xref: /dragonfly/sys/kern/vfs_sync.c (revision ae071d8d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob;			/* number of slots to run ASAP */
98 static int stat_rush_requests;	/* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 		&stat_rush_requests, 0, "");
101 
102 LIST_HEAD(synclist, vnode);
103 
104 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
105 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
106 
107 struct syncer_ctx {
108 	struct mount		*sc_mp;
109 	struct lwkt_token 	sc_token;
110 	struct thread		*sc_thread;
111 	int			sc_flags;
112 	struct synclist 	*syncer_workitem_pending;
113 	long			syncer_mask;
114 	int 			syncer_delayno;
115 	int			syncer_forced;
116 	int			syncer_rushjob;
117 };
118 
119 static void syncer_thread(void *);
120 
121 static int
122 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
123 {
124 	int error;
125 	int v = syncdelay;
126 
127 	error = sysctl_handle_int(oidp, &v, 0, req);
128 	if (error || !req->newptr)
129 		return (error);
130 	if (v < 1)
131 		v = 1;
132 	if (v > SYNCER_MAXDELAY)
133 		v = SYNCER_MAXDELAY;
134 	syncdelay = v;
135 
136 	return(0);
137 }
138 
139 /*
140  * The workitem queue.
141  *
142  * It is useful to delay writes of file data and filesystem metadata
143  * for tens of seconds so that quickly created and deleted files need
144  * not waste disk bandwidth being created and removed. To realize this,
145  * we append vnodes to a "workitem" queue. When running with a soft
146  * updates implementation, most pending metadata dependencies should
147  * not wait for more than a few seconds. Thus, mounted on block devices
148  * are delayed only about a half the time that file data is delayed.
149  * Similarly, directory updates are more critical, so are only delayed
150  * about a third the time that file data is delayed. Thus, there are
151  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
152  * one each second (driven off the filesystem syncer process). The
153  * syncer_delayno variable indicates the next queue that is to be processed.
154  * Items that need to be processed soon are placed in this queue:
155  *
156  *	syncer_workitem_pending[syncer_delayno]
157  *
158  * A delay of fifteen seconds is done by placing the request fifteen
159  * entries later in the queue:
160  *
161  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
162  *
163  */
164 
165 /*
166  * Add an item to the syncer work queue.
167  *
168  * WARNING: Cannot get vp->v_token here if not already held, we must
169  *	    depend on the syncer_token (which might already be held by
170  *	    the caller) to protect v_synclist and VONWORKLST.
171  *
172  * MPSAFE
173  */
174 void
175 vn_syncer_add(struct vnode *vp, int delay)
176 {
177 	struct syncer_ctx *ctx;
178 	int slot;
179 
180 	ctx = vp->v_mount->mnt_syncer_ctx;
181 	lwkt_gettoken(&ctx->sc_token);
182 
183 	if (vp->v_flag & VONWORKLST)
184 		LIST_REMOVE(vp, v_synclist);
185 	if (delay <= 0) {
186 		slot = -delay & ctx->syncer_mask;
187 	} else {
188 		if (delay > SYNCER_MAXDELAY - 2)
189 			delay = SYNCER_MAXDELAY - 2;
190 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
191 	}
192 
193 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
194 	vsetflags(vp, VONWORKLST);
195 
196 	lwkt_reltoken(&ctx->sc_token);
197 }
198 
199 /*
200  * Removes the vnode from the syncer list.  Since we might block while
201  * acquiring the syncer_token we have to recheck conditions.
202  *
203  * vp->v_token held on call
204  */
205 void
206 vn_syncer_remove(struct vnode *vp)
207 {
208 	struct syncer_ctx *ctx;
209 
210 	ctx = vp->v_mount->mnt_syncer_ctx;
211 	lwkt_gettoken(&ctx->sc_token);
212 
213 	if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
214 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
215 		vclrflags(vp, VONWORKLST);
216 		LIST_REMOVE(vp, v_synclist);
217 	}
218 
219 	lwkt_reltoken(&ctx->sc_token);
220 }
221 
222 /*
223  * vnode must be locked
224  */
225 void
226 vclrisdirty(struct vnode *vp)
227 {
228 	vclrflags(vp, VISDIRTY);
229 	if (vp->v_flag & VONWORKLST)
230 		vn_syncer_remove(vp);
231 }
232 
233 void
234 vclrobjdirty(struct vnode *vp)
235 {
236 	vclrflags(vp, VOBJDIRTY);
237 	if (vp->v_flag & VONWORKLST)
238 		vn_syncer_remove(vp);
239 }
240 
241 /*
242  * vnode must be stable
243  */
244 void
245 vsetisdirty(struct vnode *vp)
246 {
247 	struct syncer_ctx *ctx;
248 
249 	if ((vp->v_flag & VISDIRTY) == 0) {
250 		ctx = vp->v_mount->mnt_syncer_ctx;
251 		vsetflags(vp, VISDIRTY);
252 		lwkt_gettoken(&ctx->sc_token);
253 		if ((vp->v_flag & VONWORKLST) == 0)
254 			vn_syncer_add(vp, syncdelay);
255 		lwkt_reltoken(&ctx->sc_token);
256 	}
257 }
258 
259 void
260 vsetobjdirty(struct vnode *vp)
261 {
262 	struct syncer_ctx *ctx;
263 
264 	if ((vp->v_flag & VOBJDIRTY) == 0) {
265 		ctx = vp->v_mount->mnt_syncer_ctx;
266 		vsetflags(vp, VOBJDIRTY);
267 		lwkt_gettoken(&ctx->sc_token);
268 		if ((vp->v_flag & VONWORKLST) == 0)
269 			vn_syncer_add(vp, syncdelay);
270 		lwkt_reltoken(&ctx->sc_token);
271 	}
272 }
273 
274 /*
275  * Create per-filesystem syncer process
276  */
277 void
278 vn_syncer_thr_create(struct mount *mp)
279 {
280 	struct syncer_ctx *ctx;
281 	static int syncalloc = 0;
282 
283 	ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
284 	ctx->sc_mp = mp;
285 	ctx->sc_flags = 0;
286 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
287 						&ctx->syncer_mask);
288 	ctx->syncer_delayno = 0;
289 	lwkt_token_init(&ctx->sc_token, "syncer");
290 	mp->mnt_syncer_ctx = ctx;
291 	kthread_create(syncer_thread, ctx, &ctx->sc_thread,
292 		       "syncer%d", ++syncalloc & 0x7FFFFFFF);
293 }
294 
295 /*
296  * Stop per-filesystem syncer process
297  */
298 void
299 vn_syncer_thr_stop(struct mount *mp)
300 {
301 	struct syncer_ctx *ctx;
302 
303 	ctx = mp->mnt_syncer_ctx;
304 	if (ctx == NULL)
305 		return;
306 
307 	lwkt_gettoken(&ctx->sc_token);
308 
309 	/* Signal the syncer process to exit */
310 	ctx->sc_flags |= SC_FLAG_EXIT;
311 	wakeup(ctx);
312 
313 	/* Wait till syncer process exits */
314 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
315 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
316 
317 	mp->mnt_syncer_ctx = NULL;
318 	lwkt_reltoken(&ctx->sc_token);
319 
320 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
321 	kfree(ctx, M_TEMP);
322 }
323 
324 struct  thread *updatethread;
325 
326 /*
327  * System filesystem synchronizer daemon.
328  */
329 static void
330 syncer_thread(void *_ctx)
331 {
332 	struct syncer_ctx *ctx = _ctx;
333 	struct synclist *slp;
334 	struct vnode *vp;
335 	long starttime;
336 	int *sc_flagsp;
337 	int sc_flags;
338 	int vnodes_synced = 0;
339 	int delta;
340 	int dummy = 0;
341 
342 	for (;;) {
343 		kproc_suspend_loop();
344 
345 		starttime = time_uptime;
346 		lwkt_gettoken(&ctx->sc_token);
347 
348 		/*
349 		 * Push files whose dirty time has expired.  Be careful
350 		 * of interrupt race on slp queue.
351 		 */
352 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
353 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
354 				      ctx->syncer_mask;
355 
356 		while ((vp = LIST_FIRST(slp)) != NULL) {
357 			if (ctx->syncer_forced) {
358 				if (vget(vp, LK_EXCLUSIVE) == 0) {
359 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
360 					vput(vp);
361 					vnodes_synced++;
362 				}
363 			} else {
364 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
365 					VOP_FSYNC(vp, MNT_LAZY, 0);
366 					vput(vp);
367 					vnodes_synced++;
368 				}
369 			}
370 
371 			/*
372 			 * vp is stale but can still be used if we can
373 			 * verify that it remains at the head of the list.
374 			 * Be careful not to try to get vp->v_token as
375 			 * vp can become stale if this blocks.
376 			 *
377 			 * If the vp is still at the head of the list were
378 			 * unable to completely flush it and move it to
379 			 * a later slot to give other vnodes a fair shot.
380 			 *
381 			 * Note that v_tag VT_VFS vnodes can remain on the
382 			 * worklist with no dirty blocks, but sync_fsync()
383 			 * moves it to a later slot so we will never see it
384 			 * here.
385 			 *
386 			 * It is possible to race a vnode with no dirty
387 			 * buffers being removed from the list.  If this
388 			 * occurs we will move the vnode in the synclist
389 			 * and then the other thread will remove it.  Do
390 			 * not try to remove it here.
391 			 */
392 			if (LIST_FIRST(slp) == vp)
393 				vn_syncer_add(vp, syncdelay);
394 		}
395 
396 		sc_flags = ctx->sc_flags;
397 
398 		/* Exit on unmount */
399 		if (sc_flags & SC_FLAG_EXIT)
400 			break;
401 
402 		lwkt_reltoken(&ctx->sc_token);
403 
404 		/*
405 		 * Do sync processing for each mount.
406 		 */
407 		if (ctx->sc_mp)
408 			bio_ops_sync(ctx->sc_mp);
409 
410 		/*
411 		 * The variable rushjob allows the kernel to speed up the
412 		 * processing of the filesystem syncer process. A rushjob
413 		 * value of N tells the filesystem syncer to process the next
414 		 * N seconds worth of work on its queue ASAP. Currently rushjob
415 		 * is used by the soft update code to speed up the filesystem
416 		 * syncer process when the incore state is getting so far
417 		 * ahead of the disk that the kernel memory pool is being
418 		 * threatened with exhaustion.
419 		 */
420 		delta = rushjob - ctx->syncer_rushjob;
421 		if ((u_int)delta > syncdelay / 2) {
422 			ctx->syncer_rushjob = rushjob - syncdelay / 2;
423 			tsleep(&dummy, 0, "rush", 1);
424 			continue;
425 		}
426 		if (delta) {
427 			++ctx->syncer_rushjob;
428 			tsleep(&dummy, 0, "rush", 1);
429 			continue;
430 		}
431 
432 		/*
433 		 * If it has taken us less than a second to process the
434 		 * current work, then wait. Otherwise start right over
435 		 * again. We can still lose time if any single round
436 		 * takes more than two seconds, but it does not really
437 		 * matter as we are just trying to generally pace the
438 		 * filesystem activity.
439 		 */
440 		if (time_uptime == starttime)
441 			tsleep(ctx, 0, "syncer", hz);
442 	}
443 
444 	/*
445 	 * Unmount/exit path for per-filesystem syncers; sc_token held
446 	 */
447 	ctx->sc_flags |= SC_FLAG_DONE;
448 	sc_flagsp = &ctx->sc_flags;
449 	lwkt_reltoken(&ctx->sc_token);
450 	wakeup(sc_flagsp);
451 
452 	kthread_exit();
453 }
454 
455 /*
456  * Request that the syncer daemon for a specific mount speed up its work.
457  * If mp is NULL the caller generally wants to speed up all syncers.
458  */
459 void
460 speedup_syncer(struct mount *mp)
461 {
462 	/*
463 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
464 	 * will only do something real if the thread is in the right state.
465 	 */
466 	atomic_add_int(&rushjob, 1);
467 	++stat_rush_requests;
468 	if (mp)
469 		wakeup(mp->mnt_syncer_ctx);
470 }
471 
472 /*
473  * Routine to create and manage a filesystem syncer vnode.
474  */
475 static int sync_close(struct vop_close_args *);
476 static int sync_fsync(struct vop_fsync_args *);
477 static int sync_inactive(struct vop_inactive_args *);
478 static int sync_reclaim (struct vop_reclaim_args *);
479 static int sync_print(struct vop_print_args *);
480 
481 static struct vop_ops sync_vnode_vops = {
482 	.vop_default =	vop_eopnotsupp,
483 	.vop_close =	sync_close,
484 	.vop_fsync =	sync_fsync,
485 	.vop_inactive =	sync_inactive,
486 	.vop_reclaim =	sync_reclaim,
487 	.vop_print =	sync_print,
488 };
489 
490 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
491 
492 VNODEOP_SET(sync_vnode_vops);
493 
494 /*
495  * Create a new filesystem syncer vnode for the specified mount point.
496  * This vnode is placed on the worklist and is responsible for sync'ing
497  * the filesystem.
498  *
499  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
500  * sync code is also responsible for cleaning up vnodes.
501  */
502 int
503 vfs_allocate_syncvnode(struct mount *mp)
504 {
505 	struct vnode *vp;
506 	static long start, incr, next;
507 	int error;
508 
509 	/* Allocate a new vnode */
510 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
511 	if (error) {
512 		mp->mnt_syncer = NULL;
513 		return (error);
514 	}
515 	vp->v_type = VNON;
516 	/*
517 	 * Place the vnode onto the syncer worklist. We attempt to
518 	 * scatter them about on the list so that they will go off
519 	 * at evenly distributed times even if all the filesystems
520 	 * are mounted at once.
521 	 */
522 	next += incr;
523 	if (next == 0 || next > SYNCER_MAXDELAY) {
524 		start /= 2;
525 		incr /= 2;
526 		if (start == 0) {
527 			start = SYNCER_MAXDELAY / 2;
528 			incr = SYNCER_MAXDELAY;
529 		}
530 		next = start;
531 	}
532 
533 	/*
534 	 * Only put the syncer vnode onto the syncer list if we have a
535 	 * syncer thread.  Some VFS's (aka NULLFS) don't need a syncer
536 	 * thread.
537 	 */
538 	if (mp->mnt_syncer_ctx)
539 		vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
540 
541 	/*
542 	 * The mnt_syncer field inherits the vnode reference, which is
543 	 * held until later decomissioning.
544 	 */
545 	mp->mnt_syncer = vp;
546 	vx_unlock(vp);
547 	return (0);
548 }
549 
550 static int
551 sync_close(struct vop_close_args *ap)
552 {
553 	return (0);
554 }
555 
556 /*
557  * Do a lazy sync of the filesystem.
558  *
559  * sync_fsync { struct vnode *a_vp, int a_waitfor }
560  */
561 static int
562 sync_fsync(struct vop_fsync_args *ap)
563 {
564 	struct vnode *syncvp = ap->a_vp;
565 	struct mount *mp = syncvp->v_mount;
566 	int asyncflag;
567 
568 	/*
569 	 * We only need to do something if this is a lazy evaluation.
570 	 */
571 	if ((ap->a_waitfor & MNT_LAZY) == 0)
572 		return (0);
573 
574 	/*
575 	 * Move ourselves to the back of the sync list.
576 	 */
577 	vn_syncer_add(syncvp, syncdelay);
578 
579 	/*
580 	 * Walk the list of vnodes pushing all that are dirty and
581 	 * not already on the sync list, and freeing vnodes which have
582 	 * no refs and whos VM objects are empty.  vfs_msync() handles
583 	 * the VM issues and must be called whether the mount is readonly
584 	 * or not.
585 	 */
586 	if (vfs_busy(mp, LK_NOWAIT) != 0)
587 		return (0);
588 	if (mp->mnt_flag & MNT_RDONLY) {
589 		vfs_msync(mp, MNT_NOWAIT);
590 	} else {
591 		asyncflag = mp->mnt_flag & MNT_ASYNC;
592 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
593 		vfs_msync(mp, MNT_NOWAIT);
594 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
595 		if (asyncflag)
596 			mp->mnt_flag |= MNT_ASYNC;
597 	}
598 	vfs_unbusy(mp);
599 	return (0);
600 }
601 
602 /*
603  * The syncer vnode is no longer referenced.
604  *
605  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
606  */
607 static int
608 sync_inactive(struct vop_inactive_args *ap)
609 {
610 	vgone_vxlocked(ap->a_vp);
611 	return (0);
612 }
613 
614 /*
615  * The syncer vnode is no longer needed and is being decommissioned.
616  * This can only occur when the last reference has been released on
617  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
618  *
619  * Modifications to the worklist must be protected with a critical
620  * section.
621  *
622  *	sync_reclaim { struct vnode *a_vp }
623  */
624 static int
625 sync_reclaim(struct vop_reclaim_args *ap)
626 {
627 	struct vnode *vp = ap->a_vp;
628 	struct syncer_ctx *ctx;
629 
630 	ctx = vp->v_mount->mnt_syncer_ctx;
631 	if (ctx) {
632 		lwkt_gettoken(&ctx->sc_token);
633 		KKASSERT(vp->v_mount->mnt_syncer != vp);
634 		if (vp->v_flag & VONWORKLST) {
635 			LIST_REMOVE(vp, v_synclist);
636 			vclrflags(vp, VONWORKLST);
637 		}
638 		lwkt_reltoken(&ctx->sc_token);
639 	} else {
640 		KKASSERT((vp->v_flag & VONWORKLST) == 0);
641 	}
642 
643 	return (0);
644 }
645 
646 /*
647  * This is very similar to vmntvnodescan() but it only scans the
648  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
649  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
650  * with dirty inodes are added to the syncer in addition to vnodes
651  * with dirty buffers, and can use this function instead of nmntvnodescan().
652  *
653  * This is important when a system has millions of vnodes.
654  */
655 int
656 vsyncscan(
657     struct mount *mp,
658     int vmsc_flags,
659     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
660     void *data
661 ) {
662 	struct syncer_ctx *ctx;
663 	struct synclist *slp;
664 	struct vnode *vp;
665 	int b;
666 	int i;
667 	int lkflags;
668 
669 	if (vmsc_flags & VMSC_NOWAIT)
670 		lkflags = LK_NOWAIT;
671 	else
672 		lkflags = 0;
673 
674 	/*
675 	 * Syncer list context.  This API requires a dedicated syncer thread.
676 	 * (MNTK_THR_SYNC).
677 	 */
678 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
679 	ctx = mp->mnt_syncer_ctx;
680 	lwkt_gettoken(&ctx->sc_token);
681 
682 	/*
683 	 * Setup for loop.  Allow races against the syncer thread but
684 	 * require that the syncer thread no be lazy if we were told
685 	 * not to be lazy.
686 	 */
687 	b = ctx->syncer_delayno & ctx->syncer_mask;
688 	i = b;
689 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
690 		++ctx->syncer_forced;
691 
692 	do {
693 		slp = &ctx->syncer_workitem_pending[i];
694 
695 		while ((vp = LIST_FIRST(slp)) != NULL) {
696 			KKASSERT(vp->v_mount == mp);
697 			if (vmsc_flags & VMSC_GETVP) {
698 				if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
699 					slowfunc(mp, vp, data);
700 					vput(vp);
701 				}
702 			} else if (vmsc_flags & VMSC_GETVX) {
703 				vx_get(vp);
704 				slowfunc(mp, vp, data);
705 				vx_put(vp);
706 			} else {
707 				vhold(vp);
708 				slowfunc(mp, vp, data);
709 				vdrop(vp);
710 			}
711 			if (LIST_FIRST(slp) == vp)
712 				vn_syncer_add(vp, -(i + syncdelay));
713 		}
714 		i = (i + 1) & ctx->syncer_mask;
715 	} while (i != b);
716 
717 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
718 		--ctx->syncer_forced;
719 	lwkt_reltoken(&ctx->sc_token);
720 	return(0);
721 }
722 
723 /*
724  * Print out a syncer vnode.
725  *
726  *	sync_print { struct vnode *a_vp }
727  */
728 static int
729 sync_print(struct vop_print_args *ap)
730 {
731 	struct vnode *vp = ap->a_vp;
732 
733 	kprintf("syncer vnode");
734 	lockmgr_printinfo(&vp->v_lock);
735 	kprintf("\n");
736 	return (0);
737 }
738 
739