991 	vp->v_udev = dev->si_udev;
992 	vx_unlock(vp);
993 	*vpp = vp;
994 	return (0);
995 }
996 
997 int
998 v_associate_rdev(struct vnode *vp, dev_t dev)
999 {
1000 	lwkt_tokref ilock;
1001 
1002 	if (dev == NULL || dev == NODEV)
1003 		return(ENXIO);
1004 	if (dev_is_good(dev) == 0)
1005 		return(ENXIO);
1006 	KKASSERT(vp->v_rdev == NULL);
1007 	if (dev_ref_debug)
1008 		printf("Z1");
1009 	vp->v_rdev = reference_dev(dev);
1010 	lwkt_gettoken(&ilock, &spechash_token);
1011 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1012 	lwkt_reltoken(&ilock);
1013 	return(0);
1014 }
1015 
1016 void
1017 v_release_rdev(struct vnode *vp)
1018 {
1019 	lwkt_tokref ilock;
1020 	dev_t dev;
1021 
1022 	if ((dev = vp->v_rdev) != NULL) {
1023 		lwkt_gettoken(&ilock, &spechash_token);
1024 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1025 		vp->v_rdev = NULL;
1026 		release_dev(dev);
1027 		lwkt_reltoken(&ilock);
1028 	}
1029 }
1030 
1031 /*
1032  * Add a vnode to the alias list hung off the dev_t.  We only associate
1033  * the device number with the vnode.  The actual device is not associated
1034  * until the vnode is opened (usually in spec_open()), and will be
1035  * disassociated on last close.
1036  */
1037 void
1038 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1039 {
1040 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1041 		panic("addaliasu on non-special vnode");
1042 	nvp->v_udev = nvp_udev;
1043 }
1044 
1045 /*
1046  * Disassociate a vnode from its underlying filesystem.
1047  *
1048  * The vnode must be VX locked and refd
1049  *
1050  * If there are v_usecount references to the vnode other then ours we have
1051  * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1052  */
1053 void
1054 vclean(struct vnode *vp, int flags)
1055 {
1056 	int active;
1057 	int n;
1058 	vm_object_t object;
1059 
1060 	/*
1061 	 * If the vnode has already been reclaimed we have nothing to do.
1062 	 */
1063 	if (vp->v_flag & VRECLAIMED)
1064 		return;
1065 	vp->v_flag |= VRECLAIMED;
1066 
1067 	/*
1068 	 * Scrap the vfs cache
1069 	 */
1070 	while (cache_inval_vp(vp, 0) != 0) {
1071 		printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1072 		tsleep(vp, 0, "vclninv", 2);
1073 	}
1074 
1075 	/*
1076 	 * Check to see if the vnode is in use. If so we have to reference it
1077 	 * before we clean it out so that its count cannot fall to zero and
1078 	 * generate a race against ourselves to recycle it.
1079 	 */
1080 	active = (vp->v_usecount > 1);
1081 
1082 	/*
1083 	 * Clean out any buffers associated with the vnode and destroy its
1084 	 * object, if it has one.
1085 	 */
1086 	vinvalbuf(vp, V_SAVE, 0, 0);
1087 
1088 	if ((object = vp->v_object) != NULL) {
1089 		if (object->ref_count == 0) {
1090 			if ((object->flags & OBJ_DEAD) == 0)
1091 				vm_object_terminate(object);
1092 		} else {
1093 			vm_pager_deallocate(object);
1094 		}
1095 		vp->v_flag &= ~VOBJBUF;
1096 	}
1097 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1098 
1099 	/*
1100 	 * If purging an active vnode (typically during a forced unmount
1101 	 * or reboot), it must be closed and deactivated before being
1102 	 * reclaimed.  This isn't really all that safe, but what can
1103 	 * we do? XXX.
1104 	 *
1105 	 * Note that neither of these routines unlocks the vnode.
1106 	 */
1107 	if (active && (flags & DOCLOSE)) {
1108 		while ((n = vp->v_opencount) != 0) {
1109 			if (vp->v_writecount)
1110 				VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1111 			else
1112 				VOP_CLOSE(vp, FNONBLOCK);
1113 			if (vp->v_opencount == n) {
1114 				printf("Warning: unable to force-close"
1115 				       " vnode %p\n", vp);
1116 				break;
1117 			}
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * If the vnode has not be deactivated, deactivated it.
1123 	 */
1124 	if ((vp->v_flag & VINACTIVE) == 0) {
1125 		vp->v_flag |= VINACTIVE;
1126 		VOP_INACTIVE(vp);
1127 	}
1128 
1129 	/*
1130 	 * Reclaim the vnode.
1131 	 */
1132 	if (VOP_RECLAIM(vp))
1133 		panic("vclean: cannot reclaim");
1134 
1135 	/*
1136 	 * Done with purge, notify sleepers of the grim news.
1137 	 */
1138 	vp->v_ops = &dead_vnode_vops;
1139 	vn_pollgone(vp);
1140 	vp->v_tag = VT_NON;
1141 }
1142 
1143 /*
1144  * Eliminate all activity associated with the requested vnode
1145  * and with all vnodes aliased to the requested vnode.
1146  *
1147  * The vnode must be referenced and vx_lock()'d
1148  *
1149  * revoke { struct vnode *a_vp, int a_flags }
1150  */
1151 int
1152 vop_stdrevoke(struct vop_revoke_args *ap)
1153 {
1154 	struct vnode *vp, *vq;
1155 	lwkt_tokref ilock;
1156 	dev_t dev;
1157 
1158 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1159 
1160 	vp = ap->a_vp;
1161 
1162 	/*
1163 	 * If the vnode is already dead don't try to revoke it
1164 	 */
1165 	if (vp->v_flag & VRECLAIMED)
1166 		return (0);
1167 
1168 	/*
1169 	 * If the vnode has a device association, scrap all vnodes associated
1170 	 * with the device.  Don't let the device disappear on us while we
1171 	 * are scrapping the vnodes.
1172 	 *
1173 	 * The passed vp will probably show up in the list, do not VX lock
1174 	 * it twice!
1175 	 */
1176 	if (vp->v_type != VCHR && vp->v_type != VBLK)
1177 		return(0);
1178 	if ((dev = vp->v_rdev) == NULL) {
1179 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1180 			return(0);
1181 	}
1182 	reference_dev(dev);
1183 	lwkt_gettoken(&ilock, &spechash_token);
1184 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1185 		if (vp == vq || vx_get(vq) == 0) {
1186 			if (vq == SLIST_FIRST(&dev->si_hlist))
1187 				vgone(vq);
1188 			if (vp != vq)
1189 				vx_put(vq);
1190 		}
1191 	}
1192 	lwkt_reltoken(&ilock);
1193 	release_dev(dev);
1194 	return (0);
1195 }
1196 
1197 /*
1198  * Recycle an unused vnode to the front of the free list.
1199  *
1200  * Returns 1 if we were successfully able to recycle the vnode,
1201  * 0 otherwise.
1202  */
1203 int
1204 vrecycle(struct vnode *vp)
1205 {
1206 	if (vp->v_usecount == 1) {
1207 		vgone(vp);
1208 		return (1);
1209 	}
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Eliminate all activity associated with a vnode in preparation for reuse.
1215  *
1216  * The vnode must be VX locked and refd and will remain VX locked and refd
1217  * on return.  This routine may be called with the vnode in any state, as
1218  * long as it is VX locked.  The vnode will be cleaned out and marked
1219  * VRECLAIMED but will not actually be reused until all existing refs and
1220  * holds go away.
1221  *
1222  * NOTE: This routine may be called on a vnode which has not yet been
1223  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1224  * already been reclaimed.
1225  *
1226  * This routine is not responsible for placing us back on the freelist.
1227  * Instead, it happens automatically when the caller releases the VX lock
1228  * (assuming there aren't any other references).
1229  */
1230 void
1231 vgone(struct vnode *vp)
1232 {
1233 	/*
1234 	 * assert that the VX lock is held.  This is an absolute requirement
1235 	 * now for vgone() to be called.
1236 	 */
1237 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1238 
1239 	/*
1240 	 * Clean out the filesystem specific data and set the VRECLAIMED
1241 	 * bit.  Also deactivate the vnode if necessary.
1242 	 */
1243 	vclean(vp, DOCLOSE);
1244 
1245 	/*
1246 	 * Delete from old mount point vnode list, if on one.
1247 	 */
1248 	if (vp->v_mount != NULL)
1249 		insmntque(vp, NULL);
1250 
1251 	/*
1252 	 * If special device, remove it from special device alias list
1253 	 * if it is on one.  This should normally only occur if a vnode is
1254 	 * being revoked as the device should otherwise have been released
1255 	 * naturally.
1256 	 */
1257 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1258 		v_release_rdev(vp);
1259 	}
1260 
1261 	/*
1262 	 * Set us to VBAD
1263 	 */
1264 	vp->v_type = VBAD;
1265 }
1266 
1267 /*
1268  * Lookup a vnode by device number.
1269  */
1270 int
1271 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1272 {
1273 	lwkt_tokref ilock;
1274 	struct vnode *vp;
1275 
1276 	lwkt_gettoken(&ilock, &spechash_token);
1277 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1278 		if (type == vp->v_type) {
1279 			*vpp = vp;
1280 			lwkt_reltoken(&ilock);
1281 			return (1);
1282 		}
1283 	}
1284 	lwkt_reltoken(&ilock);
1285 	return (0);
1286 }
1287 
1288 /*
1289  * Calculate the total number of references to a special device.  This
1290  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1291  * an overloaded field.  Since udev2dev can now return NODEV, we have
1292  * to check for a NULL v_rdev.
1293  */
1294 int
1295 count_dev(dev_t dev)
1296 {
1297 	lwkt_tokref ilock;
1298 	struct vnode *vp;
1299 	int count = 0;
1300 
1301 	if (SLIST_FIRST(&dev->si_hlist)) {
1302 		lwkt_gettoken(&ilock, &spechash_token);
1303 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1304 			count += vp->v_usecount;
1305 		}
1306 		lwkt_reltoken(&ilock);
1307 	}
1308 	return(count);
1309 }
1310 
1311 int
1312 count_udev(udev_t udev)
1313 {
1314 	dev_t dev;
1315 
1316 	if ((dev = udev2dev(udev, 0)) == NODEV)
1317 		return(0);
1318 	return(count_dev(dev));
1319 }
1320 
1321 int
1322 vcount(struct vnode *vp)
1323 {
1324 	if (vp->v_rdev == NULL)
1325 		return(0);
1326 	return(count_dev(vp->v_rdev));
1327 }
1328 
1329 /*
1330  * Initialize VMIO for a vnode.  This routine MUST be called before a
1331  * VFS can issue buffer cache ops on a vnode.  It is typically called
1332  * when a vnode is initialized from its inode.
1333  */
1334 int
1335 vinitvmio(struct vnode *vp, off_t filesize)
1336 {
1337 	vm_object_t object;
1338 	int error = 0;
1339 
1340 retry:
1341 	if ((object = vp->v_object) == NULL) {
1342 		object = vnode_pager_alloc(vp, filesize, 0, 0);
1343 		/*
1344 		 * Dereference the reference we just created.  This assumes
1345 		 * that the object is associated with the vp.
1346 		 */
1347 		object->ref_count--;
1348 		vp->v_usecount--;
1349 	} else {
1350 		if (object->flags & OBJ_DEAD) {
1351 			VOP_UNLOCK(vp, 0);
1352 			tsleep(object, 0, "vodead", 0);
1353 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1354 			goto retry;
1355 		}
1356 	}
1357 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1358 	vp->v_flag |= VOBJBUF;
1359 	return (error);
1360 }
1361 
1362 
1363 /*
1364  * Print out a description of a vnode.
1365  */
1366 static char *typename[] =
1367 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1368 
1369 void
1370 vprint(char *label, struct vnode *vp)
1371 {
1372 	char buf[96];
1373 
1374 	if (label != NULL)
1375 		printf("%s: %p: ", label, (void *)vp);
1376 	else
1377 		printf("%p: ", (void *)vp);
1378 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1379 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1380 	    vp->v_holdcnt);
1381 	buf[0] = '\0';
1382 	if (vp->v_flag & VROOT)
1383 		strcat(buf, "|VROOT");
1384 	if (vp->v_flag & VTEXT)
1385 		strcat(buf, "|VTEXT");
1386 	if (vp->v_flag & VSYSTEM)
1387 		strcat(buf, "|VSYSTEM");
1388 	if (vp->v_flag & VFREE)
1389 		strcat(buf, "|VFREE");
1390 	if (vp->v_flag & VOBJBUF)
1391 		strcat(buf, "|VOBJBUF");
1392 	if (buf[0] != '\0')
1393 		printf(" flags (%s)", &buf[1]);
1394 	if (vp->v_data == NULL) {
1395 		printf("\n");
1396 	} else {
1397 		printf("\n\t");
1398 		VOP_PRINT(vp);
1399 	}
1400 }
1401 
1402 #ifdef DDB
1403 #include <ddb/ddb.h>
1404 
1405 static int db_show_locked_vnodes(struct mount *mp, void *data);
1406 
1407 /*
1408  * List all of the locked vnodes in the system.
1409  * Called when debugging the kernel.
1410  */
1411 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1412 {
1413 	printf("Locked vnodes\n");
1414 	mountlist_scan(db_show_locked_vnodes, NULL,
1415 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1416 }
1417 
1418 static int
1419 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1420 {
1421 	struct vnode *vp;
1422 
1423 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1424 		if (VOP_ISLOCKED(vp, NULL))
1425 			vprint((char *)0, vp);
1426 	}
1427 	return(0);
1428 }
1429 #endif
1430 
1431 /*
1432  * Top level filesystem related information gathering.
1433  */
1434 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1435 
1436 static int
1437 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1438 {
1439 	int *name = (int *)arg1 - 1;	/* XXX */
1440 	u_int namelen = arg2 + 1;	/* XXX */
1441 	struct vfsconf *vfsp;
1442 
1443 #if 1 || defined(COMPAT_PRELITE2)
1444 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1445 	if (namelen == 1)
1446 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1447 #endif
1448 
1449 #ifdef notyet
1450 	/* all sysctl names at this level are at least name and field */
1451 	if (namelen < 2)
1452 		return (ENOTDIR);		/* overloaded */
1453 	if (name[0] != VFS_GENERIC) {
1454 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1455 			if (vfsp->vfc_typenum == name[0])
1456 				break;
1457 		if (vfsp == NULL)
1458 			return (EOPNOTSUPP);
1459 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1460 		    oldp, oldlenp, newp, newlen, p));
1461 	}
1462 #endif
1463 	switch (name[1]) {
1464 	case VFS_MAXTYPENUM:
1465 		if (namelen != 2)
1466 			return (ENOTDIR);
1467 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1468 	case VFS_CONF:
1469 		if (namelen != 3)
1470 			return (ENOTDIR);	/* overloaded */
1471 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1472 			if (vfsp->vfc_typenum == name[2])
1473 				break;
1474 		if (vfsp == NULL)
1475 			return (EOPNOTSUPP);
1476 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1477 	}
1478 	return (EOPNOTSUPP);
1479 }
1480 
1481 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1482 	"Generic filesystem");
1483 
1484 #if 1 || defined(COMPAT_PRELITE2)
1485 
1486 static int
1487 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1488 {
1489 	int error;
1490 	struct vfsconf *vfsp;
1491 	struct ovfsconf ovfs;
1492 
1493 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1494 		bzero(&ovfs, sizeof(ovfs));
1495 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1496 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1497 		ovfs.vfc_index = vfsp->vfc_typenum;
1498 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1499 		ovfs.vfc_flags = vfsp->vfc_flags;
1500 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1501 		if (error)
1502 			return error;
1503 	}
1504 	return 0;
1505 }
1506 
1507 #endif /* 1 || COMPAT_PRELITE2 */
1508 
1509 /*
1510  * Check to see if a filesystem is mounted on a block device.
1511  */
1512 int
1513 vfs_mountedon(struct vnode *vp)
1514 {
1515 	dev_t dev;
1516 
1517 	if ((dev = vp->v_rdev) == NULL)
1518 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1519 	if (dev != NODEV && dev->si_mountpoint)
1520 		return (EBUSY);
1521 	return (0);
1522 }
1523 
1524 /*
1525  * Unmount all filesystems. The list is traversed in reverse order
1526  * of mounting to avoid dependencies.
1527  */
1528 
1529 static int vfs_umountall_callback(struct mount *mp, void *data);
1530 
1531 void
1532 vfs_unmountall(void)
1533 {
1534 	struct thread *td = curthread;
1535 	int count;
1536 
1537 	if (td->td_proc == NULL)
1538 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
1539 
1540 	do {
1541 		count = mountlist_scan(vfs_umountall_callback,
1542 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1543 	} while (count);
1544 }
1545 
1546 static
1547 int
1548 vfs_umountall_callback(struct mount *mp, void *data)
1549 {
1550 	int error;
1551 
1552 	error = dounmount(mp, MNT_FORCE);
1553 	if (error) {
1554 		mountlist_remove(mp);
1555 		printf("unmount of filesystem mounted from %s failed (",
1556 			mp->mnt_stat.f_mntfromname);
1557 		if (error == EBUSY)
1558 			printf("BUSY)\n");
1559 		else
1560 			printf("%d)\n", error);
1561 	}
1562 	return(1);
1563 }
1564 
1565 /*
1566  * Build hash lists of net addresses and hang them off the mount point.
1567  * Called by ufs_mount() to set up the lists of export addresses.
1568  */
1569 static int
1570 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1571 		struct export_args *argp)
1572 {
1573 	struct netcred *np;
1574 	struct radix_node_head *rnh;
1575 	int i;
1576 	struct radix_node *rn;
1577 	struct sockaddr *saddr, *smask = 0;
1578 	struct domain *dom;
1579 	int error;
1580 
1581 	if (argp->ex_addrlen == 0) {
1582 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1583 			return (EPERM);
1584 		np = &nep->ne_defexported;
1585 		np->netc_exflags = argp->ex_flags;
1586 		np->netc_anon = argp->ex_anon;
1587 		np->netc_anon.cr_ref = 1;
1588 		mp->mnt_flag |= MNT_DEFEXPORTED;
1589 		return (0);
1590 	}
1591 
1592 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1593 		return (EINVAL);
1594 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1595 		return (EINVAL);
1596 
1597 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1598 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1599 	bzero((caddr_t) np, i);
1600 	saddr = (struct sockaddr *) (np + 1);
1601 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1602 		goto out;
1603 	if (saddr->sa_len > argp->ex_addrlen)
1604 		saddr->sa_len = argp->ex_addrlen;
1605 	if (argp->ex_masklen) {
1606 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1607 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1608 		if (error)
1609 			goto out;
1610 		if (smask->sa_len > argp->ex_masklen)
1611 			smask->sa_len = argp->ex_masklen;
1612 	}
1613 	i = saddr->sa_family;
1614 	if ((rnh = nep->ne_rtable[i]) == 0) {
1615 		/*
1616 		 * Seems silly to initialize every AF when most are not used,
1617 		 * do so on demand here
1618 		 */
1619 		SLIST_FOREACH(dom, &domains, dom_next)
1620 			if (dom->dom_family == i && dom->dom_rtattach) {
1621 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1622 				    dom->dom_rtoffset);
1623 				break;
1624 			}
1625 		if ((rnh = nep->ne_rtable[i]) == 0) {
1626 			error = ENOBUFS;
1627 			goto out;
1628 		}
1629 	}
1630 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1631 	    np->netc_rnodes);
1632 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1633 		error = EPERM;
1634 		goto out;
1635 	}
1636 	np->netc_exflags = argp->ex_flags;
1637 	np->netc_anon = argp->ex_anon;
1638 	np->netc_anon.cr_ref = 1;
1639 	return (0);
1640 out:
1641 	free(np, M_NETADDR);
1642 	return (error);
1643 }
1644 
1645 /* ARGSUSED */
1646 static int
1647 vfs_free_netcred(struct radix_node *rn, void *w)
1648 {
1649 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1650 
1651 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1652 	free((caddr_t) rn, M_NETADDR);
1653 	return (0);
1654 }
1655 
1656 /*
1657  * Free the net address hash lists that are hanging off the mount points.
1658  */
1659 static void
1660 vfs_free_addrlist(struct netexport *nep)
1661 {
1662 	int i;
1663 	struct radix_node_head *rnh;
1664 
1665 	for (i = 0; i <= AF_MAX; i++)
1666 		if ((rnh = nep->ne_rtable[i])) {
1667 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1668 			    (caddr_t) rnh);
1669 			free((caddr_t) rnh, M_RTABLE);
1670 			nep->ne_rtable[i] = 0;
1671 		}
1672 }
1673 
1674 int
1675 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1676 {
1677 	int error;
1678 
1679 	if (argp->ex_flags & MNT_DELEXPORT) {
1680 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1681 			vfs_setpublicfs(NULL, NULL, NULL);
1682 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1683 		}
1684 		vfs_free_addrlist(nep);
1685 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1686 	}
1687 	if (argp->ex_flags & MNT_EXPORTED) {
1688 		if (argp->ex_flags & MNT_EXPUBLIC) {
1689 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1690 				return (error);
1691 			mp->mnt_flag |= MNT_EXPUBLIC;
1692 		}
1693 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1694 			return (error);
1695 		mp->mnt_flag |= MNT_EXPORTED;
1696 	}
1697 	return (0);
1698 }
1699 
1700 
1701 /*
1702  * Set the publicly exported filesystem (WebNFS). Currently, only
1703  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1704  */
1705 int
1706 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1707 		struct export_args *argp)
1708 {
1709 	int error;
1710 	struct vnode *rvp;
1711 	char *cp;
1712 
1713 	/*
1714 	 * mp == NULL -> invalidate the current info, the FS is
1715 	 * no longer exported. May be called from either vfs_export
1716 	 * or unmount, so check if it hasn't already been done.
1717 	 */
1718 	if (mp == NULL) {
1719 		if (nfs_pub.np_valid) {
1720 			nfs_pub.np_valid = 0;
1721 			if (nfs_pub.np_index != NULL) {
1722 				FREE(nfs_pub.np_index, M_TEMP);
1723 				nfs_pub.np_index = NULL;
1724 			}
1725 		}
1726 		return (0);
1727 	}
1728 
1729 	/*
1730 	 * Only one allowed at a time.
1731 	 */
1732 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1733 		return (EBUSY);
1734 
1735 	/*
1736 	 * Get real filehandle for root of exported FS.
1737 	 */
1738 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1739 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1740 
1741 	if ((error = VFS_ROOT(mp, &rvp)))
1742 		return (error);
1743 
1744 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1745 		return (error);
1746 
1747 	vput(rvp);
1748 
1749 	/*
1750 	 * If an indexfile was specified, pull it in.
1751 	 */
1752 	if (argp->ex_indexfile != NULL) {
1753 		int namelen;
1754 
1755 		error = vn_get_namelen(rvp, &namelen);
1756 		if (error)
1757 			return (error);
1758 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1759 		    M_WAITOK);
1760 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1761 		    namelen, (size_t *)0);
1762 		if (!error) {
1763 			/*
1764 			 * Check for illegal filenames.
1765 			 */
1766 			for (cp = nfs_pub.np_index; *cp; cp++) {
1767 				if (*cp == '/') {
1768 					error = EINVAL;
1769 					break;
1770 				}
1771 			}
1772 		}
1773 		if (error) {
1774 			FREE(nfs_pub.np_index, M_TEMP);
1775 			return (error);
1776 		}
1777 	}
1778 
1779 	nfs_pub.np_mount = mp;
1780 	nfs_pub.np_valid = 1;
1781 	return (0);
1782 }
1783 
1784 struct netcred *
1785 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1786 		struct sockaddr *nam)
1787 {
1788 	struct netcred *np;
1789 	struct radix_node_head *rnh;
1790 	struct sockaddr *saddr;
1791 
1792 	np = NULL;
1793 	if (mp->mnt_flag & MNT_EXPORTED) {
1794 		/*
1795 		 * Lookup in the export list first.
1796 		 */
1797 		if (nam != NULL) {
1798 			saddr = nam;
1799 			rnh = nep->ne_rtable[saddr->sa_family];
1800 			if (rnh != NULL) {
1801 				np = (struct netcred *)
1802 					(*rnh->rnh_matchaddr)((char *)saddr,
1803 							      rnh);
1804 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1805 					np = NULL;
1806 			}
1807 		}
1808 		/*
1809 		 * If no address match, use the default if it exists.
1810 		 */
1811 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1812 			np = &nep->ne_defexported;
1813 	}
1814 	return (np);
1815 }
1816 
1817 /*
1818  * perform msync on all vnodes under a mount point.  The mount point must
1819  * be locked.  This code is also responsible for lazy-freeing unreferenced
1820  * vnodes whos VM objects no longer contain pages.
1821  *
1822  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1823  *
1824  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1825  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1826  * way up in this high level function.
1827  */
1828 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1829 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1830 
1831 void
1832 vfs_msync(struct mount *mp, int flags)
1833 {
1834 	int vmsc_flags;
1835 
1836 	vmsc_flags = VMSC_GETVP;
1837 	if (flags != MNT_WAIT)
1838 		vmsc_flags |= VMSC_NOWAIT;
1839 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1840 			(void *)flags);
1841 }
1842 
1843 /*
1844  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1845  * vnodes, we cannot afford to do anything heavy weight until we have a
1846  * fairly good indication that there is work to do.
1847  */
1848 static
1849 int
1850 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1851 {
1852 	int flags = (int)data;
1853 
1854 	if ((vp->v_flag & VRECLAIMED) == 0) {
1855 		if (vshouldfree(vp, 0))
1856 			return(0);	/* call scan2 */
1857 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1858 		    (vp->v_flag & VOBJDIRTY) &&
1859 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1860 			return(0);	/* call scan2 */
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * do not call scan2, continue the loop
1866 	 */
1867 	return(-1);
1868 }
1869 
1870 /*
1871  * This callback is handed a locked vnode.
1872  */
1873 static
1874 int
1875 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1876 {
1877 	vm_object_t obj;
1878 	int flags = (int)data;
1879 
1880 	if (vp->v_flag & VRECLAIMED)
1881 		return(0);
1882 
1883 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1884 		if ((obj = vp->v_object) != NULL) {
1885 			vm_object_page_clean(obj, 0, 0,
1886 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1887 		}
1888 	}
1889 	return(0);
1890 }
1891 
1892 /*
1893  * Record a process's interest in events which might happen to
1894  * a vnode.  Because poll uses the historic select-style interface
1895  * internally, this routine serves as both the ``check for any
1896  * pending events'' and the ``record my interest in future events''
1897  * functions.  (These are done together, while the lock is held,
1898  * to avoid race conditions.)
1899  */
1900 int
1901 vn_pollrecord(struct vnode *vp, int events)
1902 {
1903 	lwkt_tokref ilock;
1904 
1905 	KKASSERT(curthread->td_proc != NULL);
1906 
1907 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1908 	if (vp->v_pollinfo.vpi_revents & events) {
1909 		/*
1910 		 * This leaves events we are not interested
1911 		 * in available for the other process which
1912 		 * which presumably had requested them
1913 		 * (otherwise they would never have been
1914 		 * recorded).
1915 		 */
1916 		events &= vp->v_pollinfo.vpi_revents;
1917 		vp->v_pollinfo.vpi_revents &= ~events;
1918 
1919 		lwkt_reltoken(&ilock);
1920 		return events;
1921 	}
1922 	vp->v_pollinfo.vpi_events |= events;
1923 	selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
1924 	lwkt_reltoken(&ilock);
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1930  * it is possible for us to miss an event due to race conditions, but
1931  * that condition is expected to be rare, so for the moment it is the
1932  * preferred interface.
1933  */
1934 void
1935 vn_pollevent(struct vnode *vp, int events)
1936 {
1937 	lwkt_tokref ilock;
1938 
1939 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1940 	if (vp->v_pollinfo.vpi_events & events) {
1941 		/*
1942 		 * We clear vpi_events so that we don't
1943 		 * call selwakeup() twice if two events are
1944 		 * posted before the polling process(es) is
1945 		 * awakened.  This also ensures that we take at
1946 		 * most one selwakeup() if the polling process
1947 		 * is no longer interested.  However, it does
1948 		 * mean that only one event can be noticed at
1949 		 * a time.  (Perhaps we should only clear those
1950 		 * event bits which we note?) XXX
1951 		 */
1952 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1953 		vp->v_pollinfo.vpi_revents |= events;
1954 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1955 	}
1956 	lwkt_reltoken(&ilock);
1957 }
1958 
1959 /*
1960  * Wake up anyone polling on vp because it is being revoked.
1961  * This depends on dead_poll() returning POLLHUP for correct
1962  * behavior.
1963  */
1964 void
1965 vn_pollgone(struct vnode *vp)
1966 {
1967 	lwkt_tokref ilock;
1968 
1969 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1970 	if (vp->v_pollinfo.vpi_events) {
1971 		vp->v_pollinfo.vpi_events = 0;
1972 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1973 	}
1974 	lwkt_reltoken(&ilock);
1975 }
1976 
1977 /*
1978  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
1979  * (or v_rdev might be NULL).
1980  */
1981 dev_t
1982 vn_todev(struct vnode *vp)
1983 {
1984 	if (vp->v_type != VBLK && vp->v_type != VCHR)
1985 		return (NODEV);
1986 	KKASSERT(vp->v_rdev != NULL);
1987 	return (vp->v_rdev);
1988 }
1989 
1990 /*
1991  * Check if vnode represents a disk device.  The vnode does not need to be
1992  * opened.
1993  */
1994 int
1995 vn_isdisk(struct vnode *vp, int *errp)
1996 {
1997 	dev_t dev;
1998 
1999 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2000 		if (errp != NULL)
2001 			*errp = ENOTBLK;
2002 		return (0);
2003 	}
2004 
2005 	if ((dev = vp->v_rdev) == NULL)
2006 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2007 	if (dev == NULL || dev == NODEV) {
2008 		if (errp != NULL)
2009 			*errp = ENXIO;
2010 		return (0);
2011 	}
2012 	if (dev_is_good(dev) == 0) {
2013 		if (errp != NULL)
2014 			*errp = ENXIO;
2015 		return (0);
2016 	}
2017 	if ((dev_dflags(dev) & D_DISK) == 0) {
2018 		if (errp != NULL)
2019 			*errp = ENOTBLK;
2020 		return (0);
2021 	}
2022 	if (errp != NULL)
2023 		*errp = 0;
2024 	return (1);
2025 }
2026 
2027 #ifdef DEBUG_VFS_LOCKS
2028 
2029 void
2030 assert_vop_locked(struct vnode *vp, const char *str)
2031 {
2032 	if (vp && !VOP_ISLOCKED(vp, NULL)) {
2033 		panic("%s: %p is not locked shared but should be", str, vp);
2034 	}
2035 }
2036 
2037 void
2038 assert_vop_unlocked(struct vnode *vp, const char *str)
2039 {
2040 	if (vp) {
2041 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
2042 			panic("%s: %p is locked but should not be", str, vp);
2043 		}
2044 	}
2045 }
2046 
2047 #endif
2048 
2049 int
2050 vn_get_namelen(struct vnode *vp, int *namelen)
2051 {
2052 	int error, retval[2];
2053 
2054 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2055 	if (error)
2056 		return (error);
2057 	*namelen = *retval;
2058 	return (0);
2059 }
2060 
2061 int
2062 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2063 		uint16_t d_namlen, const char *d_name)
2064 {
2065 	struct dirent *dp;
2066 	size_t len;
2067 
2068 	len = _DIRENT_RECLEN(d_namlen);
2069 	if (len > uio->uio_resid)
2070 		return(1);
2071 
2072 	dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2073 
2074 	dp->d_ino = d_ino;
2075 	dp->d_namlen = d_namlen;
2076 	dp->d_type = d_type;
2077 	bcopy(d_name, dp->d_name, d_namlen);
2078 
2079 	*error = uiomove((caddr_t)dp, len, uio);
2080 
2081 	free(dp, M_TEMP);
2082 
2083 	return(0);
2084 }
2085 
2086