xref: /dragonfly/sys/kern/vfs_sync.c (revision 0ca59c34)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob;			/* number of slots to run ASAP */
98 static int stat_rush_requests;	/* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 		&stat_rush_requests, 0, "");
101 
102 LIST_HEAD(synclist, vnode);
103 
104 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
105 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
106 
107 struct syncer_ctx {
108 	struct mount		*sc_mp;
109 	struct lwkt_token 	sc_token;
110 	struct thread		*sc_thread;
111 	int			sc_flags;
112 	struct synclist 	*syncer_workitem_pending;
113 	long			syncer_mask;
114 	int 			syncer_delayno;
115 	int			syncer_forced;
116 	int			syncer_rushjob;
117 };
118 
119 static void syncer_thread(void *);
120 
121 static int
122 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
123 {
124 	int error;
125 	int v = syncdelay;
126 
127 	error = sysctl_handle_int(oidp, &v, 0, req);
128 	if (error || !req->newptr)
129 		return (error);
130 	if (v < 1)
131 		v = 1;
132 	if (v > SYNCER_MAXDELAY)
133 		v = SYNCER_MAXDELAY;
134 	syncdelay = v;
135 
136 	return(0);
137 }
138 
139 /*
140  * The workitem queue.
141  *
142  * It is useful to delay writes of file data and filesystem metadata
143  * for tens of seconds so that quickly created and deleted files need
144  * not waste disk bandwidth being created and removed. To realize this,
145  * we append vnodes to a "workitem" queue. When running with a soft
146  * updates implementation, most pending metadata dependencies should
147  * not wait for more than a few seconds. Thus, mounted on block devices
148  * are delayed only about a half the time that file data is delayed.
149  * Similarly, directory updates are more critical, so are only delayed
150  * about a third the time that file data is delayed. Thus, there are
151  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
152  * one each second (driven off the filesystem syncer process). The
153  * syncer_delayno variable indicates the next queue that is to be processed.
154  * Items that need to be processed soon are placed in this queue:
155  *
156  *	syncer_workitem_pending[syncer_delayno]
157  *
158  * A delay of fifteen seconds is done by placing the request fifteen
159  * entries later in the queue:
160  *
161  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
162  *
163  */
164 
165 /*
166  * Add an item to the syncer work queue.
167  *
168  * WARNING: Cannot get vp->v_token here if not already held, we must
169  *	    depend on the syncer_token (which might already be held by
170  *	    the caller) to protect v_synclist and VONWORKLST.
171  *
172  * MPSAFE
173  */
174 void
175 vn_syncer_add(struct vnode *vp, int delay)
176 {
177 	struct syncer_ctx *ctx;
178 	int slot;
179 
180 	ctx = vp->v_mount->mnt_syncer_ctx;
181 	lwkt_gettoken(&ctx->sc_token);
182 
183 	if (vp->v_flag & VONWORKLST)
184 		LIST_REMOVE(vp, v_synclist);
185 	if (delay <= 0) {
186 		slot = -delay & ctx->syncer_mask;
187 	} else {
188 		if (delay > SYNCER_MAXDELAY - 2)
189 			delay = SYNCER_MAXDELAY - 2;
190 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
191 	}
192 
193 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
194 	vsetflags(vp, VONWORKLST);
195 
196 	lwkt_reltoken(&ctx->sc_token);
197 }
198 
199 /*
200  * Removes the vnode from the syncer list.  Since we might block while
201  * acquiring the syncer_token we have to [re]check conditions to determine
202  * that it is ok to remove the vnode.
203  *
204  * vp->v_token held on call
205  */
206 void
207 vn_syncer_remove(struct vnode *vp)
208 {
209 	struct syncer_ctx *ctx;
210 
211 	ctx = vp->v_mount->mnt_syncer_ctx;
212 	lwkt_gettoken(&ctx->sc_token);
213 
214 	if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
215 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
216 		vclrflags(vp, VONWORKLST);
217 		LIST_REMOVE(vp, v_synclist);
218 	}
219 
220 	lwkt_reltoken(&ctx->sc_token);
221 }
222 
223 /*
224  * vnode must be locked
225  */
226 void
227 vclrisdirty(struct vnode *vp)
228 {
229 	vclrflags(vp, VISDIRTY);
230 	if (vp->v_flag & VONWORKLST)
231 		vn_syncer_remove(vp);
232 }
233 
234 void
235 vclrobjdirty(struct vnode *vp)
236 {
237 	vclrflags(vp, VOBJDIRTY);
238 	if (vp->v_flag & VONWORKLST)
239 		vn_syncer_remove(vp);
240 }
241 
242 /*
243  * vnode must be stable
244  */
245 void
246 vsetisdirty(struct vnode *vp)
247 {
248 	struct syncer_ctx *ctx;
249 
250 	if ((vp->v_flag & VISDIRTY) == 0) {
251 		ctx = vp->v_mount->mnt_syncer_ctx;
252 		vsetflags(vp, VISDIRTY);
253 		lwkt_gettoken(&ctx->sc_token);
254 		if ((vp->v_flag & VONWORKLST) == 0)
255 			vn_syncer_add(vp, syncdelay);
256 		lwkt_reltoken(&ctx->sc_token);
257 	}
258 }
259 
260 void
261 vsetobjdirty(struct vnode *vp)
262 {
263 	struct syncer_ctx *ctx;
264 
265 	if ((vp->v_flag & VOBJDIRTY) == 0) {
266 		ctx = vp->v_mount->mnt_syncer_ctx;
267 		vsetflags(vp, VOBJDIRTY);
268 		lwkt_gettoken(&ctx->sc_token);
269 		if ((vp->v_flag & VONWORKLST) == 0)
270 			vn_syncer_add(vp, syncdelay);
271 		lwkt_reltoken(&ctx->sc_token);
272 	}
273 }
274 
275 /*
276  * Create per-filesystem syncer process
277  */
278 void
279 vn_syncer_thr_create(struct mount *mp)
280 {
281 	struct syncer_ctx *ctx;
282 	static int syncalloc = 0;
283 
284 	ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
285 	ctx->sc_mp = mp;
286 	ctx->sc_flags = 0;
287 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
288 						&ctx->syncer_mask);
289 	ctx->syncer_delayno = 0;
290 	lwkt_token_init(&ctx->sc_token, "syncer");
291 	mp->mnt_syncer_ctx = ctx;
292 	kthread_create(syncer_thread, ctx, &ctx->sc_thread,
293 		       "syncer%d", ++syncalloc & 0x7FFFFFFF);
294 }
295 
296 /*
297  * Stop per-filesystem syncer process
298  */
299 void
300 vn_syncer_thr_stop(struct mount *mp)
301 {
302 	struct syncer_ctx *ctx;
303 
304 	ctx = mp->mnt_syncer_ctx;
305 	if (ctx == NULL)
306 		return;
307 
308 	lwkt_gettoken(&ctx->sc_token);
309 
310 	/* Signal the syncer process to exit */
311 	ctx->sc_flags |= SC_FLAG_EXIT;
312 	wakeup(ctx);
313 
314 	/* Wait till syncer process exits */
315 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
316 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
317 
318 	mp->mnt_syncer_ctx = NULL;
319 	lwkt_reltoken(&ctx->sc_token);
320 
321 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
322 	kfree(ctx, M_TEMP);
323 }
324 
325 struct  thread *updatethread;
326 
327 /*
328  * System filesystem synchronizer daemon.
329  */
330 static void
331 syncer_thread(void *_ctx)
332 {
333 	struct syncer_ctx *ctx = _ctx;
334 	struct synclist *slp;
335 	struct vnode *vp;
336 	long starttime;
337 	int *sc_flagsp;
338 	int sc_flags;
339 	int vnodes_synced = 0;
340 	int delta;
341 	int dummy = 0;
342 
343 	for (;;) {
344 		kproc_suspend_loop();
345 
346 		starttime = time_uptime;
347 		lwkt_gettoken(&ctx->sc_token);
348 
349 		/*
350 		 * Push files whose dirty time has expired.  Be careful
351 		 * of interrupt race on slp queue.
352 		 */
353 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
354 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
355 				      ctx->syncer_mask;
356 
357 		while ((vp = LIST_FIRST(slp)) != NULL) {
358 			if (ctx->syncer_forced) {
359 				if (vget(vp, LK_EXCLUSIVE) == 0) {
360 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
361 					vput(vp);
362 					vnodes_synced++;
363 				}
364 			} else {
365 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
366 					VOP_FSYNC(vp, MNT_LAZY, 0);
367 					vput(vp);
368 					vnodes_synced++;
369 				}
370 			}
371 
372 			/*
373 			 * vp is stale but can still be used if we can
374 			 * verify that it remains at the head of the list.
375 			 * Be careful not to try to get vp->v_token as
376 			 * vp can become stale if this blocks.
377 			 *
378 			 * If the vp is still at the head of the list were
379 			 * unable to completely flush it and move it to
380 			 * a later slot to give other vnodes a fair shot.
381 			 *
382 			 * Note that v_tag VT_VFS vnodes can remain on the
383 			 * worklist with no dirty blocks, but sync_fsync()
384 			 * moves it to a later slot so we will never see it
385 			 * here.
386 			 *
387 			 * It is possible to race a vnode with no dirty
388 			 * buffers being removed from the list.  If this
389 			 * occurs we will move the vnode in the synclist
390 			 * and then the other thread will remove it.  Do
391 			 * not try to remove it here.
392 			 */
393 			if (LIST_FIRST(slp) == vp)
394 				vn_syncer_add(vp, syncdelay);
395 		}
396 
397 		sc_flags = ctx->sc_flags;
398 
399 		/* Exit on unmount */
400 		if (sc_flags & SC_FLAG_EXIT)
401 			break;
402 
403 		lwkt_reltoken(&ctx->sc_token);
404 
405 		/*
406 		 * Do sync processing for each mount.
407 		 */
408 		if (ctx->sc_mp)
409 			bio_ops_sync(ctx->sc_mp);
410 
411 		/*
412 		 * The variable rushjob allows the kernel to speed up the
413 		 * processing of the filesystem syncer process. A rushjob
414 		 * value of N tells the filesystem syncer to process the next
415 		 * N seconds worth of work on its queue ASAP. Currently rushjob
416 		 * is used by the soft update code to speed up the filesystem
417 		 * syncer process when the incore state is getting so far
418 		 * ahead of the disk that the kernel memory pool is being
419 		 * threatened with exhaustion.
420 		 */
421 		delta = rushjob - ctx->syncer_rushjob;
422 		if ((u_int)delta > syncdelay / 2) {
423 			ctx->syncer_rushjob = rushjob - syncdelay / 2;
424 			tsleep(&dummy, 0, "rush", 1);
425 			continue;
426 		}
427 		if (delta) {
428 			++ctx->syncer_rushjob;
429 			tsleep(&dummy, 0, "rush", 1);
430 			continue;
431 		}
432 
433 		/*
434 		 * If it has taken us less than a second to process the
435 		 * current work, then wait. Otherwise start right over
436 		 * again. We can still lose time if any single round
437 		 * takes more than two seconds, but it does not really
438 		 * matter as we are just trying to generally pace the
439 		 * filesystem activity.
440 		 */
441 		if (time_uptime == starttime)
442 			tsleep(ctx, 0, "syncer", hz);
443 	}
444 
445 	/*
446 	 * Unmount/exit path for per-filesystem syncers; sc_token held
447 	 */
448 	ctx->sc_flags |= SC_FLAG_DONE;
449 	sc_flagsp = &ctx->sc_flags;
450 	lwkt_reltoken(&ctx->sc_token);
451 	wakeup(sc_flagsp);
452 
453 	kthread_exit();
454 }
455 
456 /*
457  * Request that the syncer daemon for a specific mount speed up its work.
458  * If mp is NULL the caller generally wants to speed up all syncers.
459  */
460 void
461 speedup_syncer(struct mount *mp)
462 {
463 	/*
464 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
465 	 * will only do something real if the thread is in the right state.
466 	 */
467 	atomic_add_int(&rushjob, 1);
468 	++stat_rush_requests;
469 	if (mp)
470 		wakeup(mp->mnt_syncer_ctx);
471 }
472 
473 /*
474  * Routine to create and manage a filesystem syncer vnode.
475  */
476 static int sync_close(struct vop_close_args *);
477 static int sync_fsync(struct vop_fsync_args *);
478 static int sync_inactive(struct vop_inactive_args *);
479 static int sync_reclaim (struct vop_reclaim_args *);
480 static int sync_print(struct vop_print_args *);
481 
482 static struct vop_ops sync_vnode_vops = {
483 	.vop_default =	vop_eopnotsupp,
484 	.vop_close =	sync_close,
485 	.vop_fsync =	sync_fsync,
486 	.vop_inactive =	sync_inactive,
487 	.vop_reclaim =	sync_reclaim,
488 	.vop_print =	sync_print,
489 };
490 
491 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
492 
493 VNODEOP_SET(sync_vnode_vops);
494 
495 /*
496  * Create a new filesystem syncer vnode for the specified mount point.
497  * This vnode is placed on the worklist and is responsible for sync'ing
498  * the filesystem.
499  *
500  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
501  * sync code is also responsible for cleaning up vnodes.
502  */
503 int
504 vfs_allocate_syncvnode(struct mount *mp)
505 {
506 	struct vnode *vp;
507 	static long start, incr, next;
508 	int error;
509 
510 	/* Allocate a new vnode */
511 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
512 	if (error) {
513 		mp->mnt_syncer = NULL;
514 		return (error);
515 	}
516 	vp->v_type = VNON;
517 	/*
518 	 * Place the vnode onto the syncer worklist. We attempt to
519 	 * scatter them about on the list so that they will go off
520 	 * at evenly distributed times even if all the filesystems
521 	 * are mounted at once.
522 	 */
523 	next += incr;
524 	if (next == 0 || next > SYNCER_MAXDELAY) {
525 		start /= 2;
526 		incr /= 2;
527 		if (start == 0) {
528 			start = SYNCER_MAXDELAY / 2;
529 			incr = SYNCER_MAXDELAY;
530 		}
531 		next = start;
532 	}
533 
534 	/*
535 	 * Only put the syncer vnode onto the syncer list if we have a
536 	 * syncer thread.  Some VFS's (aka NULLFS) don't need a syncer
537 	 * thread.
538 	 */
539 	if (mp->mnt_syncer_ctx)
540 		vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
541 
542 	/*
543 	 * The mnt_syncer field inherits the vnode reference, which is
544 	 * held until later decomissioning.
545 	 */
546 	mp->mnt_syncer = vp;
547 	vx_unlock(vp);
548 	return (0);
549 }
550 
551 static int
552 sync_close(struct vop_close_args *ap)
553 {
554 	return (0);
555 }
556 
557 /*
558  * Do a lazy sync of the filesystem.
559  *
560  * sync_fsync { struct vnode *a_vp, int a_waitfor }
561  */
562 static int
563 sync_fsync(struct vop_fsync_args *ap)
564 {
565 	struct vnode *syncvp = ap->a_vp;
566 	struct mount *mp = syncvp->v_mount;
567 	int asyncflag;
568 
569 	/*
570 	 * We only need to do something if this is a lazy evaluation.
571 	 */
572 	if ((ap->a_waitfor & MNT_LAZY) == 0)
573 		return (0);
574 
575 	/*
576 	 * Move ourselves to the back of the sync list.
577 	 */
578 	vn_syncer_add(syncvp, syncdelay);
579 
580 	/*
581 	 * Walk the list of vnodes pushing all that are dirty and
582 	 * not already on the sync list, and freeing vnodes which have
583 	 * no refs and whos VM objects are empty.  vfs_msync() handles
584 	 * the VM issues and must be called whether the mount is readonly
585 	 * or not.
586 	 */
587 	if (vfs_busy(mp, LK_NOWAIT) != 0)
588 		return (0);
589 	if (mp->mnt_flag & MNT_RDONLY) {
590 		vfs_msync(mp, MNT_NOWAIT);
591 	} else {
592 		asyncflag = mp->mnt_flag & MNT_ASYNC;
593 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
594 		vfs_msync(mp, MNT_NOWAIT);
595 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
596 		if (asyncflag)
597 			mp->mnt_flag |= MNT_ASYNC;
598 	}
599 	vfs_unbusy(mp);
600 	return (0);
601 }
602 
603 /*
604  * The syncer vnode is no longer referenced.
605  *
606  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
607  */
608 static int
609 sync_inactive(struct vop_inactive_args *ap)
610 {
611 	vgone_vxlocked(ap->a_vp);
612 	return (0);
613 }
614 
615 /*
616  * The syncer vnode is no longer needed and is being decommissioned.
617  * This can only occur when the last reference has been released on
618  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
619  *
620  * Modifications to the worklist must be protected with a critical
621  * section.
622  *
623  *	sync_reclaim { struct vnode *a_vp }
624  */
625 static int
626 sync_reclaim(struct vop_reclaim_args *ap)
627 {
628 	struct vnode *vp = ap->a_vp;
629 	struct syncer_ctx *ctx;
630 
631 	ctx = vp->v_mount->mnt_syncer_ctx;
632 	if (ctx) {
633 		lwkt_gettoken(&ctx->sc_token);
634 		KKASSERT(vp->v_mount->mnt_syncer != vp);
635 		if (vp->v_flag & VONWORKLST) {
636 			LIST_REMOVE(vp, v_synclist);
637 			vclrflags(vp, VONWORKLST);
638 		}
639 		lwkt_reltoken(&ctx->sc_token);
640 	} else {
641 		KKASSERT((vp->v_flag & VONWORKLST) == 0);
642 	}
643 
644 	return (0);
645 }
646 
647 /*
648  * This is very similar to vmntvnodescan() but it only scans the
649  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
650  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
651  * with dirty inodes are added to the syncer in addition to vnodes
652  * with dirty buffers, and can use this function instead of nmntvnodescan().
653  *
654  * This is important when a system has millions of vnodes.
655  */
656 int
657 vsyncscan(
658     struct mount *mp,
659     int vmsc_flags,
660     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
661     void *data
662 ) {
663 	struct syncer_ctx *ctx;
664 	struct synclist *slp;
665 	struct vnode *vp;
666 	int i;
667 	int count;
668 	int lkflags;
669 
670 	if (vmsc_flags & VMSC_NOWAIT)
671 		lkflags = LK_NOWAIT;
672 	else
673 		lkflags = 0;
674 
675 	/*
676 	 * Syncer list context.  This API requires a dedicated syncer thread.
677 	 * (MNTK_THR_SYNC).
678 	 */
679 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
680 	ctx = mp->mnt_syncer_ctx;
681 	lwkt_gettoken(&ctx->sc_token);
682 
683 	/*
684 	 * Setup for loop.  Allow races against the syncer thread but
685 	 * require that the syncer thread no be lazy if we were told
686 	 * not to be lazy.
687 	 */
688 	i = ctx->syncer_delayno & ctx->syncer_mask;
689 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
690 		++ctx->syncer_forced;
691 	for (count = 0; count <= ctx->syncer_mask; ++count) {
692 		slp = &ctx->syncer_workitem_pending[i];
693 
694 		while ((vp = LIST_FIRST(slp)) != NULL) {
695 			KKASSERT(vp->v_mount == mp);
696 			if (vmsc_flags & VMSC_GETVP) {
697 				if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
698 					slowfunc(mp, vp, data);
699 					vput(vp);
700 				}
701 			} else if (vmsc_flags & VMSC_GETVX) {
702 				vx_get(vp);
703 				slowfunc(mp, vp, data);
704 				vx_put(vp);
705 			} else {
706 				vhold(vp);
707 				slowfunc(mp, vp, data);
708 				vdrop(vp);
709 			}
710 
711 			/*
712 			 * vp could be invalid.  However, if vp is still at
713 			 * the head of the list it is clearly valid and we
714 			 * can safely move it.
715 			 */
716 			if (LIST_FIRST(slp) == vp)
717 				vn_syncer_add(vp, -(i + syncdelay));
718 		}
719 		i = (i + 1) & ctx->syncer_mask;
720 	}
721 
722 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
723 		--ctx->syncer_forced;
724 	lwkt_reltoken(&ctx->sc_token);
725 	return(0);
726 }
727 
728 /*
729  * Print out a syncer vnode.
730  *
731  *	sync_print { struct vnode *a_vp }
732  */
733 static int
734 sync_print(struct vop_print_args *ap)
735 {
736 	struct vnode *vp = ap->a_vp;
737 
738 	kprintf("syncer vnode");
739 	lockmgr_printinfo(&vp->v_lock);
740 	kprintf("\n");
741 	return (0);
742 }
743 
744