xref: /dragonfly/sys/net/bridge/if_bridge.c (revision 0066c2fb)
1 /*
2  * Copyright 2001 Wasabi Systems, Inc.
3  * All rights reserved.
4  *
5  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed for the NetBSD Project by
18  *	Wasabi Systems, Inc.
19  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by Jason L. Wright
51  * 4. The name of the author may not be used to endorse or promote products
52  *    derived from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
56  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
57  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
58  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
63  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp $
67  * $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $
68  * $FreeBSD: src/sys/net/if_bridge.c,v 1.26 2005/10/13 23:05:55 thompsa Exp $
69  */
70 
71 /*
72  * Network interface bridge support.
73  *
74  * TODO:
75  *
76  *	- Currently only supports Ethernet-like interfaces (Ethernet,
77  *	  802.11, VLANs on Ethernet, etc.)  Figure out a nice way
78  *	  to bridge other types of interfaces (FDDI-FDDI, and maybe
79  *	  consider heterogenous bridges).
80  *
81  *
82  * Bridge's route information is duplicated to each CPUs:
83  *
84  *      CPU0          CPU1          CPU2          CPU3
85  * +-----------+ +-----------+ +-----------+ +-----------+
86  * |  rtnode   | |  rtnode   | |  rtnode   | |  rtnode   |
87  * |           | |           | |           | |           |
88  * | dst eaddr | | dst eaddr | | dst eaddr | | dst eaddr |
89  * +-----------+ +-----------+ +-----------+ +-----------+
90  *       |         |                     |         |
91  *       |         |                     |         |
92  *       |         |     +----------+    |         |
93  *       |         |     |  rtinfo  |    |         |
94  *       |         +---->|          |<---+         |
95  *       |               |  flags   |              |
96  *       +-------------->|  timeout |<-------------+
97  *                       |  dst_ifp |
98  *                       +----------+
99  *
100  * We choose to put timeout and dst_ifp into shared part, so updating
101  * them will be cheaper than using message forwarding.  Also there is
102  * not need to use spinlock to protect the updating: timeout and dst_ifp
103  * is not related and specific field's updating order has no importance.
104  * The cache pollution by the share part should not be heavy: in a stable
105  * setup, dst_ifp probably will be not changed in rtnode's life time,
106  * while timeout is refreshed once per second; most of the time, timeout
107  * and dst_ifp are read-only accessed.
108  *
109  *
110  * Bridge route information installation on bridge_input path:
111  *
112  *      CPU0           CPU1         CPU2          CPU3
113  *
114  *                                 netisr2
115  *                                    |
116  *                                alloc nmsg
117  *                    snd nmsg        |
118  *                    w/o rtinfo      |
119  *     netisr0<-----------------------+
120  *        |                           :
121  *    lookup dst                      :
122  *   rtnode exists?(Y)free nmsg       :
123  *        |(N)                        :
124  *        |                           :
125  *  alloc rtinfo                      :
126  *  alloc rtnode                      :
127  * install rtnode                     :
128  *        |                           :
129  *        +---------->netisr1         :
130  *        : fwd nmsg     |            :
131  *        : w/ rtinfo    |            :
132  *        :              |            :
133  *        :              |            :
134  *                  alloc rtnode      :
135  *                (w/ nmsg's rtinfo)  :
136  *                 install rtnode     :
137  *                       |            :
138  *                       +----------->|
139  *                       : fwd nmsg   |
140  *                       : w/ rtinfo  |
141  *                       :            |
142  *                       :     same as netisr1
143  *                                    |
144  *                                    +---------->netisr3
145  *                                    : fwd nmsg     |
146  *                                    : w/ rtinfo    |
147  *                                    :              |
148  *                                    :       same as netisr1
149  *                                               free nmsg
150  *                                                   :
151  *                                                   :
152  *
153  * The netmsgs forwarded between netisr2 are allocated with
154  * (M_WAITOK|M_NULLOK), so it will not fail under most cases (route
155  * information is too precious to be not installed :).  Since multiple
156  * netisrs may try to install route information for the same dst eaddr,
157  * we look up route information in netisr0.  However, this looking up
158  * only need to be performed on netisr0, which is the start point of
159  * the route information installation process.
160  *
161  *
162  * Bridge route information deleting/flushing:
163  *
164  *  CPU0            CPU1              CPU2             CPU3
165  *
166  * netisr0
167  *    |
168  *  find suitable rtnodes,
169  *  mark their rtinfo dead
170  *    |
171  *    | domsg <-------------------------------------------+
172  *    : delete rtnodes                                    | replymsg
173  *    : w/ dead rtinfo                                    |
174  *    :                                                   |
175  *    :  fwdmsg             fwdmsg            fwdmsg      |
176  *    :----------> netisr1 --------> netisr2 --------> netisr3
177  *              delete rtnodes    delete rtnodes    delete rtnodes
178  *              w/ dead rtinfo    w/ dead rtinfo    w/ dead rtinfo
179  *                                                 free dead rtinfos
180  *
181  * All deleting/flushing operations are serialized by netisr0, so each
182  * operation only reaps the route information marked dead by itself.
183  *
184  *
185  * Bridge route information adding/deleting/flushing:
186  * Since all operation is serialized by the fixed message flow between
187  * netisrs, it is not possible to create corrupted per-cpu route
188  * information.
189  *
190  *
191  *
192  * XXX This no longer applies.
193  * Percpu member interface list iteration with blocking operation:
194  * Since one bridge could only delete one member interface at a time and
195  * the deleted member interface is not freed after netmsg_service_sync(),
196  * following way is used to make sure that even if the certain member
197  * interface is ripped from the percpu list during the blocking operation,
198  * the iteration still could keep going:
199  *
200  * TAILQ_FOREACH_MUTABLE(bif, sc->sc_iflists[mycpuid], bif_next, nbif) {
201  *     blocking operation;
202  *     blocking operation;
203  *     ...
204  *     ...
205  *     if (nbif != NULL && !nbif->bif_onlist) {
206  *         KKASSERT(bif->bif_onlist);
207  *         nbif = TAILQ_NEXT(bif, bif_next);
208  *     }
209  * }
210  *
211  * As mentioned above only one member interface could be unlinked from the
212  * percpu member interface list, so either bif or nbif may be not on the list,
213  * but _not_ both.  To keep the list iteration, we don't care about bif, but
214  * only nbif.  Since removed member interface will only be freed after we
215  * finish our work, it is safe to access any field in an unlinked bif (here
216  * bif_onlist).  If nbif is no longer on the list, then bif must be on the
217  * list, so we change nbif to the next element of bif and keep going.
218  */
219 
220 #include "opt_inet.h"
221 #include "opt_inet6.h"
222 
223 #include <sys/param.h>
224 #include <sys/mbuf.h>
225 #include <sys/malloc.h>
226 #include <sys/protosw.h>
227 #include <sys/systm.h>
228 #include <sys/time.h>
229 #include <sys/socket.h> /* for net/if.h */
230 #include <sys/sockio.h>
231 #include <sys/ctype.h>  /* string functions */
232 #include <sys/kernel.h>
233 #include <sys/random.h>
234 #include <sys/sysctl.h>
235 #include <sys/module.h>
236 #include <sys/proc.h>
237 #include <sys/priv.h>
238 #include <sys/lock.h>
239 #include <sys/thread.h>
240 #include <sys/thread2.h>
241 #include <sys/mpipe.h>
242 
243 #include <net/bpf.h>
244 #include <net/if.h>
245 #include <net/if_dl.h>
246 #include <net/if_types.h>
247 #include <net/if_var.h>
248 #include <net/pfil.h>
249 #include <net/ifq_var.h>
250 #include <net/if_clone.h>
251 
252 #include <netinet/in.h> /* for struct arpcom */
253 #include <netinet/in_systm.h>
254 #include <netinet/in_var.h>
255 #include <netinet/ip.h>
256 #include <netinet/ip_var.h>
257 #ifdef INET6
258 #include <netinet/ip6.h>
259 #include <netinet6/ip6_var.h>
260 #endif
261 #include <netinet/if_ether.h> /* for struct arpcom */
262 #include <net/bridge/if_bridgevar.h>
263 #include <net/if_llc.h>
264 #include <net/netmsg2.h>
265 #include <net/netisr2.h>
266 
267 #include <net/route.h>
268 #include <sys/in_cksum.h>
269 
270 /*
271  * Size of the route hash table.  Must be a power of two.
272  */
273 #ifndef BRIDGE_RTHASH_SIZE
274 #define	BRIDGE_RTHASH_SIZE		1024
275 #endif
276 
277 #define	BRIDGE_RTHASH_MASK		(BRIDGE_RTHASH_SIZE - 1)
278 
279 /*
280  * Maximum number of addresses to cache.
281  */
282 #ifndef BRIDGE_RTABLE_MAX
283 #define	BRIDGE_RTABLE_MAX		4096
284 #endif
285 
286 /*
287  * Spanning tree defaults.
288  */
289 #define	BSTP_DEFAULT_MAX_AGE		(20 * 256)
290 #define	BSTP_DEFAULT_HELLO_TIME		(2 * 256)
291 #define	BSTP_DEFAULT_FORWARD_DELAY	(15 * 256)
292 #define	BSTP_DEFAULT_HOLD_TIME		(1 * 256)
293 #define	BSTP_DEFAULT_BRIDGE_PRIORITY	0x8000
294 #define	BSTP_DEFAULT_PORT_PRIORITY	0x80
295 #define	BSTP_DEFAULT_PATH_COST		55
296 
297 /*
298  * Timeout (in seconds) for entries learned dynamically.
299  */
300 #ifndef BRIDGE_RTABLE_TIMEOUT
301 #define	BRIDGE_RTABLE_TIMEOUT		(20 * 60)	/* same as ARP */
302 #endif
303 
304 /*
305  * Number of seconds between walks of the route list.
306  */
307 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD
308 #define	BRIDGE_RTABLE_PRUNE_PERIOD	(5 * 60)
309 #endif
310 
311 /*
312  * List of capabilities to mask on the member interface.
313  */
314 #define	BRIDGE_IFCAPS_MASK		(IFCAP_TXCSUM | IFCAP_TSO)
315 
316 typedef int	(*bridge_ctl_t)(struct bridge_softc *, void *);
317 
318 struct netmsg_brctl {
319 	struct netmsg_base	base;
320 	bridge_ctl_t		bc_func;
321 	struct bridge_softc	*bc_sc;
322 	void			*bc_arg;
323 };
324 
325 struct netmsg_brsaddr {
326 	struct netmsg_base	base;
327 	struct bridge_softc	*br_softc;
328 	struct ifnet		*br_dst_if;
329 	struct bridge_rtinfo	*br_rtinfo;
330 	int			br_setflags;
331 	uint8_t			br_dst[ETHER_ADDR_LEN];
332 	uint8_t			br_flags;
333 };
334 
335 struct netmsg_braddbif {
336 	struct netmsg_base	base;
337 	struct bridge_softc	*br_softc;
338 	struct bridge_ifinfo	*br_bif_info;
339 	struct ifnet		*br_bif_ifp;
340 };
341 
342 struct netmsg_brdelbif {
343 	struct netmsg_base	base;
344 	struct bridge_softc	*br_softc;
345 	struct bridge_ifinfo	*br_bif_info;
346 	struct bridge_iflist_head *br_bif_list;
347 };
348 
349 struct netmsg_brsflags {
350 	struct netmsg_base	base;
351 	struct bridge_softc	*br_softc;
352 	struct bridge_ifinfo	*br_bif_info;
353 	uint32_t		br_bif_flags;
354 };
355 
356 eventhandler_tag	bridge_detach_cookie = NULL;
357 
358 extern	struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
359 extern	int (*bridge_output_p)(struct ifnet *, struct mbuf *);
360 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
361 extern  struct ifnet *(*bridge_interface_p)(void *if_bridge);
362 
363 static int	bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
364 
365 static int	bridge_clone_create(struct if_clone *, int, caddr_t);
366 static int	bridge_clone_destroy(struct ifnet *);
367 
368 static int	bridge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
369 static void	bridge_mutecaps(struct bridge_ifinfo *, struct ifnet *, int);
370 static void	bridge_ifdetach(void *, struct ifnet *);
371 static void	bridge_init(void *);
372 static int	bridge_from_us(struct bridge_softc *, struct ether_header *);
373 static void	bridge_stop(struct ifnet *);
374 static void	bridge_start(struct ifnet *, struct ifaltq_subque *);
375 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *);
376 static int	bridge_output(struct ifnet *, struct mbuf *);
377 static struct ifnet *bridge_interface(void *if_bridge);
378 
379 static void	bridge_forward(struct bridge_softc *, struct mbuf *m);
380 
381 static void	bridge_timer_handler(netmsg_t);
382 static void	bridge_timer(void *);
383 
384 static void	bridge_start_bcast(struct bridge_softc *, struct mbuf *);
385 static void	bridge_broadcast(struct bridge_softc *, struct ifnet *,
386 		    struct mbuf *);
387 static void	bridge_span(struct bridge_softc *, struct mbuf *);
388 
389 static int	bridge_rtupdate(struct bridge_softc *, const uint8_t *,
390 		    struct ifnet *, uint8_t);
391 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *);
392 static void	bridge_rtreap(struct bridge_softc *);
393 static void	bridge_rtreap_async(struct bridge_softc *);
394 static void	bridge_rttrim(struct bridge_softc *);
395 static int	bridge_rtage_finddead(struct bridge_softc *);
396 static void	bridge_rtage(struct bridge_softc *);
397 static void	bridge_rtflush(struct bridge_softc *, int);
398 static int	bridge_rtdaddr(struct bridge_softc *, const uint8_t *);
399 static int	bridge_rtsaddr(struct bridge_softc *, const uint8_t *,
400 		    struct ifnet *, uint8_t);
401 static void	bridge_rtmsg_sync(struct bridge_softc *sc);
402 static void	bridge_rtreap_handler(netmsg_t);
403 static void	bridge_rtinstall_handler(netmsg_t);
404 static int	bridge_rtinstall_oncpu(struct bridge_softc *, const uint8_t *,
405 		    struct ifnet *, int, uint8_t, struct bridge_rtinfo **);
406 
407 static void	bridge_rtable_init(struct bridge_softc *);
408 static void	bridge_rtable_fini(struct bridge_softc *);
409 
410 static int	bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
411 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
412 		    const uint8_t *);
413 static void	bridge_rtnode_insert(struct bridge_softc *,
414 		    struct bridge_rtnode *);
415 static void	bridge_rtnode_destroy(struct bridge_softc *,
416 		    struct bridge_rtnode *);
417 
418 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
419 		    const char *name);
420 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
421 		    struct ifnet *ifp);
422 static struct bridge_iflist *bridge_lookup_member_ifinfo(struct bridge_softc *,
423 		    struct bridge_ifinfo *);
424 static void	bridge_delete_member(struct bridge_softc *,
425 		    struct bridge_iflist *, int);
426 static void	bridge_delete_span(struct bridge_softc *,
427 		    struct bridge_iflist *);
428 
429 static int	bridge_control(struct bridge_softc *, u_long,
430 			       bridge_ctl_t, void *);
431 static int	bridge_ioctl_init(struct bridge_softc *, void *);
432 static int	bridge_ioctl_stop(struct bridge_softc *, void *);
433 static int	bridge_ioctl_add(struct bridge_softc *, void *);
434 static int	bridge_ioctl_del(struct bridge_softc *, void *);
435 static void	bridge_ioctl_fillflags(struct bridge_softc *sc,
436 				struct bridge_iflist *bif, struct ifbreq *req);
437 static int	bridge_ioctl_gifflags(struct bridge_softc *, void *);
438 static int	bridge_ioctl_sifflags(struct bridge_softc *, void *);
439 static int	bridge_ioctl_scache(struct bridge_softc *, void *);
440 static int	bridge_ioctl_gcache(struct bridge_softc *, void *);
441 static int	bridge_ioctl_gifs(struct bridge_softc *, void *);
442 static int	bridge_ioctl_rts(struct bridge_softc *, void *);
443 static int	bridge_ioctl_saddr(struct bridge_softc *, void *);
444 static int	bridge_ioctl_sto(struct bridge_softc *, void *);
445 static int	bridge_ioctl_gto(struct bridge_softc *, void *);
446 static int	bridge_ioctl_daddr(struct bridge_softc *, void *);
447 static int	bridge_ioctl_flush(struct bridge_softc *, void *);
448 static int	bridge_ioctl_gpri(struct bridge_softc *, void *);
449 static int	bridge_ioctl_spri(struct bridge_softc *, void *);
450 static int	bridge_ioctl_reinit(struct bridge_softc *, void *);
451 static int	bridge_ioctl_ght(struct bridge_softc *, void *);
452 static int	bridge_ioctl_sht(struct bridge_softc *, void *);
453 static int	bridge_ioctl_gfd(struct bridge_softc *, void *);
454 static int	bridge_ioctl_sfd(struct bridge_softc *, void *);
455 static int	bridge_ioctl_gma(struct bridge_softc *, void *);
456 static int	bridge_ioctl_sma(struct bridge_softc *, void *);
457 static int	bridge_ioctl_sifprio(struct bridge_softc *, void *);
458 static int	bridge_ioctl_sifcost(struct bridge_softc *, void *);
459 static int	bridge_ioctl_addspan(struct bridge_softc *, void *);
460 static int	bridge_ioctl_delspan(struct bridge_softc *, void *);
461 static int	bridge_ioctl_sifbondwght(struct bridge_softc *, void *);
462 static int	bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *,
463 		    int);
464 static int	bridge_ip_checkbasic(struct mbuf **mp);
465 #ifdef INET6
466 static int	bridge_ip6_checkbasic(struct mbuf **mp);
467 #endif /* INET6 */
468 static int	bridge_fragment(struct ifnet *, struct mbuf *,
469 		    struct ether_header *, int, struct llc *);
470 static void	bridge_enqueue_handler(netmsg_t);
471 static void	bridge_handoff(struct bridge_softc *, struct ifnet *,
472 		    struct mbuf *, int);
473 
474 static void	bridge_del_bif_handler(netmsg_t);
475 static void	bridge_add_bif_handler(netmsg_t);
476 static void	bridge_del_bif(struct bridge_softc *, struct bridge_ifinfo *,
477 		    struct bridge_iflist_head *);
478 static void	bridge_add_bif(struct bridge_softc *, struct bridge_ifinfo *,
479 		    struct ifnet *);
480 
481 SYSCTL_DECL(_net_link);
482 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge");
483 
484 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */
485 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */
486 static int pfil_member = 1; /* run pfil hooks on the member interface */
487 static int bridge_debug;
488 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW,
489     &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled");
490 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW,
491     &pfil_bridge, 0, "Packet filter on the bridge interface");
492 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW,
493     &pfil_member, 0, "Packet filter on the member interface");
494 SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW,
495     &bridge_debug, 0, "Bridge debug mode");
496 
497 struct bridge_control_arg {
498 	union {
499 		struct ifbreq ifbreq;
500 		struct ifbifconf ifbifconf;
501 		struct ifbareq ifbareq;
502 		struct ifbaconf ifbaconf;
503 		struct ifbrparam ifbrparam;
504 	} bca_u;
505 	int	bca_len;
506 	void	*bca_uptr;
507 	void	*bca_kptr;
508 };
509 
510 struct bridge_control {
511 	bridge_ctl_t	bc_func;
512 	int		bc_argsize;
513 	int		bc_flags;
514 };
515 
516 #define	BC_F_COPYIN		0x01	/* copy arguments in */
517 #define	BC_F_COPYOUT		0x02	/* copy arguments out */
518 #define	BC_F_SUSER		0x04	/* do super-user check */
519 
520 const struct bridge_control bridge_control_table[] = {
521 	{ bridge_ioctl_add,		sizeof(struct ifbreq),
522 	  BC_F_COPYIN|BC_F_SUSER },
523 	{ bridge_ioctl_del,		sizeof(struct ifbreq),
524 	  BC_F_COPYIN|BC_F_SUSER },
525 
526 	{ bridge_ioctl_gifflags,	sizeof(struct ifbreq),
527 	  BC_F_COPYIN|BC_F_COPYOUT },
528 	{ bridge_ioctl_sifflags,	sizeof(struct ifbreq),
529 	  BC_F_COPYIN|BC_F_SUSER },
530 
531 	{ bridge_ioctl_scache,		sizeof(struct ifbrparam),
532 	  BC_F_COPYIN|BC_F_SUSER },
533 	{ bridge_ioctl_gcache,		sizeof(struct ifbrparam),
534 	  BC_F_COPYOUT },
535 
536 	{ bridge_ioctl_gifs,		sizeof(struct ifbifconf),
537 	  BC_F_COPYIN|BC_F_COPYOUT },
538 	{ bridge_ioctl_rts,		sizeof(struct ifbaconf),
539 	  BC_F_COPYIN|BC_F_COPYOUT },
540 
541 	{ bridge_ioctl_saddr,		sizeof(struct ifbareq),
542 	  BC_F_COPYIN|BC_F_SUSER },
543 
544 	{ bridge_ioctl_sto,		sizeof(struct ifbrparam),
545 	  BC_F_COPYIN|BC_F_SUSER },
546 	{ bridge_ioctl_gto,		sizeof(struct ifbrparam),
547 	  BC_F_COPYOUT },
548 
549 	{ bridge_ioctl_daddr,		sizeof(struct ifbareq),
550 	  BC_F_COPYIN|BC_F_SUSER },
551 
552 	{ bridge_ioctl_flush,		sizeof(struct ifbreq),
553 	  BC_F_COPYIN|BC_F_SUSER },
554 
555 	{ bridge_ioctl_gpri,		sizeof(struct ifbrparam),
556 	  BC_F_COPYOUT },
557 	{ bridge_ioctl_spri,		sizeof(struct ifbrparam),
558 	  BC_F_COPYIN|BC_F_SUSER },
559 
560 	{ bridge_ioctl_ght,		sizeof(struct ifbrparam),
561 	  BC_F_COPYOUT },
562 	{ bridge_ioctl_sht,		sizeof(struct ifbrparam),
563 	  BC_F_COPYIN|BC_F_SUSER },
564 
565 	{ bridge_ioctl_gfd,		sizeof(struct ifbrparam),
566 	  BC_F_COPYOUT },
567 	{ bridge_ioctl_sfd,		sizeof(struct ifbrparam),
568 	  BC_F_COPYIN|BC_F_SUSER },
569 
570 	{ bridge_ioctl_gma,		sizeof(struct ifbrparam),
571 	  BC_F_COPYOUT },
572 	{ bridge_ioctl_sma,		sizeof(struct ifbrparam),
573 	  BC_F_COPYIN|BC_F_SUSER },
574 
575 	{ bridge_ioctl_sifprio,		sizeof(struct ifbreq),
576 	  BC_F_COPYIN|BC_F_SUSER },
577 
578 	{ bridge_ioctl_sifcost,		sizeof(struct ifbreq),
579 	  BC_F_COPYIN|BC_F_SUSER },
580 
581 	{ bridge_ioctl_addspan,		sizeof(struct ifbreq),
582 	  BC_F_COPYIN|BC_F_SUSER },
583 	{ bridge_ioctl_delspan,		sizeof(struct ifbreq),
584 	  BC_F_COPYIN|BC_F_SUSER },
585 
586 	{ bridge_ioctl_sifbondwght,	sizeof(struct ifbreq),
587 	  BC_F_COPYIN|BC_F_SUSER },
588 
589 };
590 static const int bridge_control_table_size = NELEM(bridge_control_table);
591 
592 LIST_HEAD(, bridge_softc) bridge_list;
593 
594 struct if_clone bridge_cloner = IF_CLONE_INITIALIZER("bridge",
595 				bridge_clone_create,
596 				bridge_clone_destroy, 0, IF_MAXUNIT);
597 
598 static int
599 bridge_modevent(module_t mod, int type, void *data)
600 {
601 	switch (type) {
602 	case MOD_LOAD:
603 		LIST_INIT(&bridge_list);
604 		if_clone_attach(&bridge_cloner);
605 		bridge_input_p = bridge_input;
606 		bridge_output_p = bridge_output;
607 		bridge_interface_p = bridge_interface;
608 		bridge_detach_cookie = EVENTHANDLER_REGISTER(
609 		    ifnet_detach_event, bridge_ifdetach, NULL,
610 		    EVENTHANDLER_PRI_ANY);
611 #if 0 /* notyet */
612 		bstp_linkstate_p = bstp_linkstate;
613 #endif
614 		break;
615 	case MOD_UNLOAD:
616 		if (!LIST_EMPTY(&bridge_list))
617 			return (EBUSY);
618 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
619 		    bridge_detach_cookie);
620 		if_clone_detach(&bridge_cloner);
621 		bridge_input_p = NULL;
622 		bridge_output_p = NULL;
623 		bridge_interface_p = NULL;
624 #if 0 /* notyet */
625 		bstp_linkstate_p = NULL;
626 #endif
627 		break;
628 	default:
629 		return (EOPNOTSUPP);
630 	}
631 	return (0);
632 }
633 
634 static moduledata_t bridge_mod = {
635 	"if_bridge",
636 	bridge_modevent,
637 	0
638 };
639 
640 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
641 
642 
643 /*
644  * bridge_clone_create:
645  *
646  *	Create a new bridge instance.
647  */
648 static int
649 bridge_clone_create(struct if_clone *ifc, int unit, caddr_t param __unused)
650 {
651 	struct bridge_softc *sc;
652 	struct ifnet *ifp;
653 	u_char eaddr[6];
654 	int cpu, rnd;
655 
656 	sc = kmalloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
657 	ifp = sc->sc_ifp = &sc->sc_if;
658 
659 	sc->sc_brtmax = BRIDGE_RTABLE_MAX;
660 	sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
661 	sc->sc_bridge_max_age = BSTP_DEFAULT_MAX_AGE;
662 	sc->sc_bridge_hello_time = BSTP_DEFAULT_HELLO_TIME;
663 	sc->sc_bridge_forward_delay = BSTP_DEFAULT_FORWARD_DELAY;
664 	sc->sc_bridge_priority = BSTP_DEFAULT_BRIDGE_PRIORITY;
665 	sc->sc_hold_time = BSTP_DEFAULT_HOLD_TIME;
666 
667 	/* Initialize our routing table. */
668 	bridge_rtable_init(sc);
669 
670 	callout_init_mp(&sc->sc_brcallout);
671 	netmsg_init(&sc->sc_brtimemsg, NULL, &netisr_adone_rport,
672 		    MSGF_DROPABLE, bridge_timer_handler);
673 	sc->sc_brtimemsg.lmsg.u.ms_resultp = sc;
674 
675 	callout_init_mp(&sc->sc_bstpcallout);
676 	netmsg_init(&sc->sc_bstptimemsg, NULL, &netisr_adone_rport,
677 		    MSGF_DROPABLE, bstp_tick_handler);
678 	sc->sc_bstptimemsg.lmsg.u.ms_resultp = sc;
679 
680 	/* Initialize per-cpu member iface lists */
681 	sc->sc_iflists = kmalloc(sizeof(*sc->sc_iflists) * netisr_ncpus,
682 				 M_DEVBUF, M_WAITOK);
683 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
684 		TAILQ_INIT(&sc->sc_iflists[cpu]);
685 
686 	TAILQ_INIT(&sc->sc_spanlist);
687 
688 	ifp->if_softc = sc;
689 	if_initname(ifp, ifc->ifc_name, unit);
690 	ifp->if_mtu = ETHERMTU;
691 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
692 	ifp->if_ioctl = bridge_ioctl;
693 	ifp->if_start = bridge_start;
694 	ifp->if_init = bridge_init;
695 	ifp->if_type = IFT_ETHER;
696 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
697 	ifq_set_ready(&ifp->if_snd);
698 	ifp->if_hdrlen = ETHER_HDR_LEN;
699 
700 	/*
701 	 * Generate a random ethernet address and use the private AC:DE:48
702 	 * OUI code.
703 	 */
704 	rnd = karc4random();
705 	bcopy(&rnd, &eaddr[0], 4); /* ETHER_ADDR_LEN == 6 */
706 	rnd = karc4random();
707 	bcopy(&rnd, &eaddr[2], 4); /* ETHER_ADDR_LEN == 6 */
708 
709 	eaddr[0] &= ~1;	/* clear multicast bit */
710 	eaddr[0] |= 2;	/* set the LAA bit */
711 
712 	ether_ifattach(ifp, eaddr, NULL);
713 	/* Now undo some of the damage... */
714 	ifp->if_baudrate = 0;
715 	/*ifp->if_type = IFT_BRIDGE;*/
716 
717 	crit_enter();	/* XXX MP */
718 	LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
719 	crit_exit();
720 
721 	return (0);
722 }
723 
724 static void
725 bridge_delete_dispatch(netmsg_t msg)
726 {
727 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
728 	struct ifnet *bifp = sc->sc_ifp;
729 	struct bridge_iflist *bif;
730 
731 	ifnet_serialize_all(bifp);
732 
733 	while ((bif = TAILQ_FIRST(&sc->sc_iflists[mycpuid])) != NULL)
734 		bridge_delete_member(sc, bif, 0);
735 
736 	while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL)
737 		bridge_delete_span(sc, bif);
738 
739 	ifnet_deserialize_all(bifp);
740 
741 	lwkt_replymsg(&msg->lmsg, 0);
742 }
743 
744 /*
745  * bridge_clone_destroy:
746  *
747  *	Destroy a bridge instance.
748  */
749 static int
750 bridge_clone_destroy(struct ifnet *ifp)
751 {
752 	struct bridge_softc *sc = ifp->if_softc;
753 	struct netmsg_base msg;
754 
755 	ifnet_serialize_all(ifp);
756 
757 	bridge_stop(ifp);
758 	ifp->if_flags &= ~IFF_UP;
759 
760 	ifnet_deserialize_all(ifp);
761 
762 	netmsg_init(&msg, NULL, &curthread->td_msgport,
763 		    0, bridge_delete_dispatch);
764 	msg.lmsg.u.ms_resultp = sc;
765 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
766 
767 	crit_enter();	/* XXX MP */
768 	LIST_REMOVE(sc, sc_list);
769 	crit_exit();
770 
771 	ether_ifdetach(ifp);
772 
773 	/* Tear down the routing table. */
774 	bridge_rtable_fini(sc);
775 
776 	/* Free per-cpu member iface lists */
777 	kfree(sc->sc_iflists, M_DEVBUF);
778 
779 	kfree(sc, M_DEVBUF);
780 
781 	return 0;
782 }
783 
784 /*
785  * bridge_ioctl:
786  *
787  *	Handle a control request from the operator.
788  */
789 static int
790 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
791 {
792 	struct bridge_softc *sc = ifp->if_softc;
793 	struct bridge_control_arg args;
794 	struct ifdrv *ifd = (struct ifdrv *) data;
795 	const struct bridge_control *bc;
796 	int error = 0;
797 
798 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
799 
800 	switch (cmd) {
801 	case SIOCADDMULTI:
802 	case SIOCDELMULTI:
803 		break;
804 
805 	case SIOCGDRVSPEC:
806 	case SIOCSDRVSPEC:
807 		if (ifd->ifd_cmd >= bridge_control_table_size) {
808 			error = EINVAL;
809 			break;
810 		}
811 		bc = &bridge_control_table[ifd->ifd_cmd];
812 
813 		if (cmd == SIOCGDRVSPEC &&
814 		    (bc->bc_flags & BC_F_COPYOUT) == 0) {
815 			error = EINVAL;
816 			break;
817 		} else if (cmd == SIOCSDRVSPEC &&
818 			   (bc->bc_flags & BC_F_COPYOUT)) {
819 			error = EINVAL;
820 			break;
821 		}
822 
823 		if (bc->bc_flags & BC_F_SUSER) {
824 			error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY);
825 			if (error)
826 				break;
827 		}
828 
829 		if (ifd->ifd_len != bc->bc_argsize ||
830 		    ifd->ifd_len > sizeof(args.bca_u)) {
831 			error = EINVAL;
832 			break;
833 		}
834 
835 		memset(&args, 0, sizeof(args));
836 		if (bc->bc_flags & BC_F_COPYIN) {
837 			error = copyin(ifd->ifd_data, &args.bca_u,
838 				       ifd->ifd_len);
839 			if (error)
840 				break;
841 		}
842 
843 		error = bridge_control(sc, cmd, bc->bc_func, &args);
844 		if (error) {
845 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
846 			break;
847 		}
848 
849 		if (bc->bc_flags & BC_F_COPYOUT) {
850 			error = copyout(&args, ifd->ifd_data, ifd->ifd_len);
851 			if (args.bca_len != 0) {
852 				KKASSERT(args.bca_kptr != NULL);
853 				if (!error) {
854 					error = copyout(args.bca_kptr,
855 						args.bca_uptr, args.bca_len);
856 				}
857 				kfree(args.bca_kptr, M_TEMP);
858 			} else {
859 				KKASSERT(args.bca_kptr == NULL);
860 			}
861 		} else {
862 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
863 		}
864 		break;
865 
866 	case SIOCSIFFLAGS:
867 		if (!(ifp->if_flags & IFF_UP) &&
868 		    (ifp->if_flags & IFF_RUNNING)) {
869 			/*
870 			 * If interface is marked down and it is running,
871 			 * then stop it.
872 			 */
873 			bridge_stop(ifp);
874 		} else if ((ifp->if_flags & IFF_UP) &&
875 		    !(ifp->if_flags & IFF_RUNNING)) {
876 			/*
877 			 * If interface is marked up and it is stopped, then
878 			 * start it.
879 			 */
880 			ifp->if_init(sc);
881 		}
882 
883 		/*
884 		 * If running and link flag state change we have to
885 		 * reinitialize as well.
886 		 */
887 		if ((ifp->if_flags & IFF_RUNNING) &&
888 		    (ifp->if_flags & (IFF_LINK0|IFF_LINK1|IFF_LINK2)) !=
889 		    sc->sc_copy_flags) {
890 			sc->sc_copy_flags = ifp->if_flags &
891 					(IFF_LINK0|IFF_LINK1|IFF_LINK2);
892 			bridge_control(sc, 0, bridge_ioctl_reinit, NULL);
893 		}
894 
895 		break;
896 
897 	case SIOCSIFMTU:
898 		/* Do not allow the MTU to be changed on the bridge */
899 		error = EINVAL;
900 		break;
901 
902 	default:
903 		error = ether_ioctl(ifp, cmd, data);
904 		break;
905 	}
906 	return (error);
907 }
908 
909 /*
910  * bridge_mutecaps:
911  *
912  *	Clear or restore unwanted capabilities on the member interface
913  */
914 static void
915 bridge_mutecaps(struct bridge_ifinfo *bif_info, struct ifnet *ifp, int mute)
916 {
917 	struct ifreq ifr;
918 
919 	if (ifp->if_ioctl == NULL)
920 		return;
921 
922 	bzero(&ifr, sizeof(ifr));
923 	ifr.ifr_reqcap = ifp->if_capenable;
924 
925 	if (mute) {
926 		/* mask off and save capabilities */
927 		bif_info->bifi_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK;
928 		if (bif_info->bifi_mutecap != 0)
929 			ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK;
930 	} else {
931 		/* restore muted capabilities */
932 		ifr.ifr_reqcap |= bif_info->bifi_mutecap;
933 	}
934 
935 	if (bif_info->bifi_mutecap != 0) {
936 		ifnet_serialize_all(ifp);
937 		ifp->if_ioctl(ifp, SIOCSIFCAP, (caddr_t)&ifr, NULL);
938 		ifnet_deserialize_all(ifp);
939 	}
940 }
941 
942 /*
943  * bridge_lookup_member:
944  *
945  *	Lookup a bridge member interface.
946  */
947 static struct bridge_iflist *
948 bridge_lookup_member(struct bridge_softc *sc, const char *name)
949 {
950 	struct bridge_iflist *bif;
951 
952 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
953 		if (strcmp(bif->bif_ifp->if_xname, name) == 0)
954 			return (bif);
955 	}
956 	return (NULL);
957 }
958 
959 /*
960  * bridge_lookup_member_if:
961  *
962  *	Lookup a bridge member interface by ifnet*.
963  */
964 static struct bridge_iflist *
965 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
966 {
967 	struct bridge_iflist *bif;
968 
969 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
970 		if (bif->bif_ifp == member_ifp)
971 			return (bif);
972 	}
973 	return (NULL);
974 }
975 
976 /*
977  * bridge_lookup_member_ifinfo:
978  *
979  *	Lookup a bridge member interface by bridge_ifinfo.
980  */
981 static struct bridge_iflist *
982 bridge_lookup_member_ifinfo(struct bridge_softc *sc,
983 			    struct bridge_ifinfo *bif_info)
984 {
985 	struct bridge_iflist *bif;
986 
987 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
988 		if (bif->bif_info == bif_info)
989 			return (bif);
990 	}
991 	return (NULL);
992 }
993 
994 /*
995  * bridge_delete_member:
996  *
997  *	Delete the specified member interface.
998  */
999 static void
1000 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif,
1001     int gone)
1002 {
1003 	struct ifnet *ifs = bif->bif_ifp;
1004 	struct ifnet *bifp = sc->sc_ifp;
1005 	struct bridge_ifinfo *bif_info = bif->bif_info;
1006 	struct bridge_iflist_head saved_bifs;
1007 
1008 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1009 	KKASSERT(bif_info != NULL);
1010 
1011 	ifs->if_bridge = NULL;
1012 
1013 	/*
1014 	 * Release bridge interface's serializer:
1015 	 * - To avoid possible dead lock.
1016 	 * - Various sync operation will block the current thread.
1017 	 */
1018 	ifnet_deserialize_all(bifp);
1019 
1020 	if (!gone) {
1021 		switch (ifs->if_type) {
1022 		case IFT_ETHER:
1023 		case IFT_L2VLAN:
1024 			/*
1025 			 * Take the interface out of promiscuous mode.
1026 			 */
1027 			ifpromisc(ifs, 0);
1028 			bridge_mutecaps(bif_info, ifs, 0);
1029 			break;
1030 
1031 		case IFT_GIF:
1032 			break;
1033 
1034 		default:
1035 			panic("bridge_delete_member: impossible");
1036 			break;
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * Remove bifs from percpu linked list.
1042 	 *
1043 	 * Removed bifs are not freed immediately, instead,
1044 	 * they are saved in saved_bifs.  They will be freed
1045 	 * after we make sure that no one is accessing them,
1046 	 * i.e. after following netmsg_service_sync()
1047 	 */
1048 	TAILQ_INIT(&saved_bifs);
1049 	bridge_del_bif(sc, bif_info, &saved_bifs);
1050 
1051 	/*
1052 	 * Make sure that all protocol threads:
1053 	 * o  see 'ifs' if_bridge is changed
1054 	 * o  know that bif is removed from the percpu linked list
1055 	 */
1056 	netmsg_service_sync();
1057 
1058 	/*
1059 	 * Free the removed bifs
1060 	 */
1061 	KKASSERT(!TAILQ_EMPTY(&saved_bifs));
1062 	while ((bif = TAILQ_FIRST(&saved_bifs)) != NULL) {
1063 		TAILQ_REMOVE(&saved_bifs, bif, bif_next);
1064 		kfree(bif, M_DEVBUF);
1065 	}
1066 
1067 	/* See the comment in bridge_ioctl_stop() */
1068 	bridge_rtmsg_sync(sc);
1069 	bridge_rtdelete(sc, ifs, IFBF_FLUSHALL | IFBF_FLUSHSYNC);
1070 
1071 	ifnet_serialize_all(bifp);
1072 
1073 	if (bifp->if_flags & IFF_RUNNING)
1074 		bstp_initialization(sc);
1075 
1076 	/*
1077 	 * Free the bif_info after bstp_initialization(), so that
1078 	 * bridge_softc.sc_root_port will not reference a dangling
1079 	 * pointer.
1080 	 */
1081 	kfree(bif_info, M_DEVBUF);
1082 }
1083 
1084 /*
1085  * bridge_delete_span:
1086  *
1087  *	Delete the specified span interface.
1088  */
1089 static void
1090 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
1091 {
1092 	KASSERT(bif->bif_ifp->if_bridge == NULL,
1093 	    ("%s: not a span interface", __func__));
1094 
1095 	TAILQ_REMOVE(&sc->sc_iflists[mycpuid], bif, bif_next);
1096 	kfree(bif, M_DEVBUF);
1097 }
1098 
1099 static int
1100 bridge_ioctl_init(struct bridge_softc *sc, void *arg __unused)
1101 {
1102 	struct ifnet *ifp = sc->sc_ifp;
1103 
1104 	if (ifp->if_flags & IFF_RUNNING)
1105 		return 0;
1106 
1107 	callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz,
1108 	    bridge_timer, sc);
1109 
1110 	ifp->if_flags |= IFF_RUNNING;
1111 	bstp_initialization(sc);
1112 	return 0;
1113 }
1114 
1115 static int
1116 bridge_ioctl_stop(struct bridge_softc *sc, void *arg __unused)
1117 {
1118 	struct ifnet *ifp = sc->sc_ifp;
1119 
1120 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1121 		return 0;
1122 
1123 	callout_stop(&sc->sc_brcallout);
1124 
1125 	crit_enter();
1126 	lwkt_dropmsg(&sc->sc_brtimemsg.lmsg);
1127 	crit_exit();
1128 
1129 	bstp_stop(sc);
1130 
1131 	ifp->if_flags &= ~IFF_RUNNING;
1132 
1133 	ifnet_deserialize_all(ifp);
1134 
1135 	/* Let everyone know that we are stopped */
1136 	netmsg_service_sync();
1137 
1138 	/*
1139 	 * Sync ifnetX msgports in the order we forward rtnode
1140 	 * installation message.  This is used to make sure that
1141 	 * all rtnode installation messages sent by bridge_rtupdate()
1142 	 * during above netmsg_service_sync() are flushed.
1143 	 */
1144 	bridge_rtmsg_sync(sc);
1145 	bridge_rtflush(sc, IFBF_FLUSHDYN | IFBF_FLUSHSYNC);
1146 
1147 	ifnet_serialize_all(ifp);
1148 	return 0;
1149 }
1150 
1151 static int
1152 bridge_ioctl_add(struct bridge_softc *sc, void *arg)
1153 {
1154 	struct ifbreq *req = arg;
1155 	struct bridge_iflist *bif;
1156 	struct bridge_ifinfo *bif_info;
1157 	struct ifnet *ifs, *bifp;
1158 	int error = 0;
1159 
1160 	bifp = sc->sc_ifp;
1161 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1162 
1163 	ifs = ifunit_netisr(req->ifbr_ifsname);
1164 	if (ifs == NULL)
1165 		return (ENOENT);
1166 
1167 	/* If it's in the span list, it can't be a member. */
1168 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1169 		if (ifs == bif->bif_ifp)
1170 			return (EBUSY);
1171 
1172 	/* Allow the first Ethernet member to define the MTU */
1173 	if (ifs->if_type != IFT_GIF) {
1174 		if (TAILQ_EMPTY(&sc->sc_iflists[mycpuid])) {
1175 			bifp->if_mtu = ifs->if_mtu;
1176 		} else if (bifp->if_mtu != ifs->if_mtu) {
1177 			if_printf(bifp, "invalid MTU for %s\n", ifs->if_xname);
1178 			return (EINVAL);
1179 		}
1180 	}
1181 
1182 	if (ifs->if_bridge == sc)
1183 		return (EEXIST);
1184 
1185 	if (ifs->if_bridge != NULL)
1186 		return (EBUSY);
1187 
1188 	bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1189 	bif_info->bifi_priority = BSTP_DEFAULT_PORT_PRIORITY;
1190 	bif_info->bifi_path_cost = BSTP_DEFAULT_PATH_COST;
1191 	bif_info->bifi_ifp = ifs;
1192 	bif_info->bifi_bond_weight = 1;
1193 
1194 	/*
1195 	 * Release bridge interface's serializer:
1196 	 * - To avoid possible dead lock.
1197 	 * - Various sync operation will block the current thread.
1198 	 */
1199 	ifnet_deserialize_all(bifp);
1200 
1201 	switch (ifs->if_type) {
1202 	case IFT_ETHER:
1203 	case IFT_L2VLAN:
1204 		/*
1205 		 * Place the interface into promiscuous mode.
1206 		 */
1207 		error = ifpromisc(ifs, 1);
1208 		if (error) {
1209 			ifnet_serialize_all(bifp);
1210 			goto out;
1211 		}
1212 		bridge_mutecaps(bif_info, ifs, 1);
1213 		break;
1214 
1215 	case IFT_GIF: /* :^) */
1216 		break;
1217 
1218 	default:
1219 		error = EINVAL;
1220 		ifnet_serialize_all(bifp);
1221 		goto out;
1222 	}
1223 
1224 	/*
1225 	 * Add bifs to percpu linked lists
1226 	 */
1227 	bridge_add_bif(sc, bif_info, ifs);
1228 
1229 	ifnet_serialize_all(bifp);
1230 
1231 	if (bifp->if_flags & IFF_RUNNING)
1232 		bstp_initialization(sc);
1233 	else
1234 		bstp_stop(sc);
1235 
1236 	/*
1237 	 * Everything has been setup, so let the member interface
1238 	 * deliver packets to this bridge on its input/output path.
1239 	 */
1240 	ifs->if_bridge = sc;
1241 out:
1242 	if (error) {
1243 		if (bif_info != NULL)
1244 			kfree(bif_info, M_DEVBUF);
1245 	}
1246 	return (error);
1247 }
1248 
1249 static int
1250 bridge_ioctl_del(struct bridge_softc *sc, void *arg)
1251 {
1252 	struct ifbreq *req = arg;
1253 	struct bridge_iflist *bif;
1254 
1255 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1256 	if (bif == NULL)
1257 		return (ENOENT);
1258 
1259 	bridge_delete_member(sc, bif, 0);
1260 
1261 	return (0);
1262 }
1263 
1264 static int
1265 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
1266 {
1267 	struct ifbreq *req = arg;
1268 	struct bridge_iflist *bif;
1269 
1270 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1271 	if (bif == NULL)
1272 		return (ENOENT);
1273 	bridge_ioctl_fillflags(sc, bif, req);
1274 	return (0);
1275 }
1276 
1277 static void
1278 bridge_ioctl_fillflags(struct bridge_softc *sc, struct bridge_iflist *bif,
1279 		       struct ifbreq *req)
1280 {
1281 	req->ifbr_ifsflags = bif->bif_flags;
1282 	req->ifbr_state = bif->bif_state;
1283 	req->ifbr_priority = bif->bif_priority;
1284 	req->ifbr_path_cost = bif->bif_path_cost;
1285 	req->ifbr_bond_weight = bif->bif_bond_weight;
1286 	req->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1287 	if (bif->bif_flags & IFBIF_STP) {
1288 		req->ifbr_peer_root = bif->bif_peer_root;
1289 		req->ifbr_peer_bridge = bif->bif_peer_bridge;
1290 		req->ifbr_peer_cost = bif->bif_peer_cost;
1291 		req->ifbr_peer_port = bif->bif_peer_port;
1292 		if (bstp_supersedes_port_info(sc, bif)) {
1293 			req->ifbr_designated_root = bif->bif_peer_root;
1294 			req->ifbr_designated_bridge = bif->bif_peer_bridge;
1295 			req->ifbr_designated_cost = bif->bif_peer_cost;
1296 			req->ifbr_designated_port = bif->bif_peer_port;
1297 		} else {
1298 			req->ifbr_designated_root = sc->sc_bridge_id;
1299 			req->ifbr_designated_bridge = sc->sc_bridge_id;
1300 			req->ifbr_designated_cost = bif->bif_path_cost +
1301 						    bif->bif_peer_cost;
1302 			req->ifbr_designated_port = bif->bif_port_id;
1303 		}
1304 	} else {
1305 		req->ifbr_peer_root = 0;
1306 		req->ifbr_peer_bridge = 0;
1307 		req->ifbr_peer_cost = 0;
1308 		req->ifbr_peer_port = 0;
1309 		req->ifbr_designated_root = 0;
1310 		req->ifbr_designated_bridge = 0;
1311 		req->ifbr_designated_cost = 0;
1312 		req->ifbr_designated_port = 0;
1313 	}
1314 }
1315 
1316 static int
1317 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
1318 {
1319 	struct ifbreq *req = arg;
1320 	struct bridge_iflist *bif;
1321 	struct ifnet *bifp = sc->sc_ifp;
1322 
1323 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1324 	if (bif == NULL)
1325 		return (ENOENT);
1326 
1327 	if (req->ifbr_ifsflags & IFBIF_SPAN) {
1328 		/* SPAN is readonly */
1329 		return (EINVAL);
1330 	}
1331 
1332 	if (req->ifbr_ifsflags & IFBIF_STP) {
1333 		switch (bif->bif_ifp->if_type) {
1334 		case IFT_ETHER:
1335 			/* These can do spanning tree. */
1336 			break;
1337 
1338 		default:
1339 			/* Nothing else can. */
1340 			return (EINVAL);
1341 		}
1342 	}
1343 
1344 	bif->bif_flags = (bif->bif_flags & IFBIF_KEEPMASK) |
1345 			 (req->ifbr_ifsflags & ~IFBIF_KEEPMASK);
1346 	if (bifp->if_flags & IFF_RUNNING)
1347 		bstp_initialization(sc);
1348 
1349 	return (0);
1350 }
1351 
1352 static int
1353 bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
1354 {
1355 	struct ifbrparam *param = arg;
1356 	struct ifnet *ifp = sc->sc_ifp;
1357 
1358 	sc->sc_brtmax = param->ifbrp_csize;
1359 
1360 	ifnet_deserialize_all(ifp);
1361 	bridge_rttrim(sc);
1362 	ifnet_serialize_all(ifp);
1363 
1364 	return (0);
1365 }
1366 
1367 static int
1368 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
1369 {
1370 	struct ifbrparam *param = arg;
1371 
1372 	param->ifbrp_csize = sc->sc_brtmax;
1373 
1374 	return (0);
1375 }
1376 
1377 static int
1378 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg)
1379 {
1380 	struct bridge_control_arg *bc_arg = arg;
1381 	struct ifbifconf *bifc = arg;
1382 	struct bridge_iflist *bif;
1383 	struct ifbreq *breq;
1384 	int count, len;
1385 
1386 	count = 0;
1387 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next)
1388 		count++;
1389 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1390 		count++;
1391 
1392 	if (bifc->ifbic_len == 0) {
1393 		bifc->ifbic_len = sizeof(*breq) * count;
1394 		return 0;
1395 	} else if (count == 0 || bifc->ifbic_len < sizeof(*breq)) {
1396 		bifc->ifbic_len = 0;
1397 		return 0;
1398 	}
1399 
1400 	len = min(bifc->ifbic_len, sizeof(*breq) * count);
1401 	KKASSERT(len >= sizeof(*breq));
1402 
1403 	breq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1404 	if (breq == NULL) {
1405 		bifc->ifbic_len = 0;
1406 		return ENOMEM;
1407 	}
1408 	bc_arg->bca_kptr = breq;
1409 
1410 	count = 0;
1411 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1412 		if (len < sizeof(*breq))
1413 			break;
1414 
1415 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1416 			sizeof(breq->ifbr_ifsname));
1417 		bridge_ioctl_fillflags(sc, bif, breq);
1418 		breq++;
1419 		count++;
1420 		len -= sizeof(*breq);
1421 	}
1422 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
1423 		if (len < sizeof(*breq))
1424 			break;
1425 
1426 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1427 			sizeof(breq->ifbr_ifsname));
1428 		breq->ifbr_ifsflags = bif->bif_flags;
1429 		breq->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1430 		breq++;
1431 		count++;
1432 		len -= sizeof(*breq);
1433 	}
1434 
1435 	bifc->ifbic_len = sizeof(*breq) * count;
1436 	KKASSERT(bifc->ifbic_len > 0);
1437 
1438 	bc_arg->bca_len = bifc->ifbic_len;
1439 	bc_arg->bca_uptr = bifc->ifbic_req;
1440 	return 0;
1441 }
1442 
1443 static int
1444 bridge_ioctl_rts(struct bridge_softc *sc, void *arg)
1445 {
1446 	struct bridge_control_arg *bc_arg = arg;
1447 	struct ifbaconf *bac = arg;
1448 	struct bridge_rtnode *brt;
1449 	struct ifbareq *bareq;
1450 	int count, len;
1451 
1452 	count = 0;
1453 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list)
1454 		count++;
1455 
1456 	if (bac->ifbac_len == 0) {
1457 		bac->ifbac_len = sizeof(*bareq) * count;
1458 		return 0;
1459 	} else if (count == 0 || bac->ifbac_len < sizeof(*bareq)) {
1460 		bac->ifbac_len = 0;
1461 		return 0;
1462 	}
1463 
1464 	len = min(bac->ifbac_len, sizeof(*bareq) * count);
1465 	KKASSERT(len >= sizeof(*bareq));
1466 
1467 	bareq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1468 	if (bareq == NULL) {
1469 		bac->ifbac_len = 0;
1470 		return ENOMEM;
1471 	}
1472 	bc_arg->bca_kptr = bareq;
1473 
1474 	count = 0;
1475 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
1476 		struct bridge_rtinfo *bri = brt->brt_info;
1477 		time_t expire;
1478 
1479 		if (len < sizeof(*bareq))
1480 			break;
1481 
1482 		strlcpy(bareq->ifba_ifsname, bri->bri_ifp->if_xname,
1483 			sizeof(bareq->ifba_ifsname));
1484 		memcpy(bareq->ifba_dst, brt->brt_addr, sizeof(brt->brt_addr));
1485 		expire = bri->bri_expire;
1486 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
1487 		    time_uptime < expire)
1488 			bareq->ifba_expire = expire - time_uptime;
1489 		else
1490 			bareq->ifba_expire = 0;
1491 		bareq->ifba_flags = bri->bri_flags;
1492 		bareq++;
1493 		count++;
1494 		len -= sizeof(*bareq);
1495 	}
1496 
1497 	bac->ifbac_len = sizeof(*bareq) * count;
1498 	KKASSERT(bac->ifbac_len > 0);
1499 
1500 	bc_arg->bca_len = bac->ifbac_len;
1501 	bc_arg->bca_uptr = bac->ifbac_req;
1502 	return 0;
1503 }
1504 
1505 static int
1506 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg)
1507 {
1508 	struct ifbareq *req = arg;
1509 	struct bridge_iflist *bif;
1510 	struct ifnet *ifp = sc->sc_ifp;
1511 	int error;
1512 
1513 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1514 
1515 	bif = bridge_lookup_member(sc, req->ifba_ifsname);
1516 	if (bif == NULL)
1517 		return (ENOENT);
1518 
1519 	ifnet_deserialize_all(ifp);
1520 	error = bridge_rtsaddr(sc, req->ifba_dst, bif->bif_ifp,
1521 			       req->ifba_flags);
1522 	ifnet_serialize_all(ifp);
1523 	return (error);
1524 }
1525 
1526 static int
1527 bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
1528 {
1529 	struct ifbrparam *param = arg;
1530 
1531 	sc->sc_brttimeout = param->ifbrp_ctime;
1532 
1533 	return (0);
1534 }
1535 
1536 static int
1537 bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
1538 {
1539 	struct ifbrparam *param = arg;
1540 
1541 	param->ifbrp_ctime = sc->sc_brttimeout;
1542 
1543 	return (0);
1544 }
1545 
1546 static int
1547 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg)
1548 {
1549 	struct ifbareq *req = arg;
1550 	struct ifnet *ifp = sc->sc_ifp;
1551 	int error;
1552 
1553 	ifnet_deserialize_all(ifp);
1554 	error = bridge_rtdaddr(sc, req->ifba_dst);
1555 	ifnet_serialize_all(ifp);
1556 	return error;
1557 }
1558 
1559 static int
1560 bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
1561 {
1562 	struct ifbreq *req = arg;
1563 	struct ifnet *ifp = sc->sc_ifp;
1564 
1565 	ifnet_deserialize_all(ifp);
1566 	bridge_rtflush(sc, req->ifbr_ifsflags | IFBF_FLUSHSYNC);
1567 	ifnet_serialize_all(ifp);
1568 
1569 	return (0);
1570 }
1571 
1572 static int
1573 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
1574 {
1575 	struct ifbrparam *param = arg;
1576 
1577 	param->ifbrp_prio = sc->sc_bridge_priority;
1578 
1579 	return (0);
1580 }
1581 
1582 static int
1583 bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
1584 {
1585 	struct ifbrparam *param = arg;
1586 
1587 	sc->sc_bridge_priority = param->ifbrp_prio;
1588 
1589 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1590 		bstp_initialization(sc);
1591 
1592 	return (0);
1593 }
1594 
1595 static int
1596 bridge_ioctl_reinit(struct bridge_softc *sc, void *arg __unused)
1597 {
1598 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1599 		bstp_initialization(sc);
1600 	return (0);
1601 }
1602 
1603 static int
1604 bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
1605 {
1606 	struct ifbrparam *param = arg;
1607 
1608 	param->ifbrp_hellotime = sc->sc_bridge_hello_time >> 8;
1609 
1610 	return (0);
1611 }
1612 
1613 static int
1614 bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
1615 {
1616 	struct ifbrparam *param = arg;
1617 
1618 	if (param->ifbrp_hellotime == 0)
1619 		return (EINVAL);
1620 	sc->sc_bridge_hello_time = param->ifbrp_hellotime << 8;
1621 
1622 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1623 		bstp_initialization(sc);
1624 
1625 	return (0);
1626 }
1627 
1628 static int
1629 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
1630 {
1631 	struct ifbrparam *param = arg;
1632 
1633 	param->ifbrp_fwddelay = sc->sc_bridge_forward_delay >> 8;
1634 
1635 	return (0);
1636 }
1637 
1638 static int
1639 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
1640 {
1641 	struct ifbrparam *param = arg;
1642 
1643 	if (param->ifbrp_fwddelay == 0)
1644 		return (EINVAL);
1645 	sc->sc_bridge_forward_delay = param->ifbrp_fwddelay << 8;
1646 
1647 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1648 		bstp_initialization(sc);
1649 
1650 	return (0);
1651 }
1652 
1653 static int
1654 bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
1655 {
1656 	struct ifbrparam *param = arg;
1657 
1658 	param->ifbrp_maxage = sc->sc_bridge_max_age >> 8;
1659 
1660 	return (0);
1661 }
1662 
1663 static int
1664 bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
1665 {
1666 	struct ifbrparam *param = arg;
1667 
1668 	if (param->ifbrp_maxage == 0)
1669 		return (EINVAL);
1670 	sc->sc_bridge_max_age = param->ifbrp_maxage << 8;
1671 
1672 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1673 		bstp_initialization(sc);
1674 
1675 	return (0);
1676 }
1677 
1678 static int
1679 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
1680 {
1681 	struct ifbreq *req = arg;
1682 	struct bridge_iflist *bif;
1683 
1684 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1685 	if (bif == NULL)
1686 		return (ENOENT);
1687 
1688 	bif->bif_priority = req->ifbr_priority;
1689 
1690 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1691 		bstp_initialization(sc);
1692 
1693 	return (0);
1694 }
1695 
1696 static int
1697 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
1698 {
1699 	struct ifbreq *req = arg;
1700 	struct bridge_iflist *bif;
1701 
1702 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1703 	if (bif == NULL)
1704 		return (ENOENT);
1705 
1706 	bif->bif_path_cost = req->ifbr_path_cost;
1707 
1708 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1709 		bstp_initialization(sc);
1710 
1711 	return (0);
1712 }
1713 
1714 static int
1715 bridge_ioctl_sifbondwght(struct bridge_softc *sc, void *arg)
1716 {
1717 	struct ifbreq *req = arg;
1718 	struct bridge_iflist *bif;
1719 
1720 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1721 	if (bif == NULL)
1722 		return (ENOENT);
1723 
1724 	bif->bif_bond_weight = req->ifbr_bond_weight;
1725 
1726 	/* no reinit needed */
1727 
1728 	return (0);
1729 }
1730 
1731 static int
1732 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
1733 {
1734 	struct ifbreq *req = arg;
1735 	struct bridge_iflist *bif;
1736 	struct ifnet *ifs;
1737 	struct bridge_ifinfo *bif_info;
1738 
1739 	ifs = ifunit_netisr(req->ifbr_ifsname);
1740 	if (ifs == NULL)
1741 		return (ENOENT);
1742 
1743 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1744 		if (ifs == bif->bif_ifp)
1745 			return (EBUSY);
1746 
1747 	if (ifs->if_bridge != NULL)
1748 		return (EBUSY);
1749 
1750 	switch (ifs->if_type) {
1751 	case IFT_ETHER:
1752 	case IFT_GIF:
1753 	case IFT_L2VLAN:
1754 		break;
1755 
1756 	default:
1757 		return (EINVAL);
1758 	}
1759 
1760 	/*
1761 	 * bif_info is needed for bif_flags
1762 	 */
1763         bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1764         bif_info->bifi_ifp = ifs;
1765 
1766 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
1767 	bif->bif_ifp = ifs;
1768 	bif->bif_info = bif_info;
1769 	bif->bif_flags = IFBIF_SPAN;
1770 	/* NOTE: span bif does not need bridge_ifinfo */
1771 
1772 	TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
1773 
1774 	sc->sc_span = 1;
1775 
1776 	return (0);
1777 }
1778 
1779 static int
1780 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
1781 {
1782 	struct ifbreq *req = arg;
1783 	struct bridge_iflist *bif;
1784 	struct ifnet *ifs;
1785 
1786 	ifs = ifunit_netisr(req->ifbr_ifsname);
1787 	if (ifs == NULL)
1788 		return (ENOENT);
1789 
1790 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1791 		if (ifs == bif->bif_ifp)
1792 			break;
1793 
1794 	if (bif == NULL)
1795 		return (ENOENT);
1796 
1797 	bridge_delete_span(sc, bif);
1798 
1799 	if (TAILQ_EMPTY(&sc->sc_spanlist))
1800 		sc->sc_span = 0;
1801 
1802 	return (0);
1803 }
1804 
1805 static void
1806 bridge_ifdetach_dispatch(netmsg_t msg)
1807 {
1808 	struct ifnet *ifp, *bifp;
1809 	struct bridge_softc *sc;
1810 	struct bridge_iflist *bif;
1811 
1812 	ifp = msg->lmsg.u.ms_resultp;
1813 	sc = ifp->if_bridge;
1814 
1815 	/* Check if the interface is a bridge member */
1816 	if (sc != NULL) {
1817 		bifp = sc->sc_ifp;
1818 
1819 		ifnet_serialize_all(bifp);
1820 
1821 		bif = bridge_lookup_member_if(sc, ifp);
1822 		if (bif != NULL) {
1823 			bridge_delete_member(sc, bif, 1);
1824 		} else {
1825 			/* XXX Why bif will be NULL? */
1826 		}
1827 
1828 		ifnet_deserialize_all(bifp);
1829 		goto reply;
1830 	}
1831 
1832 	crit_enter();	/* XXX MP */
1833 
1834 	/* Check if the interface is a span port */
1835 	LIST_FOREACH(sc, &bridge_list, sc_list) {
1836 		bifp = sc->sc_ifp;
1837 
1838 		ifnet_serialize_all(bifp);
1839 
1840 		TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1841 			if (ifp == bif->bif_ifp) {
1842 				bridge_delete_span(sc, bif);
1843 				break;
1844 			}
1845 
1846 		ifnet_deserialize_all(bifp);
1847 	}
1848 
1849 	crit_exit();
1850 
1851 reply:
1852 	lwkt_replymsg(&msg->lmsg, 0);
1853 }
1854 
1855 /*
1856  * bridge_ifdetach:
1857  *
1858  *	Detach an interface from a bridge.  Called when a member
1859  *	interface is detaching.
1860  */
1861 static void
1862 bridge_ifdetach(void *arg __unused, struct ifnet *ifp)
1863 {
1864 	struct netmsg_base msg;
1865 
1866 	netmsg_init(&msg, NULL, &curthread->td_msgport,
1867 		    0, bridge_ifdetach_dispatch);
1868 	msg.lmsg.u.ms_resultp = ifp;
1869 
1870 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
1871 }
1872 
1873 /*
1874  * bridge_init:
1875  *
1876  *	Initialize a bridge interface.
1877  */
1878 static void
1879 bridge_init(void *xsc)
1880 {
1881 	bridge_control(xsc, SIOCSIFFLAGS, bridge_ioctl_init, NULL);
1882 }
1883 
1884 /*
1885  * bridge_stop:
1886  *
1887  *	Stop the bridge interface.
1888  */
1889 static void
1890 bridge_stop(struct ifnet *ifp)
1891 {
1892 	bridge_control(ifp->if_softc, SIOCSIFFLAGS, bridge_ioctl_stop, NULL);
1893 }
1894 
1895 /*
1896  * Returns TRUE if the packet is being sent 'from us'... from our bridge
1897  * interface or from any member of our bridge interface.  This is used
1898  * later on to force the MAC to be the MAC of our bridge interface.
1899  */
1900 static int
1901 bridge_from_us(struct bridge_softc *sc, struct ether_header *eh)
1902 {
1903 	struct bridge_iflist *bif;
1904 
1905 	if (memcmp(eh->ether_shost, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN) == 0)
1906 		return (1);
1907 
1908 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1909 		if (memcmp(eh->ether_shost, IF_LLADDR(bif->bif_ifp),
1910 			   ETHER_ADDR_LEN) == 0) {
1911 			return (1);
1912 		}
1913 	}
1914 	return (0);
1915 }
1916 
1917 /*
1918  * bridge_enqueue:
1919  *
1920  *	Enqueue a packet on a bridge member interface.
1921  *
1922  */
1923 void
1924 bridge_enqueue(struct ifnet *dst_ifp, struct mbuf *m)
1925 {
1926 	struct netmsg_packet *nmp;
1927 
1928 	mbuftrackid(m, 64);
1929 
1930 	nmp = &m->m_hdr.mh_netmsg;
1931 	netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
1932 		    0, bridge_enqueue_handler);
1933 	nmp->nm_packet = m;
1934 	nmp->base.lmsg.u.ms_resultp = dst_ifp;
1935 
1936 	lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), &nmp->base.lmsg);
1937 }
1938 
1939 /*
1940  * After looking up dst_if in our forwarding table we still have to
1941  * deal with channel bonding.  Find the best interface in the bonding set.
1942  */
1943 static struct ifnet *
1944 bridge_select_unicast(struct bridge_softc *sc, struct ifnet *dst_if,
1945 		      int from_blocking, struct mbuf *m)
1946 {
1947 	struct bridge_iflist *bif, *nbif;
1948 	struct ifnet *alt_if;
1949 	int alt_priority;
1950 	int priority;
1951 
1952 	/*
1953 	 * Unicast, kinda replicates the output side of bridge_output().
1954 	 *
1955 	 * Even though this is a uni-cast packet we may have to select
1956 	 * an interface from a bonding set.
1957 	 */
1958 	bif = bridge_lookup_member_if(sc, dst_if);
1959 	if (bif == NULL) {
1960 		/* Not a member of the bridge (anymore?) */
1961 		return NULL;
1962 	}
1963 
1964 	/*
1965 	 * If STP is enabled on the target we are an equal opportunity
1966 	 * employer and do not necessarily output to dst_if.  Instead
1967 	 * scan available links with the same MAC as the current dst_if
1968 	 * and choose the best one.
1969 	 *
1970 	 * We also need to do this because arp entries tag onto a particular
1971 	 * interface and if it happens to be dead then the packets will
1972 	 * go into a bit bucket.
1973 	 *
1974 	 * If LINK2 is set the matching links are bonded and we-round robin.
1975 	 * (the MAC address must be the same for the participating links).
1976 	 * In this case links in a STP FORWARDING or BONDED state are
1977 	 * allowed for unicast packets.
1978 	 */
1979 	if (bif->bif_flags & IFBIF_STP) {
1980 		alt_if = NULL;
1981 		alt_priority = 0;
1982 		priority = 0;
1983 
1984 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
1985 				     bif_next, nbif) {
1986 			/*
1987 			 * dst_if may imply a bonding set so we must compare
1988 			 * MAC addresses.
1989 			 */
1990 			if (memcmp(IF_LLADDR(bif->bif_ifp),
1991 				   IF_LLADDR(dst_if),
1992 				   ETHER_ADDR_LEN) != 0) {
1993 				continue;
1994 			}
1995 
1996 			if ((bif->bif_ifp->if_flags & IFF_RUNNING) == 0)
1997 				continue;
1998 
1999 			/*
2000 			 * NOTE: We allow tranmissions through a BLOCKING
2001 			 *	 or LEARNING interface only as a last resort.
2002 			 *	 We DISALLOW both cases if the receiving
2003 			 *
2004 			 * NOTE: If we send a packet through a learning
2005 			 *	 interface the receiving end (if also in
2006 			 *	 LEARNING) will throw it away, so this is
2007 			 *	 the ultimate last resort.
2008 			 */
2009 			switch(bif->bif_state) {
2010 			case BSTP_IFSTATE_BLOCKING:
2011 				if (from_blocking == 0 &&
2012 				    bif->bif_priority + 256 > alt_priority) {
2013 					alt_priority = bif->bif_priority + 256;
2014 					alt_if = bif->bif_ifp;
2015 				}
2016 				continue;
2017 			case BSTP_IFSTATE_LEARNING:
2018 				if (from_blocking == 0 &&
2019 				    bif->bif_priority > alt_priority) {
2020 					alt_priority = bif->bif_priority;
2021 					alt_if = bif->bif_ifp;
2022 				}
2023 				continue;
2024 			case BSTP_IFSTATE_L1BLOCKING:
2025 			case BSTP_IFSTATE_LISTENING:
2026 			case BSTP_IFSTATE_DISABLED:
2027 				continue;
2028 			default:
2029 				/* FORWARDING, BONDED */
2030 				break;
2031 			}
2032 
2033 			/*
2034 			 * XXX we need to use the toepliz hash or
2035 			 *     something like that instead of
2036 			 *     round-robining.
2037 			 */
2038 			if (sc->sc_ifp->if_flags & IFF_LINK2) {
2039 				dst_if = bif->bif_ifp;
2040 				if (++bif->bif_bond_count >=
2041 				    bif->bif_bond_weight) {
2042 					bif->bif_bond_count = 0;
2043 					TAILQ_REMOVE(&sc->sc_iflists[mycpuid],
2044 						     bif, bif_next);
2045 					TAILQ_INSERT_TAIL(
2046 						     &sc->sc_iflists[mycpuid],
2047 						     bif, bif_next);
2048 				}
2049 				priority = 1;
2050 				break;
2051 			}
2052 
2053 			/*
2054 			 * Select best interface in the FORWARDING or
2055 			 * BONDED set.  Well, there shouldn't be any
2056 			 * in a BONDED state if LINK2 is not set (they
2057 			 * will all be in a BLOCKING) state, but there
2058 			 * could be a transitory condition here.
2059 			 */
2060 			if (bif->bif_priority > priority) {
2061 				priority = bif->bif_priority;
2062 				dst_if = bif->bif_ifp;
2063 			}
2064 		}
2065 
2066 		/*
2067 		 * If no suitable interfaces were found but a suitable
2068 		 * alternative interface was found, use the alternative
2069 		 * interface.
2070 		 */
2071 		if (priority == 0 && alt_if)
2072 			dst_if = alt_if;
2073 	}
2074 
2075 	/*
2076 	 * At this point, we're dealing with a unicast frame
2077 	 * going to a different interface.
2078 	 */
2079 	if ((dst_if->if_flags & IFF_RUNNING) == 0)
2080 		dst_if = NULL;
2081 	return (dst_if);
2082 }
2083 
2084 
2085 /*
2086  * bridge_output:
2087  *
2088  *	Send output from a bridge member interface.  This
2089  *	performs the bridging function for locally originated
2090  *	packets.
2091  *
2092  *	The mbuf has the Ethernet header already attached.  We must
2093  *	enqueue or free the mbuf before returning.
2094  */
2095 static int
2096 bridge_output(struct ifnet *ifp, struct mbuf *m)
2097 {
2098 	struct bridge_softc *sc = ifp->if_bridge;
2099 	struct bridge_iflist *bif, *nbif;
2100 	struct ether_header *eh;
2101 	struct ifnet *dst_if, *alt_if, *bifp;
2102 	int from_us;
2103 	int alt_priority;
2104 
2105 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2106 	ASSERT_NETISR_NCPUS(mycpuid);
2107 	mbuftrackid(m, 65);
2108 
2109 	/*
2110 	 * Make sure that we are still a member of a bridge interface.
2111 	 */
2112 	if (sc == NULL) {
2113 		m_freem(m);
2114 		return (0);
2115 	}
2116 	bifp = sc->sc_ifp;
2117 
2118 	/*
2119 	 * Acquire header
2120 	 */
2121 	if (m->m_len < ETHER_HDR_LEN) {
2122 		m = m_pullup(m, ETHER_HDR_LEN);
2123 		if (m == NULL) {
2124 			IFNET_STAT_INC(bifp, oerrors, 1);
2125 			return (0);
2126 		}
2127 	}
2128 	eh = mtod(m, struct ether_header *);
2129 	from_us = bridge_from_us(sc, eh);
2130 
2131 	/*
2132 	 * If bridge is down, but the original output interface is up,
2133 	 * go ahead and send out that interface.  Otherwise, the packet
2134 	 * is dropped below.
2135 	 */
2136 	if ((bifp->if_flags & IFF_RUNNING) == 0) {
2137 		dst_if = ifp;
2138 		goto sendunicast;
2139 	}
2140 
2141 	/*
2142 	 * If the packet is a multicast, or we don't know a better way to
2143 	 * get there, send to all interfaces.
2144 	 */
2145 	if (ETHER_IS_MULTICAST(eh->ether_dhost))
2146 		dst_if = NULL;
2147 	else
2148 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2149 
2150 	if (dst_if == NULL) {
2151 		struct mbuf *mc;
2152 		int used = 0;
2153 		int found = 0;
2154 
2155 		if (sc->sc_span)
2156 			bridge_span(sc, m);
2157 
2158 		alt_if = NULL;
2159 		alt_priority = 0;
2160 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
2161 				     bif_next, nbif) {
2162 			dst_if = bif->bif_ifp;
2163 
2164 			if ((dst_if->if_flags & IFF_RUNNING) == 0)
2165 				continue;
2166 
2167 			/*
2168 			 * If this is not the original output interface,
2169 			 * and the interface is participating in spanning
2170 			 * tree, make sure the port is in a state that
2171 			 * allows forwarding.
2172 			 *
2173 			 * We keep track of a possible backup IF if we are
2174 			 * unable to find any interfaces to forward through.
2175 			 *
2176 			 * NOTE: Currently round-robining is not implemented
2177 			 *	 across bonded interface groups (needs an
2178 			 *	 algorithm to track each group somehow).
2179 			 *
2180 			 *	 Similarly we track only one alternative
2181 			 *	 interface if no suitable interfaces are
2182 			 *	 found.
2183 			 */
2184 			if (dst_if != ifp &&
2185 			    (bif->bif_flags & IFBIF_STP) != 0) {
2186 				switch (bif->bif_state) {
2187 				case BSTP_IFSTATE_BONDED:
2188 					if (bif->bif_priority + 512 >
2189 					    alt_priority) {
2190 						alt_priority =
2191 						    bif->bif_priority + 512;
2192 						alt_if = bif->bif_ifp;
2193 					}
2194 					continue;
2195 				case BSTP_IFSTATE_BLOCKING:
2196 					if (bif->bif_priority + 256 >
2197 					    alt_priority) {
2198 						alt_priority =
2199 						    bif->bif_priority + 256;
2200 						alt_if = bif->bif_ifp;
2201 					}
2202 					continue;
2203 				case BSTP_IFSTATE_LEARNING:
2204 					if (bif->bif_priority > alt_priority) {
2205 						alt_priority =
2206 						    bif->bif_priority;
2207 						alt_if = bif->bif_ifp;
2208 					}
2209 					continue;
2210 				case BSTP_IFSTATE_L1BLOCKING:
2211 				case BSTP_IFSTATE_LISTENING:
2212 				case BSTP_IFSTATE_DISABLED:
2213 					continue;
2214 				default:
2215 					/* FORWARDING */
2216 					break;
2217 				}
2218 			}
2219 
2220 			KKASSERT(used == 0);
2221 			if (TAILQ_NEXT(bif, bif_next) == NULL) {
2222 				used = 1;
2223 				mc = m;
2224 			} else {
2225 				mc = m_copypacket(m, M_NOWAIT);
2226 				if (mc == NULL) {
2227 					IFNET_STAT_INC(bifp, oerrors, 1);
2228 					continue;
2229 				}
2230 			}
2231 
2232 			/*
2233 			 * If the packet is 'from' us override ether_shost.
2234 			 */
2235 			bridge_handoff(sc, dst_if, mc, from_us);
2236 			found = 1;
2237 
2238 			if (nbif != NULL && !nbif->bif_onlist) {
2239 				KKASSERT(bif->bif_onlist);
2240 				nbif = TAILQ_NEXT(bif, bif_next);
2241 			}
2242 		}
2243 
2244 		/*
2245 		 * If we couldn't find anything use the backup interface
2246 		 * if we have one.
2247 		 */
2248 		if (found == 0 && alt_if) {
2249 			KKASSERT(used == 0);
2250 			mc = m;
2251 			used = 1;
2252 			bridge_handoff(sc, alt_if, mc, from_us);
2253 		}
2254 
2255 		if (used == 0)
2256 			m_freem(m);
2257 		return (0);
2258 	}
2259 
2260 	/*
2261 	 * Unicast
2262 	 */
2263 sendunicast:
2264 	dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2265 
2266 	if (sc->sc_span)
2267 		bridge_span(sc, m);
2268 	if (dst_if == NULL)
2269 		m_freem(m);
2270 	else
2271 		bridge_handoff(sc, dst_if, m, from_us);
2272 	return (0);
2273 }
2274 
2275 /*
2276  * Returns the bridge interface associated with an ifc.
2277  * Pass ifp->if_bridge (must not be NULL).  Used by the ARP
2278  * code to supply the bridge for the is-at info, making
2279  * the bridge responsible for matching local addresses.
2280  *
2281  * Without this the ARP code will supply bridge member interfaces
2282  * for the is-at which makes it difficult the bridge to fail-over
2283  * interfaces (amoung other things).
2284  */
2285 static struct ifnet *
2286 bridge_interface(void *if_bridge)
2287 {
2288 	struct bridge_softc *sc = if_bridge;
2289 	return (sc->sc_ifp);
2290 }
2291 
2292 /*
2293  * bridge_start:
2294  *
2295  *	Start output on a bridge.
2296  */
2297 static void
2298 bridge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2299 {
2300 	struct bridge_softc *sc = ifp->if_softc;
2301 
2302 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2303 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
2304 	ASSERT_NETISR_NCPUS(mycpuid);
2305 
2306 	ifsq_set_oactive(ifsq);
2307 	for (;;) {
2308 		struct ifnet *dst_if = NULL;
2309 		struct ether_header *eh;
2310 		struct mbuf *m;
2311 
2312 		m = ifsq_dequeue(ifsq);
2313 		if (m == NULL)
2314 			break;
2315 		mbuftrackid(m, 75);
2316 
2317 		if (m->m_len < sizeof(*eh)) {
2318 			m = m_pullup(m, sizeof(*eh));
2319 			if (m == NULL) {
2320 				IFNET_STAT_INC(ifp, oerrors, 1);
2321 				continue;
2322 			}
2323 		}
2324 		eh = mtod(m, struct ether_header *);
2325 
2326 		BPF_MTAP(ifp, m);
2327 		IFNET_STAT_INC(ifp, opackets, 1);
2328 
2329 		if ((m->m_flags & (M_BCAST|M_MCAST)) == 0)
2330 			dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2331 
2332 		/*
2333 		 * Multicast or broadcast
2334 		 */
2335 		if (dst_if == NULL) {
2336 			bridge_start_bcast(sc, m);
2337 			continue;
2338 		}
2339 
2340 		/*
2341 		 * Unicast
2342 		 */
2343 		dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2344 
2345 		if (dst_if == NULL)
2346 			m_freem(m);
2347 		else
2348 			bridge_enqueue(dst_if, m);
2349 	}
2350 	ifsq_clr_oactive(ifsq);
2351 }
2352 
2353 /*
2354  * bridge_forward:
2355  *
2356  *	Forward packets received on a bridge interface via the input
2357  *	path.
2358  *
2359  *	This implements the forwarding function of the bridge.
2360  */
2361 static void
2362 bridge_forward(struct bridge_softc *sc, struct mbuf *m)
2363 {
2364 	struct bridge_iflist *bif;
2365 	struct ifnet *src_if, *dst_if, *ifp;
2366 	struct ether_header *eh;
2367 	int from_blocking;
2368 
2369 	mbuftrackid(m, 66);
2370 	src_if = m->m_pkthdr.rcvif;
2371 	ifp = sc->sc_ifp;
2372 
2373 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2374 
2375 	/*
2376 	 * packet coming in on the bridge is also going out on the bridge,
2377 	 * but ether code won't adjust output stats for the bridge because
2378 	 * we are changing the interface to something else.
2379 	 */
2380 	IFNET_STAT_INC(ifp, opackets, 1);
2381 	IFNET_STAT_INC(ifp, obytes, m->m_pkthdr.len);
2382 
2383 	/*
2384 	 * Look up the bridge_iflist.
2385 	 */
2386 	bif = bridge_lookup_member_if(sc, src_if);
2387 	if (bif == NULL) {
2388 		/* Interface is not a bridge member (anymore?) */
2389 		m_freem(m);
2390 		return;
2391 	}
2392 
2393 	/*
2394 	 * In spanning tree mode receiving a packet from an interface
2395 	 * in a BLOCKING state is allowed, it could be a member of last
2396 	 * resort from the sender's point of view, but forwarding it is
2397 	 * not allowed.
2398 	 *
2399 	 * The sender's spanning tree will eventually sync up and the
2400 	 * sender will go into a BLOCKING state too (but this still may be
2401 	 * an interface of last resort during state changes).
2402 	 */
2403 	if (bif->bif_flags & IFBIF_STP) {
2404 		switch (bif->bif_state) {
2405 		case BSTP_IFSTATE_L1BLOCKING:
2406 		case BSTP_IFSTATE_LISTENING:
2407 		case BSTP_IFSTATE_DISABLED:
2408 			m_freem(m);
2409 			return;
2410 		default:
2411 			/* learning, blocking, bonded, forwarding */
2412 			break;
2413 		}
2414 		from_blocking = (bif->bif_state == BSTP_IFSTATE_BLOCKING);
2415 	} else {
2416 		from_blocking = 0;
2417 	}
2418 
2419 	eh = mtod(m, struct ether_header *);
2420 
2421 	/*
2422 	 * If the interface is learning, and the source
2423 	 * address is valid and not multicast, record
2424 	 * the address.
2425 	 */
2426 	if ((bif->bif_flags & IFBIF_LEARNING) != 0 &&
2427 	    from_blocking == 0 &&
2428 	    ETHER_IS_MULTICAST(eh->ether_shost) == 0 &&
2429 	    (eh->ether_shost[0] == 0 &&
2430 	     eh->ether_shost[1] == 0 &&
2431 	     eh->ether_shost[2] == 0 &&
2432 	     eh->ether_shost[3] == 0 &&
2433 	     eh->ether_shost[4] == 0 &&
2434 	     eh->ether_shost[5] == 0) == 0) {
2435 		bridge_rtupdate(sc, eh->ether_shost, src_if, IFBAF_DYNAMIC);
2436 	}
2437 
2438 	/*
2439 	 * Don't forward from an interface in the listening or learning
2440 	 * state.  That is, in the learning state we learn information
2441 	 * but we throw away the packets.
2442 	 *
2443 	 * We let through packets on interfaces in the blocking state.
2444 	 * The blocking state is applicable to the send side, not the
2445 	 * receive side.
2446 	 */
2447 	if ((bif->bif_flags & IFBIF_STP) != 0 &&
2448 	    (bif->bif_state == BSTP_IFSTATE_LISTENING ||
2449 	     bif->bif_state == BSTP_IFSTATE_LEARNING)) {
2450 		m_freem(m);
2451 		return;
2452 	}
2453 
2454 	/*
2455 	 * At this point, the port either doesn't participate
2456 	 * in spanning tree or it is in the forwarding state.
2457 	 */
2458 
2459 	/*
2460 	 * If the packet is unicast, destined for someone on
2461 	 * "this" side of the bridge, drop it.
2462 	 *
2463 	 * src_if implies the entire bonding set so we have to compare MAC
2464 	 * addresses and not just if pointers.
2465 	 */
2466 	if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) {
2467 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2468 		if (dst_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
2469 				     ETHER_ADDR_LEN) == 0) {
2470 			m_freem(m);
2471 			return;
2472 		}
2473 	} else {
2474 		/* ...forward it to all interfaces. */
2475 		IFNET_STAT_INC(ifp, imcasts, 1);
2476 		dst_if = NULL;
2477 	}
2478 
2479 	/*
2480 	 * Brodcast if we do not have forwarding information.  However, if
2481 	 * we received the packet on a blocking interface we do not do this
2482 	 * (unless you really want to blow up your network).
2483 	 */
2484 	if (dst_if == NULL) {
2485 		if (from_blocking)
2486 			m_freem(m);
2487 		else
2488 			bridge_broadcast(sc, src_if, m);
2489 		return;
2490 	}
2491 
2492 	dst_if = bridge_select_unicast(sc, dst_if, from_blocking, m);
2493 
2494 	if (dst_if == NULL) {
2495 		m_freem(m);
2496 		return;
2497 	}
2498 
2499 	if (inet_pfil_hook.ph_hashooks > 0
2500 #ifdef INET6
2501 	    || inet6_pfil_hook.ph_hashooks > 0
2502 #endif
2503 	    ) {
2504 		if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0)
2505 			return;
2506 		if (m == NULL)
2507 			return;
2508 
2509 		if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0)
2510 			return;
2511 		if (m == NULL)
2512 			return;
2513 	}
2514 	bridge_handoff(sc, dst_if, m, 0);
2515 }
2516 
2517 /*
2518  * bridge_input:
2519  *
2520  *	Receive input from a member interface.  Queue the packet for
2521  *	bridging if it is not for us.
2522  */
2523 static struct mbuf *
2524 bridge_input(struct ifnet *ifp, struct mbuf *m)
2525 {
2526 	struct bridge_softc *sc = ifp->if_bridge;
2527 	struct bridge_iflist *bif;
2528 	struct ifnet *bifp, *new_ifp;
2529 	struct ether_header *eh;
2530 	struct mbuf *mc, *mc2;
2531 
2532 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2533 	ASSERT_NETISR_NCPUS(mycpuid);
2534 	mbuftrackid(m, 67);
2535 
2536 	/*
2537 	 * Make sure that we are still a member of a bridge interface.
2538 	 */
2539 	if (sc == NULL)
2540 		return m;
2541 
2542 	new_ifp = NULL;
2543 	bifp = sc->sc_ifp;
2544 
2545 	if ((bifp->if_flags & IFF_RUNNING) == 0)
2546 		goto out;
2547 
2548 	/*
2549 	 * Implement support for bridge monitoring.  If this flag has been
2550 	 * set on this interface, discard the packet once we push it through
2551 	 * the bpf(4) machinery, but before we do, increment various counters
2552 	 * associated with this bridge.
2553 	 */
2554 	if (bifp->if_flags & IFF_MONITOR) {
2555 		/*
2556 		 * Change input interface to this bridge
2557 		 *
2558 		 * Update bridge's ifnet statistics
2559 		 */
2560 		m->m_pkthdr.rcvif = bifp;
2561 
2562 		BPF_MTAP(bifp, m);
2563 		IFNET_STAT_INC(bifp, ipackets, 1);
2564 		IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2565 		if (m->m_flags & (M_MCAST | M_BCAST))
2566 			IFNET_STAT_INC(bifp, imcasts, 1);
2567 
2568 		m_freem(m);
2569 		m = NULL;
2570 		goto out;
2571 	}
2572 
2573 	/*
2574 	 * Handle the ether_header
2575 	 *
2576 	 * In all cases if the packet is destined for us via our MAC
2577 	 * we must clear BRIDGE_MBUF_TAGGED to ensure that we don't
2578 	 * repeat the source MAC out the same interface.
2579 	 *
2580 	 * This first test against our bridge MAC is the fast-path.
2581 	 *
2582 	 * NOTE!  The bridge interface can serve as an endpoint for
2583 	 *	  communication but normally there are no IPs associated
2584 	 *	  with it so you cannot route through it.  Instead what
2585 	 *	  you do is point your default route *THROUGH* the bridge
2586 	 *	  to the actual default router for one of the bridged spaces.
2587 	 *
2588 	 *	  Another possibility is to put all your IP specifications
2589 	 *	  on the bridge instead of on the individual interfaces.  If
2590 	 *	  you do this it should be possible to use the bridge as an
2591 	 *	  end point and route (rather than switch) through it using
2592 	 *	  the default route or ipfw forwarding rules.
2593 	 */
2594 
2595 	/*
2596 	 * Acquire header
2597 	 */
2598 	if (m->m_len < ETHER_HDR_LEN) {
2599 		m = m_pullup(m, ETHER_HDR_LEN);
2600 		if (m == NULL)
2601 			goto out;
2602 	}
2603 	eh = mtod(m, struct ether_header *);
2604 	m->m_pkthdr.fw_flags |= BRIDGE_MBUF_TAGGED;
2605 	bcopy(eh->ether_shost, m->m_pkthdr.ether_br_shost, ETHER_ADDR_LEN);
2606 
2607 	if ((bridge_debug & 1) &&
2608 	    (ntohs(eh->ether_type) == ETHERTYPE_ARP ||
2609 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP)) {
2610 		kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
2611 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x "
2612 			"lla %02x:%02x:%02x:%02x:%02x:%02x\n",
2613 			eh->ether_dhost[0],
2614 			eh->ether_dhost[1],
2615 			eh->ether_dhost[2],
2616 			eh->ether_dhost[3],
2617 			eh->ether_dhost[4],
2618 			eh->ether_dhost[5],
2619 			eh->ether_shost[0],
2620 			eh->ether_shost[1],
2621 			eh->ether_shost[2],
2622 			eh->ether_shost[3],
2623 			eh->ether_shost[4],
2624 			eh->ether_shost[5],
2625 			eh->ether_type,
2626 			((u_char *)IF_LLADDR(bifp))[0],
2627 			((u_char *)IF_LLADDR(bifp))[1],
2628 			((u_char *)IF_LLADDR(bifp))[2],
2629 			((u_char *)IF_LLADDR(bifp))[3],
2630 			((u_char *)IF_LLADDR(bifp))[4],
2631 			((u_char *)IF_LLADDR(bifp))[5]
2632 		);
2633 	}
2634 
2635 	/*
2636 	 * If the packet is for us, set the packets source as the
2637 	 * bridge, and return the packet back to ifnet.if_input for
2638 	 * local processing.
2639 	 */
2640 	if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) {
2641 		/*
2642 		 * We must still record the source interface in our
2643 		 * addr cache, otherwise our bridge won't know where
2644 		 * to send responses and will broadcast them.
2645 		 */
2646 		bif = bridge_lookup_member_if(sc, ifp);
2647 		if ((bif->bif_flags & IFBIF_LEARNING) &&
2648 		    ((bif->bif_flags & IFBIF_STP) == 0 ||
2649 		     bif->bif_state != BSTP_IFSTATE_BLOCKING)) {
2650 			bridge_rtupdate(sc, eh->ether_shost,
2651 					ifp, IFBAF_DYNAMIC);
2652 		}
2653 
2654 		/*
2655 		 * Perform pfil hooks.
2656 		 */
2657 		m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2658 		KASSERT(bifp->if_bridge == NULL,
2659 			("loop created in bridge_input"));
2660 		if (pfil_member != 0) {
2661 			if (inet_pfil_hook.ph_hashooks > 0
2662 #ifdef INET6
2663 			    || inet6_pfil_hook.ph_hashooks > 0
2664 #endif
2665 			) {
2666 				if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0)
2667 					goto out;
2668 				if (m == NULL)
2669 					goto out;
2670 			}
2671 		}
2672 
2673 		/*
2674 		 * Set new_ifp and skip to the end.  This will trigger code
2675 		 * to reinput the packet and run it into our stack.
2676 		 */
2677 		new_ifp = bifp;
2678 		goto out;
2679 	}
2680 
2681 	/*
2682 	 * Tap all packets arriving on the bridge, no matter if
2683 	 * they are local destinations or not.  In is in.
2684 	 *
2685 	 * Update bridge's ifnet statistics
2686 	 */
2687 	BPF_MTAP(bifp, m);
2688 	IFNET_STAT_INC(bifp, ipackets, 1);
2689 	IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2690 	if (m->m_flags & (M_MCAST | M_BCAST))
2691 		IFNET_STAT_INC(bifp, imcasts, 1);
2692 
2693 	bif = bridge_lookup_member_if(sc, ifp);
2694 	if (bif == NULL)
2695 		goto out;
2696 
2697 	if (sc->sc_span)
2698 		bridge_span(sc, m);
2699 
2700 	if (m->m_flags & (M_BCAST | M_MCAST)) {
2701 		/*
2702 		 * Tap off 802.1D packets; they do not get forwarded.
2703 		 */
2704 		if (memcmp(eh->ether_dhost, bstp_etheraddr,
2705 			    ETHER_ADDR_LEN) == 0) {
2706 			ifnet_serialize_all(bifp);
2707 			bstp_input(sc, bif, m);
2708 			ifnet_deserialize_all(bifp);
2709 
2710 			/* m is freed by bstp_input */
2711 			m = NULL;
2712 			goto out;
2713 		}
2714 
2715 		/*
2716 		 * Other than 802.11d packets, ignore packets if the
2717 		 * interface is not in a good state.
2718 		 *
2719 		 * NOTE: Broadcast/mcast packets received on a blocking or
2720 		 *	 learning interface are allowed for local processing.
2721 		 *
2722 		 *	 The sending side of a blocked port will stop
2723 		 *	 transmitting when a better alternative is found.
2724 		 *	 However, later on we will disallow the forwarding
2725 		 *	 of bcast/mcsat packets over a blocking interface.
2726 		 */
2727 		if (bif->bif_flags & IFBIF_STP) {
2728 			switch (bif->bif_state) {
2729 			case BSTP_IFSTATE_L1BLOCKING:
2730 			case BSTP_IFSTATE_LISTENING:
2731 			case BSTP_IFSTATE_DISABLED:
2732 				goto out;
2733 			default:
2734 				/* blocking, learning, bonded, forwarding */
2735 				break;
2736 			}
2737 		}
2738 
2739 		/*
2740 		 * Make a deep copy of the packet and enqueue the copy
2741 		 * for bridge processing; return the original packet for
2742 		 * local processing.
2743 		 */
2744 		mc = m_dup(m, M_NOWAIT);
2745 		if (mc == NULL)
2746 			goto out;
2747 
2748 		/*
2749 		 * It's just too dangerous to allow bcast/mcast over a
2750 		 * blocked interface, eventually the network will sort
2751 		 * itself out and a better path will be found.
2752 		 */
2753 		if ((bif->bif_flags & IFBIF_STP) == 0 ||
2754 		    bif->bif_state != BSTP_IFSTATE_BLOCKING) {
2755 			bridge_forward(sc, mc);
2756 		}
2757 
2758 		/*
2759 		 * Reinject the mbuf as arriving on the bridge so we have a
2760 		 * chance at claiming multicast packets. We can not loop back
2761 		 * here from ether_input as a bridge is never a member of a
2762 		 * bridge.
2763 		 */
2764 		KASSERT(bifp->if_bridge == NULL,
2765 			("loop created in bridge_input"));
2766 		mc2 = m_dup(m, M_NOWAIT);
2767 #ifdef notyet
2768 		if (mc2 != NULL) {
2769 			/* Keep the layer3 header aligned */
2770 			int i = min(mc2->m_pkthdr.len, max_protohdr);
2771 			mc2 = m_copyup(mc2, i, ETHER_ALIGN);
2772 		}
2773 #endif
2774 		if (mc2 != NULL) {
2775 			/*
2776 			 * Don't tap to bpf(4) again; we have already done
2777 			 * the tapping.
2778 			 *
2779 			 * Leave m_pkthdr.rcvif alone, so ARP replies are
2780 			 * processed as coming in on the correct interface.
2781 			 *
2782 			 * Clear the bridge flag for local processing in
2783 			 * case the packet gets routed.
2784 			 */
2785 			mc2->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2786 			ether_reinput_oncpu(bifp, mc2, 0);
2787 		}
2788 
2789 		/* Return the original packet for local processing. */
2790 		goto out;
2791 	}
2792 
2793 	/*
2794 	 * Input of a unicast packet.  We have to allow unicast packets
2795 	 * input from links in the BLOCKING state as this might be an
2796 	 * interface of last resort.
2797 	 *
2798 	 * NOTE: We explicitly ignore normal packets received on a link
2799 	 *	 in the BLOCKING state.  The point of being in that state
2800 	 *	 is to avoid getting duplicate packets.
2801 	 *
2802 	 *	 HOWEVER, if LINK2 is set the normal spanning tree code
2803 	 *	 will mark an interface BLOCKING to avoid multi-cast/broadcast
2804 	 *	 loops.  Unicast packets CAN still loop if we allow the
2805 	 *	 case (hence we only do it in LINK2), but it isn't quite as
2806 	 *	 bad as a broadcast packet looping.
2807 	 */
2808 	if (bif->bif_flags & IFBIF_STP) {
2809 		switch (bif->bif_state) {
2810 		case BSTP_IFSTATE_L1BLOCKING:
2811 		case BSTP_IFSTATE_LISTENING:
2812 		case BSTP_IFSTATE_DISABLED:
2813 			goto out;
2814 		default:
2815 			/* blocking, bonded, forwarding, learning */
2816 			break;
2817 		}
2818 	}
2819 
2820 	/*
2821 	 * Unicast.  Make sure it's not for us.
2822 	 *
2823 	 * This loop is MPSAFE; the only blocking operation (bridge_rtupdate)
2824 	 * is followed by breaking out of the loop.
2825 	 */
2826 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2827 		if (bif->bif_ifp->if_type != IFT_ETHER)
2828 			continue;
2829 
2830 		/*
2831 		 * It is destined for an interface linked to the bridge.
2832 		 * We want the bridge itself to take care of link level
2833 		 * forwarding to member interfaces so reinput on the bridge.
2834 		 * i.e. if you ping an IP on a target interface associated
2835 		 * with the bridge, the arp is-at response should indicate
2836 		 * the bridge MAC.
2837 		 *
2838 		 * Only update our addr list when learning if the port
2839 		 * is not in a blocking state.  If it is we still allow
2840 		 * the packet but we do not try to learn from it.
2841 		 */
2842 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_dhost,
2843 			   ETHER_ADDR_LEN) == 0) {
2844 			if (bif->bif_ifp != ifp) {
2845 				/* XXX loop prevention */
2846 				m->m_flags |= M_ETHER_BRIDGED;
2847 			}
2848 			if ((bif->bif_flags & IFBIF_LEARNING) &&
2849 			    ((bif->bif_flags & IFBIF_STP) == 0 ||
2850 			     bif->bif_state != BSTP_IFSTATE_BLOCKING)) {
2851 				bridge_rtupdate(sc, eh->ether_shost,
2852 						ifp, IFBAF_DYNAMIC);
2853 			}
2854 			new_ifp = bifp; /* not bif->bif_ifp */
2855 			m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2856 			goto out;
2857 		}
2858 
2859 		/*
2860 		 * Ignore received packets that were sent by us.
2861 		 */
2862 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_shost,
2863 			   ETHER_ADDR_LEN) == 0) {
2864 			m_freem(m);
2865 			m = NULL;
2866 			goto out;
2867 		}
2868 	}
2869 
2870 	/*
2871 	 * It isn't for us.
2872 	 *
2873 	 * Perform the bridge forwarding function, but disallow bridging
2874 	 * to interfaces in the blocking state if the packet came in on
2875 	 * an interface in the blocking state.
2876 	 *
2877 	 * (bridge_forward also updates the addr cache).
2878 	 */
2879 	bridge_forward(sc, m);
2880 	m = NULL;
2881 
2882 	/*
2883 	 * ether_reinput_oncpu() will reprocess rcvif as
2884 	 * coming from new_ifp (since we do not specify
2885 	 * REINPUT_KEEPRCVIF).
2886 	 */
2887 out:
2888 	if (new_ifp != NULL) {
2889 		/*
2890 		 * Clear the bridge flag for local processing in
2891 		 * case the packet gets routed.
2892 		 */
2893 		ether_reinput_oncpu(new_ifp, m, REINPUT_RUNBPF);
2894 		m = NULL;
2895 	}
2896 	return (m);
2897 }
2898 
2899 /*
2900  * bridge_start_bcast:
2901  *
2902  *	Broadcast the packet sent from bridge to all member
2903  *	interfaces.
2904  *	This is a simplified version of bridge_broadcast(), however,
2905  *	this function expects caller to hold bridge's serializer.
2906  */
2907 static void
2908 bridge_start_bcast(struct bridge_softc *sc, struct mbuf *m)
2909 {
2910 	struct bridge_iflist *bif;
2911 	struct mbuf *mc;
2912 	struct ifnet *dst_if, *alt_if, *bifp;
2913 	int used = 0;
2914 	int found = 0;
2915 	int alt_priority;
2916 
2917 	mbuftrackid(m, 68);
2918 	bifp = sc->sc_ifp;
2919 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
2920 
2921 	/*
2922 	 * Following loop is MPSAFE; nothing is blocking
2923 	 * in the loop body.
2924 	 *
2925 	 * NOTE: We transmit through an member in the BLOCKING state only
2926 	 *	 as a last resort.
2927 	 */
2928 	alt_if = NULL;
2929 	alt_priority = 0;
2930 
2931 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2932 		dst_if = bif->bif_ifp;
2933 
2934 		if (bif->bif_flags & IFBIF_STP) {
2935 			switch (bif->bif_state) {
2936 			case BSTP_IFSTATE_BLOCKING:
2937 				if (bif->bif_priority > alt_priority) {
2938 					alt_priority = bif->bif_priority;
2939 					alt_if = bif->bif_ifp;
2940 				}
2941 				/* fall through */
2942 			case BSTP_IFSTATE_L1BLOCKING:
2943 			case BSTP_IFSTATE_DISABLED:
2944 				continue;
2945 			default:
2946 				/* listening, learning, bonded, forwarding */
2947 				break;
2948 			}
2949 		}
2950 
2951 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
2952 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
2953 			continue;
2954 
2955 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2956 			continue;
2957 
2958 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
2959 			mc = m;
2960 			used = 1;
2961 		} else {
2962 			mc = m_copypacket(m, M_NOWAIT);
2963 			if (mc == NULL) {
2964 				IFNET_STAT_INC(bifp, oerrors, 1);
2965 				continue;
2966 			}
2967 		}
2968 		found = 1;
2969 		bridge_enqueue(dst_if, mc);
2970 	}
2971 
2972 	if (found == 0 && alt_if) {
2973 		KKASSERT(used == 0);
2974 		mc = m;
2975 		used = 1;
2976 		bridge_enqueue(alt_if, mc);
2977 	}
2978 
2979 	if (used == 0)
2980 		m_freem(m);
2981 }
2982 
2983 /*
2984  * bridge_broadcast:
2985  *
2986  *	Send a frame to all interfaces that are members of
2987  *	the bridge, except for the one on which the packet
2988  *	arrived.
2989  */
2990 static void
2991 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if,
2992 		 struct mbuf *m)
2993 {
2994 	struct bridge_iflist *bif, *nbif;
2995 	struct ether_header *eh;
2996 	struct mbuf *mc;
2997 	struct ifnet *dst_if, *alt_if, *bifp;
2998 	int used;
2999 	int found;
3000 	int alt_priority;
3001 	int from_us;
3002 
3003 	mbuftrackid(m, 69);
3004 	bifp = sc->sc_ifp;
3005 	ASSERT_IFNET_NOT_SERIALIZED_ALL(bifp);
3006 
3007 	eh = mtod(m, struct ether_header *);
3008 	from_us = bridge_from_us(sc, eh);
3009 
3010 	if (inet_pfil_hook.ph_hashooks > 0
3011 #ifdef INET6
3012 	    || inet6_pfil_hook.ph_hashooks > 0
3013 #endif
3014 	    ) {
3015 		if (bridge_pfil(&m, bifp, src_if, PFIL_IN) != 0)
3016 			return;
3017 		if (m == NULL)
3018 			return;
3019 
3020 		/* Filter on the bridge interface before broadcasting */
3021 		if (bridge_pfil(&m, bifp, NULL, PFIL_OUT) != 0)
3022 			return;
3023 		if (m == NULL)
3024 			return;
3025 	}
3026 
3027 	alt_if = NULL;
3028 	alt_priority = 0;
3029 	found = 0;
3030 	used = 0;
3031 
3032 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
3033 		dst_if = bif->bif_ifp;
3034 
3035 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3036 			continue;
3037 
3038 		/*
3039 		 * Don't bounce the packet out the same interface it came
3040 		 * in on.  We have to test MAC addresses because a packet
3041 		 * can come in a bonded interface and we don't want it to
3042 		 * be echod out the forwarding interface for the same bonding
3043 		 * set.
3044 		 */
3045 		if (src_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
3046 				     ETHER_ADDR_LEN) == 0) {
3047 			continue;
3048 		}
3049 
3050 		/*
3051 		 * Generally speaking we only broadcast through forwarding
3052 		 * interfaces.  If no interfaces are available we select
3053 		 * a BONDED, BLOCKING, or LEARNING interface to forward
3054 		 * through.
3055 		 */
3056 		if (bif->bif_flags & IFBIF_STP) {
3057 			switch (bif->bif_state) {
3058 			case BSTP_IFSTATE_BONDED:
3059 				if (bif->bif_priority + 512 > alt_priority) {
3060 					alt_priority = bif->bif_priority + 512;
3061 					alt_if = bif->bif_ifp;
3062 				}
3063 				continue;
3064 			case BSTP_IFSTATE_BLOCKING:
3065 				if (bif->bif_priority + 256 > alt_priority) {
3066 					alt_priority = bif->bif_priority + 256;
3067 					alt_if = bif->bif_ifp;
3068 				}
3069 				continue;
3070 			case BSTP_IFSTATE_LEARNING:
3071 				if (bif->bif_priority > alt_priority) {
3072 					alt_priority = bif->bif_priority;
3073 					alt_if = bif->bif_ifp;
3074 				}
3075 				continue;
3076 			case BSTP_IFSTATE_L1BLOCKING:
3077 			case BSTP_IFSTATE_DISABLED:
3078 			case BSTP_IFSTATE_LISTENING:
3079 				continue;
3080 			default:
3081 				/* forwarding */
3082 				break;
3083 			}
3084 		}
3085 
3086 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3087 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0) {
3088 			continue;
3089 		}
3090 
3091 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3092 			mc = m;
3093 			used = 1;
3094 		} else {
3095 			mc = m_copypacket(m, M_NOWAIT);
3096 			if (mc == NULL) {
3097 				IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3098 				continue;
3099 			}
3100 		}
3101 		found = 1;
3102 
3103 		/*
3104 		 * Filter on the output interface.  Pass a NULL bridge
3105 		 * interface pointer so we do not redundantly filter on
3106 		 * the bridge for each interface we broadcast on.
3107 		 */
3108 		if (inet_pfil_hook.ph_hashooks > 0
3109 #ifdef INET6
3110 		    || inet6_pfil_hook.ph_hashooks > 0
3111 #endif
3112 		    ) {
3113 			if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0)
3114 				continue;
3115 			if (mc == NULL)
3116 				continue;
3117 		}
3118 		bridge_handoff(sc, dst_if, mc, from_us);
3119 
3120 		if (nbif != NULL && !nbif->bif_onlist) {
3121 			KKASSERT(bif->bif_onlist);
3122 			nbif = TAILQ_NEXT(bif, bif_next);
3123 		}
3124 	}
3125 
3126 	if (found == 0 && alt_if) {
3127 		KKASSERT(used == 0);
3128 		mc = m;
3129 		used = 1;
3130 		bridge_enqueue(alt_if, mc);
3131 	}
3132 
3133 	if (used == 0)
3134 		m_freem(m);
3135 }
3136 
3137 /*
3138  * bridge_span:
3139  *
3140  *	Duplicate a packet out one or more interfaces that are in span mode,
3141  *	the original mbuf is unmodified.
3142  */
3143 static void
3144 bridge_span(struct bridge_softc *sc, struct mbuf *m)
3145 {
3146 	struct bridge_iflist *bif;
3147 	struct ifnet *dst_if, *bifp;
3148 	struct mbuf *mc;
3149 
3150 	mbuftrackid(m, 70);
3151 	bifp = sc->sc_ifp;
3152 	ifnet_serialize_all(bifp);
3153 
3154 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
3155 		dst_if = bif->bif_ifp;
3156 
3157 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3158 			continue;
3159 
3160 		mc = m_copypacket(m, M_NOWAIT);
3161 		if (mc == NULL) {
3162 			IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3163 			continue;
3164 		}
3165 		bridge_enqueue(dst_if, mc);
3166 	}
3167 
3168 	ifnet_deserialize_all(bifp);
3169 }
3170 
3171 static void
3172 bridge_rtmsg_sync_handler(netmsg_t msg)
3173 {
3174 	netisr_forwardmsg(&msg->base, mycpuid + 1);
3175 }
3176 
3177 static void
3178 bridge_rtmsg_sync(struct bridge_softc *sc)
3179 {
3180 	struct netmsg_base msg;
3181 
3182 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3183 
3184 	/* XXX use netmsg_service_sync */
3185 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3186 		    0, bridge_rtmsg_sync_handler);
3187 	netisr_domsg(&msg, 0);
3188 }
3189 
3190 static __inline void
3191 bridge_rtinfo_update(struct bridge_rtinfo *bri, struct ifnet *dst_if,
3192 		     int setflags, uint8_t flags, uint32_t timeo)
3193 {
3194 	if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3195 	    bri->bri_ifp != dst_if)
3196 		bri->bri_ifp = dst_if;
3197 	if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3198 	    bri->bri_expire != time_uptime + timeo)
3199 		bri->bri_expire = time_uptime + timeo;
3200 	if (setflags)
3201 		bri->bri_flags = flags;
3202 }
3203 
3204 static int
3205 bridge_rtinstall_oncpu(struct bridge_softc *sc, const uint8_t *dst,
3206 		       struct ifnet *dst_if, int setflags, uint8_t flags,
3207 		       struct bridge_rtinfo **bri0)
3208 {
3209 	struct bridge_rtnode *brt;
3210 	struct bridge_rtinfo *bri;
3211 
3212 	if (mycpuid == 0) {
3213 		brt = bridge_rtnode_lookup(sc, dst);
3214 		if (brt != NULL) {
3215 			/*
3216 			 * rtnode for 'dst' already exists.  We inform the
3217 			 * caller about this by leaving bri0 as NULL.  The
3218 			 * caller will terminate the intallation upon getting
3219 			 * NULL bri0.  However, we still need to update the
3220 			 * rtinfo.
3221 			 */
3222 			KKASSERT(*bri0 == NULL);
3223 
3224 			/* Update rtinfo */
3225 			bridge_rtinfo_update(brt->brt_info, dst_if, setflags,
3226 					     flags, sc->sc_brttimeout);
3227 			return 0;
3228 		}
3229 
3230 		/*
3231 		 * We only need to check brtcnt on CPU0, since if limit
3232 		 * is to be exceeded, ENOSPC is returned.  Caller knows
3233 		 * this and will terminate the installation.
3234 		 */
3235 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3236 			return ENOSPC;
3237 
3238 		KKASSERT(*bri0 == NULL);
3239 		bri = kmalloc(sizeof(struct bridge_rtinfo), M_DEVBUF,
3240 				  M_WAITOK | M_ZERO);
3241 		*bri0 = bri;
3242 
3243 		/* Setup rtinfo */
3244 		bri->bri_flags = IFBAF_DYNAMIC;
3245 		bridge_rtinfo_update(bri, dst_if, setflags, flags,
3246 				     sc->sc_brttimeout);
3247 	} else {
3248 		bri = *bri0;
3249 		KKASSERT(bri != NULL);
3250 	}
3251 
3252 	brt = kmalloc(sizeof(struct bridge_rtnode), M_DEVBUF,
3253 		      M_WAITOK | M_ZERO);
3254 	memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
3255 	brt->brt_info = bri;
3256 
3257 	bridge_rtnode_insert(sc, brt);
3258 	return 0;
3259 }
3260 
3261 static void
3262 bridge_rtinstall_handler(netmsg_t msg)
3263 {
3264 	struct netmsg_brsaddr *brmsg = (struct netmsg_brsaddr *)msg;
3265 	int error;
3266 
3267 	error = bridge_rtinstall_oncpu(brmsg->br_softc,
3268 				       brmsg->br_dst, brmsg->br_dst_if,
3269 				       brmsg->br_setflags, brmsg->br_flags,
3270 				       &brmsg->br_rtinfo);
3271 	if (error) {
3272 		KKASSERT(mycpuid == 0 && brmsg->br_rtinfo == NULL);
3273 		netisr_replymsg(&brmsg->base, error);
3274 		return;
3275 	} else if (brmsg->br_rtinfo == NULL) {
3276 		/* rtnode already exists for 'dst' */
3277 		KKASSERT(mycpuid == 0);
3278 		netisr_replymsg(&brmsg->base, 0);
3279 		return;
3280 	}
3281 	netisr_forwardmsg(&brmsg->base, mycpuid + 1);
3282 }
3283 
3284 /*
3285  * bridge_rtupdate:
3286  *
3287  *	Add/Update a bridge routing entry.
3288  */
3289 static int
3290 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst,
3291 		struct ifnet *dst_if, uint8_t flags)
3292 {
3293 	struct bridge_rtnode *brt;
3294 
3295 	/*
3296 	 * A route for this destination might already exist.  If so,
3297 	 * update it, otherwise create a new one.
3298 	 */
3299 	if ((brt = bridge_rtnode_lookup(sc, dst)) == NULL) {
3300 		struct netmsg_brsaddr *brmsg;
3301 
3302 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3303 			return ENOSPC;
3304 
3305 		brmsg = kmalloc(sizeof(*brmsg), M_LWKTMSG, M_WAITOK | M_NULLOK);
3306 		if (brmsg == NULL)
3307 			return ENOMEM;
3308 
3309 		netmsg_init(&brmsg->base, NULL, &netisr_afree_rport,
3310 			    0, bridge_rtinstall_handler);
3311 		memcpy(brmsg->br_dst, dst, ETHER_ADDR_LEN);
3312 		brmsg->br_dst_if = dst_if;
3313 		brmsg->br_flags = flags;
3314 		brmsg->br_setflags = 0;
3315 		brmsg->br_softc = sc;
3316 		brmsg->br_rtinfo = NULL;
3317 
3318 		netisr_sendmsg(&brmsg->base, 0);
3319 		return 0;
3320 	}
3321 	bridge_rtinfo_update(brt->brt_info, dst_if, 0, flags,
3322 			     sc->sc_brttimeout);
3323 	return 0;
3324 }
3325 
3326 static int
3327 bridge_rtsaddr(struct bridge_softc *sc, const uint8_t *dst,
3328 	       struct ifnet *dst_if, uint8_t flags)
3329 {
3330 	struct netmsg_brsaddr brmsg;
3331 
3332 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3333 
3334 	netmsg_init(&brmsg.base, NULL, &curthread->td_msgport,
3335 		    0, bridge_rtinstall_handler);
3336 	memcpy(brmsg.br_dst, dst, ETHER_ADDR_LEN);
3337 	brmsg.br_dst_if = dst_if;
3338 	brmsg.br_flags = flags;
3339 	brmsg.br_setflags = 1;
3340 	brmsg.br_softc = sc;
3341 	brmsg.br_rtinfo = NULL;
3342 
3343 	return netisr_domsg(&brmsg.base, 0);
3344 }
3345 
3346 /*
3347  * bridge_rtlookup:
3348  *
3349  *	Lookup the destination interface for an address.
3350  */
3351 static struct ifnet *
3352 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr)
3353 {
3354 	struct bridge_rtnode *brt;
3355 
3356 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3357 		return NULL;
3358 	return brt->brt_info->bri_ifp;
3359 }
3360 
3361 static void
3362 bridge_rtreap_handler(netmsg_t msg)
3363 {
3364 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3365 	struct bridge_rtnode *brt, *nbrt;
3366 
3367 	LIST_FOREACH_MUTABLE(brt, &sc->sc_rtlists[mycpuid], brt_list, nbrt) {
3368 		if (brt->brt_info->bri_dead)
3369 			bridge_rtnode_destroy(sc, brt);
3370 	}
3371 	netisr_forwardmsg(&msg->base, mycpuid + 1);
3372 }
3373 
3374 static void
3375 bridge_rtreap(struct bridge_softc *sc)
3376 {
3377 	struct netmsg_base msg;
3378 
3379 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3380 
3381 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3382 		    0, bridge_rtreap_handler);
3383 	msg.lmsg.u.ms_resultp = sc;
3384 
3385 	netisr_domsg(&msg, 0);
3386 }
3387 
3388 static void
3389 bridge_rtreap_async(struct bridge_softc *sc)
3390 {
3391 	struct netmsg_base *msg;
3392 
3393 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK);
3394 
3395 	netmsg_init(msg, NULL, &netisr_afree_rport,
3396 		    0, bridge_rtreap_handler);
3397 	msg->lmsg.u.ms_resultp = sc;
3398 
3399 	netisr_sendmsg(msg, 0);
3400 }
3401 
3402 /*
3403  * bridge_rttrim:
3404  *
3405  *	Trim the routine table so that we have a number
3406  *	of routing entries less than or equal to the
3407  *	maximum number.
3408  */
3409 static void
3410 bridge_rttrim(struct bridge_softc *sc)
3411 {
3412 	struct bridge_rtnode *brt;
3413 	int dead;
3414 
3415 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3416 
3417 	/* Make sure we actually need to do this. */
3418 	if (sc->sc_brtcnt <= sc->sc_brtmax)
3419 		return;
3420 
3421 	/*
3422 	 * Find out how many rtnodes are dead
3423 	 */
3424 	dead = bridge_rtage_finddead(sc);
3425 	KKASSERT(dead <= sc->sc_brtcnt);
3426 
3427 	if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3428 		/* Enough dead rtnodes are found */
3429 		bridge_rtreap(sc);
3430 		return;
3431 	}
3432 
3433 	/*
3434 	 * Kill some dynamic rtnodes to meet the brtmax
3435 	 */
3436 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3437 		struct bridge_rtinfo *bri = brt->brt_info;
3438 
3439 		if (bri->bri_dead) {
3440 			/*
3441 			 * We have counted this rtnode in
3442 			 * bridge_rtage_finddead()
3443 			 */
3444 			continue;
3445 		}
3446 
3447 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3448 			bri->bri_dead = 1;
3449 			++dead;
3450 			KKASSERT(dead <= sc->sc_brtcnt);
3451 
3452 			if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3453 				/* Enough rtnodes are collected */
3454 				break;
3455 			}
3456 		}
3457 	}
3458 	if (dead)
3459 		bridge_rtreap(sc);
3460 }
3461 
3462 /*
3463  * bridge_timer:
3464  *
3465  *	Aging timer for the bridge.
3466  */
3467 static void
3468 bridge_timer(void *arg)
3469 {
3470 	struct bridge_softc *sc = arg;
3471 	struct netmsg_base *msg;
3472 
3473 	KKASSERT(mycpuid == BRIDGE_CFGCPU);
3474 
3475 	crit_enter();
3476 
3477 	if (callout_pending(&sc->sc_brcallout) ||
3478 	    !callout_active(&sc->sc_brcallout)) {
3479 		crit_exit();
3480 		return;
3481 	}
3482 	callout_deactivate(&sc->sc_brcallout);
3483 
3484 	msg = &sc->sc_brtimemsg;
3485 	KKASSERT(msg->lmsg.ms_flags & MSGF_DONE);
3486 	lwkt_sendmsg_oncpu(BRIDGE_CFGPORT, &msg->lmsg);
3487 
3488 	crit_exit();
3489 }
3490 
3491 static void
3492 bridge_timer_handler(netmsg_t msg)
3493 {
3494 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3495 
3496 	KKASSERT(&curthread->td_msgport == BRIDGE_CFGPORT);
3497 
3498 	crit_enter();
3499 	/* Reply ASAP */
3500 	lwkt_replymsg(&msg->lmsg, 0);
3501 	crit_exit();
3502 
3503 	bridge_rtage(sc);
3504 	if (sc->sc_ifp->if_flags & IFF_RUNNING) {
3505 		callout_reset(&sc->sc_brcallout,
3506 		    bridge_rtable_prune_period * hz, bridge_timer, sc);
3507 	}
3508 }
3509 
3510 static int
3511 bridge_rtage_finddead(struct bridge_softc *sc)
3512 {
3513 	struct bridge_rtnode *brt;
3514 	int dead = 0;
3515 
3516 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3517 		struct bridge_rtinfo *bri = brt->brt_info;
3518 
3519 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3520 		    time_uptime >= bri->bri_expire) {
3521 			bri->bri_dead = 1;
3522 			++dead;
3523 			KKASSERT(dead <= sc->sc_brtcnt);
3524 		}
3525 	}
3526 	return dead;
3527 }
3528 
3529 /*
3530  * bridge_rtage:
3531  *
3532  *	Perform an aging cycle.
3533  */
3534 static void
3535 bridge_rtage(struct bridge_softc *sc)
3536 {
3537 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3538 
3539 	if (bridge_rtage_finddead(sc))
3540 		bridge_rtreap(sc);
3541 }
3542 
3543 /*
3544  * bridge_rtflush:
3545  *
3546  *	Remove all dynamic addresses from the bridge.
3547  */
3548 static void
3549 bridge_rtflush(struct bridge_softc *sc, int bf)
3550 {
3551 	struct bridge_rtnode *brt;
3552 	int reap;
3553 
3554 	reap = 0;
3555 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3556 		struct bridge_rtinfo *bri = brt->brt_info;
3557 
3558 		if ((bf & IFBF_FLUSHALL) ||
3559 		    (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3560 			bri->bri_dead = 1;
3561 			reap = 1;
3562 		}
3563 	}
3564 	if (reap) {
3565 		if (bf & IFBF_FLUSHSYNC)
3566 			bridge_rtreap(sc);
3567 		else
3568 			bridge_rtreap_async(sc);
3569 	}
3570 }
3571 
3572 /*
3573  * bridge_rtdaddr:
3574  *
3575  *	Remove an address from the table.
3576  */
3577 static int
3578 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr)
3579 {
3580 	struct bridge_rtnode *brt;
3581 
3582 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3583 
3584 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3585 		return (ENOENT);
3586 
3587 	/* TODO: add a cheaper delete operation */
3588 	brt->brt_info->bri_dead = 1;
3589 	bridge_rtreap(sc);
3590 	return (0);
3591 }
3592 
3593 /*
3594  * bridge_rtdelete:
3595  *
3596  *	Delete routes to a speicifc member interface.
3597  */
3598 void
3599 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int bf)
3600 {
3601 	struct bridge_rtnode *brt;
3602 	int reap;
3603 
3604 	reap = 0;
3605 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3606 		struct bridge_rtinfo *bri = brt->brt_info;
3607 
3608 		if (bri->bri_ifp == ifp &&
3609 		    ((bf & IFBF_FLUSHALL) ||
3610 		     (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
3611 			bri->bri_dead = 1;
3612 			reap = 1;
3613 		}
3614 	}
3615 	if (reap) {
3616 		if (bf & IFBF_FLUSHSYNC)
3617 			bridge_rtreap(sc);
3618 		else
3619 			bridge_rtreap_async(sc);
3620 	}
3621 }
3622 
3623 /*
3624  * bridge_rtable_init:
3625  *
3626  *	Initialize the route table for this bridge.
3627  */
3628 static void
3629 bridge_rtable_init(struct bridge_softc *sc)
3630 {
3631 	int cpu;
3632 
3633 	/*
3634 	 * Initialize per-cpu hash tables
3635 	 */
3636 	sc->sc_rthashs = kmalloc(sizeof(*sc->sc_rthashs) * netisr_ncpus,
3637 				 M_DEVBUF, M_WAITOK);
3638 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
3639 		int i;
3640 
3641 		sc->sc_rthashs[cpu] =
3642 		kmalloc(sizeof(struct bridge_rtnode_head) * BRIDGE_RTHASH_SIZE,
3643 			M_DEVBUF, M_WAITOK);
3644 
3645 		for (i = 0; i < BRIDGE_RTHASH_SIZE; i++)
3646 			LIST_INIT(&sc->sc_rthashs[cpu][i]);
3647 	}
3648 	sc->sc_rthash_key = karc4random();
3649 
3650 	/*
3651 	 * Initialize per-cpu lists
3652 	 */
3653 	sc->sc_rtlists =
3654 	    kmalloc(sizeof(struct bridge_rtnode_head) * netisr_ncpus,
3655 	    M_DEVBUF, M_WAITOK);
3656 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
3657 		LIST_INIT(&sc->sc_rtlists[cpu]);
3658 }
3659 
3660 /*
3661  * bridge_rtable_fini:
3662  *
3663  *	Deconstruct the route table for this bridge.
3664  */
3665 static void
3666 bridge_rtable_fini(struct bridge_softc *sc)
3667 {
3668 	int cpu;
3669 
3670 	/*
3671 	 * Free per-cpu hash tables
3672 	 */
3673 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
3674 		kfree(sc->sc_rthashs[cpu], M_DEVBUF);
3675 	kfree(sc->sc_rthashs, M_DEVBUF);
3676 
3677 	/*
3678 	 * Free per-cpu lists
3679 	 */
3680 	kfree(sc->sc_rtlists, M_DEVBUF);
3681 }
3682 
3683 /*
3684  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
3685  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
3686  */
3687 #define	mix(a, b, c)							\
3688 do {									\
3689 	a -= b; a -= c; a ^= (c >> 13);					\
3690 	b -= c; b -= a; b ^= (a << 8);					\
3691 	c -= a; c -= b; c ^= (b >> 13);					\
3692 	a -= b; a -= c; a ^= (c >> 12);					\
3693 	b -= c; b -= a; b ^= (a << 16);					\
3694 	c -= a; c -= b; c ^= (b >> 5);					\
3695 	a -= b; a -= c; a ^= (c >> 3);					\
3696 	b -= c; b -= a; b ^= (a << 10);					\
3697 	c -= a; c -= b; c ^= (b >> 15);					\
3698 } while (/*CONSTCOND*/0)
3699 
3700 static __inline uint32_t
3701 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
3702 {
3703 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
3704 
3705 	b += addr[5] << 8;
3706 	b += addr[4];
3707 	a += addr[3] << 24;
3708 	a += addr[2] << 16;
3709 	a += addr[1] << 8;
3710 	a += addr[0];
3711 
3712 	mix(a, b, c);
3713 
3714 	return (c & BRIDGE_RTHASH_MASK);
3715 }
3716 
3717 #undef mix
3718 
3719 static int
3720 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
3721 {
3722 	int i, d;
3723 
3724 	for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
3725 		d = ((int)a[i]) - ((int)b[i]);
3726 	}
3727 
3728 	return (d);
3729 }
3730 
3731 /*
3732  * bridge_rtnode_lookup:
3733  *
3734  *	Look up a bridge route node for the specified destination.
3735  */
3736 static struct bridge_rtnode *
3737 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr)
3738 {
3739 	struct bridge_rtnode *brt;
3740 	uint32_t hash;
3741 	int dir;
3742 
3743 	hash = bridge_rthash(sc, addr);
3744 	LIST_FOREACH(brt, &sc->sc_rthashs[mycpuid][hash], brt_hash) {
3745 		dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
3746 		if (dir == 0)
3747 			return (brt);
3748 		if (dir > 0)
3749 			return (NULL);
3750 	}
3751 
3752 	return (NULL);
3753 }
3754 
3755 /*
3756  * bridge_rtnode_insert:
3757  *
3758  *	Insert the specified bridge node into the route table.
3759  *	Caller has to make sure that rtnode does not exist.
3760  */
3761 static void
3762 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
3763 {
3764 	struct bridge_rtnode *lbrt;
3765 	uint32_t hash;
3766 	int dir;
3767 
3768 	hash = bridge_rthash(sc, brt->brt_addr);
3769 
3770 	lbrt = LIST_FIRST(&sc->sc_rthashs[mycpuid][hash]);
3771 	if (lbrt == NULL) {
3772 		LIST_INSERT_HEAD(&sc->sc_rthashs[mycpuid][hash],
3773 				  brt, brt_hash);
3774 		goto out;
3775 	}
3776 
3777 	do {
3778 		dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
3779 		KASSERT(dir != 0, ("rtnode already exist"));
3780 
3781 		if (dir > 0) {
3782 			LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
3783 			goto out;
3784 		}
3785 		if (LIST_NEXT(lbrt, brt_hash) == NULL) {
3786 			LIST_INSERT_AFTER(lbrt, brt, brt_hash);
3787 			goto out;
3788 		}
3789 		lbrt = LIST_NEXT(lbrt, brt_hash);
3790 	} while (lbrt != NULL);
3791 
3792 	panic("no suitable position found for rtnode");
3793 out:
3794 	LIST_INSERT_HEAD(&sc->sc_rtlists[mycpuid], brt, brt_list);
3795 	if (mycpuid == 0) {
3796 		/*
3797 		 * Update the brtcnt.
3798 		 * We only need to do it once and we do it on CPU0.
3799 		 */
3800 		sc->sc_brtcnt++;
3801 	}
3802 }
3803 
3804 /*
3805  * bridge_rtnode_destroy:
3806  *
3807  *	Destroy a bridge rtnode.
3808  */
3809 static void
3810 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
3811 {
3812 	LIST_REMOVE(brt, brt_hash);
3813 	LIST_REMOVE(brt, brt_list);
3814 
3815 	if (mycpuid + 1 == netisr_ncpus) {
3816 		/* Free rtinfo associated with rtnode on the last cpu */
3817 		kfree(brt->brt_info, M_DEVBUF);
3818 	}
3819 	kfree(brt, M_DEVBUF);
3820 
3821 	if (mycpuid == 0) {
3822 		/* Update brtcnt only on CPU0 */
3823 		sc->sc_brtcnt--;
3824 	}
3825 }
3826 
3827 static __inline int
3828 bridge_post_pfil(struct mbuf *m)
3829 {
3830 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED)
3831 		return EOPNOTSUPP;
3832 
3833 	/* Not yet */
3834 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED)
3835 		return EOPNOTSUPP;
3836 
3837 	return 0;
3838 }
3839 
3840 /*
3841  * Send bridge packets through pfil if they are one of the types pfil can deal
3842  * with, or if they are ARP or REVARP.  (pfil will pass ARP and REVARP without
3843  * question.) If *bifp or *ifp are NULL then packet filtering is skipped for
3844  * that interface.
3845  */
3846 static int
3847 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir)
3848 {
3849 	int snap, error, i, hlen;
3850 	struct ether_header *eh1, eh2;
3851 	struct ip *ip;
3852 	struct llc llc1;
3853 	u_int16_t ether_type;
3854 
3855 	snap = 0;
3856 	error = -1;	/* Default error if not error == 0 */
3857 
3858 	if (pfil_bridge == 0 && pfil_member == 0)
3859 		return (0); /* filtering is disabled */
3860 
3861 	i = min((*mp)->m_pkthdr.len, max_protohdr);
3862 	if ((*mp)->m_len < i) {
3863 		*mp = m_pullup(*mp, i);
3864 		if (*mp == NULL) {
3865 			kprintf("%s: m_pullup failed\n", __func__);
3866 			return (-1);
3867 		}
3868 	}
3869 
3870 	eh1 = mtod(*mp, struct ether_header *);
3871 	ether_type = ntohs(eh1->ether_type);
3872 
3873 	/*
3874 	 * Check for SNAP/LLC.
3875 	 */
3876 	if (ether_type < ETHERMTU) {
3877 		struct llc *llc2 = (struct llc *)(eh1 + 1);
3878 
3879 		if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
3880 		    llc2->llc_dsap == LLC_SNAP_LSAP &&
3881 		    llc2->llc_ssap == LLC_SNAP_LSAP &&
3882 		    llc2->llc_control == LLC_UI) {
3883 			ether_type = htons(llc2->llc_un.type_snap.ether_type);
3884 			snap = 1;
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * If we're trying to filter bridge traffic, don't look at anything
3890 	 * other than IP and ARP traffic.  If the filter doesn't understand
3891 	 * IPv6, don't allow IPv6 through the bridge either.  This is lame
3892 	 * since if we really wanted, say, an AppleTalk filter, we are hosed,
3893 	 * but of course we don't have an AppleTalk filter to begin with.
3894 	 * (Note that since pfil doesn't understand ARP it will pass *ALL*
3895 	 * ARP traffic.)
3896 	 */
3897 	switch (ether_type) {
3898 	case ETHERTYPE_ARP:
3899 	case ETHERTYPE_REVARP:
3900 		return (0); /* Automatically pass */
3901 
3902 	case ETHERTYPE_IP:
3903 #ifdef INET6
3904 	case ETHERTYPE_IPV6:
3905 #endif /* INET6 */
3906 		break;
3907 
3908 	default:
3909 		/*
3910 		 * Check to see if the user wants to pass non-ip
3911 		 * packets, these will not be checked by pfil(9)
3912 		 * and passed unconditionally so the default is to drop.
3913 		 */
3914 		if (pfil_onlyip)
3915 			goto bad;
3916 	}
3917 
3918 	/* Strip off the Ethernet header and keep a copy. */
3919 	m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2);
3920 	m_adj(*mp, ETHER_HDR_LEN);
3921 
3922 	/* Strip off snap header, if present */
3923 	if (snap) {
3924 		m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1);
3925 		m_adj(*mp, sizeof(struct llc));
3926 	}
3927 
3928 	/*
3929 	 * Check the IP header for alignment and errors
3930 	 */
3931 	if (dir == PFIL_IN) {
3932 		switch (ether_type) {
3933 		case ETHERTYPE_IP:
3934 			error = bridge_ip_checkbasic(mp);
3935 			break;
3936 #ifdef INET6
3937 		case ETHERTYPE_IPV6:
3938 			error = bridge_ip6_checkbasic(mp);
3939 			break;
3940 #endif /* INET6 */
3941 		default:
3942 			error = 0;
3943 		}
3944 		if (error)
3945 			goto bad;
3946 	}
3947 
3948 	error = 0;
3949 
3950 	/*
3951 	 * Run the packet through pfil
3952 	 */
3953 	switch (ether_type) {
3954 	case ETHERTYPE_IP:
3955 		/*
3956 		 * before calling the firewall, swap fields the same as
3957 		 * IP does. here we assume the header is contiguous
3958 		 */
3959 		ip = mtod(*mp, struct ip *);
3960 
3961 		ip->ip_len = ntohs(ip->ip_len);
3962 		ip->ip_off = ntohs(ip->ip_off);
3963 
3964 		/*
3965 		 * Run pfil on the member interface and the bridge, both can
3966 		 * be skipped by clearing pfil_member or pfil_bridge.
3967 		 *
3968 		 * Keep the order:
3969 		 *   in_if -> bridge_if -> out_if
3970 		 */
3971 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) {
3972 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3973 			if (*mp == NULL || error != 0) /* filter may consume */
3974 				break;
3975 			error = bridge_post_pfil(*mp);
3976 			if (error)
3977 				break;
3978 		}
3979 
3980 		if (pfil_member && ifp != NULL) {
3981 			error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir);
3982 			if (*mp == NULL || error != 0) /* filter may consume */
3983 				break;
3984 			error = bridge_post_pfil(*mp);
3985 			if (error)
3986 				break;
3987 		}
3988 
3989 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL) {
3990 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3991 			if (*mp == NULL || error != 0) /* filter may consume */
3992 				break;
3993 			error = bridge_post_pfil(*mp);
3994 			if (error)
3995 				break;
3996 		}
3997 
3998 		/* check if we need to fragment the packet */
3999 		if (pfil_member && ifp != NULL && dir == PFIL_OUT) {
4000 			i = (*mp)->m_pkthdr.len;
4001 			if (i > ifp->if_mtu) {
4002 				error = bridge_fragment(ifp, *mp, &eh2, snap,
4003 					    &llc1);
4004 				return (error);
4005 			}
4006 		}
4007 
4008 		/* Recalculate the ip checksum and restore byte ordering */
4009 		ip = mtod(*mp, struct ip *);
4010 		hlen = ip->ip_hl << 2;
4011 		if (hlen < sizeof(struct ip))
4012 			goto bad;
4013 		if (hlen > (*mp)->m_len) {
4014 			if ((*mp = m_pullup(*mp, hlen)) == NULL)
4015 				goto bad;
4016 			ip = mtod(*mp, struct ip *);
4017 			if (ip == NULL)
4018 				goto bad;
4019 		}
4020 		ip->ip_len = htons(ip->ip_len);
4021 		ip->ip_off = htons(ip->ip_off);
4022 		ip->ip_sum = 0;
4023 		if (hlen == sizeof(struct ip))
4024 			ip->ip_sum = in_cksum_hdr(ip);
4025 		else
4026 			ip->ip_sum = in_cksum(*mp, hlen);
4027 
4028 		break;
4029 #ifdef INET6
4030 	case ETHERTYPE_IPV6:
4031 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL)
4032 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4033 					dir);
4034 
4035 		if (*mp == NULL || error != 0) /* filter may consume */
4036 			break;
4037 
4038 		if (pfil_member && ifp != NULL)
4039 			error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp,
4040 					dir);
4041 
4042 		if (*mp == NULL || error != 0) /* filter may consume */
4043 			break;
4044 
4045 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL)
4046 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4047 					dir);
4048 		break;
4049 #endif
4050 	default:
4051 		error = 0;
4052 		break;
4053 	}
4054 
4055 	if (*mp == NULL)
4056 		return (error);
4057 	if (error != 0)
4058 		goto bad;
4059 
4060 	error = -1;
4061 
4062 	/*
4063 	 * Finally, put everything back the way it was and return
4064 	 */
4065 	if (snap) {
4066 		M_PREPEND(*mp, sizeof(struct llc), M_NOWAIT);
4067 		if (*mp == NULL)
4068 			return (error);
4069 		bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
4070 	}
4071 
4072 	M_PREPEND(*mp, ETHER_HDR_LEN, M_NOWAIT);
4073 	if (*mp == NULL)
4074 		return (error);
4075 	bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
4076 
4077 	return (0);
4078 
4079 bad:
4080 	m_freem(*mp);
4081 	*mp = NULL;
4082 	return (error);
4083 }
4084 
4085 /*
4086  * Perform basic checks on header size since
4087  * pfil assumes ip_input has already processed
4088  * it for it.  Cut-and-pasted from ip_input.c.
4089  * Given how simple the IPv6 version is,
4090  * does the IPv4 version really need to be
4091  * this complicated?
4092  *
4093  * XXX Should we update ipstat here, or not?
4094  * XXX Right now we update ipstat but not
4095  * XXX csum_counter.
4096  */
4097 static int
4098 bridge_ip_checkbasic(struct mbuf **mp)
4099 {
4100 	struct mbuf *m = *mp;
4101 	struct ip *ip;
4102 	int len, hlen;
4103 	u_short sum;
4104 
4105 	if (*mp == NULL)
4106 		return (-1);
4107 #if 0 /* notyet */
4108 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4109 		if ((m = m_copyup(m, sizeof(struct ip),
4110 			(max_linkhdr + 3) & ~3)) == NULL) {
4111 			/* XXXJRT new stat, please */
4112 			ipstat.ips_toosmall++;
4113 			goto bad;
4114 		}
4115 	} else
4116 #endif
4117 #ifndef __predict_false
4118 #define __predict_false(x) x
4119 #endif
4120 	 if (__predict_false(m->m_len < sizeof (struct ip))) {
4121 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
4122 			ipstat.ips_toosmall++;
4123 			goto bad;
4124 		}
4125 	}
4126 	ip = mtod(m, struct ip *);
4127 	if (ip == NULL) goto bad;
4128 
4129 	if (ip->ip_v != IPVERSION) {
4130 		ipstat.ips_badvers++;
4131 		goto bad;
4132 	}
4133 	hlen = ip->ip_hl << 2;
4134 	if (hlen < sizeof(struct ip)) { /* minimum header length */
4135 		ipstat.ips_badhlen++;
4136 		goto bad;
4137 	}
4138 	if (hlen > m->m_len) {
4139 		if ((m = m_pullup(m, hlen)) == NULL) {
4140 			ipstat.ips_badhlen++;
4141 			goto bad;
4142 		}
4143 		ip = mtod(m, struct ip *);
4144 		if (ip == NULL) goto bad;
4145 	}
4146 
4147 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
4148 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
4149 	} else {
4150 		if (hlen == sizeof(struct ip)) {
4151 			sum = in_cksum_hdr(ip);
4152 		} else {
4153 			sum = in_cksum(m, hlen);
4154 		}
4155 	}
4156 	if (sum) {
4157 		ipstat.ips_badsum++;
4158 		goto bad;
4159 	}
4160 
4161 	/* Retrieve the packet length. */
4162 	len = ntohs(ip->ip_len);
4163 
4164 	/*
4165 	 * Check for additional length bogosity
4166 	 */
4167 	if (len < hlen) {
4168 		ipstat.ips_badlen++;
4169 		goto bad;
4170 	}
4171 
4172 	/*
4173 	 * Check that the amount of data in the buffers
4174 	 * is as at least much as the IP header would have us expect.
4175 	 * Drop packet if shorter than we expect.
4176 	 */
4177 	if (m->m_pkthdr.len < len) {
4178 		ipstat.ips_tooshort++;
4179 		goto bad;
4180 	}
4181 
4182 	/* Checks out, proceed */
4183 	*mp = m;
4184 	return (0);
4185 
4186 bad:
4187 	*mp = m;
4188 	return (-1);
4189 }
4190 
4191 #ifdef INET6
4192 /*
4193  * Same as above, but for IPv6.
4194  * Cut-and-pasted from ip6_input.c.
4195  * XXX Should we update ip6stat, or not?
4196  */
4197 static int
4198 bridge_ip6_checkbasic(struct mbuf **mp)
4199 {
4200 	struct mbuf *m = *mp;
4201 	struct ip6_hdr *ip6;
4202 
4203 	/*
4204 	 * If the IPv6 header is not aligned, slurp it up into a new
4205 	 * mbuf with space for link headers, in the event we forward
4206 	 * it.  Otherwise, if it is aligned, make sure the entire base
4207 	 * IPv6 header is in the first mbuf of the chain.
4208 	 */
4209 #if 0 /* notyet */
4210 	if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4211 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4212 		if ((m = m_copyup(m, sizeof(struct ip6_hdr),
4213 			    (max_linkhdr + 3) & ~3)) == NULL) {
4214 			/* XXXJRT new stat, please */
4215 			ip6stat.ip6s_toosmall++;
4216 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4217 			goto bad;
4218 		}
4219 	} else
4220 #endif
4221 	if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
4222 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4223 		if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
4224 			ip6stat.ip6s_toosmall++;
4225 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4226 			goto bad;
4227 		}
4228 	}
4229 
4230 	ip6 = mtod(m, struct ip6_hdr *);
4231 
4232 	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
4233 		ip6stat.ip6s_badvers++;
4234 		in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
4235 		goto bad;
4236 	}
4237 
4238 	/* Checks out, proceed */
4239 	*mp = m;
4240 	return (0);
4241 
4242 bad:
4243 	*mp = m;
4244 	return (-1);
4245 }
4246 #endif /* INET6 */
4247 
4248 /*
4249  * bridge_fragment:
4250  *
4251  *	Return a fragmented mbuf chain.
4252  */
4253 static int
4254 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh,
4255     int snap, struct llc *llc)
4256 {
4257 	struct mbuf *m0;
4258 	struct ip *ip;
4259 	int error = -1;
4260 
4261 	if (m->m_len < sizeof(struct ip) &&
4262 	    (m = m_pullup(m, sizeof(struct ip))) == NULL)
4263 		goto out;
4264 	ip = mtod(m, struct ip *);
4265 
4266 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist,
4267 		    CSUM_DELAY_IP);
4268 	if (error)
4269 		goto out;
4270 
4271 	/* walk the chain and re-add the Ethernet header */
4272 	for (m0 = m; m0; m0 = m0->m_nextpkt) {
4273 		if (error == 0) {
4274 			if (snap) {
4275 				M_PREPEND(m0, sizeof(struct llc), M_NOWAIT);
4276 				if (m0 == NULL) {
4277 					error = ENOBUFS;
4278 					continue;
4279 				}
4280 				bcopy(llc, mtod(m0, caddr_t),
4281 				    sizeof(struct llc));
4282 			}
4283 			M_PREPEND(m0, ETHER_HDR_LEN, M_NOWAIT);
4284 			if (m0 == NULL) {
4285 				error = ENOBUFS;
4286 				continue;
4287 			}
4288 			bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN);
4289 		} else
4290 			m_freem(m);
4291 	}
4292 
4293 	if (error == 0)
4294 		ipstat.ips_fragmented++;
4295 
4296 	return (error);
4297 
4298 out:
4299 	if (m != NULL)
4300 		m_freem(m);
4301 	return (error);
4302 }
4303 
4304 static void
4305 bridge_enqueue_handler(netmsg_t msg)
4306 {
4307 	struct netmsg_packet *nmp;
4308 	struct ifnet *dst_ifp;
4309 	struct mbuf *m;
4310 
4311 	nmp = &msg->packet;
4312 	m = nmp->nm_packet;
4313 	dst_ifp = nmp->base.lmsg.u.ms_resultp;
4314 	mbuftrackid(m, 71);
4315 
4316 	bridge_handoff(dst_ifp->if_bridge, dst_ifp, m, 1);
4317 }
4318 
4319 static void
4320 bridge_handoff(struct bridge_softc *sc, struct ifnet *dst_ifp,
4321 	       struct mbuf *m, int from_us)
4322 {
4323 	struct mbuf *m0;
4324 	struct ifnet *bifp;
4325 
4326 	bifp = sc->sc_ifp;
4327 	mbuftrackid(m, 72);
4328 
4329 	/* We may be sending a fragment so traverse the mbuf */
4330 	for (; m; m = m0) {
4331 		struct altq_pktattr pktattr;
4332 
4333 		m0 = m->m_nextpkt;
4334 		m->m_nextpkt = NULL;
4335 
4336 		/*
4337 		 * If being sent from our host override ether_shost
4338 		 * with the bridge MAC.  This is mandatory for ARP
4339 		 * so things don't get confused.  In particular we
4340 		 * don't want ARPs to get associated with link interfaces
4341 		 * under the bridge which might or might not stay valid.
4342 		 *
4343 		 * Also override ether_shost when relaying a packet out
4344 		 * the same interface it came in on, due to multi-homed
4345 		 * addresses & default routes, otherwise switches will
4346 		 * get very confused.
4347 		 *
4348 		 * Otherwise if we are in transparent mode.
4349 		 */
4350 		if (from_us || m->m_pkthdr.rcvif == dst_ifp) {
4351 			m_copyback(m,
4352 				   offsetof(struct ether_header, ether_shost),
4353 				   ETHER_ADDR_LEN, IF_LLADDR(sc->sc_ifp));
4354 		} else if ((bifp->if_flags & IFF_LINK0) &&
4355 			   (m->m_pkthdr.fw_flags & BRIDGE_MBUF_TAGGED)) {
4356 			m_copyback(m,
4357 				   offsetof(struct ether_header, ether_shost),
4358 				   ETHER_ADDR_LEN,
4359 				   m->m_pkthdr.ether_br_shost);
4360 		} /* else retain shost */
4361 
4362 		if (ifq_is_enabled(&dst_ifp->if_snd))
4363 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
4364 
4365 		ifq_dispatch(dst_ifp, m, &pktattr);
4366 	}
4367 }
4368 
4369 static void
4370 bridge_control_dispatch(netmsg_t msg)
4371 {
4372 	struct netmsg_brctl *bc_msg = (struct netmsg_brctl *)msg;
4373 	struct ifnet *bifp = bc_msg->bc_sc->sc_ifp;
4374 	int error;
4375 
4376 	ifnet_serialize_all(bifp);
4377 	error = bc_msg->bc_func(bc_msg->bc_sc, bc_msg->bc_arg);
4378 	ifnet_deserialize_all(bifp);
4379 
4380 	lwkt_replymsg(&bc_msg->base.lmsg, error);
4381 }
4382 
4383 static int
4384 bridge_control(struct bridge_softc *sc, u_long cmd,
4385 	       bridge_ctl_t bc_func, void *bc_arg)
4386 {
4387 	struct ifnet *bifp = sc->sc_ifp;
4388 	struct netmsg_brctl bc_msg;
4389 	int error;
4390 
4391 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
4392 
4393 	bzero(&bc_msg, sizeof(bc_msg));
4394 
4395 	netmsg_init(&bc_msg.base, NULL, &curthread->td_msgport,
4396 		    0, bridge_control_dispatch);
4397 	bc_msg.bc_func = bc_func;
4398 	bc_msg.bc_sc = sc;
4399 	bc_msg.bc_arg = bc_arg;
4400 
4401 	ifnet_deserialize_all(bifp);
4402 	error = lwkt_domsg(BRIDGE_CFGPORT, &bc_msg.base.lmsg, 0);
4403 	ifnet_serialize_all(bifp);
4404 	return error;
4405 }
4406 
4407 static void
4408 bridge_add_bif_handler(netmsg_t msg)
4409 {
4410 	struct netmsg_braddbif *amsg = (struct netmsg_braddbif *)msg;
4411 	struct bridge_softc *sc;
4412 	struct bridge_iflist *bif;
4413 
4414 	sc = amsg->br_softc;
4415 
4416 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
4417 	bif->bif_ifp = amsg->br_bif_ifp;
4418 	bif->bif_onlist = 1;
4419 	bif->bif_info = amsg->br_bif_info;
4420 
4421 	/*
4422 	 * runs through bif_info
4423 	 */
4424 	bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER;
4425 
4426 	TAILQ_INSERT_HEAD(&sc->sc_iflists[mycpuid], bif, bif_next);
4427 
4428 	netisr_forwardmsg(&amsg->base, mycpuid + 1);
4429 }
4430 
4431 static void
4432 bridge_add_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4433 	       struct ifnet *ifp)
4434 {
4435 	struct netmsg_braddbif amsg;
4436 
4437 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4438 
4439 	netmsg_init(&amsg.base, NULL, &curthread->td_msgport,
4440 		    0, bridge_add_bif_handler);
4441 	amsg.br_softc = sc;
4442 	amsg.br_bif_info = bif_info;
4443 	amsg.br_bif_ifp = ifp;
4444 
4445 	netisr_domsg(&amsg.base, 0);
4446 }
4447 
4448 static void
4449 bridge_del_bif_handler(netmsg_t msg)
4450 {
4451 	struct netmsg_brdelbif *dmsg = (struct netmsg_brdelbif *)msg;
4452 	struct bridge_softc *sc;
4453 	struct bridge_iflist *bif;
4454 
4455 	sc = dmsg->br_softc;
4456 
4457 	/*
4458 	 * Locate the bif associated with the br_bif_info
4459 	 * on the current CPU
4460 	 */
4461 	bif = bridge_lookup_member_ifinfo(sc, dmsg->br_bif_info);
4462 	KKASSERT(bif != NULL && bif->bif_onlist);
4463 
4464 	/* Remove the bif from the current CPU's iflist */
4465 	bif->bif_onlist = 0;
4466 	TAILQ_REMOVE(dmsg->br_bif_list, bif, bif_next);
4467 
4468 	/* Save the removed bif for later freeing */
4469 	TAILQ_INSERT_HEAD(dmsg->br_bif_list, bif, bif_next);
4470 
4471 	netisr_forwardmsg(&dmsg->base, mycpuid + 1);
4472 }
4473 
4474 static void
4475 bridge_del_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4476 	       struct bridge_iflist_head *saved_bifs)
4477 {
4478 	struct netmsg_brdelbif dmsg;
4479 
4480 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4481 
4482 	netmsg_init(&dmsg.base, NULL, &curthread->td_msgport,
4483 		    0, bridge_del_bif_handler);
4484 	dmsg.br_softc = sc;
4485 	dmsg.br_bif_info = bif_info;
4486 	dmsg.br_bif_list = saved_bifs;
4487 
4488 	netisr_domsg(&dmsg.base, 0);
4489 }
4490