xref: /dragonfly/sys/kern/vfs_vnops.c (revision e6e77800)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
35  * $FreeBSD: src/sys/kern/vfs_vnops.c,v 1.87.2.13 2002/12/29 18:19:53 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/fcntl.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/mount.h>
46 #include <sys/nlookup.h>
47 #include <sys/vnode.h>
48 #include <sys/buf.h>
49 #include <sys/filio.h>
50 #include <sys/ttycom.h>
51 #include <sys/conf.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 
58 static int vn_closefile (struct file *fp);
59 static int vn_ioctl (struct file *fp, u_long com, caddr_t data,
60 		struct ucred *cred, struct sysmsg *msg);
61 static int vn_read (struct file *fp, struct uio *uio,
62 		struct ucred *cred, int flags);
63 static int vn_kqfilter (struct file *fp, struct knote *kn);
64 static int vn_statfile (struct file *fp, struct stat *sb, struct ucred *cred);
65 static int vn_write (struct file *fp, struct uio *uio,
66 		struct ucred *cred, int flags);
67 
68 struct fileops vnode_fileops = {
69 	.fo_read = vn_read,
70 	.fo_write = vn_write,
71 	.fo_ioctl = vn_ioctl,
72 	.fo_kqfilter = vn_kqfilter,
73 	.fo_stat = vn_statfile,
74 	.fo_close = vn_closefile,
75 	.fo_shutdown = nofo_shutdown
76 };
77 
78 /*
79  * Common code for vnode open operations.  Check permissions, and call
80  * the VOP_NOPEN or VOP_NCREATE routine.
81  *
82  * The caller is responsible for setting up nd with nlookup_init() and
83  * for cleaning it up with nlookup_done(), whether we return an error
84  * or not.
85  *
86  * On success nd->nl_open_vp will hold a referenced and, if requested,
87  * locked vnode.  A locked vnode is requested via NLC_LOCKVP.  If fp
88  * is non-NULL the vnode will be installed in the file pointer.
89  *
90  * NOTE: If the caller wishes the namecache entry to be operated with
91  *	 a shared lock it must use NLC_SHAREDLOCK.  If NLC_LOCKVP is set
92  *	 then the vnode lock will also be shared.
93  *
94  * NOTE: The vnode is referenced just once on return whether or not it
95  *	 is also installed in the file pointer.
96  */
97 int
98 vn_open(struct nlookupdata *nd, struct file *fp, int fmode, int cmode)
99 {
100 	struct vnode *vp;
101 	struct ucred *cred = nd->nl_cred;
102 	struct vattr vat;
103 	struct vattr *vap = &vat;
104 	int error;
105 	u_int flags;
106 	uint64_t osize;
107 	struct mount *mp;
108 
109 	/*
110 	 * Certain combinations are illegal
111 	 */
112 	if ((fmode & (FWRITE | O_TRUNC)) == O_TRUNC)
113 		return(EACCES);
114 
115 	/*
116 	 * Lookup the path and create or obtain the vnode.  After a
117 	 * successful lookup a locked nd->nl_nch will be returned.
118 	 *
119 	 * The result of this section should be a locked vnode.
120 	 *
121 	 * XXX with only a little work we should be able to avoid locking
122 	 * the vnode if FWRITE, O_CREAT, and O_TRUNC are *not* set.
123 	 */
124 	nd->nl_flags |= NLC_OPEN;
125 	if (fmode & O_APPEND)
126 		nd->nl_flags |= NLC_APPEND;
127 	if (fmode & O_TRUNC)
128 		nd->nl_flags |= NLC_TRUNCATE;
129 	if (fmode & FREAD)
130 		nd->nl_flags |= NLC_READ;
131 	if (fmode & FWRITE)
132 		nd->nl_flags |= NLC_WRITE;
133 	if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
134 		nd->nl_flags |= NLC_FOLLOW;
135 
136 	if (fmode & O_CREAT) {
137 		/*
138 		 * CONDITIONAL CREATE FILE CASE
139 		 *
140 		 * Setting NLC_CREATE causes a negative hit to store
141 		 * the negative hit ncp and not return an error.  Then
142 		 * nc_error or nc_vp may be checked to see if the ncp
143 		 * represents a negative hit.  NLC_CREATE also requires
144 		 * write permission on the governing directory or EPERM
145 		 * is returned.
146 		 */
147 		nd->nl_flags |= NLC_CREATE;
148 		nd->nl_flags |= NLC_REFDVP;
149 		bwillinode(1);
150 		error = nlookup(nd);
151 	} else {
152 		/*
153 		 * NORMAL OPEN FILE CASE
154 		 */
155 		error = nlookup(nd);
156 	}
157 
158 	if (error)
159 		return (error);
160 
161 	/*
162 	 * split case to allow us to re-resolve and retry the ncp in case
163 	 * we get ESTALE.
164 	 */
165 again:
166 	if (fmode & O_CREAT) {
167 		if (nd->nl_nch.ncp->nc_vp == NULL) {
168 			if ((error = ncp_writechk(&nd->nl_nch)) != 0)
169 				return (error);
170 			VATTR_NULL(vap);
171 			vap->va_type = VREG;
172 			vap->va_mode = cmode;
173 			if (fmode & O_EXCL)
174 				vap->va_vaflags |= VA_EXCLUSIVE;
175 			error = VOP_NCREATE(&nd->nl_nch, nd->nl_dvp, &vp,
176 					    nd->nl_cred, vap);
177 			if (error)
178 				return (error);
179 			fmode &= ~O_TRUNC;
180 			/* locked vnode is returned */
181 		} else {
182 			if (fmode & O_EXCL) {
183 				error = EEXIST;
184 			} else {
185 				error = cache_vget(&nd->nl_nch, cred,
186 						    LK_EXCLUSIVE, &vp);
187 			}
188 			if (error)
189 				return (error);
190 			fmode &= ~O_CREAT;
191 		}
192 	} else {
193 		if (nd->nl_flags & NLC_SHAREDLOCK) {
194 			error = cache_vget(&nd->nl_nch, cred, LK_SHARED, &vp);
195 		} else {
196 			error = cache_vget(&nd->nl_nch, cred,
197 					   LK_EXCLUSIVE, &vp);
198 		}
199 		if (error)
200 			return (error);
201 	}
202 
203 	/*
204 	 * We have a locked vnode and ncp now.  Note that the ncp will
205 	 * be cleaned up by the caller if nd->nl_nch is left intact.
206 	 */
207 	if (vp->v_type == VLNK) {
208 		error = EMLINK;
209 		goto bad;
210 	}
211 	if (vp->v_type == VSOCK) {
212 		error = EOPNOTSUPP;
213 		goto bad;
214 	}
215 	if (vp->v_type != VDIR && (fmode & O_DIRECTORY)) {
216 		error = ENOTDIR;
217 		goto bad;
218 	}
219 	if ((fmode & O_CREAT) == 0) {
220 		if (fmode & (FWRITE | O_TRUNC)) {
221 			if (vp->v_type == VDIR) {
222 				error = EISDIR;
223 				goto bad;
224 			}
225 			error = vn_writechk(vp, &nd->nl_nch);
226 			if (error) {
227 				/*
228 				 * Special stale handling, re-resolve the
229 				 * vnode.
230 				 */
231 				if (error == ESTALE) {
232 					vput(vp);
233 					vp = NULL;
234 					if (nd->nl_flags & NLC_SHAREDLOCK) {
235 						cache_unlock(&nd->nl_nch);
236 						cache_lock(&nd->nl_nch);
237 					}
238 					cache_setunresolved(&nd->nl_nch);
239 					error = cache_resolve(&nd->nl_nch,
240 							      cred);
241 					if (error == 0)
242 						goto again;
243 				}
244 				goto bad;
245 			}
246 		}
247 	}
248 	if (fmode & O_TRUNC) {
249 		vn_unlock(vp);				/* XXX */
250 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);	/* XXX */
251 		osize = vp->v_filesize;
252 		VATTR_NULL(vap);
253 		vap->va_size = 0;
254 		error = VOP_SETATTR(vp, vap, cred);
255 		if (error)
256 			goto bad;
257 		error = VOP_GETATTR(vp, vap);
258 		if (error)
259 			goto bad;
260 		mp = vq_vptomp(vp);
261 		VFS_ACCOUNT(mp, vap->va_uid, vap->va_gid, -osize);
262 	}
263 
264 	/*
265 	 * Set or clear VNSWAPCACHE on the vp based on nd->nl_nch.ncp->nc_flag.
266 	 * These particular bits a tracked all the way from the root.
267 	 *
268 	 * NOTE: Might not work properly on NFS servers due to the
269 	 * disconnected namecache.
270 	 */
271 	flags = nd->nl_nch.ncp->nc_flag;
272 	if ((flags & (NCF_UF_CACHE | NCF_UF_PCACHE)) &&
273 	    (flags & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE)) == 0) {
274 		vsetflags(vp, VSWAPCACHE);
275 	} else {
276 		vclrflags(vp, VSWAPCACHE);
277 	}
278 
279 	/*
280 	 * Setup the fp so VOP_OPEN can override it.  No descriptor has been
281 	 * associated with the fp yet so we own it clean.
282 	 *
283 	 * f_nchandle inherits nl_nch.  This used to be necessary only for
284 	 * directories but now we do it unconditionally so f*() ops
285 	 * such as fchmod() can access the actual namespace that was
286 	 * used to open the file.
287 	 */
288 	if (fp) {
289 		if (nd->nl_flags & NLC_APPENDONLY)
290 			fmode |= FAPPENDONLY;
291 		fp->f_nchandle = nd->nl_nch;
292 		cache_zero(&nd->nl_nch);
293 		cache_unlock(&fp->f_nchandle);
294 	}
295 
296 	/*
297 	 * Get rid of nl_nch.  vn_open does not return it (it returns the
298 	 * vnode or the file pointer).  Note: we can't leave nl_nch locked
299 	 * through the VOP_OPEN anyway since the VOP_OPEN may block, e.g.
300 	 * on /dev/ttyd0
301 	 */
302 	if (nd->nl_nch.ncp)
303 		cache_put(&nd->nl_nch);
304 
305 	error = VOP_OPEN(vp, fmode, cred, fp);
306 	if (error) {
307 		/*
308 		 * setting f_ops to &badfileops will prevent the descriptor
309 		 * code from trying to close and release the vnode, since
310 		 * the open failed we do not want to call close.
311 		 */
312 		if (fp) {
313 			fp->f_data = NULL;
314 			fp->f_ops = &badfileops;
315 		}
316 		goto bad;
317 	}
318 
319 #if 0
320 	/*
321 	 * Assert that VREG files have been setup for vmio.
322 	 */
323 	KASSERT(vp->v_type != VREG || vp->v_object != NULL,
324 		("vn_open: regular file was not VMIO enabled!"));
325 #endif
326 
327 	/*
328 	 * Return the vnode.  XXX needs some cleaning up.  The vnode is
329 	 * only returned in the fp == NULL case.
330 	 */
331 	if (fp == NULL) {
332 		nd->nl_open_vp = vp;
333 		nd->nl_vp_fmode = fmode;
334 		if ((nd->nl_flags & NLC_LOCKVP) == 0)
335 			vn_unlock(vp);
336 	} else {
337 		vput(vp);
338 	}
339 	return (0);
340 bad:
341 	if (vp)
342 		vput(vp);
343 	return (error);
344 }
345 
346 int
347 vn_opendisk(const char *devname, int fmode, struct vnode **vpp)
348 {
349 	struct vnode *vp;
350 	int error;
351 
352 	if (strncmp(devname, "/dev/", 5) == 0)
353 		devname += 5;
354 	if ((vp = getsynthvnode(devname)) == NULL) {
355 		error = ENODEV;
356 	} else {
357 		error = VOP_OPEN(vp, fmode, proc0.p_ucred, NULL);
358 		vn_unlock(vp);
359 		if (error) {
360 			vrele(vp);
361 			vp = NULL;
362 		}
363 	}
364 	*vpp = vp;
365 	return (error);
366 }
367 
368 /*
369  * Check for write permissions on the specified vnode.  nch may be NULL.
370  */
371 int
372 vn_writechk(struct vnode *vp, struct nchandle *nch)
373 {
374 	/*
375 	 * If there's shared text associated with
376 	 * the vnode, try to free it up once.  If
377 	 * we fail, we can't allow writing.
378 	 */
379 	if (vp->v_flag & VTEXT)
380 		return (ETXTBSY);
381 
382 	/*
383 	 * If the vnode represents a regular file, check the mount
384 	 * point via the nch.  This may be a different mount point
385 	 * then the one embedded in the vnode (e.g. nullfs).
386 	 *
387 	 * We can still write to non-regular files (e.g. devices)
388 	 * via read-only mounts.
389 	 */
390 	if (nch && nch->ncp && vp->v_type == VREG)
391 		return (ncp_writechk(nch));
392 	return (0);
393 }
394 
395 /*
396  * Check whether the underlying mount is read-only.  The mount point
397  * referenced by the namecache may be different from the mount point
398  * used by the underlying vnode in the case of NULLFS, so a separate
399  * check is needed.
400  */
401 int
402 ncp_writechk(struct nchandle *nch)
403 {
404 	if (nch->mount && (nch->mount->mnt_flag & MNT_RDONLY))
405 		return (EROFS);
406 	return(0);
407 }
408 
409 /*
410  * Vnode close call
411  *
412  * MPSAFE
413  */
414 int
415 vn_close(struct vnode *vp, int flags, struct file *fp)
416 {
417 	int error;
418 
419 	error = vn_lock(vp, LK_SHARED | LK_RETRY | LK_FAILRECLAIM);
420 	if (error == 0) {
421 		error = VOP_CLOSE(vp, flags, fp);
422 		vn_unlock(vp);
423 	}
424 	vrele(vp);
425 	return (error);
426 }
427 
428 /*
429  * Sequential heuristic.
430  *
431  * MPSAFE (f_seqcount and f_nextoff are allowed to race)
432  */
433 static __inline
434 int
435 sequential_heuristic(struct uio *uio, struct file *fp)
436 {
437 	/*
438 	 * Sequential heuristic - detect sequential operation
439 	 *
440 	 * NOTE: SMP: We allow f_seqcount updates to race.
441 	 */
442 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
443 	    uio->uio_offset == fp->f_nextoff) {
444 		int tmpseq = fp->f_seqcount;
445 
446 		tmpseq += (uio->uio_resid + MAXBSIZE - 1) / MAXBSIZE;
447 		if (tmpseq > IO_SEQMAX)
448 			tmpseq = IO_SEQMAX;
449 		fp->f_seqcount = tmpseq;
450 		return(fp->f_seqcount << IO_SEQSHIFT);
451 	}
452 
453 	/*
454 	 * Not sequential, quick draw-down of seqcount
455 	 *
456 	 * NOTE: SMP: We allow f_seqcount updates to race.
457 	 */
458 	if (fp->f_seqcount > 1)
459 		fp->f_seqcount = 1;
460 	else
461 		fp->f_seqcount = 0;
462 	return(0);
463 }
464 
465 /*
466  * get - lock and return the f_offset field.
467  * set - set and unlock the f_offset field.
468  *
469  * These routines serve the dual purpose of serializing access to the
470  * f_offset field (at least on i386) and guaranteeing operational integrity
471  * when multiple read()ers and write()ers are present on the same fp.
472  *
473  * MPSAFE
474  */
475 static __inline off_t
476 vn_get_fpf_offset(struct file *fp)
477 {
478 	u_int	flags;
479 	u_int	nflags;
480 
481 	/*
482 	 * Shortcut critical path.
483 	 */
484 	flags = fp->f_flag & ~FOFFSETLOCK;
485 	if (atomic_cmpset_int(&fp->f_flag, flags, flags | FOFFSETLOCK))
486 		return(fp->f_offset);
487 
488 	/*
489 	 * The hard way
490 	 */
491 	for (;;) {
492 		flags = fp->f_flag;
493 		if (flags & FOFFSETLOCK) {
494 			nflags = flags | FOFFSETWAKE;
495 			tsleep_interlock(&fp->f_flag, 0);
496 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
497 				tsleep(&fp->f_flag, PINTERLOCKED, "fpoff", 0);
498 		} else {
499 			nflags = flags | FOFFSETLOCK;
500 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
501 				break;
502 		}
503 	}
504 	return(fp->f_offset);
505 }
506 
507 /*
508  * MPSAFE
509  */
510 static __inline void
511 vn_set_fpf_offset(struct file *fp, off_t offset)
512 {
513 	u_int	flags;
514 	u_int	nflags;
515 
516 	/*
517 	 * We hold the lock so we can set the offset without interference.
518 	 */
519 	fp->f_offset = offset;
520 
521 	/*
522 	 * Normal release is already a reasonably critical path.
523 	 */
524 	for (;;) {
525 		flags = fp->f_flag;
526 		nflags = flags & ~(FOFFSETLOCK | FOFFSETWAKE);
527 		if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) {
528 			if (flags & FOFFSETWAKE)
529 				wakeup(&fp->f_flag);
530 			break;
531 		}
532 	}
533 }
534 
535 /*
536  * MPSAFE
537  */
538 static __inline off_t
539 vn_poll_fpf_offset(struct file *fp)
540 {
541 #if defined(__x86_64__)
542 	return(fp->f_offset);
543 #else
544 	off_t off = vn_get_fpf_offset(fp);
545 	vn_set_fpf_offset(fp, off);
546 	return(off);
547 #endif
548 }
549 
550 /*
551  * Package up an I/O request on a vnode into a uio and do it.
552  *
553  * MPSAFE
554  */
555 int
556 vn_rdwr(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
557 	off_t offset, enum uio_seg segflg, int ioflg,
558 	struct ucred *cred, int *aresid)
559 {
560 	struct uio auio;
561 	struct iovec aiov;
562 	int error;
563 
564 	if ((ioflg & IO_NODELOCKED) == 0)
565 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
566 	auio.uio_iov = &aiov;
567 	auio.uio_iovcnt = 1;
568 	aiov.iov_base = base;
569 	aiov.iov_len = len;
570 	auio.uio_resid = len;
571 	auio.uio_offset = offset;
572 	auio.uio_segflg = segflg;
573 	auio.uio_rw = rw;
574 	auio.uio_td = curthread;
575 	if (rw == UIO_READ) {
576 		error = VOP_READ(vp, &auio, ioflg, cred);
577 	} else {
578 		error = VOP_WRITE(vp, &auio, ioflg, cred);
579 	}
580 	if (aresid)
581 		*aresid = auio.uio_resid;
582 	else
583 		if (auio.uio_resid && error == 0)
584 			error = EIO;
585 	if ((ioflg & IO_NODELOCKED) == 0)
586 		vn_unlock(vp);
587 	return (error);
588 }
589 
590 /*
591  * Package up an I/O request on a vnode into a uio and do it.  The I/O
592  * request is split up into smaller chunks and we try to avoid saturating
593  * the buffer cache while potentially holding a vnode locked, so we
594  * check bwillwrite() before calling vn_rdwr().  We also call lwkt_user_yield()
595  * to give other processes a chance to lock the vnode (either other processes
596  * core'ing the same binary, or unrelated processes scanning the directory).
597  *
598  * MPSAFE
599  */
600 int
601 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
602 		 off_t offset, enum uio_seg segflg, int ioflg,
603 		 struct ucred *cred, int *aresid)
604 {
605 	int error = 0;
606 
607 	do {
608 		int chunk;
609 
610 		/*
611 		 * Force `offset' to a multiple of MAXBSIZE except possibly
612 		 * for the first chunk, so that filesystems only need to
613 		 * write full blocks except possibly for the first and last
614 		 * chunks.
615 		 */
616 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
617 
618 		if (chunk > len)
619 			chunk = len;
620 		if (vp->v_type == VREG && (ioflg & IO_RECURSE) == 0) {
621 			switch(rw) {
622 			case UIO_READ:
623 				bwillread(chunk);
624 				break;
625 			case UIO_WRITE:
626 				bwillwrite(chunk);
627 				break;
628 			}
629 		}
630 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
631 				ioflg, cred, aresid);
632 		len -= chunk;	/* aresid calc already includes length */
633 		if (error)
634 			break;
635 		offset += chunk;
636 		base += chunk;
637 		lwkt_user_yield();
638 	} while (len);
639 	if (aresid)
640 		*aresid += len;
641 	return (error);
642 }
643 
644 /*
645  * File pointers can no longer get ripped up by revoke so
646  * we don't need to lock access to the vp.
647  *
648  * f_offset updates are not guaranteed against multiple readers
649  */
650 static int
651 vn_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
652 {
653 	struct vnode *vp;
654 	int error, ioflag;
655 
656 	KASSERT(uio->uio_td == curthread,
657 		("uio_td %p is not td %p", uio->uio_td, curthread));
658 	vp = (struct vnode *)fp->f_data;
659 
660 	ioflag = 0;
661 	if (flags & O_FBLOCKING) {
662 		/* ioflag &= ~IO_NDELAY; */
663 	} else if (flags & O_FNONBLOCKING) {
664 		ioflag |= IO_NDELAY;
665 	} else if (fp->f_flag & FNONBLOCK) {
666 		ioflag |= IO_NDELAY;
667 	}
668 	if (fp->f_flag & O_DIRECT) {
669 		ioflag |= IO_DIRECT;
670 	}
671 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
672 		uio->uio_offset = vn_get_fpf_offset(fp);
673 	vn_lock(vp, LK_SHARED | LK_RETRY);
674 	ioflag |= sequential_heuristic(uio, fp);
675 
676 	error = VOP_READ(vp, uio, ioflag, cred);
677 	fp->f_nextoff = uio->uio_offset;
678 	vn_unlock(vp);
679 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
680 		vn_set_fpf_offset(fp, uio->uio_offset);
681 	return (error);
682 }
683 
684 /*
685  * MPSAFE
686  */
687 static int
688 vn_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
689 {
690 	struct vnode *vp;
691 	int error, ioflag;
692 
693 	KASSERT(uio->uio_td == curthread,
694 		("uio_td %p is not p %p", uio->uio_td, curthread));
695 	vp = (struct vnode *)fp->f_data;
696 
697 	ioflag = IO_UNIT;
698 	if (vp->v_type == VREG &&
699 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
700 		ioflag |= IO_APPEND;
701 	}
702 
703 	if (flags & O_FBLOCKING) {
704 		/* ioflag &= ~IO_NDELAY; */
705 	} else if (flags & O_FNONBLOCKING) {
706 		ioflag |= IO_NDELAY;
707 	} else if (fp->f_flag & FNONBLOCK) {
708 		ioflag |= IO_NDELAY;
709 	}
710 	if (fp->f_flag & O_DIRECT) {
711 		ioflag |= IO_DIRECT;
712 	}
713 	if (flags & O_FASYNCWRITE) {
714 		/* ioflag &= ~IO_SYNC; */
715 	} else if (flags & O_FSYNCWRITE) {
716 		ioflag |= IO_SYNC;
717 	} else if (fp->f_flag & O_FSYNC) {
718 		ioflag |= IO_SYNC;
719 	}
720 
721 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
722 		ioflag |= IO_SYNC;
723 	if ((flags & O_FOFFSET) == 0)
724 		uio->uio_offset = vn_get_fpf_offset(fp);
725 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
726 	ioflag |= sequential_heuristic(uio, fp);
727 	error = VOP_WRITE(vp, uio, ioflag, cred);
728 	fp->f_nextoff = uio->uio_offset;
729 	vn_unlock(vp);
730 	if ((flags & O_FOFFSET) == 0)
731 		vn_set_fpf_offset(fp, uio->uio_offset);
732 	return (error);
733 }
734 
735 /*
736  * MPSAFE
737  */
738 static int
739 vn_statfile(struct file *fp, struct stat *sb, struct ucred *cred)
740 {
741 	struct vnode *vp;
742 	int error;
743 
744 	vp = (struct vnode *)fp->f_data;
745 	error = vn_stat(vp, sb, cred);
746 	return (error);
747 }
748 
749 /*
750  * MPSAFE
751  */
752 int
753 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *cred)
754 {
755 	struct vattr vattr;
756 	struct vattr *vap;
757 	int error;
758 	u_short mode;
759 	cdev_t dev;
760 
761 	vap = &vattr;
762 	error = VOP_GETATTR(vp, vap);
763 	if (error)
764 		return (error);
765 
766 	/*
767 	 * Zero the spare stat fields
768 	 */
769 	sb->st_lspare = 0;
770 	sb->st_qspare1 = 0;
771 	sb->st_qspare2 = 0;
772 
773 	/*
774 	 * Copy from vattr table
775 	 */
776 	if (vap->va_fsid != VNOVAL)
777 		sb->st_dev = vap->va_fsid;
778 	else
779 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
780 	sb->st_ino = vap->va_fileid;
781 	mode = vap->va_mode;
782 	switch (vap->va_type) {
783 	case VREG:
784 		mode |= S_IFREG;
785 		break;
786 	case VDATABASE:
787 		mode |= S_IFDB;
788 		break;
789 	case VDIR:
790 		mode |= S_IFDIR;
791 		break;
792 	case VBLK:
793 		mode |= S_IFBLK;
794 		break;
795 	case VCHR:
796 		mode |= S_IFCHR;
797 		break;
798 	case VLNK:
799 		mode |= S_IFLNK;
800 		/* This is a cosmetic change, symlinks do not have a mode. */
801 		if (vp->v_mount->mnt_flag & MNT_NOSYMFOLLOW)
802 			sb->st_mode &= ~ACCESSPERMS;	/* 0000 */
803 		else
804 			sb->st_mode |= ACCESSPERMS;	/* 0777 */
805 		break;
806 	case VSOCK:
807 		mode |= S_IFSOCK;
808 		break;
809 	case VFIFO:
810 		mode |= S_IFIFO;
811 		break;
812 	default:
813 		return (EBADF);
814 	}
815 	sb->st_mode = mode;
816 	if (vap->va_nlink > (nlink_t)-1)
817 		sb->st_nlink = (nlink_t)-1;
818 	else
819 		sb->st_nlink = vap->va_nlink;
820 	sb->st_uid = vap->va_uid;
821 	sb->st_gid = vap->va_gid;
822 	sb->st_rdev = dev2udev(vp->v_rdev);
823 	sb->st_size = vap->va_size;
824 	sb->st_atimespec = vap->va_atime;
825 	sb->st_mtimespec = vap->va_mtime;
826 	sb->st_ctimespec = vap->va_ctime;
827 
828 	/*
829 	 * A VCHR and VBLK device may track the last access and last modified
830 	 * time independantly of the filesystem.  This is particularly true
831 	 * because device read and write calls may bypass the filesystem.
832 	 */
833 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
834 		dev = vp->v_rdev;
835 		if (dev != NULL) {
836 			if (dev->si_lastread) {
837 				sb->st_atimespec.tv_sec = time_second +
838 							  (time_uptime -
839 							   dev->si_lastread);
840 				sb->st_atimespec.tv_nsec = 0;
841 			}
842 			if (dev->si_lastwrite) {
843 				sb->st_atimespec.tv_sec = time_second +
844 							  (time_uptime -
845 							   dev->si_lastwrite);
846 				sb->st_atimespec.tv_nsec = 0;
847 			}
848 		}
849 	}
850 
851         /*
852 	 * According to www.opengroup.org, the meaning of st_blksize is
853 	 *   "a filesystem-specific preferred I/O block size for this
854 	 *    object.  In some filesystem types, this may vary from file
855 	 *    to file"
856 	 * Default to PAGE_SIZE after much discussion.
857 	 */
858 
859 	if (vap->va_type == VREG) {
860 		sb->st_blksize = vap->va_blocksize;
861 	} else if (vn_isdisk(vp, NULL)) {
862 		/*
863 		 * XXX this is broken.  If the device is not yet open (aka
864 		 * stat() call, aka v_rdev == NULL), how are we supposed
865 		 * to get a valid block size out of it?
866 		 */
867 		dev = vp->v_rdev;
868 
869 		sb->st_blksize = dev->si_bsize_best;
870 		if (sb->st_blksize < dev->si_bsize_phys)
871 			sb->st_blksize = dev->si_bsize_phys;
872 		if (sb->st_blksize < BLKDEV_IOSIZE)
873 			sb->st_blksize = BLKDEV_IOSIZE;
874 	} else {
875 		sb->st_blksize = PAGE_SIZE;
876 	}
877 
878 	sb->st_flags = vap->va_flags;
879 
880 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
881 	if (error)
882 		sb->st_gen = 0;
883 	else
884 		sb->st_gen = (u_int32_t)vap->va_gen;
885 
886 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
887 	return (0);
888 }
889 
890 /*
891  * MPALMOSTSAFE - acquires mplock
892  */
893 static int
894 vn_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *ucred,
895 	 struct sysmsg *msg)
896 {
897 	struct vnode *vp = ((struct vnode *)fp->f_data);
898 	struct vnode *ovp;
899 	struct vattr vattr;
900 	int error;
901 	off_t size;
902 
903 	switch (vp->v_type) {
904 	case VREG:
905 	case VDIR:
906 		if (com == FIONREAD) {
907 			error = VOP_GETATTR(vp, &vattr);
908 			if (error)
909 				break;
910 			size = vattr.va_size;
911 			if ((vp->v_flag & VNOTSEEKABLE) == 0)
912 				size -= vn_poll_fpf_offset(fp);
913 			if (size > 0x7FFFFFFF)
914 				size = 0x7FFFFFFF;
915 			*(int *)data = size;
916 			error = 0;
917 			break;
918 		}
919 		if (com == FIOASYNC) {				/* XXX */
920 			error = 0;				/* XXX */
921 			break;
922 		}
923 		/* fall into ... */
924 	default:
925 #if 0
926 		return (ENOTTY);
927 #endif
928 	case VFIFO:
929 	case VCHR:
930 	case VBLK:
931 		if (com == FIODTYPE) {
932 			if (vp->v_type != VCHR && vp->v_type != VBLK) {
933 				error = ENOTTY;
934 				break;
935 			}
936 			*(int *)data = dev_dflags(vp->v_rdev) & D_TYPEMASK;
937 			error = 0;
938 			break;
939 		}
940 		error = VOP_IOCTL(vp, com, data, fp->f_flag, ucred, msg);
941 		if (error == 0 && com == TIOCSCTTY) {
942 			struct proc *p = curthread->td_proc;
943 			struct session *sess;
944 
945 			if (p == NULL) {
946 				error = ENOTTY;
947 				break;
948 			}
949 
950 			get_mplock();
951 			sess = p->p_session;
952 			/* Do nothing if reassigning same control tty */
953 			if (sess->s_ttyvp == vp) {
954 				error = 0;
955 				rel_mplock();
956 				break;
957 			}
958 
959 			/* Get rid of reference to old control tty */
960 			ovp = sess->s_ttyvp;
961 			vref(vp);
962 			sess->s_ttyvp = vp;
963 			if (ovp)
964 				vrele(ovp);
965 			rel_mplock();
966 		}
967 		break;
968 	}
969 	return (error);
970 }
971 
972 /*
973  * Obtain the requested vnode lock
974  *
975  *	LK_RETRY	Automatically retry on timeout
976  *	LK_FAILRECLAIM	Fail if the vnode is being reclaimed
977  *
978  * Failures will occur if the vnode is undergoing recyclement, but not
979  * all callers expect that the function will fail so the caller must pass
980  * LK_FAILOK if it wants to process an error code.
981  *
982  * Errors can occur for other reasons if you pass in other LK_ flags,
983  * regardless of whether you pass in LK_FAILRECLAIM
984  */
985 int
986 vn_lock(struct vnode *vp, int flags)
987 {
988 	int error;
989 
990 	do {
991 		error = lockmgr(&vp->v_lock, flags);
992 		if (error == 0)
993 			break;
994 	} while (flags & LK_RETRY);
995 
996 	/*
997 	 * Because we (had better!) have a ref on the vnode, once it
998 	 * goes to VRECLAIMED state it will not be recycled until all
999 	 * refs go away.  So we can just check the flag.
1000 	 */
1001 	if (error == 0 && (vp->v_flag & VRECLAIMED)) {
1002 		if (flags & LK_FAILRECLAIM) {
1003 			lockmgr(&vp->v_lock, LK_RELEASE);
1004 			error = ENOENT;
1005 		}
1006 	}
1007 	return (error);
1008 }
1009 
1010 #ifdef DEBUG_VN_UNLOCK
1011 
1012 void
1013 debug_vn_unlock(struct vnode *vp, const char *filename, int line)
1014 {
1015 	kprintf("vn_unlock from %s:%d\n", filename, line);
1016 	lockmgr(&vp->v_lock, LK_RELEASE);
1017 }
1018 
1019 #else
1020 
1021 void
1022 vn_unlock(struct vnode *vp)
1023 {
1024 	lockmgr(&vp->v_lock, LK_RELEASE);
1025 }
1026 
1027 #endif
1028 
1029 /*
1030  * MPSAFE
1031  */
1032 int
1033 vn_islocked(struct vnode *vp)
1034 {
1035 	return (lockstatus(&vp->v_lock, curthread));
1036 }
1037 
1038 /*
1039  * Return the lock status of a vnode and unlock the vnode
1040  * if we owned the lock.  This is not a boolean, if the
1041  * caller cares what the lock status is the caller must
1042  * check the various possible values.
1043  *
1044  * This only unlocks exclusive locks held by the caller,
1045  * it will NOT unlock shared locks (there is no way to
1046  * tell who the shared lock belongs to).
1047  *
1048  * MPSAFE
1049  */
1050 int
1051 vn_islocked_unlock(struct vnode *vp)
1052 {
1053 	int vpls;
1054 
1055 	vpls = lockstatus(&vp->v_lock, curthread);
1056 	if (vpls == LK_EXCLUSIVE)
1057 		lockmgr(&vp->v_lock, LK_RELEASE);
1058 	return(vpls);
1059 }
1060 
1061 /*
1062  * Restore a vnode lock that we previously released via
1063  * vn_islocked_unlock().  This is a NOP if we did not
1064  * own the original lock.
1065  *
1066  * MPSAFE
1067  */
1068 void
1069 vn_islocked_relock(struct vnode *vp, int vpls)
1070 {
1071 	int error;
1072 
1073 	if (vpls == LK_EXCLUSIVE)
1074 		error = lockmgr(&vp->v_lock, vpls);
1075 }
1076 
1077 /*
1078  * MPSAFE
1079  */
1080 static int
1081 vn_closefile(struct file *fp)
1082 {
1083 	int error;
1084 
1085 	fp->f_ops = &badfileops;
1086 	error = vn_close(((struct vnode *)fp->f_data), fp->f_flag, fp);
1087 	return (error);
1088 }
1089 
1090 /*
1091  * MPSAFE
1092  */
1093 static int
1094 vn_kqfilter(struct file *fp, struct knote *kn)
1095 {
1096 	int error;
1097 
1098 	error = VOP_KQFILTER(((struct vnode *)fp->f_data), kn);
1099 	return (error);
1100 }
1101