xref: /dragonfly/sys/kern/vfs_sync.c (revision ce7a3582)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  */
41 
42 /*
43  * External virtual filesystem routines
44  */
45 #include "opt_ddb.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/buf.h>
50 #include <sys/conf.h>
51 #include <sys/dirent.h>
52 #include <sys/domain.h>
53 #include <sys/eventhandler.h>
54 #include <sys/fcntl.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/proc.h>
61 #include <sys/namei.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 
70 #include <machine/limits.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_pager.h>
80 #include <vm/vnode_pager.h>
81 
82 #include <sys/buf2.h>
83 #include <sys/thread2.h>
84 
85 /*
86  * The workitem queue.
87  */
88 #define SYNCER_MAXDELAY		32
89 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
90 time_t syncdelay = 30;		/* max time to delay syncing data */
91 SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
92 		&syncdelay, 0, "VFS data synchronization delay");
93 time_t filedelay = 30;		/* time to delay syncing files */
94 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
95 		&filedelay, 0, "File synchronization delay");
96 time_t dirdelay = 29;		/* time to delay syncing directories */
97 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
98 		&dirdelay, 0, "Directory synchronization delay");
99 time_t metadelay = 28;		/* time to delay syncing metadata */
100 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
101 		&metadelay, 0, "VFS metadata synchronization delay");
102 static int rushjob;			/* number of slots to run ASAP */
103 static int stat_rush_requests;	/* number of times I/O speeded up */
104 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
105 		&stat_rush_requests, 0, "");
106 
107 LIST_HEAD(synclist, vnode);
108 
109 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
110 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
111 #define 	SC_FLAG_BIOOPS_ALL	(0x4)		/* do bufops_sync(NULL) */
112 
113 struct syncer_ctx {
114 	struct mount		*sc_mp;
115 	struct lwkt_token 	sc_token;
116 	struct thread		*sc_thread;
117 	int			sc_flags;
118 
119 	struct synclist 	*syncer_workitem_pending;
120 	long			syncer_mask;
121 	int 			syncer_delayno;
122 };
123 
124 static struct syncer_ctx syncer_ctx0;
125 
126 static void syncer_thread(void *);
127 
128 static void
129 syncer_ctx_init(struct syncer_ctx *ctx, struct mount *mp)
130 {
131 	ctx->sc_mp = mp;
132 	lwkt_token_init(&ctx->sc_token, "syncer");
133 	ctx->sc_flags = 0;
134 
135 	ctx->syncer_workitem_pending = hashinit(syncer_maxdelay, M_DEVBUF,
136 						&ctx->syncer_mask);
137 	ctx->syncer_delayno = 0;
138 }
139 
140 /*
141  * Called from vfsinit()
142  */
143 void
144 vfs_sync_init(void)
145 {
146 	syncer_ctx_init(&syncer_ctx0, NULL);
147 	syncer_maxdelay = syncer_ctx0.syncer_mask + 1;
148 	syncer_ctx0.sc_flags |= SC_FLAG_BIOOPS_ALL;
149 
150 	/* Support schedcpu wakeup of syncer0 */
151 	lbolt_syncer = &syncer_ctx0;
152 }
153 
154 static struct syncer_ctx *
155 vn_get_syncer(struct vnode *vp) {
156 	struct mount *mp;
157 	struct syncer_ctx *ctx;
158 
159 	ctx = NULL;
160 	mp = vp->v_mount;
161 	if (mp)
162 		ctx = mp->mnt_syncer_ctx;
163 	if (ctx == NULL)
164 		ctx = &syncer_ctx0;
165 
166 	return (ctx);
167 }
168 
169 /*
170  * The workitem queue.
171  *
172  * It is useful to delay writes of file data and filesystem metadata
173  * for tens of seconds so that quickly created and deleted files need
174  * not waste disk bandwidth being created and removed. To realize this,
175  * we append vnodes to a "workitem" queue. When running with a soft
176  * updates implementation, most pending metadata dependencies should
177  * not wait for more than a few seconds. Thus, mounted on block devices
178  * are delayed only about a half the time that file data is delayed.
179  * Similarly, directory updates are more critical, so are only delayed
180  * about a third the time that file data is delayed. Thus, there are
181  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
182  * one each second (driven off the filesystem syncer process). The
183  * syncer_delayno variable indicates the next queue that is to be processed.
184  * Items that need to be processed soon are placed in this queue:
185  *
186  *	syncer_workitem_pending[syncer_delayno]
187  *
188  * A delay of fifteen seconds is done by placing the request fifteen
189  * entries later in the queue:
190  *
191  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
192  *
193  */
194 
195 /*
196  * Add an item to the syncer work queue.
197  *
198  * WARNING: Cannot get vp->v_token here if not already held, we must
199  *	    depend on the syncer_token (which might already be held by
200  *	    the caller) to protect v_synclist and VONWORKLST.
201  *
202  * MPSAFE
203  */
204 void
205 vn_syncer_add(struct vnode *vp, int delay)
206 {
207 	struct syncer_ctx *ctx;
208 	int slot;
209 
210 	ctx = vn_get_syncer(vp);
211 
212 	lwkt_gettoken(&ctx->sc_token);
213 
214 	if (vp->v_flag & VONWORKLST)
215 		LIST_REMOVE(vp, v_synclist);
216 	if (delay > syncer_maxdelay - 2)
217 		delay = syncer_maxdelay - 2;
218 	slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
219 
220 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
221 	vsetflags(vp, VONWORKLST);
222 
223 	lwkt_reltoken(&ctx->sc_token);
224 }
225 
226 /*
227  * Removes the vnode from the syncer list.  Since we might block while
228  * acquiring the syncer_token we have to recheck conditions.
229  *
230  * vp->v_token held on call
231  */
232 void
233 vn_syncer_remove(struct vnode *vp)
234 {
235 	struct syncer_ctx *ctx;
236 
237 	ctx = vn_get_syncer(vp);
238 
239 	lwkt_gettoken(&ctx->sc_token);
240 
241 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
242 		vclrflags(vp, VONWORKLST);
243 		LIST_REMOVE(vp, v_synclist);
244 	}
245 
246 	lwkt_reltoken(&ctx->sc_token);
247 }
248 
249 /*
250  * Create per-filesystem syncer process
251  */
252 void
253 vn_syncer_thr_create(struct mount *mp)
254 {
255 	struct syncer_ctx *ctx;
256 	static int syncalloc = 0;
257 	int rc;
258 
259 	ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK);
260 
261 	syncer_ctx_init(ctx, mp);
262 	mp->mnt_syncer_ctx = ctx;
263 
264 	rc = kthread_create(syncer_thread, ctx, &ctx->sc_thread,
265 			    "syncer%d", ++syncalloc);
266 }
267 
268 /*
269  * Stop per-filesystem syncer process
270  */
271 void
272 vn_syncer_thr_stop(struct mount *mp)
273 {
274 	struct syncer_ctx *ctx;
275 
276 	ctx = mp->mnt_syncer_ctx;
277 
278 	lwkt_gettoken(&ctx->sc_token);
279 
280 	/* Signal the syncer process to exit */
281 	ctx->sc_flags |= SC_FLAG_EXIT;
282 	wakeup(ctx);
283 
284 	/* Wait till syncer process exits */
285 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
286 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
287 
288 	mp->mnt_syncer_ctx = NULL;
289 	lwkt_reltoken(&ctx->sc_token);
290 
291 	kfree(ctx->syncer_workitem_pending, M_DEVBUF);
292 	kfree(ctx, M_TEMP);
293 }
294 
295 struct  thread *updatethread;
296 
297 /*
298  * System filesystem synchronizer daemon.
299  */
300 static void
301 syncer_thread(void *_ctx)
302 {
303 	struct thread *td = curthread;
304 	struct syncer_ctx *ctx = _ctx;
305 	struct synclist *slp;
306 	struct vnode *vp;
307 	long starttime;
308 	int *sc_flagsp;
309 	int sc_flags;
310 	int vnodes_synced = 0;
311 
312 	/*
313 	 * syncer0 runs till system shutdown; per-filesystem syncers are
314 	 * terminated on filesystem unmount
315 	 */
316 	if (ctx == &syncer_ctx0)
317 		EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
318 				      SHUTDOWN_PRI_LAST);
319 	for (;;) {
320 		kproc_suspend_loop();
321 
322 		starttime = time_second;
323 		lwkt_gettoken(&ctx->sc_token);
324 
325 		/*
326 		 * Push files whose dirty time has expired.  Be careful
327 		 * of interrupt race on slp queue.
328 		 */
329 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
330 		ctx->syncer_delayno += 1;
331 		if (ctx->syncer_delayno == syncer_maxdelay)
332 			ctx->syncer_delayno = 0;
333 
334 		while ((vp = LIST_FIRST(slp)) != NULL) {
335 			if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
336 				VOP_FSYNC(vp, MNT_LAZY, 0);
337 				vput(vp);
338 				vnodes_synced++;
339 			}
340 
341 			/*
342 			 * vp is stale but can still be used if we can
343 			 * verify that it remains at the head of the list.
344 			 * Be careful not to try to get vp->v_token as
345 			 * vp can become stale if this blocks.
346 			 *
347 			 * If the vp is still at the head of the list were
348 			 * unable to completely flush it and move it to
349 			 * a later slot to give other vnodes a fair shot.
350 			 *
351 			 * Note that v_tag VT_VFS vnodes can remain on the
352 			 * worklist with no dirty blocks, but sync_fsync()
353 			 * moves it to a later slot so we will never see it
354 			 * here.
355 			 *
356 			 * It is possible to race a vnode with no dirty
357 			 * buffers being removed from the list.  If this
358 			 * occurs we will move the vnode in the synclist
359 			 * and then the other thread will remove it.  Do
360 			 * not try to remove it here.
361 			 */
362 			if (LIST_FIRST(slp) == vp)
363 				vn_syncer_add(vp, syncdelay);
364 		}
365 
366 		sc_flags = ctx->sc_flags;
367 
368 		/* Exit on unmount */
369 		if (sc_flags & SC_FLAG_EXIT)
370 			break;
371 
372 		lwkt_reltoken(&ctx->sc_token);
373 
374 		/*
375 		 * Do sync processing for each mount.
376 		 */
377 		if (ctx->sc_mp || sc_flags & SC_FLAG_BIOOPS_ALL)
378 			bio_ops_sync(ctx->sc_mp);
379 
380 		/*
381 		 * The variable rushjob allows the kernel to speed up the
382 		 * processing of the filesystem syncer process. A rushjob
383 		 * value of N tells the filesystem syncer to process the next
384 		 * N seconds worth of work on its queue ASAP. Currently rushjob
385 		 * is used by the soft update code to speed up the filesystem
386 		 * syncer process when the incore state is getting so far
387 		 * ahead of the disk that the kernel memory pool is being
388 		 * threatened with exhaustion.
389 		 */
390 		if (ctx == &syncer_ctx0 && rushjob > 0) {
391 			atomic_subtract_int(&rushjob, 1);
392 			continue;
393 		}
394 		/*
395 		 * If it has taken us less than a second to process the
396 		 * current work, then wait. Otherwise start right over
397 		 * again. We can still lose time if any single round
398 		 * takes more than two seconds, but it does not really
399 		 * matter as we are just trying to generally pace the
400 		 * filesystem activity.
401 		 */
402 		if (time_second == starttime)
403 			tsleep(ctx, 0, "syncer", hz);
404 	}
405 
406 	/*
407 	 * Unmount/exit path for per-filesystem syncers; sc_token held
408 	 */
409 	ctx->sc_flags |= SC_FLAG_DONE;
410 	sc_flagsp = &ctx->sc_flags;
411 	lwkt_reltoken(&ctx->sc_token);
412 	wakeup(sc_flagsp);
413 
414 	kthread_exit();
415 }
416 
417 static void
418 syncer_thread_start(void) {
419 	syncer_thread(&syncer_ctx0);
420 }
421 
422 static struct kproc_desc up_kp = {
423 	"syncer0",
424 	syncer_thread_start,
425 	&updatethread
426 };
427 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
428 
429 /*
430  * Request the syncer daemon to speed up its work.
431  * We never push it to speed up more than half of its
432  * normal turn time, otherwise it could take over the cpu.
433  */
434 int
435 speedup_syncer(void)
436 {
437 	/*
438 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
439 	 * will only do something real if the thread is in the right state.
440 	 */
441 	wakeup(lbolt_syncer);
442 	if (rushjob < syncdelay / 2) {
443 		atomic_add_int(&rushjob, 1);
444 		stat_rush_requests += 1;
445 		return (1);
446 	}
447 	return(0);
448 }
449 
450 /*
451  * Routine to create and manage a filesystem syncer vnode.
452  */
453 static int sync_close(struct vop_close_args *);
454 static int sync_fsync(struct vop_fsync_args *);
455 static int sync_inactive(struct vop_inactive_args *);
456 static int sync_reclaim (struct vop_reclaim_args *);
457 static int sync_print(struct vop_print_args *);
458 
459 static struct vop_ops sync_vnode_vops = {
460 	.vop_default =	vop_eopnotsupp,
461 	.vop_close =	sync_close,
462 	.vop_fsync =	sync_fsync,
463 	.vop_inactive =	sync_inactive,
464 	.vop_reclaim =	sync_reclaim,
465 	.vop_print =	sync_print,
466 };
467 
468 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
469 
470 VNODEOP_SET(sync_vnode_vops);
471 
472 /*
473  * Create a new filesystem syncer vnode for the specified mount point.
474  * This vnode is placed on the worklist and is responsible for sync'ing
475  * the filesystem.
476  *
477  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
478  * sync code is also responsible for cleaning up vnodes.
479  */
480 int
481 vfs_allocate_syncvnode(struct mount *mp)
482 {
483 	struct vnode *vp;
484 	static long start, incr, next;
485 	int error;
486 
487 	/* Allocate a new vnode */
488 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
489 	if (error) {
490 		mp->mnt_syncer = NULL;
491 		return (error);
492 	}
493 	vp->v_type = VNON;
494 	/*
495 	 * Place the vnode onto the syncer worklist. We attempt to
496 	 * scatter them about on the list so that they will go off
497 	 * at evenly distributed times even if all the filesystems
498 	 * are mounted at once.
499 	 */
500 	next += incr;
501 	if (next == 0 || next > syncer_maxdelay) {
502 		start /= 2;
503 		incr /= 2;
504 		if (start == 0) {
505 			start = syncer_maxdelay / 2;
506 			incr = syncer_maxdelay;
507 		}
508 		next = start;
509 	}
510 	vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
511 
512 	/*
513 	 * The mnt_syncer field inherits the vnode reference, which is
514 	 * held until later decomissioning.
515 	 */
516 	mp->mnt_syncer = vp;
517 	vx_unlock(vp);
518 	return (0);
519 }
520 
521 static int
522 sync_close(struct vop_close_args *ap)
523 {
524 	return (0);
525 }
526 
527 /*
528  * Do a lazy sync of the filesystem.
529  *
530  * sync_fsync { struct vnode *a_vp, int a_waitfor }
531  */
532 static int
533 sync_fsync(struct vop_fsync_args *ap)
534 {
535 	struct vnode *syncvp = ap->a_vp;
536 	struct mount *mp = syncvp->v_mount;
537 	int asyncflag;
538 
539 	/*
540 	 * We only need to do something if this is a lazy evaluation.
541 	 */
542 	if ((ap->a_waitfor & MNT_LAZY) == 0)
543 		return (0);
544 
545 	/*
546 	 * Move ourselves to the back of the sync list.
547 	 */
548 	vn_syncer_add(syncvp, syncdelay);
549 
550 	/*
551 	 * Walk the list of vnodes pushing all that are dirty and
552 	 * not already on the sync list, and freeing vnodes which have
553 	 * no refs and whos VM objects are empty.  vfs_msync() handles
554 	 * the VM issues and must be called whether the mount is readonly
555 	 * or not.
556 	 */
557 	if (vfs_busy(mp, LK_NOWAIT) != 0)
558 		return (0);
559 	if (mp->mnt_flag & MNT_RDONLY) {
560 		vfs_msync(mp, MNT_NOWAIT);
561 	} else {
562 		asyncflag = mp->mnt_flag & MNT_ASYNC;
563 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
564 		vfs_msync(mp, MNT_NOWAIT);
565 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
566 		if (asyncflag)
567 			mp->mnt_flag |= MNT_ASYNC;
568 	}
569 	vfs_unbusy(mp);
570 	return (0);
571 }
572 
573 /*
574  * The syncer vnode is no longer referenced.
575  *
576  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
577  */
578 static int
579 sync_inactive(struct vop_inactive_args *ap)
580 {
581 	vgone_vxlocked(ap->a_vp);
582 	return (0);
583 }
584 
585 /*
586  * The syncer vnode is no longer needed and is being decommissioned.
587  * This can only occur when the last reference has been released on
588  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
589  *
590  * Modifications to the worklist must be protected with a critical
591  * section.
592  *
593  *	sync_reclaim { struct vnode *a_vp }
594  */
595 static int
596 sync_reclaim(struct vop_reclaim_args *ap)
597 {
598 	struct vnode *vp = ap->a_vp;
599 	struct syncer_ctx *ctx;
600 
601 	ctx = vn_get_syncer(vp);
602 
603 	lwkt_gettoken(&ctx->sc_token);
604 	KKASSERT(vp->v_mount->mnt_syncer != vp);
605 	if (vp->v_flag & VONWORKLST) {
606 		LIST_REMOVE(vp, v_synclist);
607 		vclrflags(vp, VONWORKLST);
608 	}
609 	lwkt_reltoken(&ctx->sc_token);
610 
611 	return (0);
612 }
613 
614 /*
615  * Print out a syncer vnode.
616  *
617  *	sync_print { struct vnode *a_vp }
618  */
619 static int
620 sync_print(struct vop_print_args *ap)
621 {
622 	struct vnode *vp = ap->a_vp;
623 
624 	kprintf("syncer vnode");
625 	lockmgr_printinfo(&vp->v_lock);
626 	kprintf("\n");
627 	return (0);
628 }
629 
630