xref: /dragonfly/sys/kern/vfs_vnops.c (revision 926deccb)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
35  * $FreeBSD: src/sys/kern/vfs_vnops.c,v 1.87.2.13 2002/12/29 18:19:53 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/fcntl.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/mount.h>
46 #include <sys/nlookup.h>
47 #include <sys/vnode.h>
48 #include <sys/buf.h>
49 #include <sys/filio.h>
50 #include <sys/ttycom.h>
51 #include <sys/conf.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 
58 static int vn_closefile (struct file *fp);
59 static int vn_ioctl (struct file *fp, u_long com, caddr_t data,
60 		struct ucred *cred, struct sysmsg *msg);
61 static int vn_read (struct file *fp, struct uio *uio,
62 		struct ucred *cred, int flags);
63 static int vn_kqfilter (struct file *fp, struct knote *kn);
64 static int vn_statfile (struct file *fp, struct stat *sb, struct ucred *cred);
65 static int vn_write (struct file *fp, struct uio *uio,
66 		struct ucred *cred, int flags);
67 
68 struct fileops vnode_fileops = {
69 	.fo_read = vn_read,
70 	.fo_write = vn_write,
71 	.fo_ioctl = vn_ioctl,
72 	.fo_kqfilter = vn_kqfilter,
73 	.fo_stat = vn_statfile,
74 	.fo_close = vn_closefile,
75 	.fo_shutdown = nofo_shutdown
76 };
77 
78 /*
79  * Common code for vnode open operations.  Check permissions, and call
80  * the VOP_NOPEN or VOP_NCREATE routine.
81  *
82  * The caller is responsible for setting up nd with nlookup_init() and
83  * for cleaning it up with nlookup_done(), whether we return an error
84  * or not.
85  *
86  * On success nd->nl_open_vp will hold a referenced and, if requested,
87  * locked vnode.  A locked vnode is requested via NLC_LOCKVP.  If fp
88  * is non-NULL the vnode will be installed in the file pointer.
89  *
90  * NOTE: The vnode is referenced just once on return whether or not it
91  * is also installed in the file pointer.
92  */
93 int
94 vn_open(struct nlookupdata *nd, struct file *fp, int fmode, int cmode)
95 {
96 	struct vnode *vp;
97 	struct ucred *cred = nd->nl_cred;
98 	struct vattr vat;
99 	struct vattr *vap = &vat;
100 	int error;
101 	u_int flags;
102 	uint64_t osize;
103 	struct mount *mp;
104 
105 	/*
106 	 * Certain combinations are illegal
107 	 */
108 	if ((fmode & (FWRITE | O_TRUNC)) == O_TRUNC)
109 		return(EACCES);
110 
111 	/*
112 	 * Lookup the path and create or obtain the vnode.  After a
113 	 * successful lookup a locked nd->nl_nch will be returned.
114 	 *
115 	 * The result of this section should be a locked vnode.
116 	 *
117 	 * XXX with only a little work we should be able to avoid locking
118 	 * the vnode if FWRITE, O_CREAT, and O_TRUNC are *not* set.
119 	 */
120 	nd->nl_flags |= NLC_OPEN;
121 	if (fmode & O_APPEND)
122 		nd->nl_flags |= NLC_APPEND;
123 	if (fmode & O_TRUNC)
124 		nd->nl_flags |= NLC_TRUNCATE;
125 	if (fmode & FREAD)
126 		nd->nl_flags |= NLC_READ;
127 	if (fmode & FWRITE)
128 		nd->nl_flags |= NLC_WRITE;
129 	if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
130 		nd->nl_flags |= NLC_FOLLOW;
131 
132 	if (fmode & O_CREAT) {
133 		/*
134 		 * CONDITIONAL CREATE FILE CASE
135 		 *
136 		 * Setting NLC_CREATE causes a negative hit to store
137 		 * the negative hit ncp and not return an error.  Then
138 		 * nc_error or nc_vp may be checked to see if the ncp
139 		 * represents a negative hit.  NLC_CREATE also requires
140 		 * write permission on the governing directory or EPERM
141 		 * is returned.
142 		 */
143 		nd->nl_flags |= NLC_CREATE;
144 		nd->nl_flags |= NLC_REFDVP;
145 		bwillinode(1);
146 		error = nlookup(nd);
147 	} else {
148 		/*
149 		 * NORMAL OPEN FILE CASE
150 		 */
151 		error = nlookup(nd);
152 	}
153 
154 	if (error)
155 		return (error);
156 
157 	/*
158 	 * split case to allow us to re-resolve and retry the ncp in case
159 	 * we get ESTALE.
160 	 */
161 again:
162 	if (fmode & O_CREAT) {
163 		if (nd->nl_nch.ncp->nc_vp == NULL) {
164 			if ((error = ncp_writechk(&nd->nl_nch)) != 0)
165 				return (error);
166 			VATTR_NULL(vap);
167 			vap->va_type = VREG;
168 			vap->va_mode = cmode;
169 			if (fmode & O_EXCL)
170 				vap->va_vaflags |= VA_EXCLUSIVE;
171 			error = VOP_NCREATE(&nd->nl_nch, nd->nl_dvp, &vp,
172 					    nd->nl_cred, vap);
173 			if (error)
174 				return (error);
175 			fmode &= ~O_TRUNC;
176 			/* locked vnode is returned */
177 		} else {
178 			if (fmode & O_EXCL) {
179 				error = EEXIST;
180 			} else {
181 				error = cache_vget(&nd->nl_nch, cred,
182 						    LK_EXCLUSIVE, &vp);
183 			}
184 			if (error)
185 				return (error);
186 			fmode &= ~O_CREAT;
187 		}
188 	} else {
189 		error = cache_vget(&nd->nl_nch, cred, LK_EXCLUSIVE, &vp);
190 		if (error)
191 			return (error);
192 	}
193 
194 	/*
195 	 * We have a locked vnode and ncp now.  Note that the ncp will
196 	 * be cleaned up by the caller if nd->nl_nch is left intact.
197 	 */
198 	if (vp->v_type == VLNK) {
199 		error = EMLINK;
200 		goto bad;
201 	}
202 	if (vp->v_type == VSOCK) {
203 		error = EOPNOTSUPP;
204 		goto bad;
205 	}
206 	if (vp->v_type != VDIR && (fmode & O_DIRECTORY)) {
207 		error = ENOTDIR;
208 		goto bad;
209 	}
210 	if ((fmode & O_CREAT) == 0) {
211 		if (fmode & (FWRITE | O_TRUNC)) {
212 			if (vp->v_type == VDIR) {
213 				error = EISDIR;
214 				goto bad;
215 			}
216 			error = vn_writechk(vp, &nd->nl_nch);
217 			if (error) {
218 				/*
219 				 * Special stale handling, re-resolve the
220 				 * vnode.
221 				 */
222 				if (error == ESTALE) {
223 					vput(vp);
224 					vp = NULL;
225 					cache_setunresolved(&nd->nl_nch);
226 					error = cache_resolve(&nd->nl_nch, cred);
227 					if (error == 0)
228 						goto again;
229 				}
230 				goto bad;
231 			}
232 		}
233 	}
234 	if (fmode & O_TRUNC) {
235 		vn_unlock(vp);				/* XXX */
236 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);	/* XXX */
237 		osize = vp->v_filesize;
238 		VATTR_NULL(vap);
239 		vap->va_size = 0;
240 		error = VOP_SETATTR(vp, vap, cred);
241 		if (error)
242 			goto bad;
243 		error = VOP_GETATTR(vp, vap);
244 		if (error)
245 			goto bad;
246 		mp = vq_vptomp(vp);
247 		VFS_ACCOUNT(mp, vap->va_uid, vap->va_gid, -osize);
248 	}
249 
250 	/*
251 	 * Set or clear VNSWAPCACHE on the vp based on nd->nl_nch.ncp->nc_flag.
252 	 * These particular bits a tracked all the way from the root.
253 	 *
254 	 * NOTE: Might not work properly on NFS servers due to the
255 	 * disconnected namecache.
256 	 */
257 	flags = nd->nl_nch.ncp->nc_flag;
258 	if ((flags & (NCF_UF_CACHE | NCF_UF_PCACHE)) &&
259 	    (flags & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE)) == 0) {
260 		vsetflags(vp, VSWAPCACHE);
261 	} else {
262 		vclrflags(vp, VSWAPCACHE);
263 	}
264 
265 	/*
266 	 * Setup the fp so VOP_OPEN can override it.  No descriptor has been
267 	 * associated with the fp yet so we own it clean.
268 	 *
269 	 * f_nchandle inherits nl_nch.  This used to be necessary only for
270 	 * directories but now we do it unconditionally so f*() ops
271 	 * such as fchmod() can access the actual namespace that was
272 	 * used to open the file.
273 	 */
274 	if (fp) {
275 		if (nd->nl_flags & NLC_APPENDONLY)
276 			fmode |= FAPPENDONLY;
277 		fp->f_nchandle = nd->nl_nch;
278 		cache_zero(&nd->nl_nch);
279 		cache_unlock(&fp->f_nchandle);
280 	}
281 
282 	/*
283 	 * Get rid of nl_nch.  vn_open does not return it (it returns the
284 	 * vnode or the file pointer).  Note: we can't leave nl_nch locked
285 	 * through the VOP_OPEN anyway since the VOP_OPEN may block, e.g.
286 	 * on /dev/ttyd0
287 	 */
288 	if (nd->nl_nch.ncp)
289 		cache_put(&nd->nl_nch);
290 
291 	error = VOP_OPEN(vp, fmode, cred, fp);
292 	if (error) {
293 		/*
294 		 * setting f_ops to &badfileops will prevent the descriptor
295 		 * code from trying to close and release the vnode, since
296 		 * the open failed we do not want to call close.
297 		 */
298 		if (fp) {
299 			fp->f_data = NULL;
300 			fp->f_ops = &badfileops;
301 		}
302 		goto bad;
303 	}
304 
305 #if 0
306 	/*
307 	 * Assert that VREG files have been setup for vmio.
308 	 */
309 	KASSERT(vp->v_type != VREG || vp->v_object != NULL,
310 		("vn_open: regular file was not VMIO enabled!"));
311 #endif
312 
313 	/*
314 	 * Return the vnode.  XXX needs some cleaning up.  The vnode is
315 	 * only returned in the fp == NULL case.
316 	 */
317 	if (fp == NULL) {
318 		nd->nl_open_vp = vp;
319 		nd->nl_vp_fmode = fmode;
320 		if ((nd->nl_flags & NLC_LOCKVP) == 0)
321 			vn_unlock(vp);
322 	} else {
323 		vput(vp);
324 	}
325 	return (0);
326 bad:
327 	if (vp)
328 		vput(vp);
329 	return (error);
330 }
331 
332 int
333 vn_opendisk(const char *devname, int fmode, struct vnode **vpp)
334 {
335 	struct vnode *vp;
336 	int error;
337 
338 	if (strncmp(devname, "/dev/", 5) == 0)
339 		devname += 5;
340 	if ((vp = getsynthvnode(devname)) == NULL) {
341 		error = ENODEV;
342 	} else {
343 		error = VOP_OPEN(vp, fmode, proc0.p_ucred, NULL);
344 		vn_unlock(vp);
345 		if (error) {
346 			vrele(vp);
347 			vp = NULL;
348 		}
349 	}
350 	*vpp = vp;
351 	return (error);
352 }
353 
354 /*
355  * Check for write permissions on the specified vnode.  nch may be NULL.
356  */
357 int
358 vn_writechk(struct vnode *vp, struct nchandle *nch)
359 {
360 	/*
361 	 * If there's shared text associated with
362 	 * the vnode, try to free it up once.  If
363 	 * we fail, we can't allow writing.
364 	 */
365 	if (vp->v_flag & VTEXT)
366 		return (ETXTBSY);
367 
368 	/*
369 	 * If the vnode represents a regular file, check the mount
370 	 * point via the nch.  This may be a different mount point
371 	 * then the one embedded in the vnode (e.g. nullfs).
372 	 *
373 	 * We can still write to non-regular files (e.g. devices)
374 	 * via read-only mounts.
375 	 */
376 	if (nch && nch->ncp && vp->v_type == VREG)
377 		return (ncp_writechk(nch));
378 	return (0);
379 }
380 
381 /*
382  * Check whether the underlying mount is read-only.  The mount point
383  * referenced by the namecache may be different from the mount point
384  * used by the underlying vnode in the case of NULLFS, so a separate
385  * check is needed.
386  */
387 int
388 ncp_writechk(struct nchandle *nch)
389 {
390 	if (nch->mount && (nch->mount->mnt_flag & MNT_RDONLY))
391 		return (EROFS);
392 	return(0);
393 }
394 
395 /*
396  * Vnode close call
397  *
398  * MPSAFE
399  */
400 int
401 vn_close(struct vnode *vp, int flags)
402 {
403 	int error;
404 
405 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
406 	if (error == 0) {
407 		error = VOP_CLOSE(vp, flags);
408 		vn_unlock(vp);
409 	}
410 	vrele(vp);
411 	return (error);
412 }
413 
414 /*
415  * Sequential heuristic.
416  *
417  * MPSAFE (f_seqcount and f_nextoff are allowed to race)
418  */
419 static __inline
420 int
421 sequential_heuristic(struct uio *uio, struct file *fp)
422 {
423 	/*
424 	 * Sequential heuristic - detect sequential operation
425 	 *
426 	 * NOTE: SMP: We allow f_seqcount updates to race.
427 	 */
428 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
429 	    uio->uio_offset == fp->f_nextoff) {
430 		int tmpseq = fp->f_seqcount;
431 
432 		tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
433 		if (tmpseq > IO_SEQMAX)
434 			tmpseq = IO_SEQMAX;
435 		fp->f_seqcount = tmpseq;
436 		return(fp->f_seqcount << IO_SEQSHIFT);
437 	}
438 
439 	/*
440 	 * Not sequential, quick draw-down of seqcount
441 	 *
442 	 * NOTE: SMP: We allow f_seqcount updates to race.
443 	 */
444 	if (fp->f_seqcount > 1)
445 		fp->f_seqcount = 1;
446 	else
447 		fp->f_seqcount = 0;
448 	return(0);
449 }
450 
451 /*
452  * get - lock and return the f_offset field.
453  * set - set and unlock the f_offset field.
454  *
455  * These routines serve the dual purpose of serializing access to the
456  * f_offset field (at least on i386) and guaranteeing operational integrity
457  * when multiple read()ers and write()ers are present on the same fp.
458  *
459  * MPSAFE
460  */
461 static __inline off_t
462 vn_get_fpf_offset(struct file *fp)
463 {
464 	u_int	flags;
465 	u_int	nflags;
466 
467 	/*
468 	 * Shortcut critical path.
469 	 */
470 	flags = fp->f_flag & ~FOFFSETLOCK;
471 	if (atomic_cmpset_int(&fp->f_flag, flags, flags | FOFFSETLOCK))
472 		return(fp->f_offset);
473 
474 	/*
475 	 * The hard way
476 	 */
477 	for (;;) {
478 		flags = fp->f_flag;
479 		if (flags & FOFFSETLOCK) {
480 			nflags = flags | FOFFSETWAKE;
481 			tsleep_interlock(&fp->f_flag, 0);
482 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
483 				tsleep(&fp->f_flag, PINTERLOCKED, "fpoff", 0);
484 		} else {
485 			nflags = flags | FOFFSETLOCK;
486 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
487 				break;
488 		}
489 	}
490 	return(fp->f_offset);
491 }
492 
493 /*
494  * MPSAFE
495  */
496 static __inline void
497 vn_set_fpf_offset(struct file *fp, off_t offset)
498 {
499 	u_int	flags;
500 	u_int	nflags;
501 
502 	/*
503 	 * We hold the lock so we can set the offset without interference.
504 	 */
505 	fp->f_offset = offset;
506 
507 	/*
508 	 * Normal release is already a reasonably critical path.
509 	 */
510 	for (;;) {
511 		flags = fp->f_flag;
512 		nflags = flags & ~(FOFFSETLOCK | FOFFSETWAKE);
513 		if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) {
514 			if (flags & FOFFSETWAKE)
515 				wakeup(&fp->f_flag);
516 			break;
517 		}
518 	}
519 }
520 
521 /*
522  * MPSAFE
523  */
524 static __inline off_t
525 vn_poll_fpf_offset(struct file *fp)
526 {
527 #if defined(__x86_64__)
528 	return(fp->f_offset);
529 #else
530 	off_t off = vn_get_fpf_offset(fp);
531 	vn_set_fpf_offset(fp, off);
532 	return(off);
533 #endif
534 }
535 
536 /*
537  * Package up an I/O request on a vnode into a uio and do it.
538  *
539  * MPSAFE
540  */
541 int
542 vn_rdwr(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
543 	off_t offset, enum uio_seg segflg, int ioflg,
544 	struct ucred *cred, int *aresid)
545 {
546 	struct uio auio;
547 	struct iovec aiov;
548 	int error;
549 
550 	if ((ioflg & IO_NODELOCKED) == 0)
551 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
552 	auio.uio_iov = &aiov;
553 	auio.uio_iovcnt = 1;
554 	aiov.iov_base = base;
555 	aiov.iov_len = len;
556 	auio.uio_resid = len;
557 	auio.uio_offset = offset;
558 	auio.uio_segflg = segflg;
559 	auio.uio_rw = rw;
560 	auio.uio_td = curthread;
561 	if (rw == UIO_READ) {
562 		error = VOP_READ(vp, &auio, ioflg, cred);
563 	} else {
564 		error = VOP_WRITE(vp, &auio, ioflg, cred);
565 	}
566 	if (aresid)
567 		*aresid = auio.uio_resid;
568 	else
569 		if (auio.uio_resid && error == 0)
570 			error = EIO;
571 	if ((ioflg & IO_NODELOCKED) == 0)
572 		vn_unlock(vp);
573 	return (error);
574 }
575 
576 /*
577  * Package up an I/O request on a vnode into a uio and do it.  The I/O
578  * request is split up into smaller chunks and we try to avoid saturating
579  * the buffer cache while potentially holding a vnode locked, so we
580  * check bwillwrite() before calling vn_rdwr().  We also call lwkt_user_yield()
581  * to give other processes a chance to lock the vnode (either other processes
582  * core'ing the same binary, or unrelated processes scanning the directory).
583  *
584  * MPSAFE
585  */
586 int
587 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
588 		 off_t offset, enum uio_seg segflg, int ioflg,
589 		 struct ucred *cred, int *aresid)
590 {
591 	int error = 0;
592 
593 	do {
594 		int chunk;
595 
596 		/*
597 		 * Force `offset' to a multiple of MAXBSIZE except possibly
598 		 * for the first chunk, so that filesystems only need to
599 		 * write full blocks except possibly for the first and last
600 		 * chunks.
601 		 */
602 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
603 
604 		if (chunk > len)
605 			chunk = len;
606 		if (vp->v_type == VREG) {
607 			switch(rw) {
608 			case UIO_READ:
609 				bwillread(chunk);
610 				break;
611 			case UIO_WRITE:
612 				bwillwrite(chunk);
613 				break;
614 			}
615 		}
616 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
617 				ioflg, cred, aresid);
618 		len -= chunk;	/* aresid calc already includes length */
619 		if (error)
620 			break;
621 		offset += chunk;
622 		base += chunk;
623 		lwkt_user_yield();
624 	} while (len);
625 	if (aresid)
626 		*aresid += len;
627 	return (error);
628 }
629 
630 /*
631  * File pointers can no longer get ripped up by revoke so
632  * we don't need to lock access to the vp.
633  *
634  * f_offset updates are not guaranteed against multiple readers
635  */
636 static int
637 vn_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
638 {
639 	struct vnode *vp;
640 	int error, ioflag;
641 
642 	KASSERT(uio->uio_td == curthread,
643 		("uio_td %p is not td %p", uio->uio_td, curthread));
644 	vp = (struct vnode *)fp->f_data;
645 
646 	ioflag = 0;
647 	if (flags & O_FBLOCKING) {
648 		/* ioflag &= ~IO_NDELAY; */
649 	} else if (flags & O_FNONBLOCKING) {
650 		ioflag |= IO_NDELAY;
651 	} else if (fp->f_flag & FNONBLOCK) {
652 		ioflag |= IO_NDELAY;
653 	}
654 	if (flags & O_FBUFFERED) {
655 		/* ioflag &= ~IO_DIRECT; */
656 	} else if (flags & O_FUNBUFFERED) {
657 		ioflag |= IO_DIRECT;
658 	} else if (fp->f_flag & O_DIRECT) {
659 		ioflag |= IO_DIRECT;
660 	}
661 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
662 		uio->uio_offset = vn_get_fpf_offset(fp);
663 	vn_lock(vp, LK_SHARED | LK_RETRY);
664 	ioflag |= sequential_heuristic(uio, fp);
665 
666 	error = VOP_READ(vp, uio, ioflag, cred);
667 	fp->f_nextoff = uio->uio_offset;
668 	vn_unlock(vp);
669 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
670 		vn_set_fpf_offset(fp, uio->uio_offset);
671 	return (error);
672 }
673 
674 /*
675  * MPSAFE
676  */
677 static int
678 vn_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
679 {
680 	struct vnode *vp;
681 	int error, ioflag;
682 
683 	KASSERT(uio->uio_td == curthread,
684 		("uio_td %p is not p %p", uio->uio_td, curthread));
685 	vp = (struct vnode *)fp->f_data;
686 
687 	ioflag = IO_UNIT;
688 	if (vp->v_type == VREG &&
689 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
690 		ioflag |= IO_APPEND;
691 	}
692 
693 	if (flags & O_FBLOCKING) {
694 		/* ioflag &= ~IO_NDELAY; */
695 	} else if (flags & O_FNONBLOCKING) {
696 		ioflag |= IO_NDELAY;
697 	} else if (fp->f_flag & FNONBLOCK) {
698 		ioflag |= IO_NDELAY;
699 	}
700 	if (flags & O_FBUFFERED) {
701 		/* ioflag &= ~IO_DIRECT; */
702 	} else if (flags & O_FUNBUFFERED) {
703 		ioflag |= IO_DIRECT;
704 	} else if (fp->f_flag & O_DIRECT) {
705 		ioflag |= IO_DIRECT;
706 	}
707 	if (flags & O_FASYNCWRITE) {
708 		/* ioflag &= ~IO_SYNC; */
709 	} else if (flags & O_FSYNCWRITE) {
710 		ioflag |= IO_SYNC;
711 	} else if (fp->f_flag & O_FSYNC) {
712 		ioflag |= IO_SYNC;
713 	}
714 
715 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
716 		ioflag |= IO_SYNC;
717 	if ((flags & O_FOFFSET) == 0)
718 		uio->uio_offset = vn_get_fpf_offset(fp);
719 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
720 	ioflag |= sequential_heuristic(uio, fp);
721 	error = VOP_WRITE(vp, uio, ioflag, cred);
722 	fp->f_nextoff = uio->uio_offset;
723 	vn_unlock(vp);
724 	if ((flags & O_FOFFSET) == 0)
725 		vn_set_fpf_offset(fp, uio->uio_offset);
726 	return (error);
727 }
728 
729 /*
730  * MPSAFE
731  */
732 static int
733 vn_statfile(struct file *fp, struct stat *sb, struct ucred *cred)
734 {
735 	struct vnode *vp;
736 	int error;
737 
738 	vp = (struct vnode *)fp->f_data;
739 	error = vn_stat(vp, sb, cred);
740 	return (error);
741 }
742 
743 /*
744  * MPSAFE
745  */
746 int
747 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *cred)
748 {
749 	struct vattr vattr;
750 	struct vattr *vap;
751 	int error;
752 	u_short mode;
753 	cdev_t dev;
754 
755 	vap = &vattr;
756 	error = VOP_GETATTR(vp, vap);
757 	if (error)
758 		return (error);
759 
760 	/*
761 	 * Zero the spare stat fields
762 	 */
763 	sb->st_lspare = 0;
764 	sb->st_qspare1 = 0;
765 	sb->st_qspare2 = 0;
766 
767 	/*
768 	 * Copy from vattr table
769 	 */
770 	if (vap->va_fsid != VNOVAL)
771 		sb->st_dev = vap->va_fsid;
772 	else
773 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
774 	sb->st_ino = vap->va_fileid;
775 	mode = vap->va_mode;
776 	switch (vap->va_type) {
777 	case VREG:
778 		mode |= S_IFREG;
779 		break;
780 	case VDATABASE:
781 		mode |= S_IFDB;
782 		break;
783 	case VDIR:
784 		mode |= S_IFDIR;
785 		break;
786 	case VBLK:
787 		mode |= S_IFBLK;
788 		break;
789 	case VCHR:
790 		mode |= S_IFCHR;
791 		break;
792 	case VLNK:
793 		mode |= S_IFLNK;
794 		/* This is a cosmetic change, symlinks do not have a mode. */
795 		if (vp->v_mount->mnt_flag & MNT_NOSYMFOLLOW)
796 			sb->st_mode &= ~ACCESSPERMS;	/* 0000 */
797 		else
798 			sb->st_mode |= ACCESSPERMS;	/* 0777 */
799 		break;
800 	case VSOCK:
801 		mode |= S_IFSOCK;
802 		break;
803 	case VFIFO:
804 		mode |= S_IFIFO;
805 		break;
806 	default:
807 		return (EBADF);
808 	}
809 	sb->st_mode = mode;
810 	if (vap->va_nlink > (nlink_t)-1)
811 		sb->st_nlink = (nlink_t)-1;
812 	else
813 		sb->st_nlink = vap->va_nlink;
814 	sb->st_uid = vap->va_uid;
815 	sb->st_gid = vap->va_gid;
816 	sb->st_rdev = dev2udev(vp->v_rdev);
817 	sb->st_size = vap->va_size;
818 	sb->st_atimespec = vap->va_atime;
819 	sb->st_mtimespec = vap->va_mtime;
820 	sb->st_ctimespec = vap->va_ctime;
821 
822 	/*
823 	 * A VCHR and VBLK device may track the last access and last modified
824 	 * time independantly of the filesystem.  This is particularly true
825 	 * because device read and write calls may bypass the filesystem.
826 	 */
827 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
828 		dev = vp->v_rdev;
829 		if (dev != NULL) {
830 			if (dev->si_lastread) {
831 				sb->st_atimespec.tv_sec = time_second +
832 							  (time_uptime -
833 							   dev->si_lastread);
834 				sb->st_atimespec.tv_nsec = 0;
835 			}
836 			if (dev->si_lastwrite) {
837 				sb->st_atimespec.tv_sec = time_second +
838 							  (time_uptime -
839 							   dev->si_lastwrite);
840 				sb->st_atimespec.tv_nsec = 0;
841 			}
842 		}
843 	}
844 
845         /*
846 	 * According to www.opengroup.org, the meaning of st_blksize is
847 	 *   "a filesystem-specific preferred I/O block size for this
848 	 *    object.  In some filesystem types, this may vary from file
849 	 *    to file"
850 	 * Default to PAGE_SIZE after much discussion.
851 	 */
852 
853 	if (vap->va_type == VREG) {
854 		sb->st_blksize = vap->va_blocksize;
855 	} else if (vn_isdisk(vp, NULL)) {
856 		/*
857 		 * XXX this is broken.  If the device is not yet open (aka
858 		 * stat() call, aka v_rdev == NULL), how are we supposed
859 		 * to get a valid block size out of it?
860 		 */
861 		dev = vp->v_rdev;
862 
863 		sb->st_blksize = dev->si_bsize_best;
864 		if (sb->st_blksize < dev->si_bsize_phys)
865 			sb->st_blksize = dev->si_bsize_phys;
866 		if (sb->st_blksize < BLKDEV_IOSIZE)
867 			sb->st_blksize = BLKDEV_IOSIZE;
868 	} else {
869 		sb->st_blksize = PAGE_SIZE;
870 	}
871 
872 	sb->st_flags = vap->va_flags;
873 
874 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
875 	if (error)
876 		sb->st_gen = 0;
877 	else
878 		sb->st_gen = (u_int32_t)vap->va_gen;
879 
880 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
881 	return (0);
882 }
883 
884 /*
885  * MPALMOSTSAFE - acquires mplock
886  */
887 static int
888 vn_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *ucred,
889 	 struct sysmsg *msg)
890 {
891 	struct vnode *vp = ((struct vnode *)fp->f_data);
892 	struct vnode *ovp;
893 	struct vattr vattr;
894 	int error;
895 	off_t size;
896 
897 	switch (vp->v_type) {
898 	case VREG:
899 	case VDIR:
900 		if (com == FIONREAD) {
901 			error = VOP_GETATTR(vp, &vattr);
902 			if (error)
903 				break;
904 			size = vattr.va_size;
905 			if ((vp->v_flag & VNOTSEEKABLE) == 0)
906 				size -= vn_poll_fpf_offset(fp);
907 			if (size > 0x7FFFFFFF)
908 				size = 0x7FFFFFFF;
909 			*(int *)data = size;
910 			error = 0;
911 			break;
912 		}
913 		if (com == FIOASYNC) {				/* XXX */
914 			error = 0;				/* XXX */
915 			break;
916 		}
917 		/* fall into ... */
918 	default:
919 #if 0
920 		return (ENOTTY);
921 #endif
922 	case VFIFO:
923 	case VCHR:
924 	case VBLK:
925 		if (com == FIODTYPE) {
926 			if (vp->v_type != VCHR && vp->v_type != VBLK) {
927 				error = ENOTTY;
928 				break;
929 			}
930 			*(int *)data = dev_dflags(vp->v_rdev) & D_TYPEMASK;
931 			error = 0;
932 			break;
933 		}
934 		error = VOP_IOCTL(vp, com, data, fp->f_flag, ucred, msg);
935 		if (error == 0 && com == TIOCSCTTY) {
936 			struct proc *p = curthread->td_proc;
937 			struct session *sess;
938 
939 			if (p == NULL) {
940 				error = ENOTTY;
941 				break;
942 			}
943 
944 			get_mplock();
945 			sess = p->p_session;
946 			/* Do nothing if reassigning same control tty */
947 			if (sess->s_ttyvp == vp) {
948 				error = 0;
949 				rel_mplock();
950 				break;
951 			}
952 
953 			/* Get rid of reference to old control tty */
954 			ovp = sess->s_ttyvp;
955 			vref(vp);
956 			sess->s_ttyvp = vp;
957 			if (ovp)
958 				vrele(ovp);
959 			rel_mplock();
960 		}
961 		break;
962 	}
963 	return (error);
964 }
965 
966 /*
967  * Check that the vnode is still valid, and if so
968  * acquire requested lock.
969  */
970 int
971 #ifndef	DEBUG_LOCKS
972 vn_lock(struct vnode *vp, int flags)
973 #else
974 debug_vn_lock(struct vnode *vp, int flags, const char *filename, int line)
975 #endif
976 {
977 	int error;
978 
979 	do {
980 #ifdef	DEBUG_LOCKS
981 		vp->filename = filename;
982 		vp->line = line;
983 		error = debuglockmgr(&vp->v_lock, flags,
984 				     "vn_lock", filename, line);
985 #else
986 		error = lockmgr(&vp->v_lock, flags);
987 #endif
988 		if (error == 0)
989 			break;
990 	} while (flags & LK_RETRY);
991 
992 	/*
993 	 * Because we (had better!) have a ref on the vnode, once it
994 	 * goes to VRECLAIMED state it will not be recycled until all
995 	 * refs go away.  So we can just check the flag.
996 	 */
997 	if (error == 0 && (vp->v_flag & VRECLAIMED)) {
998 		lockmgr(&vp->v_lock, LK_RELEASE);
999 		error = ENOENT;
1000 	}
1001 	return (error);
1002 }
1003 
1004 #ifdef DEBUG_VN_UNLOCK
1005 
1006 void
1007 debug_vn_unlock(struct vnode *vp, const char *filename, int line)
1008 {
1009 	kprintf("vn_unlock from %s:%d\n", filename, line);
1010 	lockmgr(&vp->v_lock, LK_RELEASE);
1011 }
1012 
1013 #else
1014 
1015 void
1016 vn_unlock(struct vnode *vp)
1017 {
1018 	lockmgr(&vp->v_lock, LK_RELEASE);
1019 }
1020 
1021 #endif
1022 
1023 /*
1024  * MPSAFE
1025  */
1026 int
1027 vn_islocked(struct vnode *vp)
1028 {
1029 	return (lockstatus(&vp->v_lock, curthread));
1030 }
1031 
1032 /*
1033  * Return the lock status of a vnode and unlock the vnode
1034  * if we owned the lock.  This is not a boolean, if the
1035  * caller cares what the lock status is the caller must
1036  * check the various possible values.
1037  *
1038  * This only unlocks exclusive locks held by the caller,
1039  * it will NOT unlock shared locks (there is no way to
1040  * tell who the shared lock belongs to).
1041  *
1042  * MPSAFE
1043  */
1044 int
1045 vn_islocked_unlock(struct vnode *vp)
1046 {
1047 	int vpls;
1048 
1049 	vpls = lockstatus(&vp->v_lock, curthread);
1050 	if (vpls == LK_EXCLUSIVE)
1051 		lockmgr(&vp->v_lock, LK_RELEASE);
1052 	return(vpls);
1053 }
1054 
1055 /*
1056  * Restore a vnode lock that we previously released via
1057  * vn_islocked_unlock().  This is a NOP if we did not
1058  * own the original lock.
1059  *
1060  * MPSAFE
1061  */
1062 void
1063 vn_islocked_relock(struct vnode *vp, int vpls)
1064 {
1065 	int error;
1066 
1067 	if (vpls == LK_EXCLUSIVE)
1068 		error = lockmgr(&vp->v_lock, vpls);
1069 }
1070 
1071 /*
1072  * MPSAFE
1073  */
1074 static int
1075 vn_closefile(struct file *fp)
1076 {
1077 	int error;
1078 
1079 	fp->f_ops = &badfileops;
1080 	error = vn_close(((struct vnode *)fp->f_data), fp->f_flag);
1081 	return (error);
1082 }
1083 
1084 /*
1085  * MPSAFE
1086  */
1087 static int
1088 vn_kqfilter(struct file *fp, struct knote *kn)
1089 {
1090 	int error;
1091 
1092 	error = VOP_KQFILTER(((struct vnode *)fp->f_data), kn);
1093 	return (error);
1094 }
1095