xref: /dragonfly/sys/kern/vfs_sync.c (revision 972eaa03)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob;			/* number of slots to run ASAP */
98 static int stat_rush_requests;	/* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 		&stat_rush_requests, 0, "");
101 
102 LIST_HEAD(synclist, vnode);
103 
104 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
105 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
106 #define 	SC_FLAG_BIOOPS_ALL	(0x4)		/* do bufops_sync(NULL) */
107 
108 struct syncer_ctx {
109 	struct mount		*sc_mp;
110 	struct lwkt_token 	sc_token;
111 	struct thread		*sc_thread;
112 	int			sc_flags;
113 
114 	struct synclist 	*syncer_workitem_pending;
115 	long			syncer_mask;
116 	int 			syncer_delayno;
117 	int			syncer_forced;
118 };
119 
120 static struct syncer_ctx syncer_ctx0;
121 
122 static void syncer_thread(void *);
123 
124 static void
125 syncer_ctx_init(struct syncer_ctx *ctx, struct mount *mp)
126 {
127 	ctx->sc_mp = mp;
128 	ctx->sc_flags = 0;
129 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
130 						&ctx->syncer_mask);
131 	ctx->syncer_delayno = 0;
132 	lwkt_token_init(&ctx->sc_token, "syncer");
133 }
134 
135 /*
136  * Called from vfsinit()
137  */
138 void
139 vfs_sync_init(void)
140 {
141 	syncer_ctx_init(&syncer_ctx0, NULL);
142 	syncer_ctx0.sc_flags |= SC_FLAG_BIOOPS_ALL;
143 
144 	/* Support schedcpu wakeup of syncer0 */
145 	lbolt_syncer = &syncer_ctx0;
146 }
147 
148 static int
149 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 	int v = syncdelay;
153 
154 	error = sysctl_handle_int(oidp, &v, 0, req);
155 	if (error || !req->newptr)
156 		return (error);
157 	if (v < 1)
158 		v = 1;
159 	if (v > SYNCER_MAXDELAY)
160 		v = SYNCER_MAXDELAY;
161 	syncdelay = v;
162 
163 	return(0);
164 }
165 
166 static struct syncer_ctx *
167 vn_get_syncer(struct vnode *vp)
168 {
169 	struct mount *mp;
170 	struct syncer_ctx *ctx;
171 
172 	if ((mp = vp->v_mount) != NULL)
173 		ctx = mp->mnt_syncer_ctx;
174 	else
175 		ctx = &syncer_ctx0;
176 	return (ctx);
177 }
178 
179 /*
180  * The workitem queue.
181  *
182  * It is useful to delay writes of file data and filesystem metadata
183  * for tens of seconds so that quickly created and deleted files need
184  * not waste disk bandwidth being created and removed. To realize this,
185  * we append vnodes to a "workitem" queue. When running with a soft
186  * updates implementation, most pending metadata dependencies should
187  * not wait for more than a few seconds. Thus, mounted on block devices
188  * are delayed only about a half the time that file data is delayed.
189  * Similarly, directory updates are more critical, so are only delayed
190  * about a third the time that file data is delayed. Thus, there are
191  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
192  * one each second (driven off the filesystem syncer process). The
193  * syncer_delayno variable indicates the next queue that is to be processed.
194  * Items that need to be processed soon are placed in this queue:
195  *
196  *	syncer_workitem_pending[syncer_delayno]
197  *
198  * A delay of fifteen seconds is done by placing the request fifteen
199  * entries later in the queue:
200  *
201  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
202  *
203  */
204 
205 /*
206  * Add an item to the syncer work queue.
207  *
208  * WARNING: Cannot get vp->v_token here if not already held, we must
209  *	    depend on the syncer_token (which might already be held by
210  *	    the caller) to protect v_synclist and VONWORKLST.
211  *
212  * MPSAFE
213  */
214 void
215 vn_syncer_add(struct vnode *vp, int delay)
216 {
217 	struct syncer_ctx *ctx;
218 	int slot;
219 
220 	ctx = vn_get_syncer(vp);
221 
222 	lwkt_gettoken(&ctx->sc_token);
223 
224 	if (vp->v_flag & VONWORKLST)
225 		LIST_REMOVE(vp, v_synclist);
226 	if (delay <= 0) {
227 		slot = -delay & ctx->syncer_mask;
228 	} else {
229 		if (delay > SYNCER_MAXDELAY - 2)
230 			delay = SYNCER_MAXDELAY - 2;
231 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
232 	}
233 
234 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
235 	vsetflags(vp, VONWORKLST);
236 
237 	lwkt_reltoken(&ctx->sc_token);
238 }
239 
240 /*
241  * Removes the vnode from the syncer list.  Since we might block while
242  * acquiring the syncer_token we have to recheck conditions.
243  *
244  * vp->v_token held on call
245  */
246 void
247 vn_syncer_remove(struct vnode *vp)
248 {
249 	struct syncer_ctx *ctx;
250 
251 	ctx = vn_get_syncer(vp);
252 
253 	lwkt_gettoken(&ctx->sc_token);
254 
255 	if ((vp->v_flag & (VISDIRTY | VONWORKLST)) == VONWORKLST &&
256 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
257 		vclrflags(vp, VONWORKLST);
258 		LIST_REMOVE(vp, v_synclist);
259 	}
260 
261 	lwkt_reltoken(&ctx->sc_token);
262 }
263 
264 /*
265  * vnode must be locked
266  */
267 void
268 vclrisdirty(struct vnode *vp)
269 {
270 	vclrflags(vp, VISDIRTY);
271 	if (vp->v_flag & VONWORKLST)
272 		vn_syncer_remove(vp);
273 }
274 
275 /*
276  * vnode must be stable
277  */
278 void
279 vsetisdirty(struct vnode *vp)
280 {
281 	if ((vp->v_flag & VISDIRTY) == 0) {
282 		vsetflags(vp, VISDIRTY);
283 		vn_syncer_add(vp, syncdelay);
284 	}
285 }
286 
287 /*
288  * Create per-filesystem syncer process
289  */
290 void
291 vn_syncer_thr_create(struct mount *mp)
292 {
293 	struct syncer_ctx *ctx;
294 	static int syncalloc = 0;
295 	int rc;
296 
297 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
298 		ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP,
299 			      M_WAITOK | M_ZERO);
300 		syncer_ctx_init(ctx, mp);
301 		mp->mnt_syncer_ctx = ctx;
302 		rc = kthread_create(syncer_thread, ctx, &ctx->sc_thread,
303 				    "syncer%d", ++syncalloc);
304 	} else {
305 		mp->mnt_syncer_ctx = &syncer_ctx0;
306 	}
307 }
308 
309 /*
310  * Stop per-filesystem syncer process
311  */
312 void
313 vn_syncer_thr_stop(struct mount *mp)
314 {
315 	struct syncer_ctx *ctx;
316 
317 	ctx = mp->mnt_syncer_ctx;
318 	if (ctx == NULL || ctx == &syncer_ctx0)
319 		return;
320 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
321 
322 	lwkt_gettoken(&ctx->sc_token);
323 
324 	/* Signal the syncer process to exit */
325 	ctx->sc_flags |= SC_FLAG_EXIT;
326 	wakeup(ctx);
327 
328 	/* Wait till syncer process exits */
329 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
330 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
331 
332 	mp->mnt_syncer_ctx = NULL;
333 	lwkt_reltoken(&ctx->sc_token);
334 
335 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
336 	kfree(ctx, M_TEMP);
337 }
338 
339 struct  thread *updatethread;
340 
341 /*
342  * System filesystem synchronizer daemon.
343  */
344 static void
345 syncer_thread(void *_ctx)
346 {
347 	struct thread *td = curthread;
348 	struct syncer_ctx *ctx = _ctx;
349 	struct synclist *slp;
350 	struct vnode *vp;
351 	long starttime;
352 	int *sc_flagsp;
353 	int sc_flags;
354 	int vnodes_synced = 0;
355 
356 	/*
357 	 * syncer0 runs till system shutdown; per-filesystem syncers are
358 	 * terminated on filesystem unmount
359 	 */
360 	if (ctx == &syncer_ctx0)
361 		EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
362 				      SHUTDOWN_PRI_LAST);
363 	for (;;) {
364 		kproc_suspend_loop();
365 
366 		starttime = time_uptime;
367 		lwkt_gettoken(&ctx->sc_token);
368 
369 		/*
370 		 * Push files whose dirty time has expired.  Be careful
371 		 * of interrupt race on slp queue.
372 		 */
373 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
374 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
375 				      ctx->syncer_mask;
376 
377 		while ((vp = LIST_FIRST(slp)) != NULL) {
378 			if (ctx->syncer_forced) {
379 				if (vget(vp, LK_EXCLUSIVE) == 0) {
380 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
381 					vput(vp);
382 					vnodes_synced++;
383 				}
384 			} else {
385 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
386 					VOP_FSYNC(vp, MNT_LAZY, 0);
387 					vput(vp);
388 					vnodes_synced++;
389 				}
390 			}
391 
392 			/*
393 			 * vp is stale but can still be used if we can
394 			 * verify that it remains at the head of the list.
395 			 * Be careful not to try to get vp->v_token as
396 			 * vp can become stale if this blocks.
397 			 *
398 			 * If the vp is still at the head of the list were
399 			 * unable to completely flush it and move it to
400 			 * a later slot to give other vnodes a fair shot.
401 			 *
402 			 * Note that v_tag VT_VFS vnodes can remain on the
403 			 * worklist with no dirty blocks, but sync_fsync()
404 			 * moves it to a later slot so we will never see it
405 			 * here.
406 			 *
407 			 * It is possible to race a vnode with no dirty
408 			 * buffers being removed from the list.  If this
409 			 * occurs we will move the vnode in the synclist
410 			 * and then the other thread will remove it.  Do
411 			 * not try to remove it here.
412 			 */
413 			if (LIST_FIRST(slp) == vp)
414 				vn_syncer_add(vp, syncdelay);
415 		}
416 
417 		sc_flags = ctx->sc_flags;
418 
419 		/* Exit on unmount */
420 		if (sc_flags & SC_FLAG_EXIT)
421 			break;
422 
423 		lwkt_reltoken(&ctx->sc_token);
424 
425 		/*
426 		 * Do sync processing for each mount.
427 		 */
428 		if (ctx->sc_mp || sc_flags & SC_FLAG_BIOOPS_ALL)
429 			bio_ops_sync(ctx->sc_mp);
430 
431 		/*
432 		 * The variable rushjob allows the kernel to speed up the
433 		 * processing of the filesystem syncer process. A rushjob
434 		 * value of N tells the filesystem syncer to process the next
435 		 * N seconds worth of work on its queue ASAP. Currently rushjob
436 		 * is used by the soft update code to speed up the filesystem
437 		 * syncer process when the incore state is getting so far
438 		 * ahead of the disk that the kernel memory pool is being
439 		 * threatened with exhaustion.
440 		 */
441 		if (ctx == &syncer_ctx0 && rushjob > 0) {
442 			atomic_subtract_int(&rushjob, 1);
443 			continue;
444 		}
445 		/*
446 		 * If it has taken us less than a second to process the
447 		 * current work, then wait. Otherwise start right over
448 		 * again. We can still lose time if any single round
449 		 * takes more than two seconds, but it does not really
450 		 * matter as we are just trying to generally pace the
451 		 * filesystem activity.
452 		 */
453 		if (time_uptime == starttime)
454 			tsleep(ctx, 0, "syncer", hz);
455 	}
456 
457 	/*
458 	 * Unmount/exit path for per-filesystem syncers; sc_token held
459 	 */
460 	ctx->sc_flags |= SC_FLAG_DONE;
461 	sc_flagsp = &ctx->sc_flags;
462 	lwkt_reltoken(&ctx->sc_token);
463 	wakeup(sc_flagsp);
464 
465 	kthread_exit();
466 }
467 
468 static void
469 syncer_thread_start(void)
470 {
471 	syncer_thread(&syncer_ctx0);
472 }
473 
474 static struct kproc_desc up_kp = {
475 	"syncer0",
476 	syncer_thread_start,
477 	&updatethread
478 };
479 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
480 
481 /*
482  * Request the syncer daemon to speed up its work.
483  * We never push it to speed up more than half of its
484  * normal turn time, otherwise it could take over the cpu.
485  */
486 int
487 speedup_syncer(void)
488 {
489 	/*
490 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
491 	 * will only do something real if the thread is in the right state.
492 	 */
493 	wakeup(lbolt_syncer);
494 	if (rushjob < syncdelay / 2) {
495 		atomic_add_int(&rushjob, 1);
496 		stat_rush_requests += 1;
497 		return (1);
498 	}
499 	return(0);
500 }
501 
502 /*
503  * Routine to create and manage a filesystem syncer vnode.
504  */
505 static int sync_close(struct vop_close_args *);
506 static int sync_fsync(struct vop_fsync_args *);
507 static int sync_inactive(struct vop_inactive_args *);
508 static int sync_reclaim (struct vop_reclaim_args *);
509 static int sync_print(struct vop_print_args *);
510 
511 static struct vop_ops sync_vnode_vops = {
512 	.vop_default =	vop_eopnotsupp,
513 	.vop_close =	sync_close,
514 	.vop_fsync =	sync_fsync,
515 	.vop_inactive =	sync_inactive,
516 	.vop_reclaim =	sync_reclaim,
517 	.vop_print =	sync_print,
518 };
519 
520 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
521 
522 VNODEOP_SET(sync_vnode_vops);
523 
524 /*
525  * Create a new filesystem syncer vnode for the specified mount point.
526  * This vnode is placed on the worklist and is responsible for sync'ing
527  * the filesystem.
528  *
529  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
530  * sync code is also responsible for cleaning up vnodes.
531  */
532 int
533 vfs_allocate_syncvnode(struct mount *mp)
534 {
535 	struct vnode *vp;
536 	static long start, incr, next;
537 	int error;
538 
539 	/* Allocate a new vnode */
540 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
541 	if (error) {
542 		mp->mnt_syncer = NULL;
543 		return (error);
544 	}
545 	vp->v_type = VNON;
546 	/*
547 	 * Place the vnode onto the syncer worklist. We attempt to
548 	 * scatter them about on the list so that they will go off
549 	 * at evenly distributed times even if all the filesystems
550 	 * are mounted at once.
551 	 */
552 	next += incr;
553 	if (next == 0 || next > SYNCER_MAXDELAY) {
554 		start /= 2;
555 		incr /= 2;
556 		if (start == 0) {
557 			start = SYNCER_MAXDELAY / 2;
558 			incr = SYNCER_MAXDELAY;
559 		}
560 		next = start;
561 	}
562 	vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
563 
564 	/*
565 	 * The mnt_syncer field inherits the vnode reference, which is
566 	 * held until later decomissioning.
567 	 */
568 	mp->mnt_syncer = vp;
569 	vx_unlock(vp);
570 	return (0);
571 }
572 
573 static int
574 sync_close(struct vop_close_args *ap)
575 {
576 	return (0);
577 }
578 
579 /*
580  * Do a lazy sync of the filesystem.
581  *
582  * sync_fsync { struct vnode *a_vp, int a_waitfor }
583  */
584 static int
585 sync_fsync(struct vop_fsync_args *ap)
586 {
587 	struct vnode *syncvp = ap->a_vp;
588 	struct mount *mp = syncvp->v_mount;
589 	int asyncflag;
590 
591 	/*
592 	 * We only need to do something if this is a lazy evaluation.
593 	 */
594 	if ((ap->a_waitfor & MNT_LAZY) == 0)
595 		return (0);
596 
597 	/*
598 	 * Move ourselves to the back of the sync list.
599 	 */
600 	vn_syncer_add(syncvp, syncdelay);
601 
602 	/*
603 	 * Walk the list of vnodes pushing all that are dirty and
604 	 * not already on the sync list, and freeing vnodes which have
605 	 * no refs and whos VM objects are empty.  vfs_msync() handles
606 	 * the VM issues and must be called whether the mount is readonly
607 	 * or not.
608 	 */
609 	if (vfs_busy(mp, LK_NOWAIT) != 0)
610 		return (0);
611 	if (mp->mnt_flag & MNT_RDONLY) {
612 		vfs_msync(mp, MNT_NOWAIT);
613 	} else {
614 		asyncflag = mp->mnt_flag & MNT_ASYNC;
615 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
616 		vfs_msync(mp, MNT_NOWAIT);
617 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
618 		if (asyncflag)
619 			mp->mnt_flag |= MNT_ASYNC;
620 	}
621 	vfs_unbusy(mp);
622 	return (0);
623 }
624 
625 /*
626  * The syncer vnode is no longer referenced.
627  *
628  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
629  */
630 static int
631 sync_inactive(struct vop_inactive_args *ap)
632 {
633 	vgone_vxlocked(ap->a_vp);
634 	return (0);
635 }
636 
637 /*
638  * The syncer vnode is no longer needed and is being decommissioned.
639  * This can only occur when the last reference has been released on
640  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
641  *
642  * Modifications to the worklist must be protected with a critical
643  * section.
644  *
645  *	sync_reclaim { struct vnode *a_vp }
646  */
647 static int
648 sync_reclaim(struct vop_reclaim_args *ap)
649 {
650 	struct vnode *vp = ap->a_vp;
651 	struct syncer_ctx *ctx;
652 
653 	ctx = vn_get_syncer(vp);
654 
655 	lwkt_gettoken(&ctx->sc_token);
656 	KKASSERT(vp->v_mount->mnt_syncer != vp);
657 	if (vp->v_flag & VONWORKLST) {
658 		LIST_REMOVE(vp, v_synclist);
659 		vclrflags(vp, VONWORKLST);
660 	}
661 	lwkt_reltoken(&ctx->sc_token);
662 
663 	return (0);
664 }
665 
666 /*
667  * This is very similar to vmntvnodescan() but it only scans the
668  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
669  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
670  * with dirty inodes are added to the syncer in addition to vnodes
671  * with dirty buffers, and can use this function instead of nmntvnodescan().
672  *
673  * This is important when a system has millions of vnodes.
674  */
675 int
676 vsyncscan(
677     struct mount *mp,
678     int vmsc_flags,
679     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
680     void *data
681 ) {
682 	struct syncer_ctx *ctx;
683 	struct synclist *slp;
684 	struct vnode *vp;
685 	int b;
686 	int i;
687 	int lkflags;
688 
689 	if (vmsc_flags & VMSC_NOWAIT)
690 		lkflags = LK_NOWAIT;
691 	else
692 		lkflags = 0;
693 
694 	/*
695 	 * Syncer list context.  This API requires a dedicated syncer thread.
696 	 * (MNTK_THR_SYNC).
697 	 */
698 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
699 	ctx = mp->mnt_syncer_ctx;
700 	KKASSERT(ctx != &syncer_ctx0);
701 
702 	lwkt_gettoken(&ctx->sc_token);
703 
704 	/*
705 	 * Setup for loop.  Allow races against the syncer thread but
706 	 * require that the syncer thread no be lazy if we were told
707 	 * not to be lazy.
708 	 */
709 	b = ctx->syncer_delayno & ctx->syncer_mask;
710 	i = b;
711 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
712 		++ctx->syncer_forced;
713 
714 	do {
715 		slp = &ctx->syncer_workitem_pending[i];
716 
717 		while ((vp = LIST_FIRST(slp)) != NULL) {
718 			KKASSERT(vp->v_mount == mp);
719 			if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
720 				slowfunc(mp, vp, data);
721 				vput(vp);
722 			}
723 			if (LIST_FIRST(slp) == vp)
724 				vn_syncer_add(vp, -(i + syncdelay));
725 		}
726 		i = (i + 1) & ctx->syncer_mask;
727 	} while (i != b);
728 
729 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
730 		--ctx->syncer_forced;
731 	lwkt_reltoken(&ctx->sc_token);
732 	return(0);
733 }
734 
735 /*
736  * Print out a syncer vnode.
737  *
738  *	sync_print { struct vnode *a_vp }
739  */
740 static int
741 sync_print(struct vop_print_args *ap)
742 {
743 	struct vnode *vp = ap->a_vp;
744 
745 	kprintf("syncer vnode");
746 	lockmgr_printinfo(&vp->v_lock);
747 	kprintf("\n");
748 	return (0);
749 }
750 
751