xref: /dragonfly/sys/kern/vfs_sync.c (revision 8bf5b238)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 time_t retrydelay = 1;		/* retry delay after failure */
98 SYSCTL_INT(_kern, OID_AUTO, retrydelay, CTLFLAG_RW,
99 		&retrydelay, 0, "VFS retry synchronization delay");
100 static int rushjob;			/* number of slots to run ASAP */
101 static int stat_rush_requests;	/* number of times I/O speeded up */
102 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
103 		&stat_rush_requests, 0, "");
104 
105 LIST_HEAD(synclist, vnode);
106 
107 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
108 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
109 
110 struct syncer_ctx {
111 	struct mount		*sc_mp;
112 	struct lwkt_token 	sc_token;
113 	struct thread		*sc_thread;
114 	int			sc_flags;
115 	struct synclist 	*syncer_workitem_pending;
116 	long			syncer_mask;
117 	int 			syncer_delayno;
118 	int			syncer_forced;
119 	int			syncer_rushjob;
120 	int			syncer_unused01;
121 	long			syncer_count;
122 };
123 
124 static void syncer_thread(void *);
125 
126 static int
127 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
128 {
129 	int error;
130 	int v = syncdelay;
131 
132 	error = sysctl_handle_int(oidp, &v, 0, req);
133 	if (error || !req->newptr)
134 		return (error);
135 	if (v < 1)
136 		v = 1;
137 	if (v > SYNCER_MAXDELAY)
138 		v = SYNCER_MAXDELAY;
139 	syncdelay = v;
140 
141 	return(0);
142 }
143 
144 /*
145  * The workitem queue.
146  *
147  * It is useful to delay writes of file data and filesystem metadata
148  * for tens of seconds so that quickly created and deleted files need
149  * not waste disk bandwidth being created and removed. To realize this,
150  * we append vnodes to a "workitem" queue. When running with a soft
151  * updates implementation, most pending metadata dependencies should
152  * not wait for more than a few seconds. Thus, mounted on block devices
153  * are delayed only about a half the time that file data is delayed.
154  * Similarly, directory updates are more critical, so are only delayed
155  * about a third the time that file data is delayed. Thus, there are
156  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
157  * one each second (driven off the filesystem syncer process). The
158  * syncer_delayno variable indicates the next queue that is to be processed.
159  * Items that need to be processed soon are placed in this queue:
160  *
161  *	syncer_workitem_pending[syncer_delayno]
162  *
163  * A delay of fifteen seconds is done by placing the request fifteen
164  * entries later in the queue:
165  *
166  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
167  *
168  */
169 
170 /*
171  * Return the number of vnodes on the syncer's timed list.  This will
172  * include the syncer vnode (mp->mnt_syncer) so if used, a minimum
173  * value of 1 will be returned.
174  */
175 long
176 vn_syncer_count(struct mount *mp)
177 {
178 	struct syncer_ctx *ctx;
179 
180 	ctx = mp->mnt_syncer_ctx;
181 	if (ctx)
182 		return (ctx->syncer_count);
183 	return 0;
184 }
185 
186 /*
187  * Add an item to the syncer work queue.
188  *
189  * WARNING: Cannot get vp->v_token here if not already held, we must
190  *	    depend on the syncer_token (which might already be held by
191  *	    the caller) to protect v_synclist and VONWORKLST.
192  *
193  * MPSAFE
194  */
195 void
196 vn_syncer_add(struct vnode *vp, int delay)
197 {
198 	struct syncer_ctx *ctx;
199 	int slot;
200 
201 	ctx = vp->v_mount->mnt_syncer_ctx;
202 	lwkt_gettoken(&ctx->sc_token);
203 
204 	if (vp->v_flag & VONWORKLST) {
205 		LIST_REMOVE(vp, v_synclist);
206 		--ctx->syncer_count;
207 	}
208 	if (delay <= 0) {
209 		slot = -delay & ctx->syncer_mask;
210 	} else {
211 		if (delay > SYNCER_MAXDELAY - 2)
212 			delay = SYNCER_MAXDELAY - 2;
213 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
214 	}
215 
216 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
217 	vsetflags(vp, VONWORKLST);
218 	++ctx->syncer_count;
219 
220 	lwkt_reltoken(&ctx->sc_token);
221 }
222 
223 /*
224  * Removes the vnode from the syncer list.  Since we might block while
225  * acquiring the syncer_token we have to [re]check conditions to determine
226  * that it is ok to remove the vnode.
227  *
228  * Force removal if force != 0.  This can only occur during a forced unmount.
229  *
230  * vp->v_token held on call
231  */
232 void
233 vn_syncer_remove(struct vnode *vp, int force)
234 {
235 	struct syncer_ctx *ctx;
236 
237 	ctx = vp->v_mount->mnt_syncer_ctx;
238 	lwkt_gettoken(&ctx->sc_token);
239 
240 	if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
241 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
242 		vclrflags(vp, VONWORKLST);
243 		LIST_REMOVE(vp, v_synclist);
244 		--ctx->syncer_count;
245 	} else if (force && (vp->v_flag & VONWORKLST)) {
246 		vclrflags(vp, VONWORKLST);
247 		LIST_REMOVE(vp, v_synclist);
248 		--ctx->syncer_count;
249 	}
250 
251 	lwkt_reltoken(&ctx->sc_token);
252 }
253 
254 /*
255  * vnode must be locked
256  */
257 void
258 vclrisdirty(struct vnode *vp)
259 {
260 	vclrflags(vp, VISDIRTY);
261 	if (vp->v_flag & VONWORKLST)
262 		vn_syncer_remove(vp, 0);
263 }
264 
265 void
266 vclrobjdirty(struct vnode *vp)
267 {
268 	vclrflags(vp, VOBJDIRTY);
269 	if (vp->v_flag & VONWORKLST)
270 		vn_syncer_remove(vp, 0);
271 }
272 
273 /*
274  * vnode must be stable
275  */
276 void
277 vsetisdirty(struct vnode *vp)
278 {
279 	struct syncer_ctx *ctx;
280 
281 	if ((vp->v_flag & VISDIRTY) == 0) {
282 		ctx = vp->v_mount->mnt_syncer_ctx;
283 		vsetflags(vp, VISDIRTY);
284 		lwkt_gettoken(&ctx->sc_token);
285 		if ((vp->v_flag & VONWORKLST) == 0)
286 			vn_syncer_add(vp, syncdelay);
287 		lwkt_reltoken(&ctx->sc_token);
288 	}
289 }
290 
291 void
292 vsetobjdirty(struct vnode *vp)
293 {
294 	struct syncer_ctx *ctx;
295 
296 	if ((vp->v_flag & VOBJDIRTY) == 0) {
297 		ctx = vp->v_mount->mnt_syncer_ctx;
298 		vsetflags(vp, VOBJDIRTY);
299 		lwkt_gettoken(&ctx->sc_token);
300 		if ((vp->v_flag & VONWORKLST) == 0)
301 			vn_syncer_add(vp, syncdelay);
302 		lwkt_reltoken(&ctx->sc_token);
303 	}
304 }
305 
306 /*
307  * Create per-filesystem syncer process
308  */
309 void
310 vn_syncer_thr_create(struct mount *mp)
311 {
312 	struct syncer_ctx *ctx;
313 	static int syncalloc = 0;
314 
315 	ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
316 	ctx->sc_mp = mp;
317 	ctx->sc_flags = 0;
318 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
319 						&ctx->syncer_mask);
320 	ctx->syncer_delayno = 0;
321 	lwkt_token_init(&ctx->sc_token, "syncer");
322 	mp->mnt_syncer_ctx = ctx;
323 	kthread_create(syncer_thread, ctx, &ctx->sc_thread,
324 		       "syncer%d", ++syncalloc & 0x7FFFFFFF);
325 }
326 
327 /*
328  * Stop per-filesystem syncer process
329  */
330 void
331 vn_syncer_thr_stop(struct mount *mp)
332 {
333 	struct syncer_ctx *ctx;
334 
335 	ctx = mp->mnt_syncer_ctx;
336 	if (ctx == NULL)
337 		return;
338 
339 	lwkt_gettoken(&ctx->sc_token);
340 
341 	/* Signal the syncer process to exit */
342 	ctx->sc_flags |= SC_FLAG_EXIT;
343 	wakeup(ctx);
344 
345 	/* Wait till syncer process exits */
346 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
347 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
348 
349 	mp->mnt_syncer_ctx = NULL;
350 	lwkt_reltoken(&ctx->sc_token);
351 
352 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
353 	kfree(ctx, M_TEMP);
354 }
355 
356 struct  thread *updatethread;
357 
358 /*
359  * System filesystem synchronizer daemon.
360  */
361 static void
362 syncer_thread(void *_ctx)
363 {
364 	struct syncer_ctx *ctx = _ctx;
365 	struct synclist *slp;
366 	struct vnode *vp;
367 	long starttime;
368 	int *sc_flagsp;
369 	int sc_flags;
370 	int vnodes_synced = 0;
371 	int delta;
372 	int dummy = 0;
373 
374 	for (;;) {
375 		kproc_suspend_loop();
376 
377 		starttime = time_uptime;
378 		lwkt_gettoken(&ctx->sc_token);
379 
380 		/*
381 		 * Push files whose dirty time has expired.  Be careful
382 		 * of interrupt race on slp queue.
383 		 *
384 		 * Note that vsyncscan() and vn_syncer_one() can pull items
385 		 * off the same list, so we shift vp's position in the
386 		 * list immediately.
387 		 */
388 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
389 
390 		while ((vp = LIST_FIRST(slp)) != NULL) {
391 			vn_syncer_add(vp, retrydelay);
392 			if (ctx->syncer_forced) {
393 				if (vget(vp, LK_EXCLUSIVE) == 0) {
394 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
395 					vput(vp);
396 					vnodes_synced++;
397 				}
398 			} else {
399 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
400 					VOP_FSYNC(vp, MNT_LAZY, 0);
401 					vput(vp);
402 					vnodes_synced++;
403 				}
404 			}
405 		}
406 
407 		/*
408 		 * Increment the slot upon completion.
409 		 */
410 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
411 				      ctx->syncer_mask;
412 
413 		sc_flags = ctx->sc_flags;
414 
415 		/* Exit on unmount */
416 		if (sc_flags & SC_FLAG_EXIT)
417 			break;
418 
419 		lwkt_reltoken(&ctx->sc_token);
420 
421 		/*
422 		 * Do sync processing for each mount.
423 		 */
424 		if (ctx->sc_mp)
425 			bio_ops_sync(ctx->sc_mp);
426 
427 		/*
428 		 * The variable rushjob allows the kernel to speed up the
429 		 * processing of the filesystem syncer process. A rushjob
430 		 * value of N tells the filesystem syncer to process the next
431 		 * N seconds worth of work on its queue ASAP. Currently rushjob
432 		 * is used by the soft update code to speed up the filesystem
433 		 * syncer process when the incore state is getting so far
434 		 * ahead of the disk that the kernel memory pool is being
435 		 * threatened with exhaustion.
436 		 */
437 		delta = rushjob - ctx->syncer_rushjob;
438 		if ((u_int)delta > syncdelay / 2) {
439 			ctx->syncer_rushjob = rushjob - syncdelay / 2;
440 			tsleep(&dummy, 0, "rush", 1);
441 			continue;
442 		}
443 		if (delta) {
444 			++ctx->syncer_rushjob;
445 			tsleep(&dummy, 0, "rush", 1);
446 			continue;
447 		}
448 
449 		/*
450 		 * If it has taken us less than a second to process the
451 		 * current work, then wait. Otherwise start right over
452 		 * again. We can still lose time if any single round
453 		 * takes more than two seconds, but it does not really
454 		 * matter as we are just trying to generally pace the
455 		 * filesystem activity.
456 		 */
457 		if (time_uptime == starttime)
458 			tsleep(ctx, 0, "syncer", hz);
459 	}
460 
461 	/*
462 	 * Unmount/exit path for per-filesystem syncers; sc_token held
463 	 */
464 	ctx->sc_flags |= SC_FLAG_DONE;
465 	sc_flagsp = &ctx->sc_flags;
466 	lwkt_reltoken(&ctx->sc_token);
467 	wakeup(sc_flagsp);
468 
469 	kthread_exit();
470 }
471 
472 /*
473  * This allows a filesystem to pro-actively request that a dirty
474  * vnode be fsync()d.  This routine does not guarantee that one
475  * will actually be fsynced.
476  */
477 void
478 vn_syncer_one(struct mount *mp)
479 {
480 	struct syncer_ctx *ctx;
481 	struct synclist *slp;
482 	struct vnode *vp;
483 	int i;
484 	int n = syncdelay;
485 
486 	ctx = mp->mnt_syncer_ctx;
487 	i = ctx->syncer_delayno & ctx->syncer_mask;
488 	cpu_ccfence();
489 
490 	if (lwkt_trytoken(&ctx->sc_token) == 0)
491 		return;
492 
493 	/*
494 	 * Look ahead on our syncer time array.
495 	 */
496 	do {
497 		slp = &ctx->syncer_workitem_pending[i];
498 		vp = LIST_FIRST(slp);
499 		if (vp && vp->v_type == VNON)
500 			vp = LIST_NEXT(vp, v_synclist);
501 		if (vp)
502 			break;
503 		i = (i + 1) & ctx->syncer_mask;
504 		/* i will be wrong if we stop here but vp is NULL so ok */
505 	} while(--n);
506 
507 	/*
508 	 * Process one vnode, skip the syncer vnode but also stop
509 	 * if the syncer vnode is the only thing on this list.
510 	 */
511 	if (vp) {
512 		vn_syncer_add(vp, retrydelay);
513 		if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
514 			VOP_FSYNC(vp, MNT_LAZY, 0);
515 			vput(vp);
516 		}
517 	}
518 	lwkt_reltoken(&ctx->sc_token);
519 }
520 
521 /*
522  * Request that the syncer daemon for a specific mount speed up its work.
523  * If mp is NULL the caller generally wants to speed up all syncers.
524  */
525 void
526 speedup_syncer(struct mount *mp)
527 {
528 	/*
529 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
530 	 * will only do something real if the thread is in the right state.
531 	 */
532 	atomic_add_int(&rushjob, 1);
533 	++stat_rush_requests;
534 	if (mp)
535 		wakeup(mp->mnt_syncer_ctx);
536 }
537 
538 /*
539  * Routine to create and manage a filesystem syncer vnode.
540  */
541 static int sync_close(struct vop_close_args *);
542 static int sync_fsync(struct vop_fsync_args *);
543 static int sync_inactive(struct vop_inactive_args *);
544 static int sync_reclaim (struct vop_reclaim_args *);
545 static int sync_print(struct vop_print_args *);
546 
547 static struct vop_ops sync_vnode_vops = {
548 	.vop_default =	vop_eopnotsupp,
549 	.vop_close =	sync_close,
550 	.vop_fsync =	sync_fsync,
551 	.vop_inactive =	sync_inactive,
552 	.vop_reclaim =	sync_reclaim,
553 	.vop_print =	sync_print,
554 };
555 
556 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
557 
558 VNODEOP_SET(sync_vnode_vops);
559 
560 /*
561  * Create a new filesystem syncer vnode for the specified mount point.
562  * This vnode is placed on the worklist and is responsible for sync'ing
563  * the filesystem.
564  *
565  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
566  * sync code is also responsible for cleaning up vnodes.
567  */
568 int
569 vfs_allocate_syncvnode(struct mount *mp)
570 {
571 	struct vnode *vp;
572 	static long start, incr, next;
573 	int error;
574 
575 	/* Allocate a new vnode */
576 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
577 	if (error) {
578 		mp->mnt_syncer = NULL;
579 		return (error);
580 	}
581 	vp->v_type = VNON;
582 	/*
583 	 * Place the vnode onto the syncer worklist. We attempt to
584 	 * scatter them about on the list so that they will go off
585 	 * at evenly distributed times even if all the filesystems
586 	 * are mounted at once.
587 	 */
588 	next += incr;
589 	if (next == 0 || next > SYNCER_MAXDELAY) {
590 		start /= 2;
591 		incr /= 2;
592 		if (start == 0) {
593 			start = SYNCER_MAXDELAY / 2;
594 			incr = SYNCER_MAXDELAY;
595 		}
596 		next = start;
597 	}
598 
599 	/*
600 	 * Only put the syncer vnode onto the syncer list if we have a
601 	 * syncer thread.  Some VFS's (aka NULLFS) don't need a syncer
602 	 * thread.
603 	 */
604 	if (mp->mnt_syncer_ctx)
605 		vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
606 
607 	/*
608 	 * The mnt_syncer field inherits the vnode reference, which is
609 	 * held until later decomissioning.
610 	 */
611 	mp->mnt_syncer = vp;
612 	vx_unlock(vp);
613 	return (0);
614 }
615 
616 static int
617 sync_close(struct vop_close_args *ap)
618 {
619 	return (0);
620 }
621 
622 /*
623  * Do a lazy sync of the filesystem.
624  *
625  * sync_fsync { struct vnode *a_vp, int a_waitfor }
626  */
627 static int
628 sync_fsync(struct vop_fsync_args *ap)
629 {
630 	struct vnode *syncvp = ap->a_vp;
631 	struct mount *mp = syncvp->v_mount;
632 	int asyncflag;
633 
634 	/*
635 	 * We only need to do something if this is a lazy evaluation.
636 	 */
637 	if ((ap->a_waitfor & MNT_LAZY) == 0)
638 		return (0);
639 
640 	/*
641 	 * Move ourselves to the back of the sync list.
642 	 */
643 	vn_syncer_add(syncvp, syncdelay);
644 
645 	/*
646 	 * Walk the list of vnodes pushing all that are dirty and
647 	 * not already on the sync list, and freeing vnodes which have
648 	 * no refs and whos VM objects are empty.  vfs_msync() handles
649 	 * the VM issues and must be called whether the mount is readonly
650 	 * or not.
651 	 */
652 	if (vfs_busy(mp, LK_NOWAIT) != 0)
653 		return (0);
654 	if (mp->mnt_flag & MNT_RDONLY) {
655 		vfs_msync(mp, MNT_NOWAIT);
656 	} else {
657 		asyncflag = mp->mnt_flag & MNT_ASYNC;
658 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
659 		vfs_msync(mp, MNT_NOWAIT);
660 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
661 		if (asyncflag)
662 			mp->mnt_flag |= MNT_ASYNC;
663 	}
664 	vfs_unbusy(mp);
665 	return (0);
666 }
667 
668 /*
669  * The syncer vnode is no longer referenced.
670  *
671  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
672  */
673 static int
674 sync_inactive(struct vop_inactive_args *ap)
675 {
676 	vgone_vxlocked(ap->a_vp);
677 	return (0);
678 }
679 
680 /*
681  * The syncer vnode is no longer needed and is being decommissioned.
682  * This can only occur when the last reference has been released on
683  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
684  *
685  * Modifications to the worklist must be protected with a critical
686  * section.
687  *
688  *	sync_reclaim { struct vnode *a_vp }
689  */
690 static int
691 sync_reclaim(struct vop_reclaim_args *ap)
692 {
693 	struct vnode *vp = ap->a_vp;
694 	struct syncer_ctx *ctx;
695 
696 	ctx = vp->v_mount->mnt_syncer_ctx;
697 	if (ctx) {
698 		lwkt_gettoken(&ctx->sc_token);
699 		KKASSERT(vp->v_mount->mnt_syncer != vp);
700 		if (vp->v_flag & VONWORKLST) {
701 			LIST_REMOVE(vp, v_synclist);
702 			vclrflags(vp, VONWORKLST);
703 			--ctx->syncer_count;
704 		}
705 		lwkt_reltoken(&ctx->sc_token);
706 	} else {
707 		KKASSERT((vp->v_flag & VONWORKLST) == 0);
708 	}
709 
710 	return (0);
711 }
712 
713 /*
714  * This is very similar to vmntvnodescan() but it only scans the
715  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
716  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
717  * with dirty inodes are added to the syncer in addition to vnodes
718  * with dirty buffers, and can use this function instead of nmntvnodescan().
719  *
720  * This scan does not issue VOP_FSYNC()s.  The supplied callback is intended
721  * to synchronize the file in the manner intended by the VFS using it.
722  *
723  * This is important when a system has millions of vnodes.
724  */
725 int
726 vsyncscan(
727     struct mount *mp,
728     int vmsc_flags,
729     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
730     void *data
731 ) {
732 	struct syncer_ctx *ctx;
733 	struct synclist *slp;
734 	struct vnode *vp;
735 	int i;
736 	int count;
737 	int lkflags;
738 
739 	if (vmsc_flags & VMSC_NOWAIT)
740 		lkflags = LK_NOWAIT;
741 	else
742 		lkflags = 0;
743 
744 	/*
745 	 * Syncer list context.  This API requires a dedicated syncer thread.
746 	 * (MNTK_THR_SYNC).
747 	 */
748 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
749 	ctx = mp->mnt_syncer_ctx;
750 	lwkt_gettoken(&ctx->sc_token);
751 
752 	/*
753 	 * Setup for loop.  Allow races against the syncer thread but
754 	 * require that the syncer thread no be lazy if we were told
755 	 * not to be lazy.
756 	 */
757 	i = ctx->syncer_delayno & ctx->syncer_mask;
758 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
759 		++ctx->syncer_forced;
760 	for (count = 0; count <= ctx->syncer_mask; ++count) {
761 		slp = &ctx->syncer_workitem_pending[i];
762 
763 		while ((vp = LIST_FIRST(slp)) != NULL) {
764 			KKASSERT(vp->v_mount == mp);
765 			if (vmsc_flags & VMSC_GETVP) {
766 				if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
767 					slowfunc(mp, vp, data);
768 					vput(vp);
769 				}
770 			} else if (vmsc_flags & VMSC_GETVX) {
771 				vx_get(vp);
772 				slowfunc(mp, vp, data);
773 				vx_put(vp);
774 			} else {
775 				vhold(vp);
776 				slowfunc(mp, vp, data);
777 				vdrop(vp);
778 			}
779 
780 			/*
781 			 * vp could be invalid.  However, if vp is still at
782 			 * the head of the list it is clearly valid and we
783 			 * can safely move it.
784 			 */
785 			if (LIST_FIRST(slp) == vp)
786 				vn_syncer_add(vp, -(i + syncdelay));
787 		}
788 		i = (i + 1) & ctx->syncer_mask;
789 	}
790 
791 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
792 		--ctx->syncer_forced;
793 	lwkt_reltoken(&ctx->sc_token);
794 	return(0);
795 }
796 
797 /*
798  * Print out a syncer vnode.
799  *
800  *	sync_print { struct vnode *a_vp }
801  */
802 static int
803 sync_print(struct vop_print_args *ap)
804 {
805 	struct vnode *vp = ap->a_vp;
806 
807 	kprintf("syncer vnode");
808 	lockmgr_printinfo(&vp->v_lock);
809 	kprintf("\n");
810 	return (0);
811 }
812 
813