xref: /dragonfly/sys/libprop/prop_rb.c (revision 36a3d1d6)
1 /*	$NetBSD: prop_rb.c,v 1.9 2008/06/17 21:29:47 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <libprop/proplib.h>
33 
34 #include "prop_object_impl.h"
35 #include "prop_rb_impl.h"
36 
37 #undef KASSERT
38 #ifdef RBDEBUG
39 #define	KASSERT(x)	_PROP_ASSERT(x)
40 #else
41 #define	KASSERT(x)	/* nothing */
42 #endif
43 
44 #ifndef __predict_false
45 #define	__predict_false(x)	(x)
46 #endif
47 
48 static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
49 				   unsigned int);
50 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
51 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
52 	unsigned int);
53 #ifdef RBDEBUG
54 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
55 	const struct rb_node *, unsigned int);
56 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
57 	const struct rb_node *, bool);
58 #endif
59 
60 #ifdef RBDEBUG
61 #define	RBT_COUNT_INCR(rbt)	(rbt)->rbt_count++
62 #define	RBT_COUNT_DECR(rbt)	(rbt)->rbt_count--
63 #else
64 #define	RBT_COUNT_INCR(rbt)	/* nothing */
65 #define	RBT_COUNT_DECR(rbt)	/* nothing */
66 #endif
67 
68 #define	RBUNCONST(a)	((void *)(unsigned long)(const void *)(a))
69 
70 /*
71  * Rather than testing for the NULL everywhere, all terminal leaves are
72  * pointed to this node (and that includes itself).  Note that by setting
73  * it to be const, that on some architectures trying to write to it will
74  * cause a fault.
75  */
76 static const struct rb_node sentinel_node = {
77 	.rb_nodes = { RBUNCONST(&sentinel_node),
78 		      RBUNCONST(&sentinel_node),
79 		      NULL },
80 	.rb_u = { .u_s = { .s_sentinel = 1 } },
81 };
82 
83 void
84 _prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
85 {
86 	RB_TAILQ_INIT(&rbt->rbt_nodes);
87 #ifdef RBDEBUG
88 	rbt->rbt_count = 0;
89 #endif
90 	rbt->rbt_ops = ops;
91 	*((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
92 }
93 
94 /*
95  * Swap the location and colors of 'self' and its child @ which.  The child
96  * can not be a sentinel node.
97  */
98 /*ARGSUSED*/
99 static void
100 rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED,
101     struct rb_node *old_father, unsigned int which)
102 {
103 	const unsigned int other = which ^ RB_NODE_OTHER;
104 	struct rb_node * const grandpa = old_father->rb_parent;
105 	struct rb_node * const old_child = old_father->rb_nodes[which];
106 	struct rb_node * const new_father = old_child;
107 	struct rb_node * const new_child = old_father;
108 	unsigned int properties;
109 
110 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
111 
112 	KASSERT(!RB_SENTINEL_P(old_child));
113 	KASSERT(old_child->rb_parent == old_father);
114 
115 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
116 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
117 	KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
118 
119 	/*
120 	 * Exchange descendant linkages.
121 	 */
122 	grandpa->rb_nodes[old_father->rb_position] = new_father;
123 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
124 	new_father->rb_nodes[other] = new_child;
125 
126 	/*
127 	 * Update ancestor linkages
128 	 */
129 	new_father->rb_parent = grandpa;
130 	new_child->rb_parent = new_father;
131 
132 	/*
133 	 * Exchange properties between new_father and new_child.  The only
134 	 * change is that new_child's position is now on the other side.
135 	 */
136 	properties = old_child->rb_properties;
137 	new_father->rb_properties = old_father->rb_properties;
138 	new_child->rb_properties = properties;
139 	new_child->rb_position = other;
140 
141 	/*
142 	 * Make sure to reparent the new child to ourself.
143 	 */
144 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
145 		new_child->rb_nodes[which]->rb_parent = new_child;
146 		new_child->rb_nodes[which]->rb_position = which;
147 	}
148 
149 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
150 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
151 	KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
152 }
153 
154 bool
155 _prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
156 {
157 	struct rb_node *parent, *tmp;
158 	rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
159 	unsigned int position;
160 
161 	self->rb_properties = 0;
162 	tmp = rbt->rbt_root;
163 	/*
164 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
165 	 * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
166 	 * avoid a lot of tests for root and know that even at root,
167 	 * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
168 	 * rbt->rbt_root.
169 	 */
170 	/* LINTED: see above */
171 	parent = (struct rb_node *)&rbt->rbt_root;
172 	position = RB_NODE_LEFT;
173 
174 	/*
175 	 * Find out where to place this new leaf.
176 	 */
177 	while (!RB_SENTINEL_P(tmp)) {
178 		const int diff = (*compare_nodes)(tmp, self);
179 		if (__predict_false(diff == 0)) {
180 			/*
181 			 * Node already exists; don't insert.
182 			 */
183 			return false;
184 		}
185 		parent = tmp;
186 		KASSERT(diff != 0);
187 		if (diff < 0) {
188 			position = RB_NODE_LEFT;
189 		} else {
190 			position = RB_NODE_RIGHT;
191 		}
192 		tmp = parent->rb_nodes[position];
193 	}
194 
195 #ifdef RBDEBUG
196 	{
197 		struct rb_node *prev = NULL, *next = NULL;
198 
199 		if (position == RB_NODE_RIGHT)
200 			prev = parent;
201 		else if (tmp != rbt->rbt_root)
202 			next = parent;
203 
204 		/*
205 		 * Verify our sequential position
206 		 */
207 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
208 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
209 		if (prev != NULL && next == NULL)
210 			next = TAILQ_NEXT(prev, rb_link);
211 		if (prev == NULL && next != NULL)
212 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
213 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
214 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
215 		KASSERT(prev == NULL
216 			|| (*compare_nodes)(prev, self) > 0);
217 		KASSERT(next == NULL
218 			|| (*compare_nodes)(self, next) > 0);
219 	}
220 #endif
221 
222 	/*
223 	 * Initialize the node and insert as a leaf into the tree.
224 	 */
225 	self->rb_parent = parent;
226 	self->rb_position = position;
227 	/* LINTED: rbt_root hack */
228 	if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
229 		RB_MARK_ROOT(self);
230 	} else {
231 		KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
232 		KASSERT(!RB_ROOT_P(self)); 	/* Already done */
233 	}
234 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
235 	self->rb_left = parent->rb_nodes[position];
236 	self->rb_right = parent->rb_nodes[position];
237 	parent->rb_nodes[position] = self;
238 	KASSERT(self->rb_left == &sentinel_node &&
239 	    self->rb_right == &sentinel_node);
240 
241 	/*
242 	 * Insert the new node into a sorted list for easy sequential access
243 	 */
244 	RBT_COUNT_INCR(rbt);
245 #ifdef RBDEBUG
246 	if (RB_ROOT_P(self)) {
247 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
248 	} else if (position == RB_NODE_LEFT) {
249 		KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
250 		RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
251 	} else {
252 		KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
253 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
254 		    self, rb_link);
255 	}
256 #endif
257 
258 #if 0
259 	/*
260 	 * Validate the tree before we rebalance
261 	 */
262 	_prop_rb_tree_check(rbt, false);
263 #endif
264 
265 	/*
266 	 * Rebalance tree after insertion
267 	 */
268 	rb_tree_insert_rebalance(rbt, self);
269 
270 #if 0
271 	/*
272 	 * Validate the tree after we rebalanced
273 	 */
274 	_prop_rb_tree_check(rbt, true);
275 #endif
276 
277 	return true;
278 }
279 
280 static void
281 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
282 {
283 	RB_MARK_RED(self);
284 
285 	while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
286 		const unsigned int which =
287 		     (self->rb_parent == self->rb_parent->rb_parent->rb_left
288 			? RB_NODE_LEFT
289 			: RB_NODE_RIGHT);
290 		const unsigned int other = which ^ RB_NODE_OTHER;
291 		struct rb_node * father = self->rb_parent;
292 		struct rb_node * grandpa = father->rb_parent;
293 		struct rb_node * const uncle = grandpa->rb_nodes[other];
294 
295 		KASSERT(!RB_SENTINEL_P(self));
296 		/*
297 		 * We are red and our parent is red, therefore we must have a
298 		 * grandfather and he must be black.
299 		 */
300 		KASSERT(RB_RED_P(self)
301 			&& RB_RED_P(father)
302 			&& RB_BLACK_P(grandpa));
303 
304 		if (RB_RED_P(uncle)) {
305 			/*
306 			 * Case 1: our uncle is red
307 			 *   Simply invert the colors of our parent and
308 			 *   uncle and make our grandparent red.  And
309 			 *   then solve the problem up at his level.
310 			 */
311 			RB_MARK_BLACK(uncle);
312 			RB_MARK_BLACK(father);
313 			RB_MARK_RED(grandpa);
314 			self = grandpa;
315 			continue;
316 		}
317 		/*
318 		 * Case 2&3: our uncle is black.
319 		 */
320 		if (self == father->rb_nodes[other]) {
321 			/*
322 			 * Case 2: we are on the same side as our uncle
323 			 *   Swap ourselves with our parent so this case
324 			 *   becomes case 3.  Basically our parent becomes our
325 			 *   child.
326 			 */
327 			rb_tree_reparent_nodes(rbt, father, other);
328 			KASSERT(father->rb_parent == self);
329 			KASSERT(self->rb_nodes[which] == father);
330 			KASSERT(self->rb_parent == grandpa);
331 			self = father;
332 			father = self->rb_parent;
333 		}
334 		KASSERT(RB_RED_P(self) && RB_RED_P(father));
335 		KASSERT(grandpa->rb_nodes[which] == father);
336 		/*
337 		 * Case 3: we are opposite a child of a black uncle.
338 		 *   Swap our parent and grandparent.  Since our grandfather
339 		 *   is black, our father will become black and our new sibling
340 		 *   (former grandparent) will become red.
341 		 */
342 		rb_tree_reparent_nodes(rbt, grandpa, which);
343 		KASSERT(self->rb_parent == father);
344 		KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
345 		KASSERT(RB_RED_P(self));
346 		KASSERT(RB_BLACK_P(father));
347 		KASSERT(RB_RED_P(grandpa));
348 		break;
349 	}
350 
351 	/*
352 	 * Final step: Set the root to black.
353 	 */
354 	RB_MARK_BLACK(rbt->rbt_root);
355 }
356 
357 struct rb_node *
358 _prop_rb_tree_find(struct rb_tree *rbt, const void *key)
359 {
360 	struct rb_node *parent = rbt->rbt_root;
361 	rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
362 
363 	while (!RB_SENTINEL_P(parent)) {
364 		const int diff = (*compare_key)(parent, key);
365 		if (diff == 0)
366 			return parent;
367 		parent = parent->rb_nodes[diff > 0];
368 	}
369 
370 	return NULL;
371 }
372 
373 static void
374 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
375 {
376 	const unsigned int which = self->rb_position;
377 	struct rb_node *father = self->rb_parent;
378 
379 	KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
380 	KASSERT(!rebalance || RB_BLACK_P(self));
381 	KASSERT(RB_CHILDLESS_P(self));
382 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
383 
384 	father->rb_nodes[which] = self->rb_left;
385 
386 	/*
387 	 * Remove ourselves from the node list and decrement the count.
388 	 */
389 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
390 	RBT_COUNT_DECR(rbt);
391 
392 	if (rebalance)
393 		rb_tree_removal_rebalance(rbt, father, which);
394 	KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
395 }
396 
397 static void
398 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
399 	struct rb_node *standin)
400 {
401 	unsigned int standin_which = standin->rb_position;
402 	unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
403 	struct rb_node *standin_child;
404 	struct rb_node *standin_father;
405 	bool rebalance = RB_BLACK_P(standin);
406 
407 	if (standin->rb_parent == self) {
408 		/*
409 		 * As a child of self, any childen would be opposite of
410 		 * our parent (self).
411 		 */
412 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
413 		standin_child = standin->rb_nodes[standin_which];
414 	} else {
415 		/*
416 		 * Since we aren't a child of self, any childen would be
417 		 * on the same side as our parent (self).
418 		 */
419 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
420 		standin_child = standin->rb_nodes[standin_other];
421 	}
422 
423 	/*
424 	 * the node we are removing must have two children.
425 	 */
426 	KASSERT(RB_TWOCHILDREN_P(self));
427 	/*
428 	 * If standin has a child, it must be red.
429 	 */
430 	KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));
431 
432 	/*
433 	 * Verify things are sane.
434 	 */
435 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
436 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
437 
438 	if (!RB_SENTINEL_P(standin_child)) {
439 		/*
440 		 * We know we have a red child so if we swap them we can
441 		 * void flipping standin's child to black afterwards.
442 		 */
443 		KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
444 		rb_tree_reparent_nodes(rbt, standin,
445 		    standin_child->rb_position);
446 		KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
447 		KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
448 		/*
449 		 * Since we are removing a red leaf, no need to rebalance.
450 		 */
451 		rebalance = false;
452 		/*
453 		 * We know that standin can not be a child of self, so
454 		 * update before of that.
455 		 */
456 		KASSERT(standin->rb_parent != self);
457 		standin_which = standin->rb_position;
458 		standin_other = standin_which ^ RB_NODE_OTHER;
459 	}
460 	KASSERT(RB_CHILDLESS_P(standin));
461 
462 	/*
463 	 * If we are about to delete the standin's father, then when we call
464 	 * rebalance, we need to use ourselves as our father.  Otherwise
465 	 * remember our original father.  Also, if we are our standin's father
466 	 * we only need to reparent the standin's brother.
467 	 */
468 	if (standin->rb_parent == self) {
469 		/*
470 		 * |   R   -->   S   |
471 		 * | Q   S --> Q   * |
472 		 * |       -->       |
473 		 */
474 		standin_father = standin;
475 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
476 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
477 		KASSERT(self->rb_nodes[standin_which] == standin);
478 		/*
479 		 * Make our brother our son.
480 		 */
481 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
482 		standin->rb_nodes[standin_other]->rb_parent = standin;
483 		KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
484 	} else {
485 		/*
486 		 * |  P      -->  P    |
487 		 * |      S  -->    Q  |
488 		 * |    Q    -->       |
489 		 */
490 		standin_father = standin->rb_parent;
491 		standin_father->rb_nodes[standin_which] =
492 		    standin->rb_nodes[standin_which];
493 		standin->rb_left = self->rb_left;
494 		standin->rb_right = self->rb_right;
495 		standin->rb_left->rb_parent = standin;
496 		standin->rb_right->rb_parent = standin;
497 	}
498 
499 	/*
500 	 * Now copy the result of self to standin and then replace
501 	 * self with standin in the tree.
502 	 */
503 	standin->rb_parent = self->rb_parent;
504 	standin->rb_properties = self->rb_properties;
505 	standin->rb_parent->rb_nodes[standin->rb_position] = standin;
506 
507 	/*
508 	 * Remove ourselves from the node list and decrement the count.
509 	 */
510 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
511 	RBT_COUNT_DECR(rbt);
512 
513 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
514 	KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));
515 
516 	if (!rebalance)
517 		return;
518 
519 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
520 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
521 }
522 
523 /*
524  * We could do this by doing
525  *	rb_tree_node_swap(rbt, self, which);
526  *	rb_tree_prune_node(rbt, self, false);
527  *
528  * But it's more efficient to just evalate and recolor the child.
529  */
530 /*ARGSUSED*/
531 static void
532 rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED,
533     struct rb_node *self, unsigned int which)
534 {
535 	struct rb_node *parent = self->rb_parent;
536 	struct rb_node *child = self->rb_nodes[which];
537 
538 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
539 	KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
540 	KASSERT(!RB_TWOCHILDREN_P(child));
541 	KASSERT(RB_CHILDLESS_P(child));
542 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
543 	KASSERT(rb_tree_check_node(rbt, child, NULL, false));
544 
545 	/*
546 	 * Remove ourselves from the tree and give our former child our
547 	 * properties (position, color, root).
548 	 */
549 	parent->rb_nodes[self->rb_position] = child;
550 	child->rb_parent = parent;
551 	child->rb_properties = self->rb_properties;
552 
553 	/*
554 	 * Remove ourselves from the node list and decrement the count.
555 	 */
556 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
557 	RBT_COUNT_DECR(rbt);
558 
559 	KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
560 	KASSERT(rb_tree_check_node(rbt, child, NULL, true));
561 }
562 /*
563  *
564  */
565 void
566 _prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
567 {
568 	struct rb_node *standin;
569 	unsigned int which;
570 	/*
571 	 * In the following diagrams, we (the node to be removed) are S.  Red
572 	 * nodes are lowercase.  T could be either red or black.
573 	 *
574 	 * Remember the major axiom of the red-black tree: the number of
575 	 * black nodes from the root to each leaf is constant across all
576 	 * leaves, only the number of red nodes varies.
577 	 *
578 	 * Thus removing a red leaf doesn't require any other changes to a
579 	 * red-black tree.  So if we must remove a node, attempt to rearrange
580 	 * the tree so we can remove a red node.
581 	 *
582 	 * The simpliest case is a childless red node or a childless root node:
583 	 *
584 	 * |    T  -->    T  |    or    |  R  -->  *  |
585 	 * |  s    -->  *    |
586 	 */
587 	if (RB_CHILDLESS_P(self)) {
588 		if (RB_RED_P(self) || RB_ROOT_P(self)) {
589 			rb_tree_prune_node(rbt, self, false);
590 			return;
591 		}
592 		rb_tree_prune_node(rbt, self, true);
593 		return;
594 	}
595 	KASSERT(!RB_CHILDLESS_P(self));
596 	if (!RB_TWOCHILDREN_P(self)) {
597 		/*
598 		 * The next simpliest case is the node we are deleting is
599 		 * black and has one red child.
600 		 *
601 		 * |      T  -->      T  -->      T  |
602 		 * |    S    -->  R      -->  R      |
603 		 * |  r      -->    s    -->    *    |
604 		 */
605 		which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
606 		KASSERT(RB_BLACK_P(self));
607 		KASSERT(RB_RED_P(self->rb_nodes[which]));
608 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
609 		rb_tree_prune_blackred_branch(rbt, self, which);
610 		return;
611 	}
612 	KASSERT(RB_TWOCHILDREN_P(self));
613 
614 	/*
615 	 * We invert these because we prefer to remove from the inside of
616 	 * the tree.
617 	 */
618 	which = self->rb_position ^ RB_NODE_OTHER;
619 
620 	/*
621 	 * Let's find the node closes to us opposite of our parent
622 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
623 	 */
624 	standin = _prop_rb_tree_iterate(rbt, self, which);
625 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
626 }
627 
628 static void
629 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
630 	unsigned int which)
631 {
632 	KASSERT(!RB_SENTINEL_P(parent));
633 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
634 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
635 
636 	while (RB_BLACK_P(parent->rb_nodes[which])) {
637 		unsigned int other = which ^ RB_NODE_OTHER;
638 		struct rb_node *brother = parent->rb_nodes[other];
639 
640 		KASSERT(!RB_SENTINEL_P(brother));
641 		/*
642 		 * For cases 1, 2a, and 2b, our brother's children must
643 		 * be black and our father must be black
644 		 */
645 		if (RB_BLACK_P(parent)
646 		    && RB_BLACK_P(brother->rb_left)
647 		    && RB_BLACK_P(brother->rb_right)) {
648 			/*
649 			 * Case 1: Our brother is red, swap its position
650 			 * (and colors) with our parent.  This is now case 2b.
651 			 *
652 			 *    B         ->        D
653 			 *  x     d     ->    b     E
654 			 *      C   E   ->  x   C
655 			 */
656 			if (RB_RED_P(brother)) {
657 				KASSERT(RB_BLACK_P(parent));
658 				rb_tree_reparent_nodes(rbt, parent, other);
659 				brother = parent->rb_nodes[other];
660 				KASSERT(!RB_SENTINEL_P(brother));
661 				KASSERT(RB_BLACK_P(brother));
662 				KASSERT(RB_RED_P(parent));
663 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
664 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
665 			} else {
666 				/*
667 				 * Both our parent and brother are black.
668 				 * Change our brother to red, advance up rank
669 				 * and go through the loop again.
670 				 *
671 				 *    B         ->    B
672 				 *  A     D     ->  A     d
673 				 *      C   E   ->      C   E
674 				 */
675 				RB_MARK_RED(brother);
676 				KASSERT(RB_BLACK_P(brother->rb_left));
677 				KASSERT(RB_BLACK_P(brother->rb_right));
678 				if (RB_ROOT_P(parent))
679 					return;
680 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
681 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
682 				which = parent->rb_position;
683 				parent = parent->rb_parent;
684 			}
685 		} else if (RB_RED_P(parent)
686 		    && RB_BLACK_P(brother)
687 		    && RB_BLACK_P(brother->rb_left)
688 		    && RB_BLACK_P(brother->rb_right)) {
689 			KASSERT(RB_BLACK_P(brother));
690 			KASSERT(RB_BLACK_P(brother->rb_left));
691 			KASSERT(RB_BLACK_P(brother->rb_right));
692 			RB_MARK_BLACK(parent);
693 			RB_MARK_RED(brother);
694 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
695 			break;		/* We're done! */
696 		} else {
697 			KASSERT(RB_BLACK_P(brother));
698 			KASSERT(!RB_CHILDLESS_P(brother));
699 			/*
700 			 * Case 3: our brother is black, our left nephew is
701 			 * red, and our right nephew is black.  Swap our
702 			 * brother with our left nephew.   This result in a
703 			 * tree that matches case 4.
704 			 *
705 			 *     B         ->       D
706 			 * A       D     ->   B     E
707 			 *       c   e   -> A   C
708 			 */
709 			if (RB_BLACK_P(brother->rb_nodes[other])) {
710 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
711 				rb_tree_reparent_nodes(rbt, brother, which);
712 				KASSERT(brother->rb_parent == parent->rb_nodes[other]);
713 				brother = parent->rb_nodes[other];
714 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
715 			}
716 			/*
717 			 * Case 4: our brother is black and our right nephew
718 			 * is red.  Swap our parent and brother locations and
719 			 * change our right nephew to black.  (these can be
720 			 * done in either order so we change the color first).
721 			 * The result is a valid red-black tree and is a
722 			 * terminal case.
723 			 *
724 			 *     B         ->       D
725 			 * A       D     ->   B     E
726 			 *       c   e   -> A   C
727 			 */
728 			RB_MARK_BLACK(brother->rb_nodes[other]);
729 			rb_tree_reparent_nodes(rbt, parent, other);
730 			break;		/* We're done! */
731 		}
732 	}
733 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
734 }
735 
736 struct rb_node *
737 _prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
738 	unsigned int direction)
739 {
740 	const unsigned int other = direction ^ RB_NODE_OTHER;
741 	KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
742 
743 	if (self == NULL) {
744 		self = rbt->rbt_root;
745 		if (RB_SENTINEL_P(self))
746 			return NULL;
747 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
748 			self = self->rb_nodes[other];
749 		return self;
750 	}
751 	KASSERT(!RB_SENTINEL_P(self));
752 	/*
753 	 * We can't go any further in this direction.  We proceed up in the
754 	 * opposite direction until our parent is in direction we want to go.
755 	 */
756 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
757 		while (!RB_ROOT_P(self)) {
758 			if (other == self->rb_position)
759 				return self->rb_parent;
760 			self = self->rb_parent;
761 		}
762 		return NULL;
763 	}
764 
765 	/*
766 	 * Advance down one in current direction and go down as far as possible
767 	 * in the opposite direction.
768 	 */
769 	self = self->rb_nodes[direction];
770 	KASSERT(!RB_SENTINEL_P(self));
771 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
772 		self = self->rb_nodes[other];
773 	return self;
774 }
775 
776 #ifdef RBDEBUG
777 static const struct rb_node *
778 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
779 	unsigned int direction)
780 {
781 	const unsigned int other = direction ^ RB_NODE_OTHER;
782 	KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
783 
784 	if (self == NULL) {
785 		self = rbt->rbt_root;
786 		if (RB_SENTINEL_P(self))
787 			return NULL;
788 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
789 			self = self->rb_nodes[other];
790 		return self;
791 	}
792 	KASSERT(!RB_SENTINEL_P(self));
793 	/*
794 	 * We can't go any further in this direction.  We proceed up in the
795 	 * opposite direction until our parent is in direction we want to go.
796 	 */
797 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
798 		while (!RB_ROOT_P(self)) {
799 			if (other == self->rb_position)
800 				return self->rb_parent;
801 			self = self->rb_parent;
802 		}
803 		return NULL;
804 	}
805 
806 	/*
807 	 * Advance down one in current direction and go down as far as possible
808 	 * in the opposite direction.
809 	 */
810 	self = self->rb_nodes[direction];
811 	KASSERT(!RB_SENTINEL_P(self));
812 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
813 		self = self->rb_nodes[other];
814 	return self;
815 }
816 
817 static bool
818 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
819 	const struct rb_node *prev, bool red_check)
820 {
821 	KASSERT(!self->rb_sentinel);
822 	KASSERT(self->rb_left);
823 	KASSERT(self->rb_right);
824 	KASSERT(prev == NULL ||
825 		(*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);
826 
827 	/*
828 	 * Verify our relationship to our parent.
829 	 */
830 	if (RB_ROOT_P(self)) {
831 		KASSERT(self == rbt->rbt_root);
832 		KASSERT(self->rb_position == RB_NODE_LEFT);
833 		KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
834 		KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
835 	} else {
836 		KASSERT(self != rbt->rbt_root);
837 		KASSERT(!RB_PARENT_SENTINEL_P(self));
838 		if (self->rb_position == RB_NODE_LEFT) {
839 			KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
840 			KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
841 		} else {
842 			KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
843 			KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
844 		}
845 	}
846 
847 	/*
848 	 * Verify our position in the linked list against the tree itself.
849 	 */
850 	{
851 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
852 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
853 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
854 		if (next0 != TAILQ_NEXT(self, rb_link))
855 			next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
856 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
857 	}
858 
859 	/*
860 	 * The root must be black.
861 	 * There can never be two adjacent red nodes.
862 	 */
863 	if (red_check) {
864 		KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
865 		if (RB_RED_P(self)) {
866 			const struct rb_node *brother;
867 			KASSERT(!RB_ROOT_P(self));
868 			brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
869 			KASSERT(RB_BLACK_P(self->rb_parent));
870 			/*
871 			 * I'm red and have no children, then I must either
872 			 * have no brother or my brother also be red and
873 			 * also have no children.  (black count == 0)
874 			 */
875 			KASSERT(!RB_CHILDLESS_P(self)
876 				|| RB_SENTINEL_P(brother)
877 				|| RB_RED_P(brother)
878 				|| RB_CHILDLESS_P(brother));
879 			/*
880 			 * If I'm not childless, I must have two children
881 			 * and they must be both be black.
882 			 */
883 			KASSERT(RB_CHILDLESS_P(self)
884 				|| (RB_TWOCHILDREN_P(self)
885 				    && RB_BLACK_P(self->rb_left)
886 				    && RB_BLACK_P(self->rb_right)));
887 			/*
888 			 * If I'm not childless, thus I have black children,
889 			 * then my brother must either be black or have two
890 			 * black children.
891 			 */
892 			KASSERT(RB_CHILDLESS_P(self)
893 				|| RB_BLACK_P(brother)
894 				|| (RB_TWOCHILDREN_P(brother)
895 				    && RB_BLACK_P(brother->rb_left)
896 				    && RB_BLACK_P(brother->rb_right)));
897 		} else {
898 			/*
899 			 * If I'm black and have one child, that child must
900 			 * be red and childless.
901 			 */
902 			KASSERT(RB_CHILDLESS_P(self)
903 				|| RB_TWOCHILDREN_P(self)
904 				|| (!RB_LEFT_SENTINEL_P(self)
905 				    && RB_RIGHT_SENTINEL_P(self)
906 				    && RB_RED_P(self->rb_left)
907 				    && RB_CHILDLESS_P(self->rb_left))
908 				|| (!RB_RIGHT_SENTINEL_P(self)
909 				    && RB_LEFT_SENTINEL_P(self)
910 				    && RB_RED_P(self->rb_right)
911 				    && RB_CHILDLESS_P(self->rb_right)));
912 
913 			/*
914 			 * If I'm a childless black node and my parent is
915 			 * black, my 2nd closet relative away from my parent
916 			 * is either red or has a red parent or red children.
917 			 */
918 			if (!RB_ROOT_P(self)
919 			    && RB_CHILDLESS_P(self)
920 			    && RB_BLACK_P(self->rb_parent)) {
921 				const unsigned int which = self->rb_position;
922 				const unsigned int other = which ^ RB_NODE_OTHER;
923 				const struct rb_node *relative0, *relative;
924 
925 				relative0 = rb_tree_iterate_const(rbt,
926 				    self, other);
927 				KASSERT(relative0 != NULL);
928 				relative = rb_tree_iterate_const(rbt,
929 				    relative0, other);
930 				KASSERT(relative != NULL);
931 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
932 #if 0
933 				KASSERT(RB_RED_P(relative)
934 					|| RB_RED_P(relative->rb_left)
935 					|| RB_RED_P(relative->rb_right)
936 					|| RB_RED_P(relative->rb_parent));
937 #endif
938 			}
939 		}
940 		/*
941 		 * A grandparent's children must be real nodes and not
942 		 * sentinels.  First check out grandparent.
943 		 */
944 		KASSERT(RB_ROOT_P(self)
945 			|| RB_ROOT_P(self->rb_parent)
946 			|| RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
947 		/*
948 		 * If we are have grandchildren on our left, then
949 		 * we must have a child on our right.
950 		 */
951 		KASSERT(RB_LEFT_SENTINEL_P(self)
952 			|| RB_CHILDLESS_P(self->rb_left)
953 			|| !RB_RIGHT_SENTINEL_P(self));
954 		/*
955 		 * If we are have grandchildren on our right, then
956 		 * we must have a child on our left.
957 		 */
958 		KASSERT(RB_RIGHT_SENTINEL_P(self)
959 			|| RB_CHILDLESS_P(self->rb_right)
960 			|| !RB_LEFT_SENTINEL_P(self));
961 
962 		/*
963 		 * If we have a child on the left and it doesn't have two
964 		 * children make sure we don't have great-great-grandchildren on
965 		 * the right.
966 		 */
967 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
968 			|| RB_CHILDLESS_P(self->rb_right)
969 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
970 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
971 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
972 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
973 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
974 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
975 
976 		/*
977 		 * If we have a child on the right and it doesn't have two
978 		 * children make sure we don't have great-great-grandchildren on
979 		 * the left.
980 		 */
981 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
982 			|| RB_CHILDLESS_P(self->rb_left)
983 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
984 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
985 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
986 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
987 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
988 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
989 
990 		/*
991 		 * If we are fully interior node, then our predecessors and
992 		 * successors must have no children in our direction.
993 		 */
994 		if (RB_TWOCHILDREN_P(self)) {
995 			const struct rb_node *prev0;
996 			const struct rb_node *next0;
997 
998 			prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
999 			KASSERT(prev0 != NULL);
1000 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1001 
1002 			next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
1003 			KASSERT(next0 != NULL);
1004 			KASSERT(RB_LEFT_SENTINEL_P(next0));
1005 		}
1006 	}
1007 
1008 	return true;
1009 }
1010 
1011 static unsigned int
1012 rb_tree_count_black(const struct rb_node *self)
1013 {
1014 	unsigned int left, right;
1015 
1016 	if (RB_SENTINEL_P(self))
1017 		return 0;
1018 
1019 	left = rb_tree_count_black(self->rb_left);
1020 	right = rb_tree_count_black(self->rb_right);
1021 
1022 	KASSERT(left == right);
1023 
1024 	return left + RB_BLACK_P(self);
1025 }
1026 
1027 void
1028 _prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
1029 {
1030 	const struct rb_node *self;
1031 	const struct rb_node *prev;
1032 	unsigned int count;
1033 
1034 	KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);
1035 
1036 	prev = NULL;
1037 	count = 0;
1038 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1039 		rb_tree_check_node(rbt, self, prev, false);
1040 		count++;
1041 	}
1042 	KASSERT(rbt->rbt_count == count);
1043 	KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1044 		|| rb_tree_count_black(rbt->rbt_root));
1045 
1046 	/*
1047 	 * The root must be black.
1048 	 * There can never be two adjacent red nodes.
1049 	 */
1050 	if (red_check) {
1051 		KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
1052 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1053 			rb_tree_check_node(rbt, self, NULL, true);
1054 		}
1055 	}
1056 }
1057 #endif /* RBDEBUG */
1058