xref: /dragonfly/sys/kern/vfs_vm.c (revision dd491ed2)
1 /*
2  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Implements new VFS/VM coherency functions.  For conforming VFSs
37  * we treat the backing VM object slightly differently.  Instead of
38  * maintaining a number of pages to exactly fit the size of the file
39  * we instead maintain pages to fit the entire contents of the last
40  * buffer cache buffer used by the file.
41  *
42  * For VFSs like NFS and HAMMER which use (generally speaking) fixed
43  * sized buffers this greatly reduces the complexity of VFS/VM interactions.
44  *
45  * Truncations no longer invalidate pages covered by the buffer cache
46  * beyond the file EOF which still fit within the file's last buffer.
47  * We simply unmap them and do not allow userland to fault them in.
48  *
49  * The VFS is no longer responsible for zero-filling buffers during a
50  * truncation, the last buffer will be automatically zero-filled by
51  * nvtruncbuf().
52  *
53  * This code is intended to (eventually) replace vtruncbuf() and
54  * vnode_pager_setsize().
55  */
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/buf.h>
60 #include <sys/conf.h>
61 #include <sys/fcntl.h>
62 #include <sys/file.h>
63 #include <sys/kernel.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/proc.h>
67 #include <sys/socket.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/unistd.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 
74 #include <machine/limits.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_kern.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vnode_pager.h>
85 #include <vm/vm_zone.h>
86 
87 #include <sys/buf2.h>
88 #include <sys/thread2.h>
89 #include <vm/vm_page2.h>
90 
91 static int nvtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
92 static int nvtruncbuf_bp_trunc(struct buf *bp, void *data);
93 static int nvtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
94 static int nvtruncbuf_bp_metasync(struct buf *bp, void *data);
95 
96 /*
97  * Truncate a file's buffer and pages to a specified length. The
98  * byte-granular length of the file is specified along with the block
99  * size of the buffer containing that offset.
100  *
101  * If the last buffer straddles the length its contents will be zero-filled
102  * as appropriate.  All buffers and pages after the last buffer will be
103  * destroyed.  The last buffer itself will be destroyed only if the length
104  * is exactly aligned with it.
105  *
106  * UFS typically passes the old block size prior to the actual truncation,
107  * then later resizes the block based on the new file size.  NFS uses a
108  * fixed block size and doesn't care.  HAMMER uses a block size based on
109  * the offset which is fixed for any particular offset.
110  *
111  * When zero-filling we must bdwrite() to avoid a window of opportunity
112  * where the kernel might throw away a clean buffer and the filesystem
113  * then attempts to bread() it again before completing (or as part of)
114  * the extension.  The filesystem is still responsible for zero-filling
115  * any remainder when writing to the media in the strategy function when
116  * it is able to do so without the page being mapped.  The page may still
117  * be mapped by userland here.
118  *
119  * When modifying a buffer we must clear any cached raw disk offset.
120  * bdwrite() will call BMAP on it again.  Some filesystems, like HAMMER,
121  * never overwrite existing data blocks.
122  */
123 
124 struct truncbuf_info {
125 	struct vnode *vp;
126 	off_t truncloffset;	/* truncation point */
127 	int clean;		/* clean tree, else dirty tree */
128 };
129 
130 int
131 nvtruncbuf(struct vnode *vp, off_t length, int blksize, int boff, int trivial)
132 {
133 	struct truncbuf_info info;
134 	off_t truncboffset;
135 	const char *filename;
136 	struct buf *bp;
137 	int count;
138 	int error;
139 
140 	/*
141 	 * Round up to the *next* block, then destroy the buffers in question.
142 	 * Since we are only removing some of the buffers we must rely on the
143 	 * scan count to determine whether a loop is necessary.
144 	 *
145 	 * Destroy any pages beyond the last buffer.
146 	 */
147 	if (boff < 0)
148 		boff = (int)(length % blksize);
149 	if (boff)
150 		info.truncloffset = length + (blksize - boff);
151 	else
152 		info.truncloffset = length;
153 	info.vp = vp;
154 	lwkt_gettoken(&vp->v_token);
155 	do {
156 		info.clean = 1;
157 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
158 				nvtruncbuf_bp_trunc_cmp,
159 				nvtruncbuf_bp_trunc, &info);
160 		info.clean = 0;
161 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
162 				nvtruncbuf_bp_trunc_cmp,
163 				nvtruncbuf_bp_trunc, &info);
164 	} while(count);
165 
166 	nvnode_pager_setsize(vp, length, blksize, boff);
167 
168 	/*
169 	 * Zero-fill the area beyond the file EOF that still fits within
170 	 * the last buffer.  We must mark the buffer as dirty even though
171 	 * the modified area is beyond EOF to avoid races where the kernel
172 	 * might flush the buffer before the filesystem is able to reallocate
173 	 * the block.
174 	 *
175 	 * The VFS is responsible for dealing with the actual truncation.
176 	 *
177 	 * Only do this if trivial is zero, otherwise it is up to the
178 	 * VFS to handle the block straddling the EOF.
179 	 */
180 	if (boff && trivial == 0) {
181 		truncboffset = length - boff;
182 		error = bread_kvabio(vp, truncboffset, blksize, &bp);
183 		if (error == 0) {
184 			bkvasync(bp);
185 			bzero(bp->b_data + boff, blksize - boff);
186 			if (bp->b_flags & B_DELWRI) {
187 				if (bp->b_dirtyoff > boff)
188 					bp->b_dirtyoff = boff;
189 				if (bp->b_dirtyend > boff)
190 					bp->b_dirtyend = boff;
191 			}
192 			bp->b_bio2.bio_offset = NOOFFSET;
193 			bdwrite(bp);
194 		}
195 	} else {
196 		error = 0;
197 	}
198 
199 	/*
200 	 * For safety, fsync any remaining metadata if the file is not being
201 	 * truncated to 0.  Since the metadata does not represent the entire
202 	 * dirty list we have to rely on the hit count to ensure that we get
203 	 * all of it.
204 	 *
205 	 * This is typically applicable only to UFS.  NFS and HAMMER do
206 	 * not store indirect blocks in the per-vnode buffer cache.
207 	 */
208 	if (length > 0) {
209 		do {
210 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
211 					nvtruncbuf_bp_metasync_cmp,
212 					nvtruncbuf_bp_metasync, &info);
213 		} while (count);
214 	}
215 
216 	/*
217 	 * It is possible to have in-progress I/O from buffers that were
218 	 * not part of the truncation.  This should not happen if we
219 	 * are truncating to 0-length.
220 	 */
221 	bio_track_wait(&vp->v_track_write, 0, 0);
222 
223 	/*
224 	 * Debugging only
225 	 */
226 	spin_lock(&vp->v_spin);
227 	filename = TAILQ_FIRST(&vp->v_namecache) ?
228 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
229 	spin_unlock(&vp->v_spin);
230 
231 	/*
232 	 * Make sure no buffers were instantiated while we were trying
233 	 * to clean out the remaining VM pages.  This could occur due
234 	 * to busy dirty VM pages being flushed out to disk.
235 	 */
236 	do {
237 		info.clean = 1;
238 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
239 				nvtruncbuf_bp_trunc_cmp,
240 				nvtruncbuf_bp_trunc, &info);
241 		info.clean = 0;
242 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
243 				nvtruncbuf_bp_trunc_cmp,
244 				nvtruncbuf_bp_trunc, &info);
245 		if (count) {
246 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
247 			       "left over buffers in %s\n", count, filename);
248 		}
249 	} while(count);
250 
251 	lwkt_reltoken(&vp->v_token);
252 
253 	return (error);
254 }
255 
256 /*
257  * The callback buffer is beyond the new file EOF and must be destroyed.
258  * Note that the compare function must conform to the RB_SCAN's requirements.
259  */
260 static
261 int
262 nvtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
263 {
264 	struct truncbuf_info *info = data;
265 
266 	if (bp->b_loffset >= info->truncloffset)
267 		return(0);
268 	return(-1);
269 }
270 
271 static
272 int
273 nvtruncbuf_bp_trunc(struct buf *bp, void *data)
274 {
275 	struct truncbuf_info *info = data;
276 
277 	/*
278 	 * Do not try to use a buffer we cannot immediately lock,
279 	 * but sleep anyway to prevent a livelock.  The code will
280 	 * loop until all buffers can be acted upon.
281 	 */
282 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
283 		atomic_add_int(&bp->b_refs, 1);
284 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
285 			BUF_UNLOCK(bp);
286 		atomic_subtract_int(&bp->b_refs, 1);
287 	} else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
288 		   (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
289 		   bp->b_vp != info->vp ||
290 		   nvtruncbuf_bp_trunc_cmp(bp, data)) {
291 		BUF_UNLOCK(bp);
292 	} else {
293 		bremfree(bp);
294 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
295 		brelse(bp);
296 	}
297 	lwkt_yield();
298 	return(1);
299 }
300 
301 /*
302  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
303  * blocks (with a negative loffset) are scanned.
304  * Note that the compare function must conform to the RB_SCAN's requirements.
305  */
306 static int
307 nvtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
308 {
309 	if (bp->b_loffset < 0)
310 		return(0);
311 	lwkt_yield();
312 	return(1);
313 }
314 
315 static int
316 nvtruncbuf_bp_metasync(struct buf *bp, void *data)
317 {
318 	struct truncbuf_info *info = data;
319 
320 	/*
321 	 * Do not try to use a buffer we cannot immediately lock,
322 	 * but sleep anyway to prevent a livelock.  The code will
323 	 * loop until all buffers can be acted upon.
324 	 */
325 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
326 		atomic_add_int(&bp->b_refs, 1);
327 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
328 			BUF_UNLOCK(bp);
329 		atomic_subtract_int(&bp->b_refs, 1);
330 	} else if ((bp->b_flags & B_DELWRI) == 0 ||
331 		   bp->b_vp != info->vp ||
332 		   nvtruncbuf_bp_metasync_cmp(bp, data)) {
333 		BUF_UNLOCK(bp);
334 	} else {
335 		bremfree(bp);
336 		bawrite(bp);
337 	}
338 	lwkt_yield();
339 	return(1);
340 }
341 
342 /*
343  * Extend a file's buffer and pages to a new, larger size.  The block size
344  * at both the old and new length must be passed, but buffer cache operations
345  * will only be performed on the old block.  The new nlength/nblksize will
346  * be used to properly set the VM object size.
347  *
348  * To make this explicit we require the old length to passed even though
349  * we can acquire it from vp->v_filesize, which also avoids potential
350  * corruption if the filesystem and vp get desynchronized somehow.
351  *
352  * If the caller intends to immediately write into the newly extended
353  * space pass trivial == 1.  If trivial is 0 the original buffer will be
354  * zero-filled as necessary to clean out any junk in the extended space.
355  * If non-zero the original buffer (straddling EOF) is not touched.
356  *
357  * When zero-filling we must bdwrite() to avoid a window of opportunity
358  * where the kernel might throw away a clean buffer and the filesystem
359  * then attempts to bread() it again before completing (or as part of)
360  * the extension.  The filesystem is still responsible for zero-filling
361  * any remainder when writing to the media in the strategy function when
362  * it is able to do so without the page being mapped.  The page may still
363  * be mapped by userland here.
364  *
365  * When modifying a buffer we must clear any cached raw disk offset.
366  * bdwrite() will call BMAP on it again.  Some filesystems, like HAMMER,
367  * never overwrite existing data blocks.
368  */
369 int
370 nvextendbuf(struct vnode *vp, off_t olength, off_t nlength,
371 	    int oblksize, int nblksize, int oboff, int nboff, int trivial)
372 {
373 	off_t truncboffset;
374 	struct buf *bp;
375 	int error;
376 
377 	error = 0;
378 	nvnode_pager_setsize(vp, nlength, nblksize, nboff);
379 	if (trivial == 0) {
380 		if (oboff < 0)
381 			oboff = (int)(olength % oblksize);
382 		truncboffset = olength - oboff;
383 
384 		if (oboff) {
385 			error = bread_kvabio(vp, truncboffset, oblksize, &bp);
386 			if (error == 0) {
387 				bkvasync(bp);
388 				bzero(bp->b_data + oboff, oblksize - oboff);
389 				bp->b_bio2.bio_offset = NOOFFSET;
390 				bdwrite(bp);
391 			} else {
392 				kprintf("nvextendbuf: bread EOF @ %016jx "
393 					"error %d\n",
394 					truncboffset, error);
395 				bp->b_flags |= B_INVAL | B_RELBUF;
396 				brelse(bp);
397 			}
398 		}
399 	}
400 	return (error);
401 }
402 
403 /*
404  * Set vp->v_filesize and vp->v_object->size, destroy pages beyond
405  * the last buffer when truncating.
406  *
407  * This function does not do any zeroing or invalidating of partially
408  * overlapping pages.  Zeroing is the responsibility of nvtruncbuf().
409  * However, it does unmap VM pages from the user address space on a
410  * page-granular (verses buffer cache granular) basis.
411  *
412  * If boff is passed as -1 the base offset of the buffer cache buffer is
413  * calculated from length and blksize.  Filesystems such as UFS which deal
414  * with fragments have to specify a boff >= 0 since the base offset cannot
415  * be calculated from length and blksize.
416  *
417  * For UFS blksize is the 'new' blocksize, used only to determine how large
418  * the VM object must become.
419  */
420 void
421 nvnode_pager_setsize(struct vnode *vp, off_t length, int blksize, int boff)
422 {
423 	vm_pindex_t nobjsize;
424 	vm_pindex_t oobjsize;
425 	vm_pindex_t pi;
426 	vm_object_t object;
427 	vm_page_t m;
428 	off_t truncboffset;
429 
430 	/*
431 	 * Degenerate conditions
432 	 */
433 	if ((object = vp->v_object) == NULL)
434 		return;
435 	vm_object_hold(object);
436 	if (length == vp->v_filesize) {
437 		vm_object_drop(object);
438 		return;
439 	}
440 
441 	/*
442 	 * Calculate the size of the VM object, coverage includes
443 	 * the buffer straddling EOF.  If EOF is buffer-aligned
444 	 * we don't bother.
445 	 *
446 	 * Buffers do not have to be page-aligned.  Make sure
447 	 * nobjsize is beyond the last page of the buffer.
448 	 */
449 	if (boff < 0)
450 		boff = (int)(length % blksize);
451 	truncboffset = length - boff;
452 	oobjsize = object->size;
453 	if (boff)
454 		nobjsize = OFF_TO_IDX(truncboffset + blksize + PAGE_MASK);
455 	else
456 		nobjsize = OFF_TO_IDX(truncboffset + PAGE_MASK);
457 	object->size = nobjsize;
458 
459 	if (length < vp->v_filesize) {
460 		/*
461 		 * File has shrunk, toss any cached pages beyond
462 		 * the end of the buffer (blksize aligned) for the
463 		 * new EOF.
464 		 */
465 		vp->v_filesize = length;
466 		if (nobjsize < oobjsize) {
467 			vm_object_page_remove(object, nobjsize, oobjsize,
468 					      FALSE);
469 		}
470 
471 		/*
472 		 * Unmap any pages (page aligned) beyond the new EOF.
473 		 * The pages remain part of the (last) buffer and are not
474 		 * invalidated.
475 		 */
476 		pi = OFF_TO_IDX(length + PAGE_MASK);
477 		while (pi < nobjsize) {
478 			m = vm_page_lookup_busy_wait(object, pi, FALSE, "vmpg");
479 			if (m) {
480 				vm_page_protect(m, VM_PROT_NONE);
481 				vm_page_wakeup(m);
482 			}
483 			++pi;
484 			lwkt_yield();
485 		}
486 	} else {
487 		/*
488 		 * File has expanded.
489 		 */
490 		vp->v_filesize = length;
491 	}
492 	vm_object_drop(object);
493 }
494