xref: /dragonfly/sys/net/altq/altq_hfsc.c (revision 16fb0422)
1 /*	$KAME: altq_hfsc.c,v 1.25 2004/04/17 10:54:48 kjc Exp $	*/
2 
3 /*
4  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
5  *
6  * Permission to use, copy, modify, and distribute this software and
7  * its documentation is hereby granted (including for commercial or
8  * for-profit use), provided that both the copyright notice and this
9  * permission notice appear in all copies of the software, derivative
10  * works, or modified versions, and any portions thereof.
11  *
12  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
13  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
14  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
15  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
20  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
21  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
24  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
25  * DAMAGE.
26  *
27  * Carnegie Mellon encourages (but does not require) users of this
28  * software to return any improvements or extensions that they make,
29  * and to grant Carnegie Mellon the rights to redistribute these
30  * changes without encumbrance.
31  */
32 /*
33  * H-FSC is described in Proceedings of SIGCOMM'97,
34  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
35  * Real-Time and Priority Service"
36  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
37  *
38  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
39  * when a class has an upperlimit, the fit-time is computed from the
40  * upperlimit service curve.  the link-sharing scheduler does not schedule
41  * a class whose fit-time exceeds the current time.
42  */
43 
44 #include "opt_altq.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 
48 #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
49 
50 #include <sys/param.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/socket.h>
54 #include <sys/systm.h>
55 #include <sys/errno.h>
56 #include <sys/queue.h>
57 #include <sys/thread.h>
58 
59 #include <net/if.h>
60 #include <net/ifq_var.h>
61 #include <netinet/in.h>
62 
63 #include <net/pf/pfvar.h>
64 #include <net/altq/altq.h>
65 #include <net/altq/altq_hfsc.h>
66 
67 #include <sys/thread2.h>
68 
69 /*
70  * function prototypes
71  */
72 static int	hfsc_clear_interface(struct hfsc_if *);
73 static int	hfsc_request(struct ifaltq *, int, void *);
74 static void	hfsc_purge(struct hfsc_if *);
75 static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
76 					    struct service_curve *,
77 					    struct service_curve *,
78 					    struct service_curve *,
79 					    struct hfsc_class *, int, int, int);
80 static int	hfsc_class_destroy(struct hfsc_class *);
81 static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
82 static int	hfsc_enqueue(struct ifaltq *, struct mbuf *,
83 			     struct altq_pktattr *);
84 static struct mbuf *hfsc_dequeue(struct ifaltq *, struct mbuf *, int);
85 
86 static int	hfsc_addq(struct hfsc_class *, struct mbuf *);
87 static struct mbuf *hfsc_getq(struct hfsc_class *);
88 static struct mbuf *hfsc_pollq(struct hfsc_class *);
89 static void	hfsc_purgeq(struct hfsc_class *);
90 
91 static void	update_cfmin(struct hfsc_class *);
92 static void	set_active(struct hfsc_class *, int);
93 static void	set_passive(struct hfsc_class *);
94 
95 static void	init_ed(struct hfsc_class *, int);
96 static void	update_ed(struct hfsc_class *, int);
97 static void	update_d(struct hfsc_class *, int);
98 static void	init_vf(struct hfsc_class *, int);
99 static void	update_vf(struct hfsc_class *, int, uint64_t);
100 static ellist_t *ellist_alloc(void);
101 static void	ellist_destroy(ellist_t *);
102 static void	ellist_insert(struct hfsc_class *);
103 static void	ellist_remove(struct hfsc_class *);
104 static void	ellist_update(struct hfsc_class *);
105 struct hfsc_class *ellist_get_mindl(ellist_t *, uint64_t);
106 static actlist_t *actlist_alloc(void);
107 static void	actlist_destroy(actlist_t *);
108 static void	actlist_insert(struct hfsc_class *);
109 static void	actlist_remove(struct hfsc_class *);
110 static void	actlist_update(struct hfsc_class *);
111 
112 static struct hfsc_class *actlist_firstfit(struct hfsc_class *, uint64_t);
113 
114 static __inline uint64_t	seg_x2y(uint64_t, uint64_t);
115 static __inline uint64_t	seg_y2x(uint64_t, uint64_t);
116 static __inline uint64_t	m2sm(u_int);
117 static __inline uint64_t	m2ism(u_int);
118 static __inline uint64_t	d2dx(u_int);
119 static u_int			sm2m(uint64_t);
120 static u_int			dx2d(uint64_t);
121 
122 static void	sc2isc(struct service_curve *, struct internal_sc *);
123 static void	rtsc_init(struct runtime_sc *, struct internal_sc *,
124 			  uint64_t, uint64_t);
125 static uint64_t	rtsc_y2x(struct runtime_sc *, uint64_t);
126 static uint64_t	rtsc_x2y(struct runtime_sc *, uint64_t);
127 static void	rtsc_min(struct runtime_sc *, struct internal_sc *,
128 			 uint64_t, uint64_t);
129 
130 static void	get_class_stats(struct hfsc_classstats *, struct hfsc_class *);
131 static struct hfsc_class *clh_to_clp(struct hfsc_if *, uint32_t);
132 
133 /*
134  * macros
135  */
136 #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
137 
138 #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
139 
140 int
141 hfsc_pfattach(struct pf_altq *a, struct ifaltq *ifq)
142 {
143 	return altq_attach(ifq, ALTQT_HFSC, a->altq_disc,
144 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
145 }
146 
147 int
148 hfsc_add_altq(struct pf_altq *a)
149 {
150 	struct hfsc_if *hif;
151 	struct ifnet *ifp;
152 
153 	if ((ifp = ifunit(a->ifname)) == NULL)
154 		return (EINVAL);
155 	if (!ifq_is_ready(&ifp->if_snd))
156 		return (ENODEV);
157 
158 	hif = kmalloc(sizeof(struct hfsc_if), M_ALTQ, M_WAITOK | M_ZERO);
159 
160 	hif->hif_eligible = ellist_alloc();
161 	hif->hif_ifq = &ifp->if_snd;
162 	ifq_purge(&ifp->if_snd);
163 
164 	/* keep the state in pf_altq */
165 	a->altq_disc = hif;
166 
167 	return (0);
168 }
169 
170 int
171 hfsc_remove_altq(struct pf_altq *a)
172 {
173 	struct hfsc_if *hif;
174 
175 	if ((hif = a->altq_disc) == NULL)
176 		return (EINVAL);
177 	a->altq_disc = NULL;
178 
179 	hfsc_clear_interface(hif);
180 	hfsc_class_destroy(hif->hif_rootclass);
181 
182 	ellist_destroy(hif->hif_eligible);
183 
184 	kfree(hif, M_ALTQ);
185 
186 	return (0);
187 }
188 
189 static int
190 hfsc_add_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
191 {
192 	struct hfsc_class *cl, *parent;
193 	struct hfsc_opts *opts;
194 	struct service_curve rtsc, lssc, ulsc;
195 
196 	KKASSERT(a->qid != 0);
197 
198 	opts = &a->pq_u.hfsc_opts;
199 
200 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE && hif->hif_rootclass == NULL)
201 		parent = NULL;
202 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
203 		return (EINVAL);
204 
205 	if (clh_to_clp(hif, a->qid) != NULL)
206 		return (EBUSY);
207 
208 	rtsc.m1 = opts->rtsc_m1;
209 	rtsc.d  = opts->rtsc_d;
210 	rtsc.m2 = opts->rtsc_m2;
211 	lssc.m1 = opts->lssc_m1;
212 	lssc.d  = opts->lssc_d;
213 	lssc.m2 = opts->lssc_m2;
214 	ulsc.m1 = opts->ulsc_m1;
215 	ulsc.d  = opts->ulsc_d;
216 	ulsc.m2 = opts->ulsc_m2;
217 
218 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc, parent, a->qlimit,
219 			       opts->flags, a->qid);
220 	if (cl == NULL)
221 		return (ENOMEM);
222 
223 	return (0);
224 }
225 
226 int
227 hfsc_add_queue(struct pf_altq *a)
228 {
229 	struct hfsc_if *hif;
230 	struct ifaltq *ifq;
231 	int error;
232 
233 	if (a->qid == 0)
234 		return (EINVAL);
235 
236 	/* XXX not MP safe */
237 	if ((hif = a->altq_disc) == NULL)
238 		return (EINVAL);
239 	ifq = hif->hif_ifq;
240 
241 	ALTQ_LOCK(ifq);
242 	error = hfsc_add_queue_locked(a, hif);
243 	ALTQ_UNLOCK(ifq);
244 
245 	return error;
246 }
247 
248 static int
249 hfsc_remove_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
250 {
251 	struct hfsc_class *cl;
252 
253 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
254 		return (EINVAL);
255 
256 	return (hfsc_class_destroy(cl));
257 }
258 
259 int
260 hfsc_remove_queue(struct pf_altq *a)
261 {
262 	struct hfsc_if *hif;
263 	struct ifaltq *ifq;
264 	int error;
265 
266 	/* XXX not MP safe */
267 	if ((hif = a->altq_disc) == NULL)
268 		return (EINVAL);
269 	ifq = hif->hif_ifq;
270 
271 	ALTQ_LOCK(ifq);
272 	error = hfsc_remove_queue_locked(a, hif);
273 	ALTQ_UNLOCK(ifq);
274 
275 	return error;
276 }
277 
278 int
279 hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
280 {
281 	struct hfsc_if *hif;
282 	struct hfsc_class *cl;
283 	struct hfsc_classstats stats;
284 	struct ifaltq *ifq;
285 	int error = 0;
286 
287 	if (*nbytes < sizeof(stats))
288 		return (EINVAL);
289 
290 	/* XXX not MP safe */
291 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
292 		return (EBADF);
293 	ifq = hif->hif_ifq;
294 
295 	ALTQ_LOCK(ifq);
296 
297 	if ((cl = clh_to_clp(hif, a->qid)) == NULL) {
298 		ALTQ_UNLOCK(ifq);
299 		return (EINVAL);
300 	}
301 
302 	get_class_stats(&stats, cl);
303 
304 	ALTQ_UNLOCK(ifq);
305 
306 	if ((error = copyout((caddr_t)&stats, ubuf, sizeof(stats))) != 0)
307 		return (error);
308 	*nbytes = sizeof(stats);
309 	return (0);
310 }
311 
312 /*
313  * bring the interface back to the initial state by discarding
314  * all the filters and classes except the root class.
315  */
316 static int
317 hfsc_clear_interface(struct hfsc_if *hif)
318 {
319 	struct hfsc_class *cl;
320 
321 	if (hif->hif_rootclass == NULL)
322 		return (0);
323 
324 
325 	/* clear out the classes */
326 	while ((cl = hif->hif_rootclass->cl_children) != NULL) {
327 		/*
328 		 * remove the first leaf class found in the hierarchy
329 		 * then start over
330 		 */
331 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
332 			if (!is_a_parent_class(cl)) {
333 				hfsc_class_destroy(cl);
334 				break;
335 			}
336 		}
337 	}
338 
339 	return (0);
340 }
341 
342 static int
343 hfsc_request(struct ifaltq *ifq, int req, void *arg)
344 {
345 	struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
346 
347 	crit_enter();
348 	switch (req) {
349 	case ALTRQ_PURGE:
350 		hfsc_purge(hif);
351 		break;
352 	}
353 	crit_exit();
354 	return (0);
355 }
356 
357 /* discard all the queued packets on the interface */
358 static void
359 hfsc_purge(struct hfsc_if *hif)
360 {
361 	struct hfsc_class *cl;
362 
363 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) {
364 		if (!qempty(cl->cl_q))
365 			hfsc_purgeq(cl);
366 	}
367 	if (ifq_is_enabled(hif->hif_ifq))
368 		hif->hif_ifq->ifq_len = 0;
369 }
370 
371 struct hfsc_class *
372 hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
373 		  struct service_curve *fsc, struct service_curve *usc,
374 		  struct hfsc_class *parent, int qlimit, int flags, int qid)
375 {
376 	struct hfsc_class *cl, *p;
377 	int i;
378 
379 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
380 		return (NULL);
381 
382 #ifndef ALTQ_RED
383 	if (flags & HFCF_RED) {
384 #ifdef ALTQ_DEBUG
385 		kprintf("hfsc_class_create: RED not configured for HFSC!\n");
386 #endif
387 		return (NULL);
388 	}
389 #endif
390 
391 	cl = kmalloc(sizeof(*cl), M_ALTQ, M_WAITOK | M_ZERO);
392 	cl->cl_q = kmalloc(sizeof(*cl->cl_q), M_ALTQ, M_WAITOK | M_ZERO);
393 	cl->cl_actc = actlist_alloc();
394 
395 	if (qlimit == 0)
396 		qlimit = 50;  /* use default */
397 	qlimit(cl->cl_q) = qlimit;
398 	qtype(cl->cl_q) = Q_DROPTAIL;
399 	qlen(cl->cl_q) = 0;
400 	cl->cl_flags = flags;
401 #ifdef ALTQ_RED
402 	if (flags & (HFCF_RED|HFCF_RIO)) {
403 		int red_flags, red_pkttime;
404 		u_int m2;
405 
406 		m2 = 0;
407 		if (rsc != NULL && rsc->m2 > m2)
408 			m2 = rsc->m2;
409 		if (fsc != NULL && fsc->m2 > m2)
410 			m2 = fsc->m2;
411 		if (usc != NULL && usc->m2 > m2)
412 			m2 = usc->m2;
413 
414 		red_flags = 0;
415 		if (flags & HFCF_ECN)
416 			red_flags |= REDF_ECN;
417 #ifdef ALTQ_RIO
418 		if (flags & HFCF_CLEARDSCP)
419 			red_flags |= RIOF_CLEARDSCP;
420 #endif
421 		if (m2 < 8)
422 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
423 		else
424 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
425 				* 1000 * 1000 * 1000 / (m2 / 8);
426 		if (flags & HFCF_RED) {
427 			cl->cl_red = red_alloc(0, 0,
428 			    qlimit(cl->cl_q) * 10/100,
429 			    qlimit(cl->cl_q) * 30/100,
430 			    red_flags, red_pkttime);
431 			if (cl->cl_red != NULL)
432 				qtype(cl->cl_q) = Q_RED;
433 		}
434 #ifdef ALTQ_RIO
435 		else {
436 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
437 			    red_flags, red_pkttime);
438 			if (cl->cl_red != NULL)
439 				qtype(cl->cl_q) = Q_RIO;
440 		}
441 #endif
442 	}
443 #endif /* ALTQ_RED */
444 
445 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
446 		cl->cl_rsc = kmalloc(sizeof(*cl->cl_rsc), M_ALTQ, M_WAITOK);
447 		sc2isc(rsc, cl->cl_rsc);
448 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
449 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
450 	}
451 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
452 		cl->cl_fsc = kmalloc(sizeof(*cl->cl_fsc), M_ALTQ, M_WAITOK);
453 		if (cl->cl_fsc == NULL)
454 			goto err_ret;
455 		sc2isc(fsc, cl->cl_fsc);
456 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
457 	}
458 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
459 		cl->cl_usc = kmalloc(sizeof(*cl->cl_usc), M_ALTQ, M_WAITOK);
460 		if (cl->cl_usc == NULL)
461 			goto err_ret;
462 		sc2isc(usc, cl->cl_usc);
463 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
464 	}
465 
466 	cl->cl_id = hif->hif_classid++;
467 	cl->cl_handle = qid;
468 	cl->cl_hif = hif;
469 	cl->cl_parent = parent;
470 
471 	crit_enter();
472 	hif->hif_classes++;
473 
474 	/*
475 	 * find a free slot in the class table.  if the slot matching
476 	 * the lower bits of qid is free, use this slot.  otherwise,
477 	 * use the first free slot.
478 	 */
479 	i = qid % HFSC_MAX_CLASSES;
480 	if (hif->hif_class_tbl[i] == NULL)
481 		hif->hif_class_tbl[i] = cl;
482 	else {
483 		for (i = 0; i < HFSC_MAX_CLASSES; i++) {
484 			if (hif->hif_class_tbl[i] == NULL) {
485 				hif->hif_class_tbl[i] = cl;
486 				break;
487 			}
488 		}
489 		if (i == HFSC_MAX_CLASSES) {
490 			crit_exit();
491 			goto err_ret;
492 		}
493 	}
494 
495 	if (flags & HFCF_DEFAULTCLASS)
496 		hif->hif_defaultclass = cl;
497 
498 	if (parent == NULL) {
499 		/* this is root class */
500 		hif->hif_rootclass = cl;
501 	} else if (parent->cl_children == NULL) {
502 		/* add this class to the children list of the parent */
503 		parent->cl_children = cl;
504 	} else {
505 		p = parent->cl_children;
506 		while (p->cl_siblings != NULL)
507 			p = p->cl_siblings;
508 		p->cl_siblings = cl;
509 	}
510 	crit_exit();
511 
512 	return (cl);
513 
514  err_ret:
515 	if (cl->cl_actc != NULL)
516 		actlist_destroy(cl->cl_actc);
517 	if (cl->cl_red != NULL) {
518 #ifdef ALTQ_RIO
519 		if (q_is_rio(cl->cl_q))
520 			rio_destroy((rio_t *)cl->cl_red);
521 #endif
522 #ifdef ALTQ_RED
523 		if (q_is_red(cl->cl_q))
524 			red_destroy(cl->cl_red);
525 #endif
526 	}
527 	if (cl->cl_fsc != NULL)
528 		kfree(cl->cl_fsc, M_ALTQ);
529 	if (cl->cl_rsc != NULL)
530 		kfree(cl->cl_rsc, M_ALTQ);
531 	if (cl->cl_usc != NULL)
532 		kfree(cl->cl_usc, M_ALTQ);
533 	if (cl->cl_q != NULL)
534 		kfree(cl->cl_q, M_ALTQ);
535 	kfree(cl, M_ALTQ);
536 	return (NULL);
537 }
538 
539 static int
540 hfsc_class_destroy(struct hfsc_class *cl)
541 {
542 	struct hfsc_if *hif;
543 	int i;
544 
545 	if (cl == NULL)
546 		return (0);
547 	hif = cl->cl_hif;
548 
549 	if (is_a_parent_class(cl))
550 		return (EBUSY);
551 
552 	crit_enter();
553 
554 	if (!qempty(cl->cl_q))
555 		hfsc_purgeq(cl);
556 
557 	if (cl->cl_parent == NULL) {
558 		/* this is root class */
559 	} else {
560 		struct hfsc_class *p = cl->cl_parent->cl_children;
561 
562 		if (p == cl) {
563 			cl->cl_parent->cl_children = cl->cl_siblings;
564 		} else {
565 			do {
566 				if (p->cl_siblings == cl) {
567 					p->cl_siblings = cl->cl_siblings;
568 					break;
569 				}
570 			} while ((p = p->cl_siblings) != NULL);
571 		}
572 		KKASSERT(p != NULL);
573 	}
574 
575 	for (i = 0; i < HFSC_MAX_CLASSES; i++) {
576 		if (hif->hif_class_tbl[i] == cl) {
577 			hif->hif_class_tbl[i] = NULL;
578 			break;
579 		}
580 	}
581 
582 	hif->hif_classes--;
583 	crit_exit();
584 
585 	actlist_destroy(cl->cl_actc);
586 
587 	if (cl->cl_red != NULL) {
588 #ifdef ALTQ_RIO
589 		if (q_is_rio(cl->cl_q))
590 			rio_destroy((rio_t *)cl->cl_red);
591 #endif
592 #ifdef ALTQ_RED
593 		if (q_is_red(cl->cl_q))
594 			red_destroy(cl->cl_red);
595 #endif
596 	}
597 
598 	if (cl == hif->hif_rootclass)
599 		hif->hif_rootclass = NULL;
600 	if (cl == hif->hif_defaultclass)
601 		hif->hif_defaultclass = NULL;
602 	if (cl == hif->hif_pollcache)
603 		hif->hif_pollcache = NULL;
604 
605 	if (cl->cl_usc != NULL)
606 		kfree(cl->cl_usc, M_ALTQ);
607 	if (cl->cl_fsc != NULL)
608 		kfree(cl->cl_fsc, M_ALTQ);
609 	if (cl->cl_rsc != NULL)
610 		kfree(cl->cl_rsc, M_ALTQ);
611 	kfree(cl->cl_q, M_ALTQ);
612 	kfree(cl, M_ALTQ);
613 
614 	return (0);
615 }
616 
617 /*
618  * hfsc_nextclass returns the next class in the tree.
619  *   usage:
620  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
621  *		do_something;
622  */
623 static struct hfsc_class *
624 hfsc_nextclass(struct hfsc_class *cl)
625 {
626 	if (cl->cl_children != NULL) {
627 		cl = cl->cl_children;
628 	} else if (cl->cl_siblings != NULL) {
629 		cl = cl->cl_siblings;
630 	} else {
631 		while ((cl = cl->cl_parent) != NULL) {
632 			if (cl->cl_siblings != NULL) {
633 				cl = cl->cl_siblings;
634 				break;
635 			}
636 		}
637 	}
638 
639 	return (cl);
640 }
641 
642 /*
643  * hfsc_enqueue is an enqueue function to be registered to
644  * (*altq_enqueue) in struct ifaltq.
645  */
646 static int
647 hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
648 {
649 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
650 	struct hfsc_class *cl;
651 	int len;
652 
653 	/* grab class set by classifier */
654 	if ((m->m_flags & M_PKTHDR) == 0) {
655 		/* should not happen */
656 		if_printf(ifq->altq_ifp, "altq: packet does not have pkthdr\n");
657 		m_freem(m);
658 		return (ENOBUFS);
659 	}
660 	crit_enter();
661 	if (m->m_pkthdr.fw_flags & PF_MBUF_STRUCTURE)
662 		cl = clh_to_clp(hif, m->m_pkthdr.pf.qid);
663 	else
664 		cl = NULL;
665 	if (cl == NULL || is_a_parent_class(cl)) {
666 		cl = hif->hif_defaultclass;
667 		if (cl == NULL) {
668 			m_freem(m);
669 			crit_exit();
670 			return (ENOBUFS);
671 		}
672 	}
673 	cl->cl_pktattr = NULL;
674 	len = m_pktlen(m);
675 	if (hfsc_addq(cl, m) != 0) {
676 		/* drop occurred.  mbuf was freed in hfsc_addq. */
677 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
678 		crit_exit();
679 		return (ENOBUFS);
680 	}
681 	ifq->ifq_len++;
682 	cl->cl_hif->hif_packets++;
683 
684 	/* successfully queued. */
685 	if (qlen(cl->cl_q) == 1)
686 		set_active(cl, m_pktlen(m));
687 	crit_exit();
688 	return (0);
689 }
690 
691 /*
692  * hfsc_dequeue is a dequeue function to be registered to
693  * (*altq_dequeue) in struct ifaltq.
694  *
695  * note: ALTDQ_POLL returns the next packet without removing the packet
696  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
697  *	ALTDQ_REMOVE must return the same packet if called immediately
698  *	after ALTDQ_POLL.
699  */
700 static struct mbuf *
701 hfsc_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
702 {
703 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
704 	struct hfsc_class *cl;
705 	struct mbuf *m;
706 	int len, next_len;
707 	int realtime = 0;
708 	uint64_t cur_time;
709 
710 	if (hif->hif_packets == 0) {
711 		/* no packet in the tree */
712 		return (NULL);
713 	}
714 
715 	crit_enter();
716 	cur_time = read_machclk();
717 
718 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
719 		cl = hif->hif_pollcache;
720 		hif->hif_pollcache = NULL;
721 		/* check if the class was scheduled by real-time criteria */
722 		if (cl->cl_rsc != NULL)
723 			realtime = (cl->cl_e <= cur_time);
724 	} else {
725 		/*
726 		 * if there are eligible classes, use real-time criteria.
727 		 * find the class with the minimum deadline among
728 		 * the eligible classes.
729 		 */
730 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time)) != NULL) {
731 			realtime = 1;
732 		} else {
733 #ifdef ALTQ_DEBUG
734 			int fits = 0;
735 #endif
736 			/*
737 			 * use link-sharing criteria
738 			 * get the class with the minimum vt in the hierarchy
739 			 */
740 			cl = hif->hif_rootclass;
741 			while (is_a_parent_class(cl)) {
742 
743 				cl = actlist_firstfit(cl, cur_time);
744 				if (cl == NULL) {
745 #ifdef ALTQ_DEBUG
746 					if (fits > 0)
747 						kprintf("%d fit but none found\n",fits);
748 #endif
749 					m = NULL;
750 					goto done;
751 				}
752 				/*
753 				 * update parent's cl_cvtmin.
754 				 * don't update if the new vt is smaller.
755 				 */
756 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
757 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
758 #ifdef ALTQ_DEBUG
759 				fits++;
760 #endif
761 			}
762 		}
763 
764 		if (op == ALTDQ_POLL) {
765 			hif->hif_pollcache = cl;
766 			m = hfsc_pollq(cl);
767 			goto done;
768 		}
769 	}
770 
771 	m = hfsc_getq(cl);
772 	if (m == NULL)
773 		panic("hfsc_dequeue:");
774 	len = m_pktlen(m);
775 	cl->cl_hif->hif_packets--;
776 	ifq->ifq_len--;
777 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
778 
779 	update_vf(cl, len, cur_time);
780 	if (realtime)
781 		cl->cl_cumul += len;
782 
783 	if (!qempty(cl->cl_q)) {
784 		if (cl->cl_rsc != NULL) {
785 			/* update ed */
786 			next_len = m_pktlen(qhead(cl->cl_q));
787 
788 			if (realtime)
789 				update_ed(cl, next_len);
790 			else
791 				update_d(cl, next_len);
792 		}
793 	} else {
794 		/* the class becomes passive */
795 		set_passive(cl);
796 	}
797 done:
798 	crit_exit();
799 	KKASSERT(mpolled == NULL || m == mpolled);
800 	return (m);
801 }
802 
803 static int
804 hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
805 {
806 
807 #ifdef ALTQ_RIO
808 	if (q_is_rio(cl->cl_q))
809 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
810 				m, cl->cl_pktattr);
811 #endif
812 #ifdef ALTQ_RED
813 	if (q_is_red(cl->cl_q))
814 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
815 #endif
816 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
817 		m_freem(m);
818 		return (-1);
819 	}
820 
821 	if (cl->cl_flags & HFCF_CLEARDSCP)
822 		write_dsfield(m, cl->cl_pktattr, 0);
823 
824 	_addq(cl->cl_q, m);
825 
826 	return (0);
827 }
828 
829 static struct mbuf *
830 hfsc_getq(struct hfsc_class *cl)
831 {
832 #ifdef ALTQ_RIO
833 	if (q_is_rio(cl->cl_q))
834 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
835 #endif
836 #ifdef ALTQ_RED
837 	if (q_is_red(cl->cl_q))
838 		return red_getq(cl->cl_red, cl->cl_q);
839 #endif
840 	return _getq(cl->cl_q);
841 }
842 
843 static struct mbuf *
844 hfsc_pollq(struct hfsc_class *cl)
845 {
846 	return qhead(cl->cl_q);
847 }
848 
849 static void
850 hfsc_purgeq(struct hfsc_class *cl)
851 {
852 	struct mbuf *m;
853 
854 	if (qempty(cl->cl_q))
855 		return;
856 
857 	while ((m = _getq(cl->cl_q)) != NULL) {
858 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
859 		m_freem(m);
860 		cl->cl_hif->hif_packets--;
861 		cl->cl_hif->hif_ifq->ifq_len--;
862 	}
863 	KKASSERT(qlen(cl->cl_q) == 0);
864 
865 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
866 	set_passive(cl);
867 }
868 
869 static void
870 set_active(struct hfsc_class *cl, int len)
871 {
872 	if (cl->cl_rsc != NULL)
873 		init_ed(cl, len);
874 	if (cl->cl_fsc != NULL)
875 		init_vf(cl, len);
876 
877 	cl->cl_stats.period++;
878 }
879 
880 static void
881 set_passive(struct hfsc_class *cl)
882 {
883 	if (cl->cl_rsc != NULL)
884 		ellist_remove(cl);
885 
886 	/*
887 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
888 	 * needs to be called explicitly to remove a class from actlist
889 	 */
890 }
891 
892 static void
893 init_ed(struct hfsc_class *cl, int next_len)
894 {
895 	uint64_t cur_time;
896 
897 	cur_time = read_machclk();
898 
899 	/* update the deadline curve */
900 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
901 
902 	/*
903 	 * update the eligible curve.
904 	 * for concave, it is equal to the deadline curve.
905 	 * for convex, it is a linear curve with slope m2.
906 	 */
907 	cl->cl_eligible = cl->cl_deadline;
908 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
909 		cl->cl_eligible.dx = 0;
910 		cl->cl_eligible.dy = 0;
911 	}
912 
913 	/* compute e and d */
914 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
915 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
916 
917 	ellist_insert(cl);
918 }
919 
920 static void
921 update_ed(struct hfsc_class *cl, int next_len)
922 {
923 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
924 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
925 
926 	ellist_update(cl);
927 }
928 
929 static void
930 update_d(struct hfsc_class *cl, int next_len)
931 {
932 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
933 }
934 
935 static void
936 init_vf(struct hfsc_class *cl, int len)
937 {
938 	struct hfsc_class *max_cl, *p;
939 	uint64_t vt, f, cur_time;
940 	int go_active;
941 
942 	cur_time = 0;
943 	go_active = 1;
944 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
945 		if (go_active && cl->cl_nactive++ == 0)
946 			go_active = 1;
947 		else
948 			go_active = 0;
949 
950 		if (go_active) {
951 			max_cl = actlist_last(cl->cl_parent->cl_actc);
952 			if (max_cl != NULL) {
953 				/*
954 				 * set vt to the average of the min and max
955 				 * classes.  if the parent's period didn't
956 				 * change, don't decrease vt of the class.
957 				 */
958 				vt = max_cl->cl_vt;
959 				if (cl->cl_parent->cl_cvtmin != 0)
960 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
961 
962 				if (cl->cl_parent->cl_vtperiod !=
963 				    cl->cl_parentperiod || vt > cl->cl_vt)
964 					cl->cl_vt = vt;
965 			} else {
966 				/*
967 				 * first child for a new parent backlog period.
968 				 * add parent's cvtmax to vtoff of children
969 				 * to make a new vt (vtoff + vt) larger than
970 				 * the vt in the last period for all children.
971 				 */
972 				vt = cl->cl_parent->cl_cvtmax;
973 				for (p = cl->cl_parent->cl_children; p != NULL;
974 				     p = p->cl_siblings)
975 					p->cl_vtoff += vt;
976 				cl->cl_vt = 0;
977 				cl->cl_parent->cl_cvtmax = 0;
978 				cl->cl_parent->cl_cvtmin = 0;
979 			}
980 			cl->cl_initvt = cl->cl_vt;
981 
982 			/* update the virtual curve */
983 			vt = cl->cl_vt + cl->cl_vtoff;
984 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
985 			if (cl->cl_virtual.x == vt) {
986 				cl->cl_virtual.x -= cl->cl_vtoff;
987 				cl->cl_vtoff = 0;
988 			}
989 			cl->cl_vtadj = 0;
990 
991 			cl->cl_vtperiod++;  /* increment vt period */
992 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
993 			if (cl->cl_parent->cl_nactive == 0)
994 				cl->cl_parentperiod++;
995 			cl->cl_f = 0;
996 
997 			actlist_insert(cl);
998 
999 			if (cl->cl_usc != NULL) {
1000 				/* class has upper limit curve */
1001 				if (cur_time == 0)
1002 					cur_time = read_machclk();
1003 
1004 				/* update the ulimit curve */
1005 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1006 				    cl->cl_total);
1007 				/* compute myf */
1008 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1009 				    cl->cl_total);
1010 				cl->cl_myfadj = 0;
1011 			}
1012 		}
1013 
1014 		if (cl->cl_myf > cl->cl_cfmin)
1015 			f = cl->cl_myf;
1016 		else
1017 			f = cl->cl_cfmin;
1018 		if (f != cl->cl_f) {
1019 			cl->cl_f = f;
1020 			update_cfmin(cl->cl_parent);
1021 		}
1022 	}
1023 }
1024 
1025 static void
1026 update_vf(struct hfsc_class *cl, int len, uint64_t cur_time)
1027 {
1028 	uint64_t f, myf_bound, delta;
1029 	int go_passive;
1030 
1031 	go_passive = qempty(cl->cl_q);
1032 
1033 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1034 		cl->cl_total += len;
1035 
1036 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1037 			continue;
1038 
1039 		if (go_passive && --cl->cl_nactive == 0)
1040 			go_passive = 1;
1041 		else
1042 			go_passive = 0;
1043 
1044 		if (go_passive) {
1045 			/* no more active child, going passive */
1046 
1047 			/* update cvtmax of the parent class */
1048 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1049 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1050 
1051 			/* remove this class from the vt list */
1052 			actlist_remove(cl);
1053 
1054 			update_cfmin(cl->cl_parent);
1055 
1056 			continue;
1057 		}
1058 
1059 		/*
1060 		 * update vt and f
1061 		 */
1062 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1063 		    - cl->cl_vtoff + cl->cl_vtadj;
1064 
1065 		/*
1066 		 * if vt of the class is smaller than cvtmin,
1067 		 * the class was skipped in the past due to non-fit.
1068 		 * if so, we need to adjust vtadj.
1069 		 */
1070 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1071 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1072 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1073 		}
1074 
1075 		/* update the vt list */
1076 		actlist_update(cl);
1077 
1078 		if (cl->cl_usc != NULL) {
1079 			cl->cl_myf = cl->cl_myfadj
1080 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1081 
1082 			/*
1083 			 * if myf lags behind by more than one clock tick
1084 			 * from the current time, adjust myfadj to prevent
1085 			 * a rate-limited class from going greedy.
1086 			 * in a steady state under rate-limiting, myf
1087 			 * fluctuates within one clock tick.
1088 			 */
1089 			myf_bound = cur_time - machclk_per_tick;
1090 			if (cl->cl_myf < myf_bound) {
1091 				delta = cur_time - cl->cl_myf;
1092 				cl->cl_myfadj += delta;
1093 				cl->cl_myf += delta;
1094 			}
1095 		}
1096 
1097 		/* cl_f is max(cl_myf, cl_cfmin) */
1098 		if (cl->cl_myf > cl->cl_cfmin)
1099 			f = cl->cl_myf;
1100 		else
1101 			f = cl->cl_cfmin;
1102 		if (f != cl->cl_f) {
1103 			cl->cl_f = f;
1104 			update_cfmin(cl->cl_parent);
1105 		}
1106 	}
1107 }
1108 
1109 static void
1110 update_cfmin(struct hfsc_class *cl)
1111 {
1112 	struct hfsc_class *p;
1113 	uint64_t cfmin;
1114 
1115 	if (TAILQ_EMPTY(cl->cl_actc)) {
1116 		cl->cl_cfmin = 0;
1117 		return;
1118 	}
1119 	cfmin = HT_INFINITY;
1120 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1121 		if (p->cl_f == 0) {
1122 			cl->cl_cfmin = 0;
1123 			return;
1124 		}
1125 		if (p->cl_f < cfmin)
1126 			cfmin = p->cl_f;
1127 	}
1128 	cl->cl_cfmin = cfmin;
1129 }
1130 
1131 /*
1132  * TAILQ based ellist and actlist implementation
1133  * (ion wanted to make a calendar queue based implementation)
1134  */
1135 /*
1136  * eligible list holds backlogged classes being sorted by their eligible times.
1137  * there is one eligible list per interface.
1138  */
1139 
1140 static ellist_t *
1141 ellist_alloc(void)
1142 {
1143 	ellist_t *head;
1144 
1145 	head = kmalloc(sizeof(ellist_t *), M_ALTQ, M_WAITOK);
1146 	TAILQ_INIT(head);
1147 	return (head);
1148 }
1149 
1150 static void
1151 ellist_destroy(ellist_t *head)
1152 {
1153 	kfree(head, M_ALTQ);
1154 }
1155 
1156 static void
1157 ellist_insert(struct hfsc_class *cl)
1158 {
1159 	struct hfsc_if *hif = cl->cl_hif;
1160 	struct hfsc_class *p;
1161 
1162 	/* check the last entry first */
1163 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1164 	    p->cl_e <= cl->cl_e) {
1165 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1166 		return;
1167 	}
1168 
1169 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1170 		if (cl->cl_e < p->cl_e) {
1171 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1172 			return;
1173 		}
1174 	}
1175 	KKASSERT(0); /* should not reach here */
1176 }
1177 
1178 static void
1179 ellist_remove(struct hfsc_class *cl)
1180 {
1181 	struct hfsc_if *hif = cl->cl_hif;
1182 
1183 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1184 }
1185 
1186 static void
1187 ellist_update(struct hfsc_class *cl)
1188 {
1189 	struct hfsc_if *hif = cl->cl_hif;
1190 	struct hfsc_class *p, *last;
1191 
1192 	/*
1193 	 * the eligible time of a class increases monotonically.
1194 	 * if the next entry has a larger eligible time, nothing to do.
1195 	 */
1196 	p = TAILQ_NEXT(cl, cl_ellist);
1197 	if (p == NULL || cl->cl_e <= p->cl_e)
1198 		return;
1199 
1200 	/* check the last entry */
1201 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1202 	KKASSERT(last != NULL);
1203 	if (last->cl_e <= cl->cl_e) {
1204 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1205 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * the new position must be between the next entry
1211 	 * and the last entry
1212 	 */
1213 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1214 		if (cl->cl_e < p->cl_e) {
1215 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1216 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1217 			return;
1218 		}
1219 	}
1220 	KKASSERT(0); /* should not reach here */
1221 }
1222 
1223 /* find the class with the minimum deadline among the eligible classes */
1224 struct hfsc_class *
1225 ellist_get_mindl(ellist_t *head, uint64_t cur_time)
1226 {
1227 	struct hfsc_class *p, *cl = NULL;
1228 
1229 	TAILQ_FOREACH(p, head, cl_ellist) {
1230 		if (p->cl_e > cur_time)
1231 			break;
1232 		if (cl == NULL || p->cl_d < cl->cl_d)
1233 			cl = p;
1234 	}
1235 	return (cl);
1236 }
1237 
1238 /*
1239  * active children list holds backlogged child classes being sorted
1240  * by their virtual time.
1241  * each intermediate class has one active children list.
1242  */
1243 static actlist_t *
1244 actlist_alloc(void)
1245 {
1246 	actlist_t *head;
1247 
1248 	head = kmalloc(sizeof(*head), M_ALTQ, M_WAITOK);
1249 	TAILQ_INIT(head);
1250 	return (head);
1251 }
1252 
1253 static void
1254 actlist_destroy(actlist_t *head)
1255 {
1256 	kfree(head, M_ALTQ);
1257 }
1258 static void
1259 actlist_insert(struct hfsc_class *cl)
1260 {
1261 	struct hfsc_class *p;
1262 
1263 	/* check the last entry first */
1264 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1265 	    || p->cl_vt <= cl->cl_vt) {
1266 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1267 		return;
1268 	}
1269 
1270 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1271 		if (cl->cl_vt < p->cl_vt) {
1272 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1273 			return;
1274 		}
1275 	}
1276 	KKASSERT(0); /* should not reach here */
1277 }
1278 
1279 static void
1280 actlist_remove(struct hfsc_class *cl)
1281 {
1282 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1283 }
1284 
1285 static void
1286 actlist_update(struct hfsc_class *cl)
1287 {
1288 	struct hfsc_class *p, *last;
1289 
1290 	/*
1291 	 * the virtual time of a class increases monotonically during its
1292 	 * backlogged period.
1293 	 * if the next entry has a larger virtual time, nothing to do.
1294 	 */
1295 	p = TAILQ_NEXT(cl, cl_actlist);
1296 	if (p == NULL || cl->cl_vt < p->cl_vt)
1297 		return;
1298 
1299 	/* check the last entry */
1300 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1301 	KKASSERT(last != NULL);
1302 	if (last->cl_vt <= cl->cl_vt) {
1303 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1304 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1305 		return;
1306 	}
1307 
1308 	/*
1309 	 * the new position must be between the next entry
1310 	 * and the last entry
1311 	 */
1312 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1313 		if (cl->cl_vt < p->cl_vt) {
1314 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1315 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1316 			return;
1317 		}
1318 	}
1319 	KKASSERT(0); /* should not reach here */
1320 }
1321 
1322 static struct hfsc_class *
1323 actlist_firstfit(struct hfsc_class *cl, uint64_t cur_time)
1324 {
1325 	struct hfsc_class *p;
1326 
1327 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1328 		if (p->cl_f <= cur_time)
1329 			return (p);
1330 	}
1331 	return (NULL);
1332 }
1333 
1334 /*
1335  * service curve support functions
1336  *
1337  *  external service curve parameters
1338  *	m: bits/sec
1339  *	d: msec
1340  *  internal service curve parameters
1341  *	sm: (bytes/tsc_interval) << SM_SHIFT
1342  *	ism: (tsc_count/byte) << ISM_SHIFT
1343  *	dx: tsc_count
1344  *
1345  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1346  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1347  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1348  * digits in decimal using the following table.
1349  *
1350  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1351  *  ----------+-------------------------------------------------------
1352  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1353  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1354  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1355  *
1356  *  nsec/byte   80000      8000       800        80         8
1357  *  ism(500MHz) 40000      4000       400        40         4
1358  *  ism(200MHz) 16000      1600       160        16         1.6
1359  */
1360 #define	SM_SHIFT	24
1361 #define	ISM_SHIFT	10
1362 
1363 #define	SM_MASK		((1LL << SM_SHIFT) - 1)
1364 #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1365 
1366 static __inline uint64_t
1367 seg_x2y(uint64_t x, uint64_t sm)
1368 {
1369 	uint64_t y;
1370 
1371 	/*
1372 	 * compute
1373 	 *	y = x * sm >> SM_SHIFT
1374 	 * but divide it for the upper and lower bits to avoid overflow
1375 	 */
1376 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1377 	return (y);
1378 }
1379 
1380 static __inline uint64_t
1381 seg_y2x(uint64_t y, uint64_t ism)
1382 {
1383 	uint64_t x;
1384 
1385 	if (y == 0)
1386 		x = 0;
1387 	else if (ism == HT_INFINITY)
1388 		x = HT_INFINITY;
1389 	else
1390 		x = (y >> ISM_SHIFT) * ism + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1391 
1392 	return (x);
1393 }
1394 
1395 static __inline uint64_t
1396 m2sm(u_int m)
1397 {
1398 	uint64_t sm;
1399 
1400 	sm = ((uint64_t)m << SM_SHIFT) / 8 / machclk_freq;
1401 	return (sm);
1402 }
1403 
1404 static __inline uint64_t
1405 m2ism(u_int m)
1406 {
1407 	uint64_t ism;
1408 
1409 	if (m == 0)
1410 		ism = HT_INFINITY;
1411 	else
1412 		ism = ((uint64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1413 	return (ism);
1414 }
1415 
1416 static __inline uint64_t
1417 d2dx(u_int d)
1418 {
1419 	uint64_t dx;
1420 
1421 	dx = ((uint64_t)d * machclk_freq) / 1000;
1422 	return (dx);
1423 }
1424 
1425 static u_int
1426 sm2m(uint64_t sm)
1427 {
1428 	uint64_t m;
1429 
1430 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1431 	return ((u_int)m);
1432 }
1433 
1434 static u_int
1435 dx2d(uint64_t dx)
1436 {
1437 	uint64_t d;
1438 
1439 	d = dx * 1000 / machclk_freq;
1440 	return ((u_int)d);
1441 }
1442 
1443 static void
1444 sc2isc(struct service_curve *sc, struct internal_sc *isc)
1445 {
1446 	isc->sm1 = m2sm(sc->m1);
1447 	isc->ism1 = m2ism(sc->m1);
1448 	isc->dx = d2dx(sc->d);
1449 	isc->dy = seg_x2y(isc->dx, isc->sm1);
1450 	isc->sm2 = m2sm(sc->m2);
1451 	isc->ism2 = m2ism(sc->m2);
1452 }
1453 
1454 /*
1455  * initialize the runtime service curve with the given internal
1456  * service curve starting at (x, y).
1457  */
1458 static void
1459 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1460 {
1461 	rtsc->x = x;
1462 	rtsc->y = y;
1463 	rtsc->sm1 = isc->sm1;
1464 	rtsc->ism1 = isc->ism1;
1465 	rtsc->dx = isc->dx;
1466 	rtsc->dy = isc->dy;
1467 	rtsc->sm2 = isc->sm2;
1468 	rtsc->ism2 = isc->ism2;
1469 }
1470 
1471 /*
1472  * calculate the y-projection of the runtime service curve by the
1473  * given x-projection value
1474  */
1475 static uint64_t
1476 rtsc_y2x(struct runtime_sc *rtsc, uint64_t y)
1477 {
1478 	uint64_t x;
1479 
1480 	if (y < rtsc->y) {
1481 		x = rtsc->x;
1482 	} else if (y <= rtsc->y + rtsc->dy) {
1483 		/* x belongs to the 1st segment */
1484 		if (rtsc->dy == 0)
1485 			x = rtsc->x + rtsc->dx;
1486 		else
1487 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1488 	} else {
1489 		/* x belongs to the 2nd segment */
1490 		x = rtsc->x + rtsc->dx
1491 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1492 	}
1493 	return (x);
1494 }
1495 
1496 static uint64_t
1497 rtsc_x2y(struct runtime_sc *rtsc, uint64_t x)
1498 {
1499 	uint64_t y;
1500 
1501 	if (x <= rtsc->x) {
1502 		y = rtsc->y;
1503 	} else if (x <= rtsc->x + rtsc->dx) {
1504 		/* y belongs to the 1st segment */
1505 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1506 	} else
1507 		/* y belongs to the 2nd segment */
1508 		y = rtsc->y + rtsc->dy
1509 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1510 	return (y);
1511 }
1512 
1513 /*
1514  * update the runtime service curve by taking the minimum of the current
1515  * runtime service curve and the service curve starting at (x, y).
1516  */
1517 static void
1518 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1519 {
1520 	uint64_t y1, y2, dx, dy;
1521 
1522 	if (isc->sm1 <= isc->sm2) {
1523 		/* service curve is convex */
1524 		y1 = rtsc_x2y(rtsc, x);
1525 		if (y1 < y)
1526 			/* the current rtsc is smaller */
1527 			return;
1528 		rtsc->x = x;
1529 		rtsc->y = y;
1530 		return;
1531 	}
1532 
1533 	/*
1534 	 * service curve is concave
1535 	 * compute the two y values of the current rtsc
1536 	 *	y1: at x
1537 	 *	y2: at (x + dx)
1538 	 */
1539 	y1 = rtsc_x2y(rtsc, x);
1540 	if (y1 <= y) {
1541 		/* rtsc is below isc, no change to rtsc */
1542 		return;
1543 	}
1544 
1545 	y2 = rtsc_x2y(rtsc, x + isc->dx);
1546 	if (y2 >= y + isc->dy) {
1547 		/* rtsc is above isc, replace rtsc by isc */
1548 		rtsc->x = x;
1549 		rtsc->y = y;
1550 		rtsc->dx = isc->dx;
1551 		rtsc->dy = isc->dy;
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * the two curves intersect
1557 	 * compute the offsets (dx, dy) using the reverse
1558 	 * function of seg_x2y()
1559 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1560 	 */
1561 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1562 	/*
1563 	 * check if (x, y1) belongs to the 1st segment of rtsc.
1564 	 * if so, add the offset.
1565 	 */
1566 	if (rtsc->x + rtsc->dx > x)
1567 		dx += rtsc->x + rtsc->dx - x;
1568 	dy = seg_x2y(dx, isc->sm1);
1569 
1570 	rtsc->x = x;
1571 	rtsc->y = y;
1572 	rtsc->dx = dx;
1573 	rtsc->dy = dy;
1574 }
1575 
1576 static void
1577 get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1578 {
1579 	sp->class_id = cl->cl_id;
1580 	sp->class_handle = cl->cl_handle;
1581 
1582 	if (cl->cl_rsc != NULL) {
1583 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1584 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1585 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1586 	} else {
1587 		sp->rsc.m1 = 0;
1588 		sp->rsc.d = 0;
1589 		sp->rsc.m2 = 0;
1590 	}
1591 	if (cl->cl_fsc != NULL) {
1592 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1593 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1594 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1595 	} else {
1596 		sp->fsc.m1 = 0;
1597 		sp->fsc.d = 0;
1598 		sp->fsc.m2 = 0;
1599 	}
1600 	if (cl->cl_usc != NULL) {
1601 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1602 		sp->usc.d = dx2d(cl->cl_usc->dx);
1603 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1604 	} else {
1605 		sp->usc.m1 = 0;
1606 		sp->usc.d = 0;
1607 		sp->usc.m2 = 0;
1608 	}
1609 
1610 	sp->total = cl->cl_total;
1611 	sp->cumul = cl->cl_cumul;
1612 
1613 	sp->d = cl->cl_d;
1614 	sp->e = cl->cl_e;
1615 	sp->vt = cl->cl_vt;
1616 	sp->f = cl->cl_f;
1617 
1618 	sp->initvt = cl->cl_initvt;
1619 	sp->vtperiod = cl->cl_vtperiod;
1620 	sp->parentperiod = cl->cl_parentperiod;
1621 	sp->nactive = cl->cl_nactive;
1622 	sp->vtoff = cl->cl_vtoff;
1623 	sp->cvtmax = cl->cl_cvtmax;
1624 	sp->myf = cl->cl_myf;
1625 	sp->cfmin = cl->cl_cfmin;
1626 	sp->cvtmin = cl->cl_cvtmin;
1627 	sp->myfadj = cl->cl_myfadj;
1628 	sp->vtadj = cl->cl_vtadj;
1629 
1630 	sp->cur_time = read_machclk();
1631 	sp->machclk_freq = machclk_freq;
1632 
1633 	sp->qlength = qlen(cl->cl_q);
1634 	sp->qlimit = qlimit(cl->cl_q);
1635 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1636 	sp->drop_cnt = cl->cl_stats.drop_cnt;
1637 	sp->period = cl->cl_stats.period;
1638 
1639 	sp->qtype = qtype(cl->cl_q);
1640 #ifdef ALTQ_RED
1641 	if (q_is_red(cl->cl_q))
1642 		red_getstats(cl->cl_red, &sp->red[0]);
1643 #endif
1644 #ifdef ALTQ_RIO
1645 	if (q_is_rio(cl->cl_q))
1646 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1647 #endif
1648 }
1649 
1650 /* convert a class handle to the corresponding class pointer */
1651 static struct hfsc_class *
1652 clh_to_clp(struct hfsc_if *hif, uint32_t chandle)
1653 {
1654 	int i;
1655 	struct hfsc_class *cl;
1656 
1657 	if (chandle == 0)
1658 		return (NULL);
1659 	/*
1660 	 * first, try optimistically the slot matching the lower bits of
1661 	 * the handle.  if it fails, do the linear table search.
1662 	 */
1663 	i = chandle % HFSC_MAX_CLASSES;
1664 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1665 		return (cl);
1666 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1667 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1668 		    cl->cl_handle == chandle)
1669 			return (cl);
1670 	return (NULL);
1671 }
1672 
1673 #endif /* ALTQ_HFSC */
1674