xref: /dragonfly/sys/net/altq/altq_hfsc.c (revision 8164c1fe)
1 /*	$KAME: altq_hfsc.c,v 1.25 2004/04/17 10:54:48 kjc Exp $	*/
2 /*	$DragonFly: src/sys/net/altq/altq_hfsc.c,v 1.1 2005/02/11 22:25:57 joerg Exp $ */
3 
4 /*
5  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this software and
8  * its documentation is hereby granted (including for commercial or
9  * for-profit use), provided that both the copyright notice and this
10  * permission notice appear in all copies of the software, derivative
11  * works, or modified versions, and any portions thereof.
12  *
13  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
14  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
15  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
16  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
21  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
25  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  *
28  * Carnegie Mellon encourages (but does not require) users of this
29  * software to return any improvements or extensions that they make,
30  * and to grant Carnegie Mellon the rights to redistribute these
31  * changes without encumbrance.
32  */
33 /*
34  * H-FSC is described in Proceedings of SIGCOMM'97,
35  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36  * Real-Time and Priority Service"
37  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38  *
39  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
40  * when a class has an upperlimit, the fit-time is computed from the
41  * upperlimit service curve.  the link-sharing scheduler does not schedule
42  * a class whose fit-time exceeds the current time.
43  */
44 
45 #include "opt_altq.h"
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 
49 #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
50 
51 #include <sys/param.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/systm.h>
56 #include <sys/errno.h>
57 #include <sys/queue.h>
58 
59 #include <net/if.h>
60 #include <net/ifq_var.h>
61 #include <netinet/in.h>
62 
63 #include <net/pf/pfvar.h>
64 #include <net/altq/altq.h>
65 #include <net/altq/altq_hfsc.h>
66 
67 /*
68  * function prototypes
69  */
70 static int	hfsc_clear_interface(struct hfsc_if *);
71 static int	hfsc_request(struct ifaltq *, int, void *);
72 static void	hfsc_purge(struct hfsc_if *);
73 static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
74 					    struct service_curve *,
75 					    struct service_curve *,
76 					    struct service_curve *,
77 					    struct hfsc_class *, int, int, int);
78 static int	hfsc_class_destroy(struct hfsc_class *);
79 static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
80 static int	hfsc_enqueue(struct ifaltq *, struct mbuf *,
81 			     struct altq_pktattr *);
82 static struct mbuf *hfsc_dequeue(struct ifaltq *, int);
83 
84 static int	hfsc_addq(struct hfsc_class *, struct mbuf *);
85 static struct mbuf *hfsc_getq(struct hfsc_class *);
86 static struct mbuf *hfsc_pollq(struct hfsc_class *);
87 static void	hfsc_purgeq(struct hfsc_class *);
88 
89 static void	update_cfmin(struct hfsc_class *);
90 static void	set_active(struct hfsc_class *, int);
91 static void	set_passive(struct hfsc_class *);
92 
93 static void	init_ed(struct hfsc_class *, int);
94 static void	update_ed(struct hfsc_class *, int);
95 static void	update_d(struct hfsc_class *, int);
96 static void	init_vf(struct hfsc_class *, int);
97 static void	update_vf(struct hfsc_class *, int, uint64_t);
98 static ellist_t *ellist_alloc(void);
99 static void	ellist_destroy(ellist_t *);
100 static void	ellist_insert(struct hfsc_class *);
101 static void	ellist_remove(struct hfsc_class *);
102 static void	ellist_update(struct hfsc_class *);
103 struct hfsc_class *ellist_get_mindl(ellist_t *, uint64_t);
104 static actlist_t *actlist_alloc(void);
105 static void	actlist_destroy(actlist_t *);
106 static void	actlist_insert(struct hfsc_class *);
107 static void	actlist_remove(struct hfsc_class *);
108 static void	actlist_update(struct hfsc_class *);
109 
110 static struct hfsc_class *actlist_firstfit(struct hfsc_class *, uint64_t);
111 
112 static __inline uint64_t	seg_x2y(uint64_t, uint64_t);
113 static __inline uint64_t	seg_y2x(uint64_t, uint64_t);
114 static __inline uint64_t	m2sm(u_int);
115 static __inline uint64_t	m2ism(u_int);
116 static __inline uint64_t	d2dx(u_int);
117 static u_int			sm2m(uint64_t);
118 static u_int			dx2d(uint64_t);
119 
120 static void	sc2isc(struct service_curve *, struct internal_sc *);
121 static void	rtsc_init(struct runtime_sc *, struct internal_sc *,
122 			  uint64_t, uint64_t);
123 static uint64_t	rtsc_y2x(struct runtime_sc *, uint64_t);
124 static uint64_t	rtsc_x2y(struct runtime_sc *, uint64_t);
125 static void	rtsc_min(struct runtime_sc *, struct internal_sc *,
126 			 uint64_t, uint64_t);
127 
128 static void	get_class_stats(struct hfsc_classstats *, struct hfsc_class *);
129 static struct hfsc_class *clh_to_clp(struct hfsc_if *, uint32_t);
130 
131 /*
132  * macros
133  */
134 #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
135 
136 #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
137 
138 int
139 hfsc_pfattach(struct pf_altq *a)
140 {
141 	struct ifnet *ifp;
142 	int s, error;
143 
144 	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
145 		return (EINVAL);
146 	s = splimp();
147 	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
148 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
149 	splx(s);
150 	return (error);
151 }
152 
153 int
154 hfsc_add_altq(struct pf_altq *a)
155 {
156 	struct hfsc_if *hif;
157 	struct ifnet *ifp;
158 
159 	if ((ifp = ifunit(a->ifname)) == NULL)
160 		return (EINVAL);
161 	if (!ifq_is_ready(&ifp->if_snd))
162 		return (ENODEV);
163 
164 	hif = malloc(sizeof(struct hfsc_if), M_ALTQ, M_WAITOK | M_ZERO);
165 
166 	hif->hif_eligible = ellist_alloc();
167 	hif->hif_ifq = &ifp->if_snd;
168 
169 	/* keep the state in pf_altq */
170 	a->altq_disc = hif;
171 
172 	return (0);
173 }
174 
175 int
176 hfsc_remove_altq(struct pf_altq *a)
177 {
178 	struct hfsc_if *hif;
179 
180 	if ((hif = a->altq_disc) == NULL)
181 		return (EINVAL);
182 	a->altq_disc = NULL;
183 
184 	hfsc_clear_interface(hif);
185 	hfsc_class_destroy(hif->hif_rootclass);
186 
187 	ellist_destroy(hif->hif_eligible);
188 
189 	free(hif, M_ALTQ);
190 
191 	return (0);
192 }
193 
194 int
195 hfsc_add_queue(struct pf_altq *a)
196 {
197 	struct hfsc_if *hif;
198 	struct hfsc_class *cl, *parent;
199 	struct hfsc_opts *opts;
200 	struct service_curve rtsc, lssc, ulsc;
201 
202 	if ((hif = a->altq_disc) == NULL)
203 		return (EINVAL);
204 
205 	opts = &a->pq_u.hfsc_opts;
206 
207 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE && hif->hif_rootclass == NULL)
208 		parent = NULL;
209 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
210 		return (EINVAL);
211 
212 	if (a->qid == 0)
213 		return (EINVAL);
214 
215 	if (clh_to_clp(hif, a->qid) != NULL)
216 		return (EBUSY);
217 
218 	rtsc.m1 = opts->rtsc_m1;
219 	rtsc.d  = opts->rtsc_d;
220 	rtsc.m2 = opts->rtsc_m2;
221 	lssc.m1 = opts->lssc_m1;
222 	lssc.d  = opts->lssc_d;
223 	lssc.m2 = opts->lssc_m2;
224 	ulsc.m1 = opts->ulsc_m1;
225 	ulsc.d  = opts->ulsc_d;
226 	ulsc.m2 = opts->ulsc_m2;
227 
228 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc, parent, a->qlimit,
229 			       opts->flags, a->qid);
230 	if (cl == NULL)
231 		return (ENOMEM);
232 
233 	return (0);
234 }
235 
236 int
237 hfsc_remove_queue(struct pf_altq *a)
238 {
239 	struct hfsc_if *hif;
240 	struct hfsc_class *cl;
241 
242 	if ((hif = a->altq_disc) == NULL)
243 		return (EINVAL);
244 
245 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
246 		return (EINVAL);
247 
248 	return (hfsc_class_destroy(cl));
249 }
250 
251 int
252 hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
253 {
254 	struct hfsc_if *hif;
255 	struct hfsc_class *cl;
256 	struct hfsc_classstats stats;
257 	int error = 0;
258 
259 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
260 		return (EBADF);
261 
262 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
263 		return (EINVAL);
264 
265 	if (*nbytes < sizeof(stats))
266 		return (EINVAL);
267 
268 	get_class_stats(&stats, cl);
269 
270 	if ((error = copyout((caddr_t)&stats, ubuf, sizeof(stats))) != 0)
271 		return (error);
272 	*nbytes = sizeof(stats);
273 	return (0);
274 }
275 
276 /*
277  * bring the interface back to the initial state by discarding
278  * all the filters and classes except the root class.
279  */
280 static int
281 hfsc_clear_interface(struct hfsc_if *hif)
282 {
283 	struct hfsc_class *cl;
284 
285 	if (hif->hif_rootclass == NULL)
286 		return (0);
287 
288 
289 	/* clear out the classes */
290 	while ((cl = hif->hif_rootclass->cl_children) != NULL) {
291 		/*
292 		 * remove the first leaf class found in the hierarchy
293 		 * then start over
294 		 */
295 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
296 			if (!is_a_parent_class(cl)) {
297 				hfsc_class_destroy(cl);
298 				break;
299 			}
300 		}
301 	}
302 
303 	return (0);
304 }
305 
306 static int
307 hfsc_request(struct ifaltq *ifq, int req, void *arg)
308 {
309 	struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
310 
311 	switch (req) {
312 	case ALTRQ_PURGE:
313 		hfsc_purge(hif);
314 		break;
315 	}
316 	return (0);
317 }
318 
319 /* discard all the queued packets on the interface */
320 static void
321 hfsc_purge(struct hfsc_if *hif)
322 {
323 	struct hfsc_class *cl;
324 
325 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) {
326 		if (!qempty(cl->cl_q))
327 			hfsc_purgeq(cl);
328 	}
329 	if (ifq_is_enabled(hif->hif_ifq))
330 		hif->hif_ifq->ifq_len = 0;
331 }
332 
333 struct hfsc_class *
334 hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
335 		  struct service_curve *fsc, struct service_curve *usc,
336 		  struct hfsc_class *parent, int qlimit, int flags, int qid)
337 {
338 	struct hfsc_class *cl, *p;
339 	int i, s;
340 
341 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
342 		return (NULL);
343 
344 #ifndef ALTQ_RED
345 	if (flags & HFCF_RED) {
346 #ifdef ALTQ_DEBUG
347 		printf("hfsc_class_create: RED not configured for HFSC!\n");
348 #endif
349 		return (NULL);
350 	}
351 #endif
352 
353 	cl = malloc(sizeof(*cl), M_ALTQ, M_WAITOK | M_ZERO);
354 	cl->cl_q = malloc(sizeof(*cl->cl_q), M_ALTQ, M_WAITOK | M_ZERO);
355 	cl->cl_actc = actlist_alloc();
356 
357 	if (qlimit == 0)
358 		qlimit = 50;  /* use default */
359 	qlimit(cl->cl_q) = qlimit;
360 	qtype(cl->cl_q) = Q_DROPTAIL;
361 	qlen(cl->cl_q) = 0;
362 	cl->cl_flags = flags;
363 #ifdef ALTQ_RED
364 	if (flags & (HFCF_RED|HFCF_RIO)) {
365 		int red_flags, red_pkttime;
366 		u_int m2;
367 
368 		m2 = 0;
369 		if (rsc != NULL && rsc->m2 > m2)
370 			m2 = rsc->m2;
371 		if (fsc != NULL && fsc->m2 > m2)
372 			m2 = fsc->m2;
373 		if (usc != NULL && usc->m2 > m2)
374 			m2 = usc->m2;
375 
376 		red_flags = 0;
377 		if (flags & HFCF_ECN)
378 			red_flags |= REDF_ECN;
379 #ifdef ALTQ_RIO
380 		if (flags & HFCF_CLEARDSCP)
381 			red_flags |= RIOF_CLEARDSCP;
382 #endif
383 		if (m2 < 8)
384 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
385 		else
386 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
387 				* 1000 * 1000 * 1000 / (m2 / 8);
388 		if (flags & HFCF_RED) {
389 			cl->cl_red = red_alloc(0, 0,
390 			    qlimit(cl->cl_q) * 10/100,
391 			    qlimit(cl->cl_q) * 30/100,
392 			    red_flags, red_pkttime);
393 			if (cl->cl_red != NULL)
394 				qtype(cl->cl_q) = Q_RED;
395 		}
396 #ifdef ALTQ_RIO
397 		else {
398 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
399 			    red_flags, red_pkttime);
400 			if (cl->cl_red != NULL)
401 				qtype(cl->cl_q) = Q_RIO;
402 		}
403 #endif
404 	}
405 #endif /* ALTQ_RED */
406 
407 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
408 		cl->cl_rsc = malloc(sizeof(*cl->cl_rsc), M_ALTQ, M_WAITOK);
409 		sc2isc(rsc, cl->cl_rsc);
410 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
411 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
412 	}
413 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
414 		cl->cl_fsc = malloc(sizeof(*cl->cl_fsc), M_ALTQ, M_WAITOK);
415 		if (cl->cl_fsc == NULL)
416 			goto err_ret;
417 		sc2isc(fsc, cl->cl_fsc);
418 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
419 	}
420 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
421 		cl->cl_usc = malloc(sizeof(*cl->cl_usc), M_ALTQ, M_WAITOK);
422 		if (cl->cl_usc == NULL)
423 			goto err_ret;
424 		sc2isc(usc, cl->cl_usc);
425 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
426 	}
427 
428 	cl->cl_id = hif->hif_classid++;
429 	cl->cl_handle = qid;
430 	cl->cl_hif = hif;
431 	cl->cl_parent = parent;
432 
433 	s = splimp();
434 	hif->hif_classes++;
435 
436 	/*
437 	 * find a free slot in the class table.  if the slot matching
438 	 * the lower bits of qid is free, use this slot.  otherwise,
439 	 * use the first free slot.
440 	 */
441 	i = qid % HFSC_MAX_CLASSES;
442 	if (hif->hif_class_tbl[i] == NULL)
443 		hif->hif_class_tbl[i] = cl;
444 	else {
445 		for (i = 0; i < HFSC_MAX_CLASSES; i++) {
446 			if (hif->hif_class_tbl[i] == NULL) {
447 				hif->hif_class_tbl[i] = cl;
448 				break;
449 			}
450 		}
451 		if (i == HFSC_MAX_CLASSES) {
452 			splx(s);
453 			goto err_ret;
454 		}
455 	}
456 
457 	if (flags & HFCF_DEFAULTCLASS)
458 		hif->hif_defaultclass = cl;
459 
460 	if (parent == NULL) {
461 		/* this is root class */
462 		hif->hif_rootclass = cl;
463 	} else if (parent->cl_children == NULL) {
464 		/* add this class to the children list of the parent */
465 		parent->cl_children = cl;
466 	} else {
467 		p = parent->cl_children;
468 		while (p->cl_siblings != NULL)
469 			p = p->cl_siblings;
470 		p->cl_siblings = cl;
471 	}
472 	splx(s);
473 
474 	return (cl);
475 
476  err_ret:
477 	if (cl->cl_actc != NULL)
478 		actlist_destroy(cl->cl_actc);
479 	if (cl->cl_red != NULL) {
480 #ifdef ALTQ_RIO
481 		if (q_is_rio(cl->cl_q))
482 			rio_destroy((rio_t *)cl->cl_red);
483 #endif
484 #ifdef ALTQ_RED
485 		if (q_is_red(cl->cl_q))
486 			red_destroy(cl->cl_red);
487 #endif
488 	}
489 	if (cl->cl_fsc != NULL)
490 		free(cl->cl_fsc, M_ALTQ);
491 	if (cl->cl_rsc != NULL)
492 		free(cl->cl_rsc, M_ALTQ);
493 	if (cl->cl_usc != NULL)
494 		free(cl->cl_usc, M_ALTQ);
495 	if (cl->cl_q != NULL)
496 		free(cl->cl_q, M_ALTQ);
497 	free(cl, M_ALTQ);
498 	return (NULL);
499 }
500 
501 static int
502 hfsc_class_destroy(struct hfsc_class *cl)
503 {
504 	int i, s;
505 
506 	if (cl == NULL)
507 		return (0);
508 
509 	if (is_a_parent_class(cl))
510 		return (EBUSY);
511 
512 	s = splimp();
513 
514 	if (!qempty(cl->cl_q))
515 		hfsc_purgeq(cl);
516 
517 	if (cl->cl_parent == NULL) {
518 		/* this is root class */
519 	} else {
520 		struct hfsc_class *p = cl->cl_parent->cl_children;
521 
522 		if (p == cl) {
523 			cl->cl_parent->cl_children = cl->cl_siblings;
524 		} else {
525 			do {
526 				if (p->cl_siblings == cl) {
527 					p->cl_siblings = cl->cl_siblings;
528 					break;
529 				}
530 			} while ((p = p->cl_siblings) != NULL);
531 		}
532 		KKASSERT(p != NULL);
533 	}
534 
535 	for (i = 0; i < HFSC_MAX_CLASSES; i++) {
536 		if (cl->cl_hif->hif_class_tbl[i] == cl) {
537 			cl->cl_hif->hif_class_tbl[i] = NULL;
538 			break;
539 		}
540 	}
541 
542 	cl->cl_hif->hif_classes--;
543 	splx(s);
544 
545 	actlist_destroy(cl->cl_actc);
546 
547 	if (cl->cl_red != NULL) {
548 #ifdef ALTQ_RIO
549 		if (q_is_rio(cl->cl_q))
550 			rio_destroy((rio_t *)cl->cl_red);
551 #endif
552 #ifdef ALTQ_RED
553 		if (q_is_red(cl->cl_q))
554 			red_destroy(cl->cl_red);
555 #endif
556 	}
557 
558 	if (cl == cl->cl_hif->hif_rootclass)
559 		cl->cl_hif->hif_rootclass = NULL;
560 	if (cl == cl->cl_hif->hif_defaultclass)
561 		cl->cl_hif->hif_defaultclass = NULL;
562 
563 	if (cl->cl_usc != NULL)
564 		free(cl->cl_usc, M_ALTQ);
565 	if (cl->cl_fsc != NULL)
566 		free(cl->cl_fsc, M_ALTQ);
567 	if (cl->cl_rsc != NULL)
568 		free(cl->cl_rsc, M_ALTQ);
569 	free(cl->cl_q, M_ALTQ);
570 	free(cl, M_ALTQ);
571 
572 	return (0);
573 }
574 
575 /*
576  * hfsc_nextclass returns the next class in the tree.
577  *   usage:
578  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
579  *		do_something;
580  */
581 static struct hfsc_class *
582 hfsc_nextclass(struct hfsc_class *cl)
583 {
584 	if (cl->cl_children != NULL) {
585 		cl = cl->cl_children;
586 	} else if (cl->cl_siblings != NULL) {
587 		cl = cl->cl_siblings;
588 	} else {
589 		while ((cl = cl->cl_parent) != NULL) {
590 			if (cl->cl_siblings != NULL) {
591 				cl = cl->cl_siblings;
592 				break;
593 			}
594 		}
595 	}
596 
597 	return (cl);
598 }
599 
600 /*
601  * hfsc_enqueue is an enqueue function to be registered to
602  * (*altq_enqueue) in struct ifaltq.
603  */
604 static int
605 hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
606 {
607 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
608 	struct hfsc_class *cl;
609 	int len;
610 
611 	/* grab class set by classifier */
612 	if ((m->m_flags & M_PKTHDR) == 0) {
613 		/* should not happen */
614 		if_printf(ifq->altq_ifp, "altq: packet does not have pkthdr\n");
615 		m_freem(m);
616 		return (ENOBUFS);
617 	}
618 	if (m->m_pkthdr.fw_flags & ALTQ_MBUF_TAGGED)
619 		cl = clh_to_clp(hif, m->m_pkthdr.altq_qid);
620 	else
621 		cl = NULL;
622 	if (cl == NULL || is_a_parent_class(cl)) {
623 		cl = hif->hif_defaultclass;
624 		if (cl == NULL) {
625 			m_freem(m);
626 			return (ENOBUFS);
627 		}
628 	}
629 	cl->cl_pktattr = NULL;
630 	len = m_pktlen(m);
631 	if (hfsc_addq(cl, m) != 0) {
632 		/* drop occurred.  mbuf was freed in hfsc_addq. */
633 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
634 		return (ENOBUFS);
635 	}
636 	ifq->ifq_len++;
637 	cl->cl_hif->hif_packets++;
638 
639 	/* successfully queued. */
640 	if (qlen(cl->cl_q) == 1)
641 		set_active(cl, m_pktlen(m));
642 
643 	return (0);
644 }
645 
646 /*
647  * hfsc_dequeue is a dequeue function to be registered to
648  * (*altq_dequeue) in struct ifaltq.
649  *
650  * note: ALTDQ_POLL returns the next packet without removing the packet
651  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
652  *	ALTDQ_REMOVE must return the same packet if called immediately
653  *	after ALTDQ_POLL.
654  */
655 static struct mbuf *
656 hfsc_dequeue(struct ifaltq *ifq, int op)
657 {
658 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
659 	struct hfsc_class *cl;
660 	struct mbuf *m;
661 	int len, next_len;
662 	int realtime = 0;
663 	uint64_t cur_time;
664 
665 	if (hif->hif_packets == 0) {
666 		/* no packet in the tree */
667 		return (NULL);
668 	}
669 
670 	cur_time = read_machclk();
671 
672 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
673 		cl = hif->hif_pollcache;
674 		hif->hif_pollcache = NULL;
675 		/* check if the class was scheduled by real-time criteria */
676 		if (cl->cl_rsc != NULL)
677 			realtime = (cl->cl_e <= cur_time);
678 	} else {
679 		/*
680 		 * if there are eligible classes, use real-time criteria.
681 		 * find the class with the minimum deadline among
682 		 * the eligible classes.
683 		 */
684 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time)) != NULL) {
685 			realtime = 1;
686 		} else {
687 #ifdef ALTQ_DEBUG
688 			int fits = 0;
689 #endif
690 			/*
691 			 * use link-sharing criteria
692 			 * get the class with the minimum vt in the hierarchy
693 			 */
694 			cl = hif->hif_rootclass;
695 			while (is_a_parent_class(cl)) {
696 
697 				cl = actlist_firstfit(cl, cur_time);
698 				if (cl == NULL) {
699 #ifdef ALTQ_DEBUG
700 					if (fits > 0)
701 						printf("%d fit but none found\n",fits);
702 #endif
703 					return (NULL);
704 				}
705 				/*
706 				 * update parent's cl_cvtmin.
707 				 * don't update if the new vt is smaller.
708 				 */
709 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
710 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
711 #ifdef ALTQ_DEBUG
712 				fits++;
713 #endif
714 			}
715 		}
716 
717 		if (op == ALTDQ_POLL) {
718 			hif->hif_pollcache = cl;
719 			m = hfsc_pollq(cl);
720 			return (m);
721 		}
722 	}
723 
724 	m = hfsc_getq(cl);
725 	if (m == NULL)
726 		panic("hfsc_dequeue:");
727 	len = m_pktlen(m);
728 	cl->cl_hif->hif_packets--;
729 	ifq->ifq_len--;
730 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
731 
732 	update_vf(cl, len, cur_time);
733 	if (realtime)
734 		cl->cl_cumul += len;
735 
736 	if (!qempty(cl->cl_q)) {
737 		if (cl->cl_rsc != NULL) {
738 			/* update ed */
739 			next_len = m_pktlen(qhead(cl->cl_q));
740 
741 			if (realtime)
742 				update_ed(cl, next_len);
743 			else
744 				update_d(cl, next_len);
745 		}
746 	} else {
747 		/* the class becomes passive */
748 		set_passive(cl);
749 	}
750 
751 	return (m);
752 }
753 
754 static int
755 hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
756 {
757 
758 #ifdef ALTQ_RIO
759 	if (q_is_rio(cl->cl_q))
760 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
761 				m, cl->cl_pktattr);
762 #endif
763 #ifdef ALTQ_RED
764 	if (q_is_red(cl->cl_q))
765 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
766 #endif
767 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
768 		m_freem(m);
769 		return (-1);
770 	}
771 
772 	if (cl->cl_flags & HFCF_CLEARDSCP)
773 		write_dsfield(m, cl->cl_pktattr, 0);
774 
775 	_addq(cl->cl_q, m);
776 
777 	return (0);
778 }
779 
780 static struct mbuf *
781 hfsc_getq(struct hfsc_class *cl)
782 {
783 #ifdef ALTQ_RIO
784 	if (q_is_rio(cl->cl_q))
785 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
786 #endif
787 #ifdef ALTQ_RED
788 	if (q_is_red(cl->cl_q))
789 		return red_getq(cl->cl_red, cl->cl_q);
790 #endif
791 	return _getq(cl->cl_q);
792 }
793 
794 static struct mbuf *
795 hfsc_pollq(struct hfsc_class *cl)
796 {
797 	return qhead(cl->cl_q);
798 }
799 
800 static void
801 hfsc_purgeq(struct hfsc_class *cl)
802 {
803 	struct mbuf *m;
804 
805 	if (qempty(cl->cl_q))
806 		return;
807 
808 	while ((m = _getq(cl->cl_q)) != NULL) {
809 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
810 		m_freem(m);
811 		cl->cl_hif->hif_packets--;
812 		cl->cl_hif->hif_ifq->ifq_len--;
813 	}
814 	KKASSERT(qlen(cl->cl_q) == 0);
815 
816 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
817 	set_passive(cl);
818 }
819 
820 static void
821 set_active(struct hfsc_class *cl, int len)
822 {
823 	if (cl->cl_rsc != NULL)
824 		init_ed(cl, len);
825 	if (cl->cl_fsc != NULL)
826 		init_vf(cl, len);
827 
828 	cl->cl_stats.period++;
829 }
830 
831 static void
832 set_passive(struct hfsc_class *cl)
833 {
834 	if (cl->cl_rsc != NULL)
835 		ellist_remove(cl);
836 
837 	/*
838 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
839 	 * needs to be called explicitly to remove a class from actlist
840 	 */
841 }
842 
843 static void
844 init_ed(struct hfsc_class *cl, int next_len)
845 {
846 	uint64_t cur_time;
847 
848 	cur_time = read_machclk();
849 
850 	/* update the deadline curve */
851 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
852 
853 	/*
854 	 * update the eligible curve.
855 	 * for concave, it is equal to the deadline curve.
856 	 * for convex, it is a linear curve with slope m2.
857 	 */
858 	cl->cl_eligible = cl->cl_deadline;
859 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
860 		cl->cl_eligible.dx = 0;
861 		cl->cl_eligible.dy = 0;
862 	}
863 
864 	/* compute e and d */
865 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
866 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
867 
868 	ellist_insert(cl);
869 }
870 
871 static void
872 update_ed(struct hfsc_class *cl, int next_len)
873 {
874 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
875 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
876 
877 	ellist_update(cl);
878 }
879 
880 static void
881 update_d(struct hfsc_class *cl, int next_len)
882 {
883 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
884 }
885 
886 static void
887 init_vf(struct hfsc_class *cl, int len)
888 {
889 	struct hfsc_class *max_cl, *p;
890 	uint64_t vt, f, cur_time;
891 	int go_active;
892 
893 	cur_time = 0;
894 	go_active = 1;
895 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
896 		if (go_active && cl->cl_nactive++ == 0)
897 			go_active = 1;
898 		else
899 			go_active = 0;
900 
901 		if (go_active) {
902 			max_cl = actlist_last(cl->cl_parent->cl_actc);
903 			if (max_cl != NULL) {
904 				/*
905 				 * set vt to the average of the min and max
906 				 * classes.  if the parent's period didn't
907 				 * change, don't decrease vt of the class.
908 				 */
909 				vt = max_cl->cl_vt;
910 				if (cl->cl_parent->cl_cvtmin != 0)
911 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
912 
913 				if (cl->cl_parent->cl_vtperiod !=
914 				    cl->cl_parentperiod || vt > cl->cl_vt)
915 					cl->cl_vt = vt;
916 			} else {
917 				/*
918 				 * first child for a new parent backlog period.
919 				 * add parent's cvtmax to vtoff of children
920 				 * to make a new vt (vtoff + vt) larger than
921 				 * the vt in the last period for all children.
922 				 */
923 				vt = cl->cl_parent->cl_cvtmax;
924 				for (p = cl->cl_parent->cl_children; p != NULL;
925 				     p = p->cl_siblings)
926 					p->cl_vtoff += vt;
927 				cl->cl_vt = 0;
928 				cl->cl_parent->cl_cvtmax = 0;
929 				cl->cl_parent->cl_cvtmin = 0;
930 			}
931 			cl->cl_initvt = cl->cl_vt;
932 
933 			/* update the virtual curve */
934 			vt = cl->cl_vt + cl->cl_vtoff;
935 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
936 			if (cl->cl_virtual.x == vt) {
937 				cl->cl_virtual.x -= cl->cl_vtoff;
938 				cl->cl_vtoff = 0;
939 			}
940 			cl->cl_vtadj = 0;
941 
942 			cl->cl_vtperiod++;  /* increment vt period */
943 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
944 			if (cl->cl_parent->cl_nactive == 0)
945 				cl->cl_parentperiod++;
946 			cl->cl_f = 0;
947 
948 			actlist_insert(cl);
949 
950 			if (cl->cl_usc != NULL) {
951 				/* class has upper limit curve */
952 				if (cur_time == 0)
953 					cur_time = read_machclk();
954 
955 				/* update the ulimit curve */
956 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
957 				    cl->cl_total);
958 				/* compute myf */
959 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
960 				    cl->cl_total);
961 				cl->cl_myfadj = 0;
962 			}
963 		}
964 
965 		if (cl->cl_myf > cl->cl_cfmin)
966 			f = cl->cl_myf;
967 		else
968 			f = cl->cl_cfmin;
969 		if (f != cl->cl_f) {
970 			cl->cl_f = f;
971 			update_cfmin(cl->cl_parent);
972 		}
973 	}
974 }
975 
976 static void
977 update_vf(struct hfsc_class *cl, int len, uint64_t cur_time)
978 {
979 	uint64_t f, myf_bound, delta;
980 	int go_passive;
981 
982 	go_passive = qempty(cl->cl_q);
983 
984 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
985 		cl->cl_total += len;
986 
987 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
988 			continue;
989 
990 		if (go_passive && --cl->cl_nactive == 0)
991 			go_passive = 1;
992 		else
993 			go_passive = 0;
994 
995 		if (go_passive) {
996 			/* no more active child, going passive */
997 
998 			/* update cvtmax of the parent class */
999 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1000 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1001 
1002 			/* remove this class from the vt list */
1003 			actlist_remove(cl);
1004 
1005 			update_cfmin(cl->cl_parent);
1006 
1007 			continue;
1008 		}
1009 
1010 		/*
1011 		 * update vt and f
1012 		 */
1013 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1014 		    - cl->cl_vtoff + cl->cl_vtadj;
1015 
1016 		/*
1017 		 * if vt of the class is smaller than cvtmin,
1018 		 * the class was skipped in the past due to non-fit.
1019 		 * if so, we need to adjust vtadj.
1020 		 */
1021 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1022 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1023 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1024 		}
1025 
1026 		/* update the vt list */
1027 		actlist_update(cl);
1028 
1029 		if (cl->cl_usc != NULL) {
1030 			cl->cl_myf = cl->cl_myfadj
1031 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1032 
1033 			/*
1034 			 * if myf lags behind by more than one clock tick
1035 			 * from the current time, adjust myfadj to prevent
1036 			 * a rate-limited class from going greedy.
1037 			 * in a steady state under rate-limiting, myf
1038 			 * fluctuates within one clock tick.
1039 			 */
1040 			myf_bound = cur_time - machclk_per_tick;
1041 			if (cl->cl_myf < myf_bound) {
1042 				delta = cur_time - cl->cl_myf;
1043 				cl->cl_myfadj += delta;
1044 				cl->cl_myf += delta;
1045 			}
1046 		}
1047 
1048 		/* cl_f is max(cl_myf, cl_cfmin) */
1049 		if (cl->cl_myf > cl->cl_cfmin)
1050 			f = cl->cl_myf;
1051 		else
1052 			f = cl->cl_cfmin;
1053 		if (f != cl->cl_f) {
1054 			cl->cl_f = f;
1055 			update_cfmin(cl->cl_parent);
1056 		}
1057 	}
1058 }
1059 
1060 static void
1061 update_cfmin(struct hfsc_class *cl)
1062 {
1063 	struct hfsc_class *p;
1064 	uint64_t cfmin;
1065 
1066 	if (TAILQ_EMPTY(cl->cl_actc)) {
1067 		cl->cl_cfmin = 0;
1068 		return;
1069 	}
1070 	cfmin = HT_INFINITY;
1071 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1072 		if (p->cl_f == 0) {
1073 			cl->cl_cfmin = 0;
1074 			return;
1075 		}
1076 		if (p->cl_f < cfmin)
1077 			cfmin = p->cl_f;
1078 	}
1079 	cl->cl_cfmin = cfmin;
1080 }
1081 
1082 /*
1083  * TAILQ based ellist and actlist implementation
1084  * (ion wanted to make a calendar queue based implementation)
1085  */
1086 /*
1087  * eligible list holds backlogged classes being sorted by their eligible times.
1088  * there is one eligible list per interface.
1089  */
1090 
1091 static ellist_t *
1092 ellist_alloc(void)
1093 {
1094 	ellist_t *head;
1095 
1096 	head = malloc(sizeof(ellist_t *), M_ALTQ, M_WAITOK);
1097 	TAILQ_INIT(head);
1098 	return (head);
1099 }
1100 
1101 static void
1102 ellist_destroy(ellist_t *head)
1103 {
1104 	free(head, M_ALTQ);
1105 }
1106 
1107 static void
1108 ellist_insert(struct hfsc_class *cl)
1109 {
1110 	struct hfsc_if *hif = cl->cl_hif;
1111 	struct hfsc_class *p;
1112 
1113 	/* check the last entry first */
1114 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1115 	    p->cl_e <= cl->cl_e) {
1116 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1117 		return;
1118 	}
1119 
1120 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1121 		if (cl->cl_e < p->cl_e) {
1122 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1123 			return;
1124 		}
1125 	}
1126 	KKASSERT(0); /* should not reach here */
1127 }
1128 
1129 static void
1130 ellist_remove(struct hfsc_class *cl)
1131 {
1132 	struct hfsc_if *hif = cl->cl_hif;
1133 
1134 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1135 }
1136 
1137 static void
1138 ellist_update(struct hfsc_class *cl)
1139 {
1140 	struct hfsc_if *hif = cl->cl_hif;
1141 	struct hfsc_class *p, *last;
1142 
1143 	/*
1144 	 * the eligible time of a class increases monotonically.
1145 	 * if the next entry has a larger eligible time, nothing to do.
1146 	 */
1147 	p = TAILQ_NEXT(cl, cl_ellist);
1148 	if (p == NULL || cl->cl_e <= p->cl_e)
1149 		return;
1150 
1151 	/* check the last entry */
1152 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1153 	KKASSERT(last != NULL);
1154 	if (last->cl_e <= cl->cl_e) {
1155 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1156 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1157 		return;
1158 	}
1159 
1160 	/*
1161 	 * the new position must be between the next entry
1162 	 * and the last entry
1163 	 */
1164 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1165 		if (cl->cl_e < p->cl_e) {
1166 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1167 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1168 			return;
1169 		}
1170 	}
1171 	KKASSERT(0); /* should not reach here */
1172 }
1173 
1174 /* find the class with the minimum deadline among the eligible classes */
1175 struct hfsc_class *
1176 ellist_get_mindl(ellist_t *head, uint64_t cur_time)
1177 {
1178 	struct hfsc_class *p, *cl = NULL;
1179 
1180 	TAILQ_FOREACH(p, head, cl_ellist) {
1181 		if (p->cl_e > cur_time)
1182 			break;
1183 		if (cl == NULL || p->cl_d < cl->cl_d)
1184 			cl = p;
1185 	}
1186 	return (cl);
1187 }
1188 
1189 /*
1190  * active children list holds backlogged child classes being sorted
1191  * by their virtual time.
1192  * each intermediate class has one active children list.
1193  */
1194 static actlist_t *
1195 actlist_alloc(void)
1196 {
1197 	actlist_t *head;
1198 
1199 	head = malloc(sizeof(*head), M_ALTQ, M_WAITOK);
1200 	TAILQ_INIT(head);
1201 	return (head);
1202 }
1203 
1204 static void
1205 actlist_destroy(actlist_t *head)
1206 {
1207 	free(head, M_ALTQ);
1208 }
1209 static void
1210 actlist_insert(struct hfsc_class *cl)
1211 {
1212 	struct hfsc_class *p;
1213 
1214 	/* check the last entry first */
1215 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1216 	    || p->cl_vt <= cl->cl_vt) {
1217 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1218 		return;
1219 	}
1220 
1221 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1222 		if (cl->cl_vt < p->cl_vt) {
1223 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1224 			return;
1225 		}
1226 	}
1227 	KKASSERT(0); /* should not reach here */
1228 }
1229 
1230 static void
1231 actlist_remove(struct hfsc_class *cl)
1232 {
1233 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1234 }
1235 
1236 static void
1237 actlist_update(struct hfsc_class *cl)
1238 {
1239 	struct hfsc_class *p, *last;
1240 
1241 	/*
1242 	 * the virtual time of a class increases monotonically during its
1243 	 * backlogged period.
1244 	 * if the next entry has a larger virtual time, nothing to do.
1245 	 */
1246 	p = TAILQ_NEXT(cl, cl_actlist);
1247 	if (p == NULL || cl->cl_vt < p->cl_vt)
1248 		return;
1249 
1250 	/* check the last entry */
1251 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1252 	KKASSERT(last != NULL);
1253 	if (last->cl_vt <= cl->cl_vt) {
1254 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1255 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * the new position must be between the next entry
1261 	 * and the last entry
1262 	 */
1263 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1264 		if (cl->cl_vt < p->cl_vt) {
1265 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1266 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1267 			return;
1268 		}
1269 	}
1270 	KKASSERT(0); /* should not reach here */
1271 }
1272 
1273 static struct hfsc_class *
1274 actlist_firstfit(struct hfsc_class *cl, uint64_t cur_time)
1275 {
1276 	struct hfsc_class *p;
1277 
1278 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1279 		if (p->cl_f <= cur_time)
1280 			return (p);
1281 	}
1282 	return (NULL);
1283 }
1284 
1285 /*
1286  * service curve support functions
1287  *
1288  *  external service curve parameters
1289  *	m: bits/sec
1290  *	d: msec
1291  *  internal service curve parameters
1292  *	sm: (bytes/tsc_interval) << SM_SHIFT
1293  *	ism: (tsc_count/byte) << ISM_SHIFT
1294  *	dx: tsc_count
1295  *
1296  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1297  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1298  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1299  * digits in decimal using the following table.
1300  *
1301  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1302  *  ----------+-------------------------------------------------------
1303  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1304  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1305  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1306  *
1307  *  nsec/byte   80000      8000       800        80         8
1308  *  ism(500MHz) 40000      4000       400        40         4
1309  *  ism(200MHz) 16000      1600       160        16         1.6
1310  */
1311 #define	SM_SHIFT	24
1312 #define	ISM_SHIFT	10
1313 
1314 #define	SM_MASK		((1LL << SM_SHIFT) - 1)
1315 #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1316 
1317 static __inline uint64_t
1318 seg_x2y(uint64_t x, uint64_t sm)
1319 {
1320 	uint64_t y;
1321 
1322 	/*
1323 	 * compute
1324 	 *	y = x * sm >> SM_SHIFT
1325 	 * but divide it for the upper and lower bits to avoid overflow
1326 	 */
1327 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1328 	return (y);
1329 }
1330 
1331 static __inline uint64_t
1332 seg_y2x(uint64_t y, uint64_t ism)
1333 {
1334 	uint64_t x;
1335 
1336 	if (y == 0)
1337 		x = 0;
1338 	else if (ism == HT_INFINITY)
1339 		x = HT_INFINITY;
1340 	else
1341 		x = (y >> ISM_SHIFT) * ism + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1342 
1343 	return (x);
1344 }
1345 
1346 static __inline uint64_t
1347 m2sm(u_int m)
1348 {
1349 	uint64_t sm;
1350 
1351 	sm = ((uint64_t)m << SM_SHIFT) / 8 / machclk_freq;
1352 	return (sm);
1353 }
1354 
1355 static __inline uint64_t
1356 m2ism(u_int m)
1357 {
1358 	uint64_t ism;
1359 
1360 	if (m == 0)
1361 		ism = HT_INFINITY;
1362 	else
1363 		ism = ((uint64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1364 	return (ism);
1365 }
1366 
1367 static __inline uint64_t
1368 d2dx(u_int d)
1369 {
1370 	uint64_t dx;
1371 
1372 	dx = ((uint64_t)d * machclk_freq) / 1000;
1373 	return (dx);
1374 }
1375 
1376 static u_int
1377 sm2m(uint64_t sm)
1378 {
1379 	uint64_t m;
1380 
1381 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1382 	return ((u_int)m);
1383 }
1384 
1385 static u_int
1386 dx2d(uint64_t dx)
1387 {
1388 	uint64_t d;
1389 
1390 	d = dx * 1000 / machclk_freq;
1391 	return ((u_int)d);
1392 }
1393 
1394 static void
1395 sc2isc(struct service_curve *sc, struct internal_sc *isc)
1396 {
1397 	isc->sm1 = m2sm(sc->m1);
1398 	isc->ism1 = m2ism(sc->m1);
1399 	isc->dx = d2dx(sc->d);
1400 	isc->dy = seg_x2y(isc->dx, isc->sm1);
1401 	isc->sm2 = m2sm(sc->m2);
1402 	isc->ism2 = m2ism(sc->m2);
1403 }
1404 
1405 /*
1406  * initialize the runtime service curve with the given internal
1407  * service curve starting at (x, y).
1408  */
1409 static void
1410 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1411 {
1412 	rtsc->x = x;
1413 	rtsc->y = y;
1414 	rtsc->sm1 = isc->sm1;
1415 	rtsc->ism1 = isc->ism1;
1416 	rtsc->dx = isc->dx;
1417 	rtsc->dy = isc->dy;
1418 	rtsc->sm2 = isc->sm2;
1419 	rtsc->ism2 = isc->ism2;
1420 }
1421 
1422 /*
1423  * calculate the y-projection of the runtime service curve by the
1424  * given x-projection value
1425  */
1426 static uint64_t
1427 rtsc_y2x(struct runtime_sc *rtsc, uint64_t y)
1428 {
1429 	uint64_t x;
1430 
1431 	if (y < rtsc->y) {
1432 		x = rtsc->x;
1433 	} else if (y <= rtsc->y + rtsc->dy) {
1434 		/* x belongs to the 1st segment */
1435 		if (rtsc->dy == 0)
1436 			x = rtsc->x + rtsc->dx;
1437 		else
1438 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1439 	} else {
1440 		/* x belongs to the 2nd segment */
1441 		x = rtsc->x + rtsc->dx
1442 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1443 	}
1444 	return (x);
1445 }
1446 
1447 static uint64_t
1448 rtsc_x2y(struct runtime_sc *rtsc, uint64_t x)
1449 {
1450 	uint64_t y;
1451 
1452 	if (x <= rtsc->x) {
1453 		y = rtsc->y;
1454 	} else if (x <= rtsc->x + rtsc->dx) {
1455 		/* y belongs to the 1st segment */
1456 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1457 	} else
1458 		/* y belongs to the 2nd segment */
1459 		y = rtsc->y + rtsc->dy
1460 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1461 	return (y);
1462 }
1463 
1464 /*
1465  * update the runtime service curve by taking the minimum of the current
1466  * runtime service curve and the service curve starting at (x, y).
1467  */
1468 static void
1469 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1470 {
1471 	uint64_t y1, y2, dx, dy;
1472 
1473 	if (isc->sm1 <= isc->sm2) {
1474 		/* service curve is convex */
1475 		y1 = rtsc_x2y(rtsc, x);
1476 		if (y1 < y)
1477 			/* the current rtsc is smaller */
1478 			return;
1479 		rtsc->x = x;
1480 		rtsc->y = y;
1481 		return;
1482 	}
1483 
1484 	/*
1485 	 * service curve is concave
1486 	 * compute the two y values of the current rtsc
1487 	 *	y1: at x
1488 	 *	y2: at (x + dx)
1489 	 */
1490 	y1 = rtsc_x2y(rtsc, x);
1491 	if (y1 <= y) {
1492 		/* rtsc is below isc, no change to rtsc */
1493 		return;
1494 	}
1495 
1496 	y2 = rtsc_x2y(rtsc, x + isc->dx);
1497 	if (y2 >= y + isc->dy) {
1498 		/* rtsc is above isc, replace rtsc by isc */
1499 		rtsc->x = x;
1500 		rtsc->y = y;
1501 		rtsc->dx = isc->dx;
1502 		rtsc->dy = isc->dy;
1503 		return;
1504 	}
1505 
1506 	/*
1507 	 * the two curves intersect
1508 	 * compute the offsets (dx, dy) using the reverse
1509 	 * function of seg_x2y()
1510 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1511 	 */
1512 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1513 	/*
1514 	 * check if (x, y1) belongs to the 1st segment of rtsc.
1515 	 * if so, add the offset.
1516 	 */
1517 	if (rtsc->x + rtsc->dx > x)
1518 		dx += rtsc->x + rtsc->dx - x;
1519 	dy = seg_x2y(dx, isc->sm1);
1520 
1521 	rtsc->x = x;
1522 	rtsc->y = y;
1523 	rtsc->dx = dx;
1524 	rtsc->dy = dy;
1525 }
1526 
1527 static void
1528 get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1529 {
1530 	sp->class_id = cl->cl_id;
1531 	sp->class_handle = cl->cl_handle;
1532 
1533 	if (cl->cl_rsc != NULL) {
1534 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1535 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1536 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1537 	} else {
1538 		sp->rsc.m1 = 0;
1539 		sp->rsc.d = 0;
1540 		sp->rsc.m2 = 0;
1541 	}
1542 	if (cl->cl_fsc != NULL) {
1543 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1544 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1545 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1546 	} else {
1547 		sp->fsc.m1 = 0;
1548 		sp->fsc.d = 0;
1549 		sp->fsc.m2 = 0;
1550 	}
1551 	if (cl->cl_usc != NULL) {
1552 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1553 		sp->usc.d = dx2d(cl->cl_usc->dx);
1554 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1555 	} else {
1556 		sp->usc.m1 = 0;
1557 		sp->usc.d = 0;
1558 		sp->usc.m2 = 0;
1559 	}
1560 
1561 	sp->total = cl->cl_total;
1562 	sp->cumul = cl->cl_cumul;
1563 
1564 	sp->d = cl->cl_d;
1565 	sp->e = cl->cl_e;
1566 	sp->vt = cl->cl_vt;
1567 	sp->f = cl->cl_f;
1568 
1569 	sp->initvt = cl->cl_initvt;
1570 	sp->vtperiod = cl->cl_vtperiod;
1571 	sp->parentperiod = cl->cl_parentperiod;
1572 	sp->nactive = cl->cl_nactive;
1573 	sp->vtoff = cl->cl_vtoff;
1574 	sp->cvtmax = cl->cl_cvtmax;
1575 	sp->myf = cl->cl_myf;
1576 	sp->cfmin = cl->cl_cfmin;
1577 	sp->cvtmin = cl->cl_cvtmin;
1578 	sp->myfadj = cl->cl_myfadj;
1579 	sp->vtadj = cl->cl_vtadj;
1580 
1581 	sp->cur_time = read_machclk();
1582 	sp->machclk_freq = machclk_freq;
1583 
1584 	sp->qlength = qlen(cl->cl_q);
1585 	sp->qlimit = qlimit(cl->cl_q);
1586 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1587 	sp->drop_cnt = cl->cl_stats.drop_cnt;
1588 	sp->period = cl->cl_stats.period;
1589 
1590 	sp->qtype = qtype(cl->cl_q);
1591 #ifdef ALTQ_RED
1592 	if (q_is_red(cl->cl_q))
1593 		red_getstats(cl->cl_red, &sp->red[0]);
1594 #endif
1595 #ifdef ALTQ_RIO
1596 	if (q_is_rio(cl->cl_q))
1597 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1598 #endif
1599 }
1600 
1601 /* convert a class handle to the corresponding class pointer */
1602 static struct hfsc_class *
1603 clh_to_clp(struct hfsc_if *hif, uint32_t chandle)
1604 {
1605 	int i;
1606 	struct hfsc_class *cl;
1607 
1608 	if (chandle == 0)
1609 		return (NULL);
1610 	/*
1611 	 * first, try optimistically the slot matching the lower bits of
1612 	 * the handle.  if it fails, do the linear table search.
1613 	 */
1614 	i = chandle % HFSC_MAX_CLASSES;
1615 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1616 		return (cl);
1617 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1618 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1619 		    cl->cl_handle == chandle)
1620 			return (cl);
1621 	return (NULL);
1622 }
1623 
1624 #endif /* ALTQ_HFSC */
1625