xref: /dragonfly/sys/net/altq/altq_hfsc.c (revision 548a3528)
1 /*	$KAME: altq_hfsc.c,v 1.25 2004/04/17 10:54:48 kjc Exp $	*/
2 
3 /*
4  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
5  *
6  * Permission to use, copy, modify, and distribute this software and
7  * its documentation is hereby granted (including for commercial or
8  * for-profit use), provided that both the copyright notice and this
9  * permission notice appear in all copies of the software, derivative
10  * works, or modified versions, and any portions thereof.
11  *
12  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
13  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
14  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
15  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
20  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
21  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
24  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
25  * DAMAGE.
26  *
27  * Carnegie Mellon encourages (but does not require) users of this
28  * software to return any improvements or extensions that they make,
29  * and to grant Carnegie Mellon the rights to redistribute these
30  * changes without encumbrance.
31  */
32 /*
33  * H-FSC is described in Proceedings of SIGCOMM'97,
34  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
35  * Real-Time and Priority Service"
36  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
37  *
38  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
39  * when a class has an upperlimit, the fit-time is computed from the
40  * upperlimit service curve.  the link-sharing scheduler does not schedule
41  * a class whose fit-time exceeds the current time.
42  */
43 
44 #include "opt_altq.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 
48 #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
49 
50 #include <sys/param.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/socket.h>
54 #include <sys/systm.h>
55 #include <sys/errno.h>
56 #include <sys/queue.h>
57 #include <sys/thread.h>
58 
59 #include <net/if.h>
60 #include <net/ifq_var.h>
61 #include <netinet/in.h>
62 
63 #include <net/pf/pfvar.h>
64 #include <net/altq/altq.h>
65 #include <net/altq/altq_hfsc.h>
66 
67 #include <sys/thread2.h>
68 
69 #define HFSC_SUBQ_INDEX		ALTQ_SUBQ_INDEX_DEFAULT
70 #define HFSC_LOCK(ifq) \
71     ALTQ_SQ_LOCK(&(ifq)->altq_subq[HFSC_SUBQ_INDEX])
72 #define HFSC_UNLOCK(ifq) \
73     ALTQ_SQ_UNLOCK(&(ifq)->altq_subq[HFSC_SUBQ_INDEX])
74 
75 /*
76  * function prototypes
77  */
78 static int	hfsc_clear_interface(struct hfsc_if *);
79 static int	hfsc_request(struct ifaltq_subque *, int, void *);
80 static void	hfsc_purge(struct hfsc_if *);
81 static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
82 					    struct service_curve *,
83 					    struct service_curve *,
84 					    struct service_curve *,
85 					    struct hfsc_class *, int, int, int);
86 static int	hfsc_class_destroy(struct hfsc_class *);
87 static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
88 static int	hfsc_enqueue(struct ifaltq_subque *, struct mbuf *,
89 			     struct altq_pktattr *);
90 static struct mbuf *hfsc_dequeue(struct ifaltq_subque *, int);
91 
92 static int	hfsc_addq(struct hfsc_class *, struct mbuf *);
93 static struct mbuf *hfsc_getq(struct hfsc_class *);
94 static struct mbuf *hfsc_pollq(struct hfsc_class *);
95 static void	hfsc_purgeq(struct hfsc_class *);
96 
97 static void	update_cfmin(struct hfsc_class *);
98 static void	set_active(struct hfsc_class *, int);
99 static void	set_passive(struct hfsc_class *);
100 
101 static void	init_ed(struct hfsc_class *, int);
102 static void	update_ed(struct hfsc_class *, int);
103 static void	update_d(struct hfsc_class *, int);
104 static void	init_vf(struct hfsc_class *, int);
105 static void	update_vf(struct hfsc_class *, int, uint64_t);
106 static ellist_t *ellist_alloc(void);
107 static void	ellist_destroy(ellist_t *);
108 static void	ellist_insert(struct hfsc_class *);
109 static void	ellist_remove(struct hfsc_class *);
110 static void	ellist_update(struct hfsc_class *);
111 struct hfsc_class *ellist_get_mindl(ellist_t *, uint64_t);
112 static actlist_t *actlist_alloc(void);
113 static void	actlist_destroy(actlist_t *);
114 static void	actlist_insert(struct hfsc_class *);
115 static void	actlist_remove(struct hfsc_class *);
116 static void	actlist_update(struct hfsc_class *);
117 
118 static struct hfsc_class *actlist_firstfit(struct hfsc_class *, uint64_t);
119 
120 static __inline uint64_t	seg_x2y(uint64_t, uint64_t);
121 static __inline uint64_t	seg_y2x(uint64_t, uint64_t);
122 static __inline uint64_t	m2sm(u_int);
123 static __inline uint64_t	m2ism(u_int);
124 static __inline uint64_t	d2dx(u_int);
125 static u_int			sm2m(uint64_t);
126 static u_int			dx2d(uint64_t);
127 
128 static void	sc2isc(struct service_curve *, struct internal_sc *);
129 static void	rtsc_init(struct runtime_sc *, struct internal_sc *,
130 			  uint64_t, uint64_t);
131 static uint64_t	rtsc_y2x(struct runtime_sc *, uint64_t);
132 static uint64_t	rtsc_x2y(struct runtime_sc *, uint64_t);
133 static void	rtsc_min(struct runtime_sc *, struct internal_sc *,
134 			 uint64_t, uint64_t);
135 
136 static void	get_class_stats(struct hfsc_classstats *, struct hfsc_class *);
137 static struct hfsc_class *clh_to_clp(struct hfsc_if *, uint32_t);
138 
139 /*
140  * macros
141  */
142 #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
143 
144 #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
145 
146 int
147 hfsc_pfattach(struct pf_altq *a, struct ifaltq *ifq)
148 {
149 	return altq_attach(ifq, ALTQT_HFSC, a->altq_disc, ifq_mapsubq_default,
150 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
151 }
152 
153 int
154 hfsc_add_altq(struct pf_altq *a)
155 {
156 	struct hfsc_if *hif;
157 	struct ifnet *ifp;
158 
159 	if ((ifp = ifunit(a->ifname)) == NULL)
160 		return (EINVAL);
161 	if (!ifq_is_ready(&ifp->if_snd))
162 		return (ENODEV);
163 
164 	hif = kmalloc(sizeof(struct hfsc_if), M_ALTQ, M_WAITOK | M_ZERO);
165 
166 	hif->hif_eligible = ellist_alloc();
167 	hif->hif_ifq = &ifp->if_snd;
168 	ifq_purge_all(&ifp->if_snd);
169 
170 	/* keep the state in pf_altq */
171 	a->altq_disc = hif;
172 
173 	return (0);
174 }
175 
176 int
177 hfsc_remove_altq(struct pf_altq *a)
178 {
179 	struct hfsc_if *hif;
180 
181 	if ((hif = a->altq_disc) == NULL)
182 		return (EINVAL);
183 	a->altq_disc = NULL;
184 
185 	hfsc_clear_interface(hif);
186 	hfsc_class_destroy(hif->hif_rootclass);
187 
188 	ellist_destroy(hif->hif_eligible);
189 
190 	kfree(hif, M_ALTQ);
191 
192 	return (0);
193 }
194 
195 static int
196 hfsc_add_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
197 {
198 	struct hfsc_class *cl, *parent;
199 	struct hfsc_opts *opts;
200 	struct service_curve rtsc, lssc, ulsc;
201 
202 	KKASSERT(a->qid != 0);
203 
204 	opts = &a->pq_u.hfsc_opts;
205 
206 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE && hif->hif_rootclass == NULL)
207 		parent = NULL;
208 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
209 		return (EINVAL);
210 
211 	if (clh_to_clp(hif, a->qid) != NULL)
212 		return (EBUSY);
213 
214 	rtsc.m1 = opts->rtsc_m1;
215 	rtsc.d  = opts->rtsc_d;
216 	rtsc.m2 = opts->rtsc_m2;
217 	lssc.m1 = opts->lssc_m1;
218 	lssc.d  = opts->lssc_d;
219 	lssc.m2 = opts->lssc_m2;
220 	ulsc.m1 = opts->ulsc_m1;
221 	ulsc.d  = opts->ulsc_d;
222 	ulsc.m2 = opts->ulsc_m2;
223 
224 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc, parent, a->qlimit,
225 			       opts->flags, a->qid);
226 	if (cl == NULL)
227 		return (ENOMEM);
228 
229 	return (0);
230 }
231 
232 int
233 hfsc_add_queue(struct pf_altq *a)
234 {
235 	struct hfsc_if *hif;
236 	struct ifaltq *ifq;
237 	int error;
238 
239 	if (a->qid == 0)
240 		return (EINVAL);
241 
242 	/* XXX not MP safe */
243 	if ((hif = a->altq_disc) == NULL)
244 		return (EINVAL);
245 	ifq = hif->hif_ifq;
246 
247 	HFSC_LOCK(ifq);
248 	error = hfsc_add_queue_locked(a, hif);
249 	HFSC_UNLOCK(ifq);
250 
251 	return error;
252 }
253 
254 static int
255 hfsc_remove_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
256 {
257 	struct hfsc_class *cl;
258 
259 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
260 		return (EINVAL);
261 
262 	return (hfsc_class_destroy(cl));
263 }
264 
265 int
266 hfsc_remove_queue(struct pf_altq *a)
267 {
268 	struct hfsc_if *hif;
269 	struct ifaltq *ifq;
270 	int error;
271 
272 	/* XXX not MP safe */
273 	if ((hif = a->altq_disc) == NULL)
274 		return (EINVAL);
275 	ifq = hif->hif_ifq;
276 
277 	HFSC_LOCK(ifq);
278 	error = hfsc_remove_queue_locked(a, hif);
279 	HFSC_UNLOCK(ifq);
280 
281 	return error;
282 }
283 
284 int
285 hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
286 {
287 	struct hfsc_if *hif;
288 	struct hfsc_class *cl;
289 	struct hfsc_classstats stats;
290 	struct ifaltq *ifq;
291 	int error = 0;
292 
293 	if (*nbytes < sizeof(stats))
294 		return (EINVAL);
295 
296 	/* XXX not MP safe */
297 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
298 		return (EBADF);
299 	ifq = hif->hif_ifq;
300 
301 	HFSC_LOCK(ifq);
302 
303 	if ((cl = clh_to_clp(hif, a->qid)) == NULL) {
304 		HFSC_UNLOCK(ifq);
305 		return (EINVAL);
306 	}
307 
308 	get_class_stats(&stats, cl);
309 
310 	HFSC_UNLOCK(ifq);
311 
312 	if ((error = copyout((caddr_t)&stats, ubuf, sizeof(stats))) != 0)
313 		return (error);
314 	*nbytes = sizeof(stats);
315 	return (0);
316 }
317 
318 /*
319  * bring the interface back to the initial state by discarding
320  * all the filters and classes except the root class.
321  */
322 static int
323 hfsc_clear_interface(struct hfsc_if *hif)
324 {
325 	struct hfsc_class *cl;
326 
327 	if (hif->hif_rootclass == NULL)
328 		return (0);
329 
330 
331 	/* clear out the classes */
332 	while ((cl = hif->hif_rootclass->cl_children) != NULL) {
333 		/*
334 		 * remove the first leaf class found in the hierarchy
335 		 * then start over
336 		 */
337 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
338 			if (!is_a_parent_class(cl)) {
339 				hfsc_class_destroy(cl);
340 				break;
341 			}
342 		}
343 	}
344 
345 	return (0);
346 }
347 
348 static int
349 hfsc_request(struct ifaltq_subque *ifsq, int req, void *arg)
350 {
351 	struct ifaltq *ifq = ifsq->ifsq_altq;
352 	struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
353 
354 	crit_enter();
355 	switch (req) {
356 	case ALTRQ_PURGE:
357 		if (ifsq_get_index(ifsq) == HFSC_SUBQ_INDEX) {
358 			hfsc_purge(hif);
359 		} else {
360 			/*
361 			 * Race happened, the unrelated subqueue was
362 			 * picked during the packet scheduler transition.
363 			 */
364 			ifsq_classic_request(ifsq, ALTRQ_PURGE, NULL);
365 		}
366 		break;
367 	}
368 	crit_exit();
369 	return (0);
370 }
371 
372 /* discard all the queued packets on the interface */
373 static void
374 hfsc_purge(struct hfsc_if *hif)
375 {
376 	struct hfsc_class *cl;
377 
378 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) {
379 		if (!qempty(cl->cl_q))
380 			hfsc_purgeq(cl);
381 	}
382 	if (ifq_is_enabled(hif->hif_ifq))
383 		ALTQ_SQ_CNTR_RESET(&hif->hif_ifq->altq_subq[HFSC_SUBQ_INDEX]);
384 }
385 
386 struct hfsc_class *
387 hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
388 		  struct service_curve *fsc, struct service_curve *usc,
389 		  struct hfsc_class *parent, int qlimit, int flags, int qid)
390 {
391 	struct hfsc_class *cl, *p;
392 	int i;
393 
394 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
395 		return (NULL);
396 
397 #ifndef ALTQ_RED
398 	if (flags & HFCF_RED) {
399 #ifdef ALTQ_DEBUG
400 		kprintf("hfsc_class_create: RED not configured for HFSC!\n");
401 #endif
402 		return (NULL);
403 	}
404 #endif
405 
406 	cl = kmalloc(sizeof(*cl), M_ALTQ, M_WAITOK | M_ZERO);
407 	cl->cl_q = kmalloc(sizeof(*cl->cl_q), M_ALTQ, M_WAITOK | M_ZERO);
408 	cl->cl_actc = actlist_alloc();
409 
410 	if (qlimit == 0)
411 		qlimit = 50;  /* use default */
412 	qlimit(cl->cl_q) = qlimit;
413 	qtype(cl->cl_q) = Q_DROPTAIL;
414 	qlen(cl->cl_q) = 0;
415 	cl->cl_flags = flags;
416 #ifdef ALTQ_RED
417 	if (flags & (HFCF_RED|HFCF_RIO)) {
418 		int red_flags, red_pkttime;
419 		u_int m2;
420 
421 		m2 = 0;
422 		if (rsc != NULL && rsc->m2 > m2)
423 			m2 = rsc->m2;
424 		if (fsc != NULL && fsc->m2 > m2)
425 			m2 = fsc->m2;
426 		if (usc != NULL && usc->m2 > m2)
427 			m2 = usc->m2;
428 
429 		red_flags = 0;
430 		if (flags & HFCF_ECN)
431 			red_flags |= REDF_ECN;
432 #ifdef ALTQ_RIO
433 		if (flags & HFCF_CLEARDSCP)
434 			red_flags |= RIOF_CLEARDSCP;
435 #endif
436 		if (m2 < 8)
437 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
438 		else
439 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
440 				* 1000 * 1000 * 1000 / (m2 / 8);
441 		if (flags & HFCF_RED) {
442 			cl->cl_red = red_alloc(0, 0,
443 			    qlimit(cl->cl_q) * 10/100,
444 			    qlimit(cl->cl_q) * 30/100,
445 			    red_flags, red_pkttime);
446 			if (cl->cl_red != NULL)
447 				qtype(cl->cl_q) = Q_RED;
448 		}
449 #ifdef ALTQ_RIO
450 		else {
451 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
452 			    red_flags, red_pkttime);
453 			if (cl->cl_red != NULL)
454 				qtype(cl->cl_q) = Q_RIO;
455 		}
456 #endif
457 	}
458 #endif /* ALTQ_RED */
459 
460 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
461 		cl->cl_rsc = kmalloc(sizeof(*cl->cl_rsc), M_ALTQ, M_WAITOK);
462 		sc2isc(rsc, cl->cl_rsc);
463 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
464 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
465 	}
466 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
467 		cl->cl_fsc = kmalloc(sizeof(*cl->cl_fsc), M_ALTQ, M_WAITOK);
468 		sc2isc(fsc, cl->cl_fsc);
469 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
470 	}
471 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
472 		cl->cl_usc = kmalloc(sizeof(*cl->cl_usc), M_ALTQ, M_WAITOK);
473 		sc2isc(usc, cl->cl_usc);
474 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
475 	}
476 
477 	cl->cl_id = hif->hif_classid++;
478 	cl->cl_handle = qid;
479 	cl->cl_hif = hif;
480 	cl->cl_parent = parent;
481 
482 	crit_enter();
483 	hif->hif_classes++;
484 
485 	/*
486 	 * find a free slot in the class table.  if the slot matching
487 	 * the lower bits of qid is free, use this slot.  otherwise,
488 	 * use the first free slot.
489 	 */
490 	i = qid % HFSC_MAX_CLASSES;
491 	if (hif->hif_class_tbl[i] == NULL)
492 		hif->hif_class_tbl[i] = cl;
493 	else {
494 		for (i = 0; i < HFSC_MAX_CLASSES; i++) {
495 			if (hif->hif_class_tbl[i] == NULL) {
496 				hif->hif_class_tbl[i] = cl;
497 				break;
498 			}
499 		}
500 		if (i == HFSC_MAX_CLASSES) {
501 			crit_exit();
502 			goto err_ret;
503 		}
504 	}
505 
506 	if (flags & HFCF_DEFAULTCLASS)
507 		hif->hif_defaultclass = cl;
508 
509 	if (parent == NULL) {
510 		/* this is root class */
511 		hif->hif_rootclass = cl;
512 	} else if (parent->cl_children == NULL) {
513 		/* add this class to the children list of the parent */
514 		parent->cl_children = cl;
515 	} else {
516 		p = parent->cl_children;
517 		while (p->cl_siblings != NULL)
518 			p = p->cl_siblings;
519 		p->cl_siblings = cl;
520 	}
521 	crit_exit();
522 
523 	return (cl);
524 
525  err_ret:
526 	if (cl->cl_actc != NULL)
527 		actlist_destroy(cl->cl_actc);
528 	if (cl->cl_red != NULL) {
529 #ifdef ALTQ_RIO
530 		if (q_is_rio(cl->cl_q))
531 			rio_destroy((rio_t *)cl->cl_red);
532 #endif
533 #ifdef ALTQ_RED
534 		if (q_is_red(cl->cl_q))
535 			red_destroy(cl->cl_red);
536 #endif
537 	}
538 	if (cl->cl_fsc != NULL)
539 		kfree(cl->cl_fsc, M_ALTQ);
540 	if (cl->cl_rsc != NULL)
541 		kfree(cl->cl_rsc, M_ALTQ);
542 	if (cl->cl_usc != NULL)
543 		kfree(cl->cl_usc, M_ALTQ);
544 	if (cl->cl_q != NULL)
545 		kfree(cl->cl_q, M_ALTQ);
546 	kfree(cl, M_ALTQ);
547 	return (NULL);
548 }
549 
550 static int
551 hfsc_class_destroy(struct hfsc_class *cl)
552 {
553 	struct hfsc_if *hif;
554 	int i;
555 
556 	if (cl == NULL)
557 		return (0);
558 	hif = cl->cl_hif;
559 
560 	if (is_a_parent_class(cl))
561 		return (EBUSY);
562 
563 	crit_enter();
564 
565 	if (!qempty(cl->cl_q))
566 		hfsc_purgeq(cl);
567 
568 	if (cl->cl_parent == NULL) {
569 		/* this is root class */
570 	} else {
571 		struct hfsc_class *p = cl->cl_parent->cl_children;
572 
573 		if (p == cl) {
574 			cl->cl_parent->cl_children = cl->cl_siblings;
575 		} else {
576 			do {
577 				if (p->cl_siblings == cl) {
578 					p->cl_siblings = cl->cl_siblings;
579 					break;
580 				}
581 			} while ((p = p->cl_siblings) != NULL);
582 		}
583 		KKASSERT(p != NULL);
584 	}
585 
586 	for (i = 0; i < HFSC_MAX_CLASSES; i++) {
587 		if (hif->hif_class_tbl[i] == cl) {
588 			hif->hif_class_tbl[i] = NULL;
589 			break;
590 		}
591 	}
592 
593 	hif->hif_classes--;
594 	crit_exit();
595 
596 	actlist_destroy(cl->cl_actc);
597 
598 	if (cl->cl_red != NULL) {
599 #ifdef ALTQ_RIO
600 		if (q_is_rio(cl->cl_q))
601 			rio_destroy((rio_t *)cl->cl_red);
602 #endif
603 #ifdef ALTQ_RED
604 		if (q_is_red(cl->cl_q))
605 			red_destroy(cl->cl_red);
606 #endif
607 	}
608 
609 	if (cl == hif->hif_rootclass)
610 		hif->hif_rootclass = NULL;
611 	if (cl == hif->hif_defaultclass)
612 		hif->hif_defaultclass = NULL;
613 	if (cl == hif->hif_pollcache)
614 		hif->hif_pollcache = NULL;
615 
616 	if (cl->cl_usc != NULL)
617 		kfree(cl->cl_usc, M_ALTQ);
618 	if (cl->cl_fsc != NULL)
619 		kfree(cl->cl_fsc, M_ALTQ);
620 	if (cl->cl_rsc != NULL)
621 		kfree(cl->cl_rsc, M_ALTQ);
622 	kfree(cl->cl_q, M_ALTQ);
623 	kfree(cl, M_ALTQ);
624 
625 	return (0);
626 }
627 
628 /*
629  * hfsc_nextclass returns the next class in the tree.
630  *   usage:
631  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
632  *		do_something;
633  */
634 static struct hfsc_class *
635 hfsc_nextclass(struct hfsc_class *cl)
636 {
637 	if (cl->cl_children != NULL) {
638 		cl = cl->cl_children;
639 	} else if (cl->cl_siblings != NULL) {
640 		cl = cl->cl_siblings;
641 	} else {
642 		while ((cl = cl->cl_parent) != NULL) {
643 			if (cl->cl_siblings != NULL) {
644 				cl = cl->cl_siblings;
645 				break;
646 			}
647 		}
648 	}
649 
650 	return (cl);
651 }
652 
653 /*
654  * hfsc_enqueue is an enqueue function to be registered to
655  * (*ifsq_enqueue) in struct ifaltq_subque.
656  */
657 static int
658 hfsc_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
659     struct altq_pktattr *pktattr)
660 {
661 	struct ifaltq *ifq = ifsq->ifsq_altq;
662 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
663 	struct hfsc_class *cl;
664 	int len;
665 
666 	if (ifsq_get_index(ifsq) != HFSC_SUBQ_INDEX) {
667 		/*
668 		 * Race happened, the unrelated subqueue was
669 		 * picked during the packet scheduler transition.
670 		 */
671 		ifsq_classic_request(ifsq, ALTRQ_PURGE, NULL);
672 		m_freem(m);
673 		return ENOBUFS;
674 	}
675 
676 	/* grab class set by classifier */
677 	M_ASSERTPKTHDR(m);
678 	crit_enter();
679 	if (m->m_pkthdr.fw_flags & PF_MBUF_STRUCTURE)
680 		cl = clh_to_clp(hif, m->m_pkthdr.pf.qid);
681 	else
682 		cl = NULL;
683 	if (cl == NULL || is_a_parent_class(cl)) {
684 		cl = hif->hif_defaultclass;
685 		if (cl == NULL) {
686 			m_freem(m);
687 			crit_exit();
688 			return (ENOBUFS);
689 		}
690 	}
691 	cl->cl_pktattr = NULL;
692 	len = m_pktlen(m);
693 	if (hfsc_addq(cl, m) != 0) {
694 		/* drop occurred.  mbuf was freed in hfsc_addq. */
695 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
696 		crit_exit();
697 		return (ENOBUFS);
698 	}
699 	ALTQ_SQ_PKTCNT_INC(ifsq);
700 	cl->cl_hif->hif_packets++;
701 
702 	/* successfully queued. */
703 	if (qlen(cl->cl_q) == 1)
704 		set_active(cl, m_pktlen(m));
705 	crit_exit();
706 	return (0);
707 }
708 
709 /*
710  * hfsc_dequeue is a dequeue function to be registered to
711  * (*ifsq_dequeue) in struct ifaltq_subque.
712  *
713  * note: ALTDQ_POLL returns the next packet without removing the packet
714  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
715  */
716 static struct mbuf *
717 hfsc_dequeue(struct ifaltq_subque *ifsq, int op)
718 {
719 	struct ifaltq *ifq = ifsq->ifsq_altq;
720 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
721 	struct hfsc_class *cl;
722 	struct mbuf *m;
723 	int len, next_len;
724 	int realtime = 0;
725 	uint64_t cur_time;
726 
727 	if (ifsq_get_index(ifsq) != HFSC_SUBQ_INDEX) {
728 		/*
729 		 * Race happened, the unrelated subqueue was
730 		 * picked during the packet scheduler transition.
731 		 */
732 		ifsq_classic_request(ifsq, ALTRQ_PURGE, NULL);
733 		return NULL;
734 	}
735 
736 	if (hif->hif_packets == 0) {
737 		/* no packet in the tree */
738 		return (NULL);
739 	}
740 
741 	crit_enter();
742 	cur_time = read_machclk();
743 
744 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
745 		cl = hif->hif_pollcache;
746 		hif->hif_pollcache = NULL;
747 		/* check if the class was scheduled by real-time criteria */
748 		if (cl->cl_rsc != NULL)
749 			realtime = (cl->cl_e <= cur_time);
750 	} else {
751 		/*
752 		 * if there are eligible classes, use real-time criteria.
753 		 * find the class with the minimum deadline among
754 		 * the eligible classes.
755 		 */
756 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time)) != NULL) {
757 			realtime = 1;
758 		} else {
759 #ifdef ALTQ_DEBUG
760 			int fits = 0;
761 #endif
762 			/*
763 			 * use link-sharing criteria
764 			 * get the class with the minimum vt in the hierarchy
765 			 */
766 			cl = hif->hif_rootclass;
767 			while (is_a_parent_class(cl)) {
768 
769 				cl = actlist_firstfit(cl, cur_time);
770 				if (cl == NULL) {
771 #ifdef ALTQ_DEBUG
772 					if (fits > 0)
773 						kprintf("%d fit but none found\n",fits);
774 #endif
775 					m = NULL;
776 					goto done;
777 				}
778 				/*
779 				 * update parent's cl_cvtmin.
780 				 * don't update if the new vt is smaller.
781 				 */
782 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
783 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
784 #ifdef ALTQ_DEBUG
785 				fits++;
786 #endif
787 			}
788 		}
789 
790 		if (op == ALTDQ_POLL) {
791 #ifdef foo
792 			/*
793 			 * Don't use poll cache; the poll/dequeue
794 			 * model is no longer applicable to SMP
795 			 * system.  e.g.
796 			 *    CPU-A            CPU-B
797 			 *      :                :
798 			 *    poll               :
799 			 *      :              poll
800 			 *    dequeue (+)        :
801 			 *
802 			 * The dequeue at (+) will hit the poll
803 			 * cache set by CPU-B.
804 			 */
805 			hif->hif_pollcache = cl;
806 #endif
807 			m = hfsc_pollq(cl);
808 			goto done;
809 		}
810 	}
811 
812 	m = hfsc_getq(cl);
813 	if (m == NULL)
814 		panic("hfsc_dequeue:");
815 	len = m_pktlen(m);
816 	cl->cl_hif->hif_packets--;
817 	ALTQ_SQ_PKTCNT_DEC(ifsq);
818 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
819 
820 	update_vf(cl, len, cur_time);
821 	if (realtime)
822 		cl->cl_cumul += len;
823 
824 	if (!qempty(cl->cl_q)) {
825 		if (cl->cl_rsc != NULL) {
826 			/* update ed */
827 			next_len = m_pktlen(qhead(cl->cl_q));
828 
829 			if (realtime)
830 				update_ed(cl, next_len);
831 			else
832 				update_d(cl, next_len);
833 		}
834 	} else {
835 		/* the class becomes passive */
836 		set_passive(cl);
837 	}
838 done:
839 	crit_exit();
840 	return (m);
841 }
842 
843 static int
844 hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
845 {
846 
847 #ifdef ALTQ_RIO
848 	if (q_is_rio(cl->cl_q))
849 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
850 				m, cl->cl_pktattr);
851 #endif
852 #ifdef ALTQ_RED
853 	if (q_is_red(cl->cl_q))
854 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
855 #endif
856 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
857 		m_freem(m);
858 		return (-1);
859 	}
860 
861 	if (cl->cl_flags & HFCF_CLEARDSCP)
862 		write_dsfield(m, cl->cl_pktattr, 0);
863 
864 	_addq(cl->cl_q, m);
865 
866 	return (0);
867 }
868 
869 static struct mbuf *
870 hfsc_getq(struct hfsc_class *cl)
871 {
872 #ifdef ALTQ_RIO
873 	if (q_is_rio(cl->cl_q))
874 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
875 #endif
876 #ifdef ALTQ_RED
877 	if (q_is_red(cl->cl_q))
878 		return red_getq(cl->cl_red, cl->cl_q);
879 #endif
880 	return _getq(cl->cl_q);
881 }
882 
883 static struct mbuf *
884 hfsc_pollq(struct hfsc_class *cl)
885 {
886 	return qhead(cl->cl_q);
887 }
888 
889 static void
890 hfsc_purgeq(struct hfsc_class *cl)
891 {
892 	struct mbuf *m;
893 
894 	if (qempty(cl->cl_q))
895 		return;
896 
897 	while ((m = _getq(cl->cl_q)) != NULL) {
898 		ALTQ_SQ_PKTCNT_DEC(
899 		    &cl->cl_hif->hif_ifq->altq_subq[HFSC_SUBQ_INDEX]);
900 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
901 		m_freem(m);
902 		cl->cl_hif->hif_packets--;
903 	}
904 	KKASSERT(qlen(cl->cl_q) == 0);
905 
906 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
907 	set_passive(cl);
908 }
909 
910 static void
911 set_active(struct hfsc_class *cl, int len)
912 {
913 	if (cl->cl_rsc != NULL)
914 		init_ed(cl, len);
915 	if (cl->cl_fsc != NULL)
916 		init_vf(cl, len);
917 
918 	cl->cl_stats.period++;
919 }
920 
921 static void
922 set_passive(struct hfsc_class *cl)
923 {
924 	if (cl->cl_rsc != NULL)
925 		ellist_remove(cl);
926 
927 	/*
928 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
929 	 * needs to be called explicitly to remove a class from actlist
930 	 */
931 }
932 
933 static void
934 init_ed(struct hfsc_class *cl, int next_len)
935 {
936 	uint64_t cur_time;
937 
938 	cur_time = read_machclk();
939 
940 	/* update the deadline curve */
941 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
942 
943 	/*
944 	 * update the eligible curve.
945 	 * for concave, it is equal to the deadline curve.
946 	 * for convex, it is a linear curve with slope m2.
947 	 */
948 	cl->cl_eligible = cl->cl_deadline;
949 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
950 		cl->cl_eligible.dx = 0;
951 		cl->cl_eligible.dy = 0;
952 	}
953 
954 	/* compute e and d */
955 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
956 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
957 
958 	ellist_insert(cl);
959 }
960 
961 static void
962 update_ed(struct hfsc_class *cl, int next_len)
963 {
964 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
965 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
966 
967 	ellist_update(cl);
968 }
969 
970 static void
971 update_d(struct hfsc_class *cl, int next_len)
972 {
973 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
974 }
975 
976 static void
977 init_vf(struct hfsc_class *cl, int len)
978 {
979 	struct hfsc_class *max_cl, *p;
980 	uint64_t vt, f, cur_time;
981 	int go_active;
982 
983 	cur_time = 0;
984 	go_active = 1;
985 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
986 		if (go_active && cl->cl_nactive++ == 0)
987 			go_active = 1;
988 		else
989 			go_active = 0;
990 
991 		if (go_active) {
992 			max_cl = actlist_last(cl->cl_parent->cl_actc);
993 			if (max_cl != NULL) {
994 				/*
995 				 * set vt to the average of the min and max
996 				 * classes.  if the parent's period didn't
997 				 * change, don't decrease vt of the class.
998 				 */
999 				vt = max_cl->cl_vt;
1000 				if (cl->cl_parent->cl_cvtmin != 0)
1001 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
1002 
1003 				if (cl->cl_parent->cl_vtperiod !=
1004 				    cl->cl_parentperiod || vt > cl->cl_vt)
1005 					cl->cl_vt = vt;
1006 			} else {
1007 				/*
1008 				 * first child for a new parent backlog period.
1009 				 * add parent's cvtmax to vtoff of children
1010 				 * to make a new vt (vtoff + vt) larger than
1011 				 * the vt in the last period for all children.
1012 				 */
1013 				vt = cl->cl_parent->cl_cvtmax;
1014 				for (p = cl->cl_parent->cl_children; p != NULL;
1015 				     p = p->cl_siblings)
1016 					p->cl_vtoff += vt;
1017 				cl->cl_vt = 0;
1018 				cl->cl_parent->cl_cvtmax = 0;
1019 				cl->cl_parent->cl_cvtmin = 0;
1020 			}
1021 			cl->cl_initvt = cl->cl_vt;
1022 
1023 			/* update the virtual curve */
1024 			vt = cl->cl_vt + cl->cl_vtoff;
1025 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1026 			if (cl->cl_virtual.x == vt) {
1027 				cl->cl_virtual.x -= cl->cl_vtoff;
1028 				cl->cl_vtoff = 0;
1029 			}
1030 			cl->cl_vtadj = 0;
1031 
1032 			cl->cl_vtperiod++;  /* increment vt period */
1033 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1034 			if (cl->cl_parent->cl_nactive == 0)
1035 				cl->cl_parentperiod++;
1036 			cl->cl_f = 0;
1037 
1038 			actlist_insert(cl);
1039 
1040 			if (cl->cl_usc != NULL) {
1041 				/* class has upper limit curve */
1042 				if (cur_time == 0)
1043 					cur_time = read_machclk();
1044 
1045 				/* update the ulimit curve */
1046 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1047 				    cl->cl_total);
1048 				/* compute myf */
1049 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1050 				    cl->cl_total);
1051 				cl->cl_myfadj = 0;
1052 			}
1053 		}
1054 
1055 		if (cl->cl_myf > cl->cl_cfmin)
1056 			f = cl->cl_myf;
1057 		else
1058 			f = cl->cl_cfmin;
1059 		if (f != cl->cl_f) {
1060 			cl->cl_f = f;
1061 			update_cfmin(cl->cl_parent);
1062 		}
1063 	}
1064 }
1065 
1066 static void
1067 update_vf(struct hfsc_class *cl, int len, uint64_t cur_time)
1068 {
1069 	uint64_t f, myf_bound, delta;
1070 	int go_passive;
1071 
1072 	go_passive = qempty(cl->cl_q);
1073 
1074 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1075 		cl->cl_total += len;
1076 
1077 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1078 			continue;
1079 
1080 		if (go_passive && --cl->cl_nactive == 0)
1081 			go_passive = 1;
1082 		else
1083 			go_passive = 0;
1084 
1085 		if (go_passive) {
1086 			/* no more active child, going passive */
1087 
1088 			/* update cvtmax of the parent class */
1089 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1090 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1091 
1092 			/* remove this class from the vt list */
1093 			actlist_remove(cl);
1094 
1095 			update_cfmin(cl->cl_parent);
1096 
1097 			continue;
1098 		}
1099 
1100 		/*
1101 		 * update vt and f
1102 		 */
1103 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1104 		    - cl->cl_vtoff + cl->cl_vtadj;
1105 
1106 		/*
1107 		 * if vt of the class is smaller than cvtmin,
1108 		 * the class was skipped in the past due to non-fit.
1109 		 * if so, we need to adjust vtadj.
1110 		 */
1111 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1112 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1113 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1114 		}
1115 
1116 		/* update the vt list */
1117 		actlist_update(cl);
1118 
1119 		if (cl->cl_usc != NULL) {
1120 			cl->cl_myf = cl->cl_myfadj
1121 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1122 
1123 			/*
1124 			 * if myf lags behind by more than one clock tick
1125 			 * from the current time, adjust myfadj to prevent
1126 			 * a rate-limited class from going greedy.
1127 			 * in a steady state under rate-limiting, myf
1128 			 * fluctuates within one clock tick.
1129 			 */
1130 			myf_bound = cur_time - machclk_per_tick;
1131 			if (cl->cl_myf < myf_bound) {
1132 				delta = cur_time - cl->cl_myf;
1133 				cl->cl_myfadj += delta;
1134 				cl->cl_myf += delta;
1135 			}
1136 		}
1137 
1138 		/* cl_f is max(cl_myf, cl_cfmin) */
1139 		if (cl->cl_myf > cl->cl_cfmin)
1140 			f = cl->cl_myf;
1141 		else
1142 			f = cl->cl_cfmin;
1143 		if (f != cl->cl_f) {
1144 			cl->cl_f = f;
1145 			update_cfmin(cl->cl_parent);
1146 		}
1147 	}
1148 }
1149 
1150 static void
1151 update_cfmin(struct hfsc_class *cl)
1152 {
1153 	struct hfsc_class *p;
1154 	uint64_t cfmin;
1155 
1156 	if (TAILQ_EMPTY(cl->cl_actc)) {
1157 		cl->cl_cfmin = 0;
1158 		return;
1159 	}
1160 	cfmin = HT_INFINITY;
1161 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1162 		if (p->cl_f == 0) {
1163 			cl->cl_cfmin = 0;
1164 			return;
1165 		}
1166 		if (p->cl_f < cfmin)
1167 			cfmin = p->cl_f;
1168 	}
1169 	cl->cl_cfmin = cfmin;
1170 }
1171 
1172 /*
1173  * TAILQ based ellist and actlist implementation
1174  * (ion wanted to make a calendar queue based implementation)
1175  */
1176 /*
1177  * eligible list holds backlogged classes being sorted by their eligible times.
1178  * there is one eligible list per interface.
1179  */
1180 
1181 static ellist_t *
1182 ellist_alloc(void)
1183 {
1184 	ellist_t *head;
1185 
1186 	head = kmalloc(sizeof(*head), M_ALTQ, M_WAITOK);
1187 	TAILQ_INIT(head);
1188 	return (head);
1189 }
1190 
1191 static void
1192 ellist_destroy(ellist_t *head)
1193 {
1194 	kfree(head, M_ALTQ);
1195 }
1196 
1197 static void
1198 ellist_insert(struct hfsc_class *cl)
1199 {
1200 	struct hfsc_if *hif = cl->cl_hif;
1201 	struct hfsc_class *p;
1202 
1203 	/* check the last entry first */
1204 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1205 	    p->cl_e <= cl->cl_e) {
1206 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1207 		return;
1208 	}
1209 
1210 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1211 		if (cl->cl_e < p->cl_e) {
1212 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1213 			return;
1214 		}
1215 	}
1216 	KKASSERT(0); /* should not reach here */
1217 }
1218 
1219 static void
1220 ellist_remove(struct hfsc_class *cl)
1221 {
1222 	struct hfsc_if *hif = cl->cl_hif;
1223 
1224 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1225 }
1226 
1227 static void
1228 ellist_update(struct hfsc_class *cl)
1229 {
1230 	struct hfsc_if *hif = cl->cl_hif;
1231 	struct hfsc_class *p, *last;
1232 
1233 	/*
1234 	 * the eligible time of a class increases monotonically.
1235 	 * if the next entry has a larger eligible time, nothing to do.
1236 	 */
1237 	p = TAILQ_NEXT(cl, cl_ellist);
1238 	if (p == NULL || cl->cl_e <= p->cl_e)
1239 		return;
1240 
1241 	/* check the last entry */
1242 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1243 	KKASSERT(last != NULL);
1244 	if (last->cl_e <= cl->cl_e) {
1245 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1246 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1247 		return;
1248 	}
1249 
1250 	/*
1251 	 * the new position must be between the next entry
1252 	 * and the last entry
1253 	 */
1254 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1255 		if (cl->cl_e < p->cl_e) {
1256 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1257 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1258 			return;
1259 		}
1260 	}
1261 	KKASSERT(0); /* should not reach here */
1262 }
1263 
1264 /* find the class with the minimum deadline among the eligible classes */
1265 struct hfsc_class *
1266 ellist_get_mindl(ellist_t *head, uint64_t cur_time)
1267 {
1268 	struct hfsc_class *p, *cl = NULL;
1269 
1270 	TAILQ_FOREACH(p, head, cl_ellist) {
1271 		if (p->cl_e > cur_time)
1272 			break;
1273 		if (cl == NULL || p->cl_d < cl->cl_d)
1274 			cl = p;
1275 	}
1276 	return (cl);
1277 }
1278 
1279 /*
1280  * active children list holds backlogged child classes being sorted
1281  * by their virtual time.
1282  * each intermediate class has one active children list.
1283  */
1284 static actlist_t *
1285 actlist_alloc(void)
1286 {
1287 	actlist_t *head;
1288 
1289 	head = kmalloc(sizeof(*head), M_ALTQ, M_WAITOK);
1290 	TAILQ_INIT(head);
1291 	return (head);
1292 }
1293 
1294 static void
1295 actlist_destroy(actlist_t *head)
1296 {
1297 	kfree(head, M_ALTQ);
1298 }
1299 static void
1300 actlist_insert(struct hfsc_class *cl)
1301 {
1302 	struct hfsc_class *p;
1303 
1304 	/* check the last entry first */
1305 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1306 	    || p->cl_vt <= cl->cl_vt) {
1307 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1308 		return;
1309 	}
1310 
1311 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1312 		if (cl->cl_vt < p->cl_vt) {
1313 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1314 			return;
1315 		}
1316 	}
1317 	KKASSERT(0); /* should not reach here */
1318 }
1319 
1320 static void
1321 actlist_remove(struct hfsc_class *cl)
1322 {
1323 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1324 }
1325 
1326 static void
1327 actlist_update(struct hfsc_class *cl)
1328 {
1329 	struct hfsc_class *p, *last;
1330 
1331 	/*
1332 	 * the virtual time of a class increases monotonically during its
1333 	 * backlogged period.
1334 	 * if the next entry has a larger virtual time, nothing to do.
1335 	 */
1336 	p = TAILQ_NEXT(cl, cl_actlist);
1337 	if (p == NULL || cl->cl_vt < p->cl_vt)
1338 		return;
1339 
1340 	/* check the last entry */
1341 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1342 	KKASSERT(last != NULL);
1343 	if (last->cl_vt <= cl->cl_vt) {
1344 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1345 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1346 		return;
1347 	}
1348 
1349 	/*
1350 	 * the new position must be between the next entry
1351 	 * and the last entry
1352 	 */
1353 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1354 		if (cl->cl_vt < p->cl_vt) {
1355 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1356 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1357 			return;
1358 		}
1359 	}
1360 	KKASSERT(0); /* should not reach here */
1361 }
1362 
1363 static struct hfsc_class *
1364 actlist_firstfit(struct hfsc_class *cl, uint64_t cur_time)
1365 {
1366 	struct hfsc_class *p;
1367 
1368 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1369 		if (p->cl_f <= cur_time)
1370 			return (p);
1371 	}
1372 	return (NULL);
1373 }
1374 
1375 /*
1376  * service curve support functions
1377  *
1378  *  external service curve parameters
1379  *	m: bits/sec
1380  *	d: msec
1381  *  internal service curve parameters
1382  *	sm: (bytes/tsc_interval) << SM_SHIFT
1383  *	ism: (tsc_count/byte) << ISM_SHIFT
1384  *	dx: tsc_count
1385  *
1386  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1387  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1388  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1389  * digits in decimal using the following table.
1390  *
1391  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1392  *  ----------+-------------------------------------------------------
1393  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1394  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1395  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1396  *
1397  *  nsec/byte   80000      8000       800        80         8
1398  *  ism(500MHz) 40000      4000       400        40         4
1399  *  ism(200MHz) 16000      1600       160        16         1.6
1400  */
1401 #define	SM_SHIFT	24
1402 #define	ISM_SHIFT	10
1403 
1404 #define	SM_MASK		((1LL << SM_SHIFT) - 1)
1405 #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1406 
1407 static __inline uint64_t
1408 seg_x2y(uint64_t x, uint64_t sm)
1409 {
1410 	uint64_t y;
1411 
1412 	/*
1413 	 * compute
1414 	 *	y = x * sm >> SM_SHIFT
1415 	 * but divide it for the upper and lower bits to avoid overflow
1416 	 */
1417 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1418 	return (y);
1419 }
1420 
1421 static __inline uint64_t
1422 seg_y2x(uint64_t y, uint64_t ism)
1423 {
1424 	uint64_t x;
1425 
1426 	if (y == 0)
1427 		x = 0;
1428 	else if (ism == HT_INFINITY)
1429 		x = HT_INFINITY;
1430 	else
1431 		x = (y >> ISM_SHIFT) * ism + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1432 
1433 	return (x);
1434 }
1435 
1436 static __inline uint64_t
1437 m2sm(u_int m)
1438 {
1439 	uint64_t sm;
1440 
1441 	sm = ((uint64_t)m << SM_SHIFT) / 8 / machclk_freq;
1442 	return (sm);
1443 }
1444 
1445 static __inline uint64_t
1446 m2ism(u_int m)
1447 {
1448 	uint64_t ism;
1449 
1450 	if (m == 0)
1451 		ism = HT_INFINITY;
1452 	else
1453 		ism = ((uint64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1454 	return (ism);
1455 }
1456 
1457 static __inline uint64_t
1458 d2dx(u_int d)
1459 {
1460 	uint64_t dx;
1461 
1462 	dx = ((uint64_t)d * machclk_freq) / 1000;
1463 	return (dx);
1464 }
1465 
1466 static u_int
1467 sm2m(uint64_t sm)
1468 {
1469 	uint64_t m;
1470 
1471 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1472 	return ((u_int)m);
1473 }
1474 
1475 static u_int
1476 dx2d(uint64_t dx)
1477 {
1478 	uint64_t d;
1479 
1480 	d = dx * 1000 / machclk_freq;
1481 	return ((u_int)d);
1482 }
1483 
1484 static void
1485 sc2isc(struct service_curve *sc, struct internal_sc *isc)
1486 {
1487 	isc->sm1 = m2sm(sc->m1);
1488 	isc->ism1 = m2ism(sc->m1);
1489 	isc->dx = d2dx(sc->d);
1490 	isc->dy = seg_x2y(isc->dx, isc->sm1);
1491 	isc->sm2 = m2sm(sc->m2);
1492 	isc->ism2 = m2ism(sc->m2);
1493 }
1494 
1495 /*
1496  * initialize the runtime service curve with the given internal
1497  * service curve starting at (x, y).
1498  */
1499 static void
1500 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1501 {
1502 	rtsc->x = x;
1503 	rtsc->y = y;
1504 	rtsc->sm1 = isc->sm1;
1505 	rtsc->ism1 = isc->ism1;
1506 	rtsc->dx = isc->dx;
1507 	rtsc->dy = isc->dy;
1508 	rtsc->sm2 = isc->sm2;
1509 	rtsc->ism2 = isc->ism2;
1510 }
1511 
1512 /*
1513  * calculate the y-projection of the runtime service curve by the
1514  * given x-projection value
1515  */
1516 static uint64_t
1517 rtsc_y2x(struct runtime_sc *rtsc, uint64_t y)
1518 {
1519 	uint64_t x;
1520 
1521 	if (y < rtsc->y) {
1522 		x = rtsc->x;
1523 	} else if (y <= rtsc->y + rtsc->dy) {
1524 		/* x belongs to the 1st segment */
1525 		if (rtsc->dy == 0)
1526 			x = rtsc->x + rtsc->dx;
1527 		else
1528 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1529 	} else {
1530 		/* x belongs to the 2nd segment */
1531 		x = rtsc->x + rtsc->dx
1532 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1533 	}
1534 	return (x);
1535 }
1536 
1537 static uint64_t
1538 rtsc_x2y(struct runtime_sc *rtsc, uint64_t x)
1539 {
1540 	uint64_t y;
1541 
1542 	if (x <= rtsc->x) {
1543 		y = rtsc->y;
1544 	} else if (x <= rtsc->x + rtsc->dx) {
1545 		/* y belongs to the 1st segment */
1546 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1547 	} else
1548 		/* y belongs to the 2nd segment */
1549 		y = rtsc->y + rtsc->dy
1550 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1551 	return (y);
1552 }
1553 
1554 /*
1555  * update the runtime service curve by taking the minimum of the current
1556  * runtime service curve and the service curve starting at (x, y).
1557  */
1558 static void
1559 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1560 {
1561 	uint64_t y1, y2, dx, dy;
1562 
1563 	if (isc->sm1 <= isc->sm2) {
1564 		/* service curve is convex */
1565 		y1 = rtsc_x2y(rtsc, x);
1566 		if (y1 < y)
1567 			/* the current rtsc is smaller */
1568 			return;
1569 		rtsc->x = x;
1570 		rtsc->y = y;
1571 		return;
1572 	}
1573 
1574 	/*
1575 	 * service curve is concave
1576 	 * compute the two y values of the current rtsc
1577 	 *	y1: at x
1578 	 *	y2: at (x + dx)
1579 	 */
1580 	y1 = rtsc_x2y(rtsc, x);
1581 	if (y1 <= y) {
1582 		/* rtsc is below isc, no change to rtsc */
1583 		return;
1584 	}
1585 
1586 	y2 = rtsc_x2y(rtsc, x + isc->dx);
1587 	if (y2 >= y + isc->dy) {
1588 		/* rtsc is above isc, replace rtsc by isc */
1589 		rtsc->x = x;
1590 		rtsc->y = y;
1591 		rtsc->dx = isc->dx;
1592 		rtsc->dy = isc->dy;
1593 		return;
1594 	}
1595 
1596 	/*
1597 	 * the two curves intersect
1598 	 * compute the offsets (dx, dy) using the reverse
1599 	 * function of seg_x2y()
1600 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1601 	 */
1602 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1603 	/*
1604 	 * check if (x, y1) belongs to the 1st segment of rtsc.
1605 	 * if so, add the offset.
1606 	 */
1607 	if (rtsc->x + rtsc->dx > x)
1608 		dx += rtsc->x + rtsc->dx - x;
1609 	dy = seg_x2y(dx, isc->sm1);
1610 
1611 	rtsc->x = x;
1612 	rtsc->y = y;
1613 	rtsc->dx = dx;
1614 	rtsc->dy = dy;
1615 }
1616 
1617 static void
1618 get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1619 {
1620 	sp->class_id = cl->cl_id;
1621 	sp->class_handle = cl->cl_handle;
1622 
1623 	if (cl->cl_rsc != NULL) {
1624 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1625 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1626 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1627 	} else {
1628 		sp->rsc.m1 = 0;
1629 		sp->rsc.d = 0;
1630 		sp->rsc.m2 = 0;
1631 	}
1632 	if (cl->cl_fsc != NULL) {
1633 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1634 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1635 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1636 	} else {
1637 		sp->fsc.m1 = 0;
1638 		sp->fsc.d = 0;
1639 		sp->fsc.m2 = 0;
1640 	}
1641 	if (cl->cl_usc != NULL) {
1642 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1643 		sp->usc.d = dx2d(cl->cl_usc->dx);
1644 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1645 	} else {
1646 		sp->usc.m1 = 0;
1647 		sp->usc.d = 0;
1648 		sp->usc.m2 = 0;
1649 	}
1650 
1651 	sp->total = cl->cl_total;
1652 	sp->cumul = cl->cl_cumul;
1653 
1654 	sp->d = cl->cl_d;
1655 	sp->e = cl->cl_e;
1656 	sp->vt = cl->cl_vt;
1657 	sp->f = cl->cl_f;
1658 
1659 	sp->initvt = cl->cl_initvt;
1660 	sp->vtperiod = cl->cl_vtperiod;
1661 	sp->parentperiod = cl->cl_parentperiod;
1662 	sp->nactive = cl->cl_nactive;
1663 	sp->vtoff = cl->cl_vtoff;
1664 	sp->cvtmax = cl->cl_cvtmax;
1665 	sp->myf = cl->cl_myf;
1666 	sp->cfmin = cl->cl_cfmin;
1667 	sp->cvtmin = cl->cl_cvtmin;
1668 	sp->myfadj = cl->cl_myfadj;
1669 	sp->vtadj = cl->cl_vtadj;
1670 
1671 	sp->cur_time = read_machclk();
1672 	sp->machclk_freq = machclk_freq;
1673 
1674 	sp->qlength = qlen(cl->cl_q);
1675 	sp->qlimit = qlimit(cl->cl_q);
1676 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1677 	sp->drop_cnt = cl->cl_stats.drop_cnt;
1678 	sp->period = cl->cl_stats.period;
1679 
1680 	sp->qtype = qtype(cl->cl_q);
1681 #ifdef ALTQ_RED
1682 	if (q_is_red(cl->cl_q))
1683 		red_getstats(cl->cl_red, &sp->red[0]);
1684 #endif
1685 #ifdef ALTQ_RIO
1686 	if (q_is_rio(cl->cl_q))
1687 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1688 #endif
1689 }
1690 
1691 /* convert a class handle to the corresponding class pointer */
1692 static struct hfsc_class *
1693 clh_to_clp(struct hfsc_if *hif, uint32_t chandle)
1694 {
1695 	int i;
1696 	struct hfsc_class *cl;
1697 
1698 	if (chandle == 0)
1699 		return (NULL);
1700 	/*
1701 	 * first, try optimistically the slot matching the lower bits of
1702 	 * the handle.  if it fails, do the linear table search.
1703 	 */
1704 	i = chandle % HFSC_MAX_CLASSES;
1705 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1706 		return (cl);
1707 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1708 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1709 		    cl->cl_handle == chandle)
1710 			return (cl);
1711 	return (NULL);
1712 }
1713 
1714 #endif /* ALTQ_HFSC */
1715