xref: /dragonfly/sys/kern/vfs_sync.c (revision d9f85b33)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob;			/* number of slots to run ASAP */
98 static int stat_rush_requests;	/* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 		&stat_rush_requests, 0, "");
101 
102 LIST_HEAD(synclist, vnode);
103 
104 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
105 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
106 
107 struct syncer_ctx {
108 	struct mount		*sc_mp;
109 	struct lwkt_token 	sc_token;
110 	struct thread		*sc_thread;
111 	int			sc_flags;
112 	struct synclist 	*syncer_workitem_pending;
113 	long			syncer_mask;
114 	int 			syncer_delayno;
115 	int			syncer_forced;
116 	int			syncer_rushjob;
117 };
118 
119 static void syncer_thread(void *);
120 
121 static int
122 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
123 {
124 	int error;
125 	int v = syncdelay;
126 
127 	error = sysctl_handle_int(oidp, &v, 0, req);
128 	if (error || !req->newptr)
129 		return (error);
130 	if (v < 1)
131 		v = 1;
132 	if (v > SYNCER_MAXDELAY)
133 		v = SYNCER_MAXDELAY;
134 	syncdelay = v;
135 
136 	return(0);
137 }
138 
139 /*
140  * The workitem queue.
141  *
142  * It is useful to delay writes of file data and filesystem metadata
143  * for tens of seconds so that quickly created and deleted files need
144  * not waste disk bandwidth being created and removed. To realize this,
145  * we append vnodes to a "workitem" queue. When running with a soft
146  * updates implementation, most pending metadata dependencies should
147  * not wait for more than a few seconds. Thus, mounted on block devices
148  * are delayed only about a half the time that file data is delayed.
149  * Similarly, directory updates are more critical, so are only delayed
150  * about a third the time that file data is delayed. Thus, there are
151  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
152  * one each second (driven off the filesystem syncer process). The
153  * syncer_delayno variable indicates the next queue that is to be processed.
154  * Items that need to be processed soon are placed in this queue:
155  *
156  *	syncer_workitem_pending[syncer_delayno]
157  *
158  * A delay of fifteen seconds is done by placing the request fifteen
159  * entries later in the queue:
160  *
161  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
162  *
163  */
164 
165 /*
166  * Add an item to the syncer work queue.
167  *
168  * WARNING: Cannot get vp->v_token here if not already held, we must
169  *	    depend on the syncer_token (which might already be held by
170  *	    the caller) to protect v_synclist and VONWORKLST.
171  *
172  * MPSAFE
173  */
174 void
175 vn_syncer_add(struct vnode *vp, int delay)
176 {
177 	struct syncer_ctx *ctx;
178 	int slot;
179 
180 	ctx = vp->v_mount->mnt_syncer_ctx;
181 	lwkt_gettoken(&ctx->sc_token);
182 
183 	if (vp->v_flag & VONWORKLST)
184 		LIST_REMOVE(vp, v_synclist);
185 	if (delay <= 0) {
186 		slot = -delay & ctx->syncer_mask;
187 	} else {
188 		if (delay > SYNCER_MAXDELAY - 2)
189 			delay = SYNCER_MAXDELAY - 2;
190 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
191 	}
192 
193 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
194 	vsetflags(vp, VONWORKLST);
195 
196 	lwkt_reltoken(&ctx->sc_token);
197 }
198 
199 /*
200  * Removes the vnode from the syncer list.  Since we might block while
201  * acquiring the syncer_token we have to [re]check conditions to determine
202  * that it is ok to remove the vnode.
203  *
204  * Force removal if force != 0.  This can only occur during a forced unmount.
205  *
206  * vp->v_token held on call
207  */
208 void
209 vn_syncer_remove(struct vnode *vp, int force)
210 {
211 	struct syncer_ctx *ctx;
212 
213 	ctx = vp->v_mount->mnt_syncer_ctx;
214 	lwkt_gettoken(&ctx->sc_token);
215 
216 	if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
217 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
218 		vclrflags(vp, VONWORKLST);
219 		LIST_REMOVE(vp, v_synclist);
220 	} else if (force && (vp->v_flag & VONWORKLST)) {
221 		vclrflags(vp, VONWORKLST);
222 		LIST_REMOVE(vp, v_synclist);
223 	}
224 
225 	lwkt_reltoken(&ctx->sc_token);
226 }
227 
228 /*
229  * vnode must be locked
230  */
231 void
232 vclrisdirty(struct vnode *vp)
233 {
234 	vclrflags(vp, VISDIRTY);
235 	if (vp->v_flag & VONWORKLST)
236 		vn_syncer_remove(vp, 0);
237 }
238 
239 void
240 vclrobjdirty(struct vnode *vp)
241 {
242 	vclrflags(vp, VOBJDIRTY);
243 	if (vp->v_flag & VONWORKLST)
244 		vn_syncer_remove(vp, 0);
245 }
246 
247 /*
248  * vnode must be stable
249  */
250 void
251 vsetisdirty(struct vnode *vp)
252 {
253 	struct syncer_ctx *ctx;
254 
255 	if ((vp->v_flag & VISDIRTY) == 0) {
256 		ctx = vp->v_mount->mnt_syncer_ctx;
257 		vsetflags(vp, VISDIRTY);
258 		lwkt_gettoken(&ctx->sc_token);
259 		if ((vp->v_flag & VONWORKLST) == 0)
260 			vn_syncer_add(vp, syncdelay);
261 		lwkt_reltoken(&ctx->sc_token);
262 	}
263 }
264 
265 void
266 vsetobjdirty(struct vnode *vp)
267 {
268 	struct syncer_ctx *ctx;
269 
270 	if ((vp->v_flag & VOBJDIRTY) == 0) {
271 		ctx = vp->v_mount->mnt_syncer_ctx;
272 		vsetflags(vp, VOBJDIRTY);
273 		lwkt_gettoken(&ctx->sc_token);
274 		if ((vp->v_flag & VONWORKLST) == 0)
275 			vn_syncer_add(vp, syncdelay);
276 		lwkt_reltoken(&ctx->sc_token);
277 	}
278 }
279 
280 /*
281  * Create per-filesystem syncer process
282  */
283 void
284 vn_syncer_thr_create(struct mount *mp)
285 {
286 	struct syncer_ctx *ctx;
287 	static int syncalloc = 0;
288 
289 	ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
290 	ctx->sc_mp = mp;
291 	ctx->sc_flags = 0;
292 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
293 						&ctx->syncer_mask);
294 	ctx->syncer_delayno = 0;
295 	lwkt_token_init(&ctx->sc_token, "syncer");
296 	mp->mnt_syncer_ctx = ctx;
297 	kthread_create(syncer_thread, ctx, &ctx->sc_thread,
298 		       "syncer%d", ++syncalloc & 0x7FFFFFFF);
299 }
300 
301 /*
302  * Stop per-filesystem syncer process
303  */
304 void
305 vn_syncer_thr_stop(struct mount *mp)
306 {
307 	struct syncer_ctx *ctx;
308 
309 	ctx = mp->mnt_syncer_ctx;
310 	if (ctx == NULL)
311 		return;
312 
313 	lwkt_gettoken(&ctx->sc_token);
314 
315 	/* Signal the syncer process to exit */
316 	ctx->sc_flags |= SC_FLAG_EXIT;
317 	wakeup(ctx);
318 
319 	/* Wait till syncer process exits */
320 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
321 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
322 
323 	mp->mnt_syncer_ctx = NULL;
324 	lwkt_reltoken(&ctx->sc_token);
325 
326 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
327 	kfree(ctx, M_TEMP);
328 }
329 
330 struct  thread *updatethread;
331 
332 /*
333  * System filesystem synchronizer daemon.
334  */
335 static void
336 syncer_thread(void *_ctx)
337 {
338 	struct syncer_ctx *ctx = _ctx;
339 	struct synclist *slp;
340 	struct vnode *vp;
341 	long starttime;
342 	int *sc_flagsp;
343 	int sc_flags;
344 	int vnodes_synced = 0;
345 	int delta;
346 	int dummy = 0;
347 
348 	for (;;) {
349 		kproc_suspend_loop();
350 
351 		starttime = time_uptime;
352 		lwkt_gettoken(&ctx->sc_token);
353 
354 		/*
355 		 * Push files whose dirty time has expired.  Be careful
356 		 * of interrupt race on slp queue.
357 		 */
358 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
359 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
360 				      ctx->syncer_mask;
361 
362 		while ((vp = LIST_FIRST(slp)) != NULL) {
363 			if (ctx->syncer_forced) {
364 				if (vget(vp, LK_EXCLUSIVE) == 0) {
365 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
366 					vput(vp);
367 					vnodes_synced++;
368 				}
369 			} else {
370 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
371 					VOP_FSYNC(vp, MNT_LAZY, 0);
372 					vput(vp);
373 					vnodes_synced++;
374 				}
375 			}
376 
377 			/*
378 			 * vp is stale but can still be used if we can
379 			 * verify that it remains at the head of the list.
380 			 * Be careful not to try to get vp->v_token as
381 			 * vp can become stale if this blocks.
382 			 *
383 			 * If the vp is still at the head of the list were
384 			 * unable to completely flush it and move it to
385 			 * a later slot to give other vnodes a fair shot.
386 			 *
387 			 * Note that v_tag VT_VFS vnodes can remain on the
388 			 * worklist with no dirty blocks, but sync_fsync()
389 			 * moves it to a later slot so we will never see it
390 			 * here.
391 			 *
392 			 * It is possible to race a vnode with no dirty
393 			 * buffers being removed from the list.  If this
394 			 * occurs we will move the vnode in the synclist
395 			 * and then the other thread will remove it.  Do
396 			 * not try to remove it here.
397 			 */
398 			if (LIST_FIRST(slp) == vp)
399 				vn_syncer_add(vp, syncdelay);
400 		}
401 
402 		sc_flags = ctx->sc_flags;
403 
404 		/* Exit on unmount */
405 		if (sc_flags & SC_FLAG_EXIT)
406 			break;
407 
408 		lwkt_reltoken(&ctx->sc_token);
409 
410 		/*
411 		 * Do sync processing for each mount.
412 		 */
413 		if (ctx->sc_mp)
414 			bio_ops_sync(ctx->sc_mp);
415 
416 		/*
417 		 * The variable rushjob allows the kernel to speed up the
418 		 * processing of the filesystem syncer process. A rushjob
419 		 * value of N tells the filesystem syncer to process the next
420 		 * N seconds worth of work on its queue ASAP. Currently rushjob
421 		 * is used by the soft update code to speed up the filesystem
422 		 * syncer process when the incore state is getting so far
423 		 * ahead of the disk that the kernel memory pool is being
424 		 * threatened with exhaustion.
425 		 */
426 		delta = rushjob - ctx->syncer_rushjob;
427 		if ((u_int)delta > syncdelay / 2) {
428 			ctx->syncer_rushjob = rushjob - syncdelay / 2;
429 			tsleep(&dummy, 0, "rush", 1);
430 			continue;
431 		}
432 		if (delta) {
433 			++ctx->syncer_rushjob;
434 			tsleep(&dummy, 0, "rush", 1);
435 			continue;
436 		}
437 
438 		/*
439 		 * If it has taken us less than a second to process the
440 		 * current work, then wait. Otherwise start right over
441 		 * again. We can still lose time if any single round
442 		 * takes more than two seconds, but it does not really
443 		 * matter as we are just trying to generally pace the
444 		 * filesystem activity.
445 		 */
446 		if (time_uptime == starttime)
447 			tsleep(ctx, 0, "syncer", hz);
448 	}
449 
450 	/*
451 	 * Unmount/exit path for per-filesystem syncers; sc_token held
452 	 */
453 	ctx->sc_flags |= SC_FLAG_DONE;
454 	sc_flagsp = &ctx->sc_flags;
455 	lwkt_reltoken(&ctx->sc_token);
456 	wakeup(sc_flagsp);
457 
458 	kthread_exit();
459 }
460 
461 /*
462  * Request that the syncer daemon for a specific mount speed up its work.
463  * If mp is NULL the caller generally wants to speed up all syncers.
464  */
465 void
466 speedup_syncer(struct mount *mp)
467 {
468 	/*
469 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
470 	 * will only do something real if the thread is in the right state.
471 	 */
472 	atomic_add_int(&rushjob, 1);
473 	++stat_rush_requests;
474 	if (mp)
475 		wakeup(mp->mnt_syncer_ctx);
476 }
477 
478 /*
479  * Routine to create and manage a filesystem syncer vnode.
480  */
481 static int sync_close(struct vop_close_args *);
482 static int sync_fsync(struct vop_fsync_args *);
483 static int sync_inactive(struct vop_inactive_args *);
484 static int sync_reclaim (struct vop_reclaim_args *);
485 static int sync_print(struct vop_print_args *);
486 
487 static struct vop_ops sync_vnode_vops = {
488 	.vop_default =	vop_eopnotsupp,
489 	.vop_close =	sync_close,
490 	.vop_fsync =	sync_fsync,
491 	.vop_inactive =	sync_inactive,
492 	.vop_reclaim =	sync_reclaim,
493 	.vop_print =	sync_print,
494 };
495 
496 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
497 
498 VNODEOP_SET(sync_vnode_vops);
499 
500 /*
501  * Create a new filesystem syncer vnode for the specified mount point.
502  * This vnode is placed on the worklist and is responsible for sync'ing
503  * the filesystem.
504  *
505  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
506  * sync code is also responsible for cleaning up vnodes.
507  */
508 int
509 vfs_allocate_syncvnode(struct mount *mp)
510 {
511 	struct vnode *vp;
512 	static long start, incr, next;
513 	int error;
514 
515 	/* Allocate a new vnode */
516 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
517 	if (error) {
518 		mp->mnt_syncer = NULL;
519 		return (error);
520 	}
521 	vp->v_type = VNON;
522 	/*
523 	 * Place the vnode onto the syncer worklist. We attempt to
524 	 * scatter them about on the list so that they will go off
525 	 * at evenly distributed times even if all the filesystems
526 	 * are mounted at once.
527 	 */
528 	next += incr;
529 	if (next == 0 || next > SYNCER_MAXDELAY) {
530 		start /= 2;
531 		incr /= 2;
532 		if (start == 0) {
533 			start = SYNCER_MAXDELAY / 2;
534 			incr = SYNCER_MAXDELAY;
535 		}
536 		next = start;
537 	}
538 
539 	/*
540 	 * Only put the syncer vnode onto the syncer list if we have a
541 	 * syncer thread.  Some VFS's (aka NULLFS) don't need a syncer
542 	 * thread.
543 	 */
544 	if (mp->mnt_syncer_ctx)
545 		vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
546 
547 	/*
548 	 * The mnt_syncer field inherits the vnode reference, which is
549 	 * held until later decomissioning.
550 	 */
551 	mp->mnt_syncer = vp;
552 	vx_unlock(vp);
553 	return (0);
554 }
555 
556 static int
557 sync_close(struct vop_close_args *ap)
558 {
559 	return (0);
560 }
561 
562 /*
563  * Do a lazy sync of the filesystem.
564  *
565  * sync_fsync { struct vnode *a_vp, int a_waitfor }
566  */
567 static int
568 sync_fsync(struct vop_fsync_args *ap)
569 {
570 	struct vnode *syncvp = ap->a_vp;
571 	struct mount *mp = syncvp->v_mount;
572 	int asyncflag;
573 
574 	/*
575 	 * We only need to do something if this is a lazy evaluation.
576 	 */
577 	if ((ap->a_waitfor & MNT_LAZY) == 0)
578 		return (0);
579 
580 	/*
581 	 * Move ourselves to the back of the sync list.
582 	 */
583 	vn_syncer_add(syncvp, syncdelay);
584 
585 	/*
586 	 * Walk the list of vnodes pushing all that are dirty and
587 	 * not already on the sync list, and freeing vnodes which have
588 	 * no refs and whos VM objects are empty.  vfs_msync() handles
589 	 * the VM issues and must be called whether the mount is readonly
590 	 * or not.
591 	 */
592 	if (vfs_busy(mp, LK_NOWAIT) != 0)
593 		return (0);
594 	if (mp->mnt_flag & MNT_RDONLY) {
595 		vfs_msync(mp, MNT_NOWAIT);
596 	} else {
597 		asyncflag = mp->mnt_flag & MNT_ASYNC;
598 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
599 		vfs_msync(mp, MNT_NOWAIT);
600 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
601 		if (asyncflag)
602 			mp->mnt_flag |= MNT_ASYNC;
603 	}
604 	vfs_unbusy(mp);
605 	return (0);
606 }
607 
608 /*
609  * The syncer vnode is no longer referenced.
610  *
611  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
612  */
613 static int
614 sync_inactive(struct vop_inactive_args *ap)
615 {
616 	vgone_vxlocked(ap->a_vp);
617 	return (0);
618 }
619 
620 /*
621  * The syncer vnode is no longer needed and is being decommissioned.
622  * This can only occur when the last reference has been released on
623  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
624  *
625  * Modifications to the worklist must be protected with a critical
626  * section.
627  *
628  *	sync_reclaim { struct vnode *a_vp }
629  */
630 static int
631 sync_reclaim(struct vop_reclaim_args *ap)
632 {
633 	struct vnode *vp = ap->a_vp;
634 	struct syncer_ctx *ctx;
635 
636 	ctx = vp->v_mount->mnt_syncer_ctx;
637 	if (ctx) {
638 		lwkt_gettoken(&ctx->sc_token);
639 		KKASSERT(vp->v_mount->mnt_syncer != vp);
640 		if (vp->v_flag & VONWORKLST) {
641 			LIST_REMOVE(vp, v_synclist);
642 			vclrflags(vp, VONWORKLST);
643 		}
644 		lwkt_reltoken(&ctx->sc_token);
645 	} else {
646 		KKASSERT((vp->v_flag & VONWORKLST) == 0);
647 	}
648 
649 	return (0);
650 }
651 
652 /*
653  * This is very similar to vmntvnodescan() but it only scans the
654  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
655  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
656  * with dirty inodes are added to the syncer in addition to vnodes
657  * with dirty buffers, and can use this function instead of nmntvnodescan().
658  *
659  * This is important when a system has millions of vnodes.
660  */
661 int
662 vsyncscan(
663     struct mount *mp,
664     int vmsc_flags,
665     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
666     void *data
667 ) {
668 	struct syncer_ctx *ctx;
669 	struct synclist *slp;
670 	struct vnode *vp;
671 	int i;
672 	int count;
673 	int lkflags;
674 
675 	if (vmsc_flags & VMSC_NOWAIT)
676 		lkflags = LK_NOWAIT;
677 	else
678 		lkflags = 0;
679 
680 	/*
681 	 * Syncer list context.  This API requires a dedicated syncer thread.
682 	 * (MNTK_THR_SYNC).
683 	 */
684 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
685 	ctx = mp->mnt_syncer_ctx;
686 	lwkt_gettoken(&ctx->sc_token);
687 
688 	/*
689 	 * Setup for loop.  Allow races against the syncer thread but
690 	 * require that the syncer thread no be lazy if we were told
691 	 * not to be lazy.
692 	 */
693 	i = ctx->syncer_delayno & ctx->syncer_mask;
694 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
695 		++ctx->syncer_forced;
696 	for (count = 0; count <= ctx->syncer_mask; ++count) {
697 		slp = &ctx->syncer_workitem_pending[i];
698 
699 		while ((vp = LIST_FIRST(slp)) != NULL) {
700 			KKASSERT(vp->v_mount == mp);
701 			if (vmsc_flags & VMSC_GETVP) {
702 				if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
703 					slowfunc(mp, vp, data);
704 					vput(vp);
705 				}
706 			} else if (vmsc_flags & VMSC_GETVX) {
707 				vx_get(vp);
708 				slowfunc(mp, vp, data);
709 				vx_put(vp);
710 			} else {
711 				vhold(vp);
712 				slowfunc(mp, vp, data);
713 				vdrop(vp);
714 			}
715 
716 			/*
717 			 * vp could be invalid.  However, if vp is still at
718 			 * the head of the list it is clearly valid and we
719 			 * can safely move it.
720 			 */
721 			if (LIST_FIRST(slp) == vp)
722 				vn_syncer_add(vp, -(i + syncdelay));
723 		}
724 		i = (i + 1) & ctx->syncer_mask;
725 	}
726 
727 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
728 		--ctx->syncer_forced;
729 	lwkt_reltoken(&ctx->sc_token);
730 	return(0);
731 }
732 
733 /*
734  * Print out a syncer vnode.
735  *
736  *	sync_print { struct vnode *a_vp }
737  */
738 static int
739 sync_print(struct vop_print_args *ap)
740 {
741 	struct vnode *vp = ap->a_vp;
742 
743 	kprintf("syncer vnode");
744 	lockmgr_printinfo(&vp->v_lock);
745 	kprintf("\n");
746 	return (0);
747 }
748 
749