xref: /dragonfly/sys/net/bridge/if_bridge.c (revision 03517d4e)
1 /*
2  * Copyright 2001 Wasabi Systems, Inc.
3  * All rights reserved.
4  *
5  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed for the NetBSD Project by
18  *	Wasabi Systems, Inc.
19  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by Jason L. Wright
51  * 4. The name of the author may not be used to endorse or promote products
52  *    derived from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
56  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
57  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
58  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
63  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp $
67  * $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $
68  * $FreeBSD: src/sys/net/if_bridge.c,v 1.26 2005/10/13 23:05:55 thompsa Exp $
69  */
70 
71 /*
72  * Network interface bridge support.
73  *
74  * TODO:
75  *
76  *	- Currently only supports Ethernet-like interfaces (Ethernet,
77  *	  802.11, VLANs on Ethernet, etc.)  Figure out a nice way
78  *	  to bridge other types of interfaces (FDDI-FDDI, and maybe
79  *	  consider heterogenous bridges).
80  *
81  *
82  * Bridge's route information is duplicated to each CPUs:
83  *
84  *      CPU0          CPU1          CPU2          CPU3
85  * +-----------+ +-----------+ +-----------+ +-----------+
86  * |  rtnode   | |  rtnode   | |  rtnode   | |  rtnode   |
87  * |           | |           | |           | |           |
88  * | dst eaddr | | dst eaddr | | dst eaddr | | dst eaddr |
89  * +-----------+ +-----------+ +-----------+ +-----------+
90  *       |         |                     |         |
91  *       |         |                     |         |
92  *       |         |     +----------+    |         |
93  *       |         |     |  rtinfo  |    |         |
94  *       |         +---->|          |<---+         |
95  *       |               |  flags   |              |
96  *       +-------------->|  timeout |<-------------+
97  *                       |  dst_ifp |
98  *                       +----------+
99  *
100  * We choose to put timeout and dst_ifp into shared part, so updating
101  * them will be cheaper than using message forwarding.  Also there is
102  * not need to use spinlock to protect the updating: timeout and dst_ifp
103  * is not related and specific field's updating order has no importance.
104  * The cache pollution by the share part should not be heavy: in a stable
105  * setup, dst_ifp probably will be not changed in rtnode's life time,
106  * while timeout is refreshed once per second; most of the time, timeout
107  * and dst_ifp are read-only accessed.
108  *
109  *
110  * Bridge route information installation on bridge_input path:
111  *
112  *      CPU0           CPU1         CPU2          CPU3
113  *
114  *                                 netisr2
115  *                                    |
116  *                                alloc nmsg
117  *                    snd nmsg        |
118  *                    w/o rtinfo      |
119  *     netisr0<-----------------------+
120  *        |                           :
121  *    lookup dst                      :
122  *   rtnode exists?(Y)free nmsg       :
123  *        |(N)                        :
124  *        |                           :
125  *  alloc rtinfo                      :
126  *  alloc rtnode                      :
127  * install rtnode                     :
128  *        |                           :
129  *        +---------->netisr1         :
130  *        : fwd nmsg     |            :
131  *        : w/ rtinfo    |            :
132  *        :              |            :
133  *        :              |            :
134  *                  alloc rtnode      :
135  *                (w/ nmsg's rtinfo)  :
136  *                 install rtnode     :
137  *                       |            :
138  *                       +----------->|
139  *                       : fwd nmsg   |
140  *                       : w/ rtinfo  |
141  *                       :            |
142  *                       :     same as netisr1
143  *                                    |
144  *                                    +---------->netisr3
145  *                                    : fwd nmsg     |
146  *                                    : w/ rtinfo    |
147  *                                    :              |
148  *                                    :       same as netisr1
149  *                                               free nmsg
150  *                                                   :
151  *                                                   :
152  *
153  * The netmsgs forwarded between netisr2 are allocated with
154  * (M_WAITOK|M_NULLOK), so it will not fail under most cases (route
155  * information is too precious to be not installed :).  Since multiple
156  * netisrs may try to install route information for the same dst eaddr,
157  * we look up route information in netisr0.  However, this looking up
158  * only need to be performed on netisr0, which is the start point of
159  * the route information installation process.
160  *
161  *
162  * Bridge route information deleting/flushing:
163  *
164  *  CPU0            CPU1              CPU2             CPU3
165  *
166  * netisr0
167  *    |
168  *  find suitable rtnodes,
169  *  mark their rtinfo dead
170  *    |
171  *    | domsg <-------------------------------------------+
172  *    : delete rtnodes                                    | replymsg
173  *    : w/ dead rtinfo                                    |
174  *    :                                                   |
175  *    :  fwdmsg             fwdmsg            fwdmsg      |
176  *    :----------> netisr1 --------> netisr2 --------> netisr3
177  *              delete rtnodes    delete rtnodes    delete rtnodes
178  *              w/ dead rtinfo    w/ dead rtinfo    w/ dead rtinfo
179  *                                                 free dead rtinfos
180  *
181  * All deleting/flushing operations are serialized by netisr0, so each
182  * operation only reaps the route information marked dead by itself.
183  *
184  *
185  * Bridge route information adding/deleting/flushing:
186  * Since all operation is serialized by the fixed message flow between
187  * netisrs, it is not possible to create corrupted per-cpu route
188  * information.
189  *
190  *
191  *
192  * XXX This no longer applies.
193  * Percpu member interface list iteration with blocking operation:
194  * Since one bridge could only delete one member interface at a time and
195  * the deleted member interface is not freed after netmsg_service_sync(),
196  * following way is used to make sure that even if the certain member
197  * interface is ripped from the percpu list during the blocking operation,
198  * the iteration still could keep going:
199  *
200  * TAILQ_FOREACH_MUTABLE(bif, sc->sc_iflists[mycpuid], bif_next, nbif) {
201  *     blocking operation;
202  *     blocking operation;
203  *     ...
204  *     ...
205  *     if (nbif != NULL && !nbif->bif_onlist) {
206  *         KKASSERT(bif->bif_onlist);
207  *         nbif = TAILQ_NEXT(bif, bif_next);
208  *     }
209  * }
210  *
211  * As mentioned above only one member interface could be unlinked from the
212  * percpu member interface list, so either bif or nbif may be not on the list,
213  * but _not_ both.  To keep the list iteration, we don't care about bif, but
214  * only nbif.  Since removed member interface will only be freed after we
215  * finish our work, it is safe to access any field in an unlinked bif (here
216  * bif_onlist).  If nbif is no longer on the list, then bif must be on the
217  * list, so we change nbif to the next element of bif and keep going.
218  */
219 
220 #include "opt_inet.h"
221 #include "opt_inet6.h"
222 
223 #include <sys/param.h>
224 #include <sys/mbuf.h>
225 #include <sys/malloc.h>
226 #include <sys/protosw.h>
227 #include <sys/systm.h>
228 #include <sys/time.h>
229 #include <sys/socket.h> /* for net/if.h */
230 #include <sys/sockio.h>
231 #include <sys/ctype.h>  /* string functions */
232 #include <sys/kernel.h>
233 #include <sys/random.h>
234 #include <sys/sysctl.h>
235 #include <sys/module.h>
236 #include <sys/proc.h>
237 #include <sys/caps.h>
238 #include <sys/lock.h>
239 #include <sys/thread.h>
240 #include <sys/thread2.h>
241 #include <sys/mpipe.h>
242 
243 #include <net/bpf.h>
244 #include <net/if.h>
245 #include <net/if_dl.h>
246 #include <net/if_types.h>
247 #include <net/if_var.h>
248 #include <net/pfil.h>
249 #include <net/ifq_var.h>
250 #include <net/if_clone.h>
251 
252 #include <netinet/in.h> /* for struct arpcom */
253 #include <netinet/in_systm.h>
254 #include <netinet/in_var.h>
255 #include <netinet/ip.h>
256 #include <netinet/ip_var.h>
257 #ifdef INET6
258 #include <netinet/ip6.h>
259 #include <netinet6/ip6_var.h>
260 #endif
261 #include <netinet/if_ether.h> /* for struct arpcom */
262 #include <net/bridge/if_bridgevar.h>
263 #include <net/if_llc.h>
264 #include <net/netmsg2.h>
265 #include <net/netisr2.h>
266 
267 #include <net/route.h>
268 #include <sys/in_cksum.h>
269 
270 /*
271  * Size of the route hash table.  Must be a power of two.
272  */
273 #ifndef BRIDGE_RTHASH_SIZE
274 #define	BRIDGE_RTHASH_SIZE		1024
275 #endif
276 
277 #define	BRIDGE_RTHASH_MASK		(BRIDGE_RTHASH_SIZE - 1)
278 
279 /*
280  * Maximum number of addresses to cache.
281  */
282 #ifndef BRIDGE_RTABLE_MAX
283 #define	BRIDGE_RTABLE_MAX		4096
284 #endif
285 
286 /*
287  * Spanning tree defaults.
288  */
289 #define	BSTP_DEFAULT_MAX_AGE		(20 * 256)
290 #define	BSTP_DEFAULT_HELLO_TIME		(2 * 256)
291 #define	BSTP_DEFAULT_FORWARD_DELAY	(15 * 256)
292 #define	BSTP_DEFAULT_HOLD_TIME		(1 * 256)
293 #define	BSTP_DEFAULT_BRIDGE_PRIORITY	0x8000
294 #define	BSTP_DEFAULT_PORT_PRIORITY	0x80
295 #define	BSTP_DEFAULT_PATH_COST		55
296 
297 /*
298  * Timeout (in seconds) for entries learned dynamically.
299  */
300 #ifndef BRIDGE_RTABLE_TIMEOUT
301 #define	BRIDGE_RTABLE_TIMEOUT		(20 * 60)	/* same as ARP */
302 #endif
303 
304 /*
305  * Number of seconds between walks of the route list.
306  */
307 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD
308 #define	BRIDGE_RTABLE_PRUNE_PERIOD	(5 * 60)
309 #endif
310 
311 /*
312  * List of capabilities to mask on the member interface.
313  */
314 #define	BRIDGE_IFCAPS_MASK		(IFCAP_TXCSUM | IFCAP_TSO)
315 
316 typedef int	(*bridge_ctl_t)(struct bridge_softc *, void *);
317 
318 struct netmsg_brctl {
319 	struct netmsg_base	base;
320 	bridge_ctl_t		bc_func;
321 	struct bridge_softc	*bc_sc;
322 	void			*bc_arg;
323 };
324 
325 struct netmsg_brsaddr {
326 	struct netmsg_base	base;
327 	struct bridge_softc	*br_softc;
328 	struct ifnet		*br_dst_if;
329 	struct bridge_rtinfo	*br_rtinfo;
330 	int			br_setflags;
331 	uint8_t			br_dst[ETHER_ADDR_LEN];
332 	uint8_t			br_flags;
333 };
334 
335 struct netmsg_braddbif {
336 	struct netmsg_base	base;
337 	struct bridge_softc	*br_softc;
338 	struct bridge_ifinfo	*br_bif_info;
339 	struct ifnet		*br_bif_ifp;
340 };
341 
342 struct netmsg_brdelbif {
343 	struct netmsg_base	base;
344 	struct bridge_softc	*br_softc;
345 	struct bridge_ifinfo	*br_bif_info;
346 	struct bridge_iflist_head *br_bif_list;
347 };
348 
349 struct netmsg_brsflags {
350 	struct netmsg_base	base;
351 	struct bridge_softc	*br_softc;
352 	struct bridge_ifinfo	*br_bif_info;
353 	uint32_t		br_bif_flags;
354 };
355 
356 eventhandler_tag	bridge_detach_cookie = NULL;
357 
358 extern	struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
359 extern	int (*bridge_output_p)(struct ifnet *, struct mbuf *);
360 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
361 extern  struct ifnet *(*bridge_interface_p)(void *if_bridge);
362 
363 static int	bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
364 
365 static int	bridge_clone_create(struct if_clone *, int, caddr_t, caddr_t);
366 static int	bridge_clone_destroy(struct ifnet *);
367 
368 static int	bridge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
369 static void	bridge_mutecaps(struct bridge_ifinfo *, struct ifnet *, int);
370 static void	bridge_ifdetach(void *, struct ifnet *);
371 static void	bridge_init(void *);
372 static int	bridge_from_us(struct bridge_softc *, struct ether_header *);
373 static void	bridge_stop(struct ifnet *);
374 static void	bridge_start(struct ifnet *, struct ifaltq_subque *);
375 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *);
376 static int	bridge_output(struct ifnet *, struct mbuf *);
377 static struct ifnet *bridge_interface(void *if_bridge);
378 
379 static void	bridge_forward(struct bridge_softc *, struct mbuf *m);
380 
381 static void	bridge_timer_handler(netmsg_t);
382 static void	bridge_timer(void *);
383 
384 static void	bridge_start_bcast(struct bridge_softc *, struct mbuf *);
385 static void	bridge_broadcast(struct bridge_softc *, struct ifnet *,
386 		    struct mbuf *);
387 static void	bridge_span(struct bridge_softc *, struct mbuf *);
388 
389 static int	bridge_rtupdate(struct bridge_softc *, const uint8_t *,
390 		    struct ifnet *, uint8_t);
391 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *);
392 static void	bridge_rtreap(struct bridge_softc *);
393 static void	bridge_rtreap_async(struct bridge_softc *);
394 static void	bridge_rttrim(struct bridge_softc *);
395 static int	bridge_rtage_finddead(struct bridge_softc *);
396 static void	bridge_rtage(struct bridge_softc *);
397 static void	bridge_rtflush(struct bridge_softc *, int);
398 static int	bridge_rtdaddr(struct bridge_softc *, const uint8_t *);
399 static int	bridge_rtsaddr(struct bridge_softc *, const uint8_t *,
400 		    struct ifnet *, uint8_t);
401 static void	bridge_rtmsg_sync(struct bridge_softc *sc);
402 static void	bridge_rtreap_handler(netmsg_t);
403 static void	bridge_rtinstall_handler(netmsg_t);
404 static int	bridge_rtinstall_oncpu(struct bridge_softc *, const uint8_t *,
405 		    struct ifnet *, int, uint8_t, struct bridge_rtinfo **);
406 
407 static void	bridge_rtable_init(struct bridge_softc *);
408 static void	bridge_rtable_fini(struct bridge_softc *);
409 
410 static int	bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
411 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
412 		    const uint8_t *);
413 static void	bridge_rtnode_insert(struct bridge_softc *,
414 		    struct bridge_rtnode *);
415 static void	bridge_rtnode_destroy(struct bridge_softc *,
416 		    struct bridge_rtnode *);
417 
418 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
419 		    const char *name);
420 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
421 		    struct ifnet *ifp);
422 static struct bridge_iflist *bridge_lookup_member_ifinfo(struct bridge_softc *,
423 		    struct bridge_ifinfo *);
424 static void	bridge_delete_member(struct bridge_softc *,
425 		    struct bridge_iflist *, int);
426 static void	bridge_delete_span(struct bridge_softc *,
427 		    struct bridge_iflist *);
428 
429 static int	bridge_control(struct bridge_softc *, u_long,
430 			       bridge_ctl_t, void *);
431 static int	bridge_ioctl_init(struct bridge_softc *, void *);
432 static int	bridge_ioctl_stop(struct bridge_softc *, void *);
433 static int	bridge_ioctl_add(struct bridge_softc *, void *);
434 static int	bridge_ioctl_del(struct bridge_softc *, void *);
435 static void	bridge_ioctl_fillflags(struct bridge_softc *sc,
436 				struct bridge_iflist *bif, struct ifbreq *req);
437 static int	bridge_ioctl_gifflags(struct bridge_softc *, void *);
438 static int	bridge_ioctl_sifflags(struct bridge_softc *, void *);
439 static int	bridge_ioctl_scache(struct bridge_softc *, void *);
440 static int	bridge_ioctl_gcache(struct bridge_softc *, void *);
441 static int	bridge_ioctl_gifs(struct bridge_softc *, void *);
442 static int	bridge_ioctl_rts(struct bridge_softc *, void *);
443 static int	bridge_ioctl_saddr(struct bridge_softc *, void *);
444 static int	bridge_ioctl_sto(struct bridge_softc *, void *);
445 static int	bridge_ioctl_gto(struct bridge_softc *, void *);
446 static int	bridge_ioctl_daddr(struct bridge_softc *, void *);
447 static int	bridge_ioctl_flush(struct bridge_softc *, void *);
448 static int	bridge_ioctl_gpri(struct bridge_softc *, void *);
449 static int	bridge_ioctl_spri(struct bridge_softc *, void *);
450 static int	bridge_ioctl_reinit(struct bridge_softc *, void *);
451 static int	bridge_ioctl_ght(struct bridge_softc *, void *);
452 static int	bridge_ioctl_sht(struct bridge_softc *, void *);
453 static int	bridge_ioctl_gfd(struct bridge_softc *, void *);
454 static int	bridge_ioctl_sfd(struct bridge_softc *, void *);
455 static int	bridge_ioctl_gma(struct bridge_softc *, void *);
456 static int	bridge_ioctl_sma(struct bridge_softc *, void *);
457 static int	bridge_ioctl_sifprio(struct bridge_softc *, void *);
458 static int	bridge_ioctl_sifcost(struct bridge_softc *, void *);
459 static int	bridge_ioctl_addspan(struct bridge_softc *, void *);
460 static int	bridge_ioctl_delspan(struct bridge_softc *, void *);
461 static int	bridge_ioctl_sifbondwght(struct bridge_softc *, void *);
462 static int	bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *,
463 		    int);
464 static int	bridge_ip_checkbasic(struct mbuf **mp);
465 #ifdef INET6
466 static int	bridge_ip6_checkbasic(struct mbuf **mp);
467 #endif /* INET6 */
468 static int	bridge_fragment(struct ifnet *, struct mbuf *,
469 		    struct ether_header *, int, struct llc *);
470 static void	bridge_enqueue_handler(netmsg_t);
471 static void	bridge_handoff(struct bridge_softc *, struct ifnet *,
472 		    struct mbuf *, int);
473 
474 static void	bridge_del_bif_handler(netmsg_t);
475 static void	bridge_add_bif_handler(netmsg_t);
476 static void	bridge_del_bif(struct bridge_softc *, struct bridge_ifinfo *,
477 		    struct bridge_iflist_head *);
478 static void	bridge_add_bif(struct bridge_softc *, struct bridge_ifinfo *,
479 		    struct ifnet *);
480 
481 SYSCTL_DECL(_net_link);
482 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge");
483 
484 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */
485 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */
486 static int pfil_member = 1; /* run pfil hooks on the member interface */
487 static int bridge_debug;
488 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW,
489     &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled");
490 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW,
491     &pfil_bridge, 0, "Packet filter on the bridge interface");
492 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW,
493     &pfil_member, 0, "Packet filter on the member interface");
494 SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW,
495     &bridge_debug, 0, "Bridge debug mode");
496 
497 struct bridge_control_arg {
498 	union {
499 		struct ifbreq ifbreq;
500 		struct ifbifconf ifbifconf;
501 		struct ifbareq ifbareq;
502 		struct ifbaconf ifbaconf;
503 		struct ifbrparam ifbrparam;
504 	} bca_u;
505 	int	bca_len;
506 	void	*bca_uptr;
507 	void	*bca_kptr;
508 };
509 
510 struct bridge_control {
511 	bridge_ctl_t	bc_func;
512 	int		bc_argsize;
513 	int		bc_flags;
514 };
515 
516 #define	BC_F_COPYIN		0x01	/* copy arguments in */
517 #define	BC_F_COPYOUT		0x02	/* copy arguments out */
518 #define	BC_F_SUSER		0x04	/* do super-user check */
519 
520 const struct bridge_control bridge_control_table[] = {
521 	{ bridge_ioctl_add,		sizeof(struct ifbreq),
522 	  BC_F_COPYIN|BC_F_SUSER },
523 	{ bridge_ioctl_del,		sizeof(struct ifbreq),
524 	  BC_F_COPYIN|BC_F_SUSER },
525 
526 	{ bridge_ioctl_gifflags,	sizeof(struct ifbreq),
527 	  BC_F_COPYIN|BC_F_COPYOUT },
528 	{ bridge_ioctl_sifflags,	sizeof(struct ifbreq),
529 	  BC_F_COPYIN|BC_F_SUSER },
530 
531 	{ bridge_ioctl_scache,		sizeof(struct ifbrparam),
532 	  BC_F_COPYIN|BC_F_SUSER },
533 	{ bridge_ioctl_gcache,		sizeof(struct ifbrparam),
534 	  BC_F_COPYOUT },
535 
536 	{ bridge_ioctl_gifs,		sizeof(struct ifbifconf),
537 	  BC_F_COPYIN|BC_F_COPYOUT },
538 	{ bridge_ioctl_rts,		sizeof(struct ifbaconf),
539 	  BC_F_COPYIN|BC_F_COPYOUT },
540 
541 	{ bridge_ioctl_saddr,		sizeof(struct ifbareq),
542 	  BC_F_COPYIN|BC_F_SUSER },
543 
544 	{ bridge_ioctl_sto,		sizeof(struct ifbrparam),
545 	  BC_F_COPYIN|BC_F_SUSER },
546 	{ bridge_ioctl_gto,		sizeof(struct ifbrparam),
547 	  BC_F_COPYOUT },
548 
549 	{ bridge_ioctl_daddr,		sizeof(struct ifbareq),
550 	  BC_F_COPYIN|BC_F_SUSER },
551 
552 	{ bridge_ioctl_flush,		sizeof(struct ifbreq),
553 	  BC_F_COPYIN|BC_F_SUSER },
554 
555 	{ bridge_ioctl_gpri,		sizeof(struct ifbrparam),
556 	  BC_F_COPYOUT },
557 	{ bridge_ioctl_spri,		sizeof(struct ifbrparam),
558 	  BC_F_COPYIN|BC_F_SUSER },
559 
560 	{ bridge_ioctl_ght,		sizeof(struct ifbrparam),
561 	  BC_F_COPYOUT },
562 	{ bridge_ioctl_sht,		sizeof(struct ifbrparam),
563 	  BC_F_COPYIN|BC_F_SUSER },
564 
565 	{ bridge_ioctl_gfd,		sizeof(struct ifbrparam),
566 	  BC_F_COPYOUT },
567 	{ bridge_ioctl_sfd,		sizeof(struct ifbrparam),
568 	  BC_F_COPYIN|BC_F_SUSER },
569 
570 	{ bridge_ioctl_gma,		sizeof(struct ifbrparam),
571 	  BC_F_COPYOUT },
572 	{ bridge_ioctl_sma,		sizeof(struct ifbrparam),
573 	  BC_F_COPYIN|BC_F_SUSER },
574 
575 	{ bridge_ioctl_sifprio,		sizeof(struct ifbreq),
576 	  BC_F_COPYIN|BC_F_SUSER },
577 
578 	{ bridge_ioctl_sifcost,		sizeof(struct ifbreq),
579 	  BC_F_COPYIN|BC_F_SUSER },
580 
581 	{ bridge_ioctl_addspan,		sizeof(struct ifbreq),
582 	  BC_F_COPYIN|BC_F_SUSER },
583 	{ bridge_ioctl_delspan,		sizeof(struct ifbreq),
584 	  BC_F_COPYIN|BC_F_SUSER },
585 
586 	{ bridge_ioctl_sifbondwght,	sizeof(struct ifbreq),
587 	  BC_F_COPYIN|BC_F_SUSER },
588 
589 };
590 static const int bridge_control_table_size = NELEM(bridge_control_table);
591 
592 LIST_HEAD(, bridge_softc) bridge_list;
593 
594 struct if_clone bridge_cloner = IF_CLONE_INITIALIZER("bridge",
595 				bridge_clone_create,
596 				bridge_clone_destroy, 0, IF_MAXUNIT);
597 
598 static int
599 bridge_modevent(module_t mod, int type, void *data)
600 {
601 	switch (type) {
602 	case MOD_LOAD:
603 		LIST_INIT(&bridge_list);
604 		if_clone_attach(&bridge_cloner);
605 		bridge_input_p = bridge_input;
606 		bridge_output_p = bridge_output;
607 		bridge_interface_p = bridge_interface;
608 		bridge_detach_cookie = EVENTHANDLER_REGISTER(
609 		    ifnet_detach_event, bridge_ifdetach, NULL,
610 		    EVENTHANDLER_PRI_ANY);
611 #if 0 /* notyet */
612 		bstp_linkstate_p = bstp_linkstate;
613 #endif
614 		break;
615 	case MOD_UNLOAD:
616 		if (!LIST_EMPTY(&bridge_list))
617 			return (EBUSY);
618 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
619 		    bridge_detach_cookie);
620 		if_clone_detach(&bridge_cloner);
621 		bridge_input_p = NULL;
622 		bridge_output_p = NULL;
623 		bridge_interface_p = NULL;
624 #if 0 /* notyet */
625 		bstp_linkstate_p = NULL;
626 #endif
627 		break;
628 	default:
629 		return (EOPNOTSUPP);
630 	}
631 	return (0);
632 }
633 
634 static moduledata_t bridge_mod = {
635 	"if_bridge",
636 	bridge_modevent,
637 	0
638 };
639 
640 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
641 
642 /*#define BRIDGE_DEBUG_ENABLE*/
643 #ifdef BRIDGE_DEBUG_ENABLE
644 
645 static void
646 BRIDGE_DEBUG(const char *str, struct ifnet *src_if, struct ifnet *dst_if,
647              struct mbuf *m)
648 {
649 	if ((bridge_debug & 2) == 0)
650 		return;
651 
652 	if (str)
653 		kprintf("%s", str);
654 	if (src_if)
655 		kprintf(" src={%s,%s%d}",
656 			src_if->if_xname, src_if->if_dname, src_if->if_dunit);
657 	if (dst_if)
658 		kprintf(" dst={%s,%s%d}",
659 			dst_if->if_xname, dst_if->if_dname, dst_if->if_dunit);
660 	if (m) {
661 		struct ether_header *eh;
662 		struct ip *ip;
663 
664 		eh = mtod(m, struct ether_header *);
665 
666 		kprintf(" %02x:%02x:%02x:%02x:%02x:%02x "
667 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x ",
668 			eh->ether_dhost[0],
669 			eh->ether_dhost[1],
670 			eh->ether_dhost[2],
671 			eh->ether_dhost[3],
672 			eh->ether_dhost[4],
673 			eh->ether_dhost[5],
674 			eh->ether_shost[0],
675 			eh->ether_shost[1],
676 			eh->ether_shost[2],
677 			eh->ether_shost[3],
678 			eh->ether_shost[4],
679 			eh->ether_shost[5],
680 			eh->ether_type);
681 		ip = (void *)(eh + 1);
682 		kprintf("%u.%u.%u.%u -> %u.%u.%u.%u",
683 			(uint8_t)(ip->ip_src.s_addr >> 24),
684 			(uint8_t)(ip->ip_src.s_addr >> 16),
685 			(uint8_t)(ip->ip_src.s_addr >> 8),
686 			(uint8_t)(ip->ip_src.s_addr),
687 			(uint8_t)(ip->ip_dst.s_addr >> 24),
688 			(uint8_t)(ip->ip_dst.s_addr >> 16),
689 			(uint8_t)(ip->ip_dst.s_addr >> 8),
690 			(uint8_t)(ip->ip_dst.s_addr));
691 		kprintf("\n");
692 	}
693 }
694 
695 #else
696 
697 #define BRIDGE_DEBUG(ctl, sif, dif, m)
698 
699 #endif
700 
701 /*
702  * bridge_clone_create:
703  *
704  *	Create a new bridge instance.
705  */
706 static int
707 bridge_clone_create(struct if_clone *ifc, int unit,
708 		    caddr_t params __unused, caddr_t data __unused)
709 {
710 	struct bridge_softc *sc;
711 	struct ifnet *ifp;
712 	u_char eaddr[6];
713 	int cpu, rnd;
714 
715 	sc = kmalloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
716 	ifp = sc->sc_ifp = &sc->sc_if;
717 
718 	sc->sc_brtmax = BRIDGE_RTABLE_MAX;
719 	sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
720 	sc->sc_bridge_max_age = BSTP_DEFAULT_MAX_AGE;
721 	sc->sc_bridge_hello_time = BSTP_DEFAULT_HELLO_TIME;
722 	sc->sc_bridge_forward_delay = BSTP_DEFAULT_FORWARD_DELAY;
723 	sc->sc_bridge_priority = BSTP_DEFAULT_BRIDGE_PRIORITY;
724 	sc->sc_hold_time = BSTP_DEFAULT_HOLD_TIME;
725 
726 	/* Initialize our routing table. */
727 	bridge_rtable_init(sc);
728 
729 	callout_init_mp(&sc->sc_brcallout);
730 	netmsg_init(&sc->sc_brtimemsg, NULL, &netisr_adone_rport,
731 		    MSGF_DROPABLE, bridge_timer_handler);
732 	sc->sc_brtimemsg.lmsg.u.ms_resultp = sc;
733 
734 	callout_init_mp(&sc->sc_bstpcallout);
735 	netmsg_init(&sc->sc_bstptimemsg, NULL, &netisr_adone_rport,
736 		    MSGF_DROPABLE, bstp_tick_handler);
737 	sc->sc_bstptimemsg.lmsg.u.ms_resultp = sc;
738 
739 	/* Initialize per-cpu member iface lists */
740 	sc->sc_iflists = kmalloc(sizeof(*sc->sc_iflists) * netisr_ncpus,
741 				 M_DEVBUF, M_WAITOK);
742 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
743 		TAILQ_INIT(&sc->sc_iflists[cpu]);
744 
745 	TAILQ_INIT(&sc->sc_spanlist);
746 
747 	ifp->if_softc = sc;
748 	if_initname(ifp, ifc->ifc_name, unit);
749 	ifp->if_mtu = ETHERMTU;
750 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_ISBRIDGE;
751 	ifp->if_ioctl = bridge_ioctl;
752 	ifp->if_start = bridge_start;
753 	ifp->if_init = bridge_init;
754 	ifp->if_type = IFT_ETHER;
755 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
756 	ifq_set_ready(&ifp->if_snd);
757 	ifp->if_hdrlen = ETHER_HDR_LEN;
758 
759 	/*
760 	 * Generate a random ethernet address and use the private AC:DE:48
761 	 * OUI code.
762 	 */
763 	rnd = karc4random();
764 	bcopy(&rnd, &eaddr[0], 4); /* ETHER_ADDR_LEN == 6 */
765 	rnd = karc4random();
766 	bcopy(&rnd, &eaddr[2], 4); /* ETHER_ADDR_LEN == 6 */
767 
768 	eaddr[0] &= ~1;	/* clear multicast bit */
769 	eaddr[0] |= 2;	/* set the LAA bit */
770 
771 	ether_ifattach(ifp, eaddr, NULL);
772 	/* Now undo some of the damage... */
773 	ifp->if_baudrate = 0;
774 	/*ifp->if_type = IFT_BRIDGE;*/
775 
776 	crit_enter();	/* XXX MP */
777 	LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
778 	crit_exit();
779 
780 	return (0);
781 }
782 
783 static void
784 bridge_delete_dispatch(netmsg_t msg)
785 {
786 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
787 	struct ifnet *bifp = sc->sc_ifp;
788 	struct bridge_iflist *bif;
789 
790 	ifnet_serialize_all(bifp);
791 
792 	while ((bif = TAILQ_FIRST(&sc->sc_iflists[mycpuid])) != NULL)
793 		bridge_delete_member(sc, bif, 0);
794 
795 	while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL)
796 		bridge_delete_span(sc, bif);
797 
798 	ifnet_deserialize_all(bifp);
799 
800 	lwkt_replymsg(&msg->lmsg, 0);
801 }
802 
803 /*
804  * bridge_clone_destroy:
805  *
806  *	Destroy a bridge instance.
807  */
808 static int
809 bridge_clone_destroy(struct ifnet *ifp)
810 {
811 	struct bridge_softc *sc = ifp->if_softc;
812 	struct netmsg_base msg;
813 
814 	ifnet_serialize_all(ifp);
815 
816 	bridge_stop(ifp);
817 	ifp->if_flags &= ~IFF_UP;
818 
819 	ifnet_deserialize_all(ifp);
820 
821 	netmsg_init(&msg, NULL, &curthread->td_msgport,
822 		    0, bridge_delete_dispatch);
823 	msg.lmsg.u.ms_resultp = sc;
824 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
825 
826 	crit_enter();	/* XXX MP */
827 	LIST_REMOVE(sc, sc_list);
828 	crit_exit();
829 
830 	ether_ifdetach(ifp);
831 
832 	/* Tear down the routing table. */
833 	bridge_rtable_fini(sc);
834 
835 	/* Free per-cpu member iface lists */
836 	kfree(sc->sc_iflists, M_DEVBUF);
837 
838 	kfree(sc, M_DEVBUF);
839 
840 	return 0;
841 }
842 
843 /*
844  * bridge_ioctl:
845  *
846  *	Handle a control request from the operator.
847  */
848 static int
849 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
850 {
851 	struct bridge_softc *sc = ifp->if_softc;
852 	struct bridge_control_arg args;
853 	struct ifdrv *ifd = (struct ifdrv *) data;
854 	const struct bridge_control *bc;
855 	int error = 0;
856 
857 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
858 
859 	switch (cmd) {
860 	case SIOCADDMULTI:
861 	case SIOCDELMULTI:
862 		break;
863 
864 	case SIOCGDRVSPEC:
865 	case SIOCSDRVSPEC:
866 		if (ifd->ifd_cmd >= bridge_control_table_size) {
867 			error = EINVAL;
868 			break;
869 		}
870 		bc = &bridge_control_table[ifd->ifd_cmd];
871 
872 		if (cmd == SIOCGDRVSPEC &&
873 		    (bc->bc_flags & BC_F_COPYOUT) == 0) {
874 			error = EINVAL;
875 			break;
876 		} else if (cmd == SIOCSDRVSPEC &&
877 			   (bc->bc_flags & BC_F_COPYOUT)) {
878 			error = EINVAL;
879 			break;
880 		}
881 
882 		if (bc->bc_flags & BC_F_SUSER) {
883 			error = caps_priv_check(cr, SYSCAP_RESTRICTEDROOT |
884 						    __SYSCAP_NULLCRED);
885 			if (error)
886 				break;
887 		}
888 
889 		if (ifd->ifd_len != bc->bc_argsize ||
890 		    ifd->ifd_len > sizeof(args.bca_u)) {
891 			error = EINVAL;
892 			break;
893 		}
894 
895 		memset(&args, 0, sizeof(args));
896 		if (bc->bc_flags & BC_F_COPYIN) {
897 			error = copyin(ifd->ifd_data, &args.bca_u,
898 				       ifd->ifd_len);
899 			if (error)
900 				break;
901 		}
902 
903 		error = bridge_control(sc, cmd, bc->bc_func, &args);
904 		if (error) {
905 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
906 			break;
907 		}
908 
909 		if (bc->bc_flags & BC_F_COPYOUT) {
910 			error = copyout(&args, ifd->ifd_data, ifd->ifd_len);
911 			if (args.bca_len != 0) {
912 				KKASSERT(args.bca_kptr != NULL);
913 				if (!error) {
914 					error = copyout(args.bca_kptr,
915 						args.bca_uptr, args.bca_len);
916 				}
917 				kfree(args.bca_kptr, M_TEMP);
918 			} else {
919 				KKASSERT(args.bca_kptr == NULL);
920 			}
921 		} else {
922 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
923 		}
924 		break;
925 
926 	case SIOCSIFFLAGS:
927 		if (!(ifp->if_flags & IFF_UP) &&
928 		    (ifp->if_flags & IFF_RUNNING)) {
929 			/*
930 			 * If interface is marked down and it is running,
931 			 * then stop it.
932 			 */
933 			bridge_stop(ifp);
934 		} else if ((ifp->if_flags & IFF_UP) &&
935 		    !(ifp->if_flags & IFF_RUNNING)) {
936 			/*
937 			 * If interface is marked up and it is stopped, then
938 			 * start it.
939 			 */
940 			ifp->if_init(sc);
941 		}
942 
943 		/*
944 		 * If running and link flag state change we have to
945 		 * reinitialize as well.
946 		 */
947 		if ((ifp->if_flags & IFF_RUNNING) &&
948 		    (ifp->if_flags & (IFF_LINK0|IFF_LINK1|IFF_LINK2)) !=
949 		    sc->sc_copy_flags) {
950 			sc->sc_copy_flags = ifp->if_flags &
951 					(IFF_LINK0|IFF_LINK1|IFF_LINK2);
952 			bridge_control(sc, 0, bridge_ioctl_reinit, NULL);
953 		}
954 
955 		break;
956 
957 	case SIOCSIFMTU:
958 		/* Do not allow the MTU to be changed on the bridge */
959 		error = EINVAL;
960 		break;
961 
962 	default:
963 		error = ether_ioctl(ifp, cmd, data);
964 		break;
965 	}
966 	return (error);
967 }
968 
969 /*
970  * bridge_mutecaps:
971  *
972  *	Clear or restore unwanted capabilities on the member interface
973  */
974 static void
975 bridge_mutecaps(struct bridge_ifinfo *bif_info, struct ifnet *ifp, int mute)
976 {
977 	struct ifreq ifr;
978 
979 	if (ifp->if_ioctl == NULL)
980 		return;
981 
982 	bzero(&ifr, sizeof(ifr));
983 	ifr.ifr_reqcap = ifp->if_capenable;
984 
985 	if (mute) {
986 		/* mask off and save capabilities */
987 		bif_info->bifi_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK;
988 		if (bif_info->bifi_mutecap != 0)
989 			ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK;
990 	} else {
991 		/* restore muted capabilities */
992 		ifr.ifr_reqcap |= bif_info->bifi_mutecap;
993 	}
994 
995 	if (bif_info->bifi_mutecap != 0) {
996 		ifnet_serialize_all(ifp);
997 		ifp->if_ioctl(ifp, SIOCSIFCAP, (caddr_t)&ifr, NULL);
998 		ifnet_deserialize_all(ifp);
999 	}
1000 }
1001 
1002 /*
1003  * bridge_lookup_member:
1004  *
1005  *	Lookup a bridge member interface.
1006  */
1007 static struct bridge_iflist *
1008 bridge_lookup_member(struct bridge_softc *sc, const char *name)
1009 {
1010 	struct bridge_iflist *bif;
1011 
1012 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1013 		if (strcmp(bif->bif_ifp->if_xname, name) == 0)
1014 			return (bif);
1015 	}
1016 	return (NULL);
1017 }
1018 
1019 /*
1020  * bridge_lookup_member_if:
1021  *
1022  *	Lookup a bridge member interface by ifnet*.
1023  */
1024 static struct bridge_iflist *
1025 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
1026 {
1027 	struct bridge_iflist *bif;
1028 
1029 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1030 		if (bif->bif_ifp == member_ifp)
1031 			return (bif);
1032 	}
1033 	return (NULL);
1034 }
1035 
1036 /*
1037  * bridge_lookup_member_ifinfo:
1038  *
1039  *	Lookup a bridge member interface by bridge_ifinfo.
1040  */
1041 static struct bridge_iflist *
1042 bridge_lookup_member_ifinfo(struct bridge_softc *sc,
1043 			    struct bridge_ifinfo *bif_info)
1044 {
1045 	struct bridge_iflist *bif;
1046 
1047 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1048 		if (bif->bif_info == bif_info)
1049 			return (bif);
1050 	}
1051 	return (NULL);
1052 }
1053 
1054 /*
1055  * bridge_delete_member:
1056  *
1057  *	Delete the specified member interface.
1058  */
1059 static void
1060 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif,
1061     int gone)
1062 {
1063 	struct ifnet *ifs = bif->bif_ifp;
1064 	struct ifnet *bifp = sc->sc_ifp;
1065 	struct bridge_ifinfo *bif_info = bif->bif_info;
1066 	struct bridge_iflist_head saved_bifs;
1067 
1068 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1069 	KKASSERT(bif_info != NULL);
1070 
1071 	ifs->if_bridge = NULL;
1072 
1073 	/*
1074 	 * Release bridge interface's serializer:
1075 	 * - To avoid possible dead lock.
1076 	 * - Various sync operation will block the current thread.
1077 	 */
1078 	ifnet_deserialize_all(bifp);
1079 
1080 	if (!gone) {
1081 		switch (ifs->if_type) {
1082 		case IFT_ETHER:
1083 		case IFT_L2VLAN:
1084 			/*
1085 			 * Take the interface out of promiscuous mode.
1086 			 */
1087 			ifpromisc(ifs, 0);
1088 			bridge_mutecaps(bif_info, ifs, 0);
1089 			break;
1090 
1091 		case IFT_GIF:
1092 			break;
1093 
1094 		default:
1095 			panic("bridge_delete_member: impossible");
1096 			break;
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Remove bifs from percpu linked list.
1102 	 *
1103 	 * Removed bifs are not freed immediately, instead,
1104 	 * they are saved in saved_bifs.  They will be freed
1105 	 * after we make sure that no one is accessing them,
1106 	 * i.e. after following netmsg_service_sync()
1107 	 */
1108 	TAILQ_INIT(&saved_bifs);
1109 	bridge_del_bif(sc, bif_info, &saved_bifs);
1110 
1111 	/*
1112 	 * Make sure that all protocol threads:
1113 	 * o  see 'ifs' if_bridge is changed
1114 	 * o  know that bif is removed from the percpu linked list
1115 	 */
1116 	netmsg_service_sync();
1117 
1118 	/*
1119 	 * Free the removed bifs
1120 	 */
1121 	KKASSERT(!TAILQ_EMPTY(&saved_bifs));
1122 	while ((bif = TAILQ_FIRST(&saved_bifs)) != NULL) {
1123 		TAILQ_REMOVE(&saved_bifs, bif, bif_next);
1124 		kfree(bif, M_DEVBUF);
1125 	}
1126 
1127 	/* See the comment in bridge_ioctl_stop() */
1128 	bridge_rtmsg_sync(sc);
1129 	bridge_rtdelete(sc, ifs, IFBF_FLUSHALL | IFBF_FLUSHSYNC);
1130 
1131 	ifnet_serialize_all(bifp);
1132 
1133 	if (bifp->if_flags & IFF_RUNNING)
1134 		bstp_initialization(sc);
1135 
1136 	/*
1137 	 * Free the bif_info after bstp_initialization(), so that
1138 	 * bridge_softc.sc_root_port will not reference a dangling
1139 	 * pointer.
1140 	 */
1141 	kfree(bif_info, M_DEVBUF);
1142 }
1143 
1144 /*
1145  * bridge_delete_span:
1146  *
1147  *	Delete the specified span interface.
1148  */
1149 static void
1150 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
1151 {
1152 	KASSERT(bif->bif_ifp->if_bridge == NULL,
1153 	    ("%s: not a span interface", __func__));
1154 
1155 	TAILQ_REMOVE(&sc->sc_iflists[mycpuid], bif, bif_next);
1156 	kfree(bif, M_DEVBUF);
1157 }
1158 
1159 static int
1160 bridge_ioctl_init(struct bridge_softc *sc, void *arg __unused)
1161 {
1162 	struct ifnet *ifp = sc->sc_ifp;
1163 
1164 	if (ifp->if_flags & IFF_RUNNING)
1165 		return 0;
1166 
1167 	callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz,
1168 	    bridge_timer, sc);
1169 
1170 	ifp->if_flags |= IFF_RUNNING;
1171 	bstp_initialization(sc);
1172 	return 0;
1173 }
1174 
1175 static int
1176 bridge_ioctl_stop(struct bridge_softc *sc, void *arg __unused)
1177 {
1178 	struct ifnet *ifp = sc->sc_ifp;
1179 
1180 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1181 		return 0;
1182 
1183 	callout_stop(&sc->sc_brcallout);
1184 
1185 	crit_enter();
1186 	lwkt_dropmsg(&sc->sc_brtimemsg.lmsg);
1187 	crit_exit();
1188 
1189 	bstp_stop(sc);
1190 
1191 	ifp->if_flags &= ~IFF_RUNNING;
1192 
1193 	ifnet_deserialize_all(ifp);
1194 
1195 	/* Let everyone know that we are stopped */
1196 	netmsg_service_sync();
1197 
1198 	/*
1199 	 * Sync ifnetX msgports in the order we forward rtnode
1200 	 * installation message.  This is used to make sure that
1201 	 * all rtnode installation messages sent by bridge_rtupdate()
1202 	 * during above netmsg_service_sync() are flushed.
1203 	 */
1204 	bridge_rtmsg_sync(sc);
1205 	bridge_rtflush(sc, IFBF_FLUSHDYN | IFBF_FLUSHSYNC);
1206 
1207 	ifnet_serialize_all(ifp);
1208 	return 0;
1209 }
1210 
1211 static int
1212 bridge_ioctl_add(struct bridge_softc *sc, void *arg)
1213 {
1214 	struct ifbreq *req = arg;
1215 	struct bridge_iflist *bif;
1216 	struct bridge_ifinfo *bif_info;
1217 	struct ifnet *ifs, *bifp;
1218 	int error = 0;
1219 
1220 	bifp = sc->sc_ifp;
1221 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1222 
1223 	ifs = ifunit_netisr(req->ifbr_ifsname);
1224 	if (ifs == NULL)
1225 		return (ENOENT);
1226 
1227 	/* If it's in the span list, it can't be a member. */
1228 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1229 		if (ifs == bif->bif_ifp)
1230 			return (EBUSY);
1231 
1232 	/* Allow the first Ethernet member to define the MTU */
1233 	if (ifs->if_type != IFT_GIF) {
1234 		if (TAILQ_EMPTY(&sc->sc_iflists[mycpuid])) {
1235 			bifp->if_mtu = ifs->if_mtu;
1236 		} else if (bifp->if_mtu != ifs->if_mtu) {
1237 			if_printf(bifp, "invalid MTU for %s\n", ifs->if_xname);
1238 			return (EINVAL);
1239 		}
1240 	}
1241 
1242 	if (ifs->if_bridge == sc)
1243 		return (EEXIST);
1244 
1245 	if (ifs->if_bridge != NULL)
1246 		return (EBUSY);
1247 
1248 	bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1249 	bif_info->bifi_priority = BSTP_DEFAULT_PORT_PRIORITY;
1250 	bif_info->bifi_path_cost = BSTP_DEFAULT_PATH_COST;
1251 	bif_info->bifi_ifp = ifs;
1252 	bif_info->bifi_bond_weight = 1;
1253 
1254 	/*
1255 	 * Release bridge interface's serializer:
1256 	 * - To avoid possible dead lock.
1257 	 * - Various sync operation will block the current thread.
1258 	 */
1259 	ifnet_deserialize_all(bifp);
1260 
1261 	switch (ifs->if_type) {
1262 	case IFT_ETHER:
1263 	case IFT_L2VLAN:
1264 		/*
1265 		 * Place the interface into promiscuous mode.
1266 		 */
1267 		error = ifpromisc(ifs, 1);
1268 		if (error) {
1269 			ifnet_serialize_all(bifp);
1270 			goto out;
1271 		}
1272 		bridge_mutecaps(bif_info, ifs, 1);
1273 		break;
1274 
1275 	case IFT_GIF: /* :^) */
1276 		break;
1277 
1278 	default:
1279 		error = EINVAL;
1280 		ifnet_serialize_all(bifp);
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * Add bifs to percpu linked lists
1286 	 */
1287 	bridge_add_bif(sc, bif_info, ifs);
1288 
1289 	ifnet_serialize_all(bifp);
1290 
1291 	if (bifp->if_flags & IFF_RUNNING)
1292 		bstp_initialization(sc);
1293 	else
1294 		bstp_stop(sc);
1295 
1296 	/*
1297 	 * Everything has been setup, so let the member interface
1298 	 * deliver packets to this bridge on its input/output path.
1299 	 */
1300 	ifs->if_bridge = sc;
1301 out:
1302 	if (error) {
1303 		if (bif_info != NULL)
1304 			kfree(bif_info, M_DEVBUF);
1305 	}
1306 	return (error);
1307 }
1308 
1309 static int
1310 bridge_ioctl_del(struct bridge_softc *sc, void *arg)
1311 {
1312 	struct ifbreq *req = arg;
1313 	struct bridge_iflist *bif;
1314 
1315 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1316 	if (bif == NULL)
1317 		return (ENOENT);
1318 
1319 	bridge_delete_member(sc, bif, 0);
1320 
1321 	return (0);
1322 }
1323 
1324 static int
1325 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
1326 {
1327 	struct ifbreq *req = arg;
1328 	struct bridge_iflist *bif;
1329 
1330 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1331 	if (bif == NULL)
1332 		return (ENOENT);
1333 	bridge_ioctl_fillflags(sc, bif, req);
1334 	return (0);
1335 }
1336 
1337 static void
1338 bridge_ioctl_fillflags(struct bridge_softc *sc, struct bridge_iflist *bif,
1339 		       struct ifbreq *req)
1340 {
1341 	req->ifbr_ifsflags = bif->bif_flags;
1342 	req->ifbr_state = bif->bif_state;
1343 	req->ifbr_priority = bif->bif_priority;
1344 	req->ifbr_path_cost = bif->bif_path_cost;
1345 	req->ifbr_bond_weight = bif->bif_bond_weight;
1346 	req->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1347 	if (bif->bif_flags & IFBIF_STP) {
1348 		req->ifbr_peer_root = bif->bif_peer_root;
1349 		req->ifbr_peer_bridge = bif->bif_peer_bridge;
1350 		req->ifbr_peer_cost = bif->bif_peer_cost;
1351 		req->ifbr_peer_port = bif->bif_peer_port;
1352 		if (bstp_supersedes_port_info(sc, bif)) {
1353 			req->ifbr_designated_root = bif->bif_peer_root;
1354 			req->ifbr_designated_bridge = bif->bif_peer_bridge;
1355 			req->ifbr_designated_cost = bif->bif_peer_cost;
1356 			req->ifbr_designated_port = bif->bif_peer_port;
1357 		} else {
1358 			req->ifbr_designated_root = sc->sc_bridge_id;
1359 			req->ifbr_designated_bridge = sc->sc_bridge_id;
1360 			req->ifbr_designated_cost = bif->bif_path_cost +
1361 						    bif->bif_peer_cost;
1362 			req->ifbr_designated_port = bif->bif_port_id;
1363 		}
1364 	} else {
1365 		req->ifbr_peer_root = 0;
1366 		req->ifbr_peer_bridge = 0;
1367 		req->ifbr_peer_cost = 0;
1368 		req->ifbr_peer_port = 0;
1369 		req->ifbr_designated_root = 0;
1370 		req->ifbr_designated_bridge = 0;
1371 		req->ifbr_designated_cost = 0;
1372 		req->ifbr_designated_port = 0;
1373 	}
1374 }
1375 
1376 static int
1377 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
1378 {
1379 	struct ifbreq *req = arg;
1380 	struct bridge_iflist *bif;
1381 	struct ifnet *bifp = sc->sc_ifp;
1382 
1383 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1384 	if (bif == NULL)
1385 		return (ENOENT);
1386 
1387 	if (req->ifbr_ifsflags & IFBIF_SPAN) {
1388 		/* SPAN is readonly */
1389 		return (EINVAL);
1390 	}
1391 
1392 	if (req->ifbr_ifsflags & IFBIF_STP) {
1393 		switch (bif->bif_ifp->if_type) {
1394 		case IFT_ETHER:
1395 			/* These can do spanning tree. */
1396 			break;
1397 
1398 		default:
1399 			/* Nothing else can. */
1400 			return (EINVAL);
1401 		}
1402 	}
1403 
1404 	bif->bif_flags = (bif->bif_flags & IFBIF_KEEPMASK) |
1405 			 (req->ifbr_ifsflags & ~IFBIF_KEEPMASK);
1406 	if (bifp->if_flags & IFF_RUNNING)
1407 		bstp_initialization(sc);
1408 
1409 	return (0);
1410 }
1411 
1412 static int
1413 bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
1414 {
1415 	struct ifbrparam *param = arg;
1416 	struct ifnet *ifp = sc->sc_ifp;
1417 
1418 	sc->sc_brtmax = param->ifbrp_csize;
1419 
1420 	ifnet_deserialize_all(ifp);
1421 	bridge_rttrim(sc);
1422 	ifnet_serialize_all(ifp);
1423 
1424 	return (0);
1425 }
1426 
1427 static int
1428 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
1429 {
1430 	struct ifbrparam *param = arg;
1431 
1432 	param->ifbrp_csize = sc->sc_brtmax;
1433 
1434 	return (0);
1435 }
1436 
1437 static int
1438 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg)
1439 {
1440 	struct bridge_control_arg *bc_arg = arg;
1441 	struct ifbifconf *bifc = arg;
1442 	struct bridge_iflist *bif;
1443 	struct ifbreq *breq;
1444 	int count, len;
1445 
1446 	count = 0;
1447 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next)
1448 		count++;
1449 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1450 		count++;
1451 
1452 	if (bifc->ifbic_len == 0) {
1453 		bifc->ifbic_len = sizeof(*breq) * count;
1454 		return 0;
1455 	} else if (count == 0 || bifc->ifbic_len < sizeof(*breq)) {
1456 		bifc->ifbic_len = 0;
1457 		return 0;
1458 	}
1459 
1460 	len = min(bifc->ifbic_len, sizeof(*breq) * count);
1461 	KKASSERT(len >= sizeof(*breq));
1462 
1463 	breq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1464 	if (breq == NULL) {
1465 		bifc->ifbic_len = 0;
1466 		return ENOMEM;
1467 	}
1468 	bc_arg->bca_kptr = breq;
1469 
1470 	count = 0;
1471 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1472 		if (len < sizeof(*breq))
1473 			break;
1474 
1475 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1476 			sizeof(breq->ifbr_ifsname));
1477 		bridge_ioctl_fillflags(sc, bif, breq);
1478 		breq++;
1479 		count++;
1480 		len -= sizeof(*breq);
1481 	}
1482 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
1483 		if (len < sizeof(*breq))
1484 			break;
1485 
1486 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1487 			sizeof(breq->ifbr_ifsname));
1488 		breq->ifbr_ifsflags = bif->bif_flags;
1489 		breq->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1490 		breq++;
1491 		count++;
1492 		len -= sizeof(*breq);
1493 	}
1494 
1495 	bifc->ifbic_len = sizeof(*breq) * count;
1496 	KKASSERT(bifc->ifbic_len > 0);
1497 
1498 	bc_arg->bca_len = bifc->ifbic_len;
1499 	bc_arg->bca_uptr = bifc->ifbic_req;
1500 	return 0;
1501 }
1502 
1503 static int
1504 bridge_ioctl_rts(struct bridge_softc *sc, void *arg)
1505 {
1506 	struct bridge_control_arg *bc_arg = arg;
1507 	struct ifbaconf *bac = arg;
1508 	struct bridge_rtnode *brt;
1509 	struct ifbareq *bareq;
1510 	int count, len;
1511 
1512 	count = 0;
1513 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list)
1514 		count++;
1515 
1516 	if (bac->ifbac_len == 0) {
1517 		bac->ifbac_len = sizeof(*bareq) * count;
1518 		return 0;
1519 	} else if (count == 0 || bac->ifbac_len < sizeof(*bareq)) {
1520 		bac->ifbac_len = 0;
1521 		return 0;
1522 	}
1523 
1524 	len = min(bac->ifbac_len, sizeof(*bareq) * count);
1525 	KKASSERT(len >= sizeof(*bareq));
1526 
1527 	bareq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1528 	if (bareq == NULL) {
1529 		bac->ifbac_len = 0;
1530 		return ENOMEM;
1531 	}
1532 	bc_arg->bca_kptr = bareq;
1533 
1534 	count = 0;
1535 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
1536 		struct bridge_rtinfo *bri = brt->brt_info;
1537 		time_t expire;
1538 
1539 		if (len < sizeof(*bareq))
1540 			break;
1541 
1542 		strlcpy(bareq->ifba_ifsname, bri->bri_ifp->if_xname,
1543 			sizeof(bareq->ifba_ifsname));
1544 		memcpy(bareq->ifba_dst, brt->brt_addr, sizeof(brt->brt_addr));
1545 		expire = bri->bri_expire;
1546 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
1547 		    time_uptime < expire)
1548 			bareq->ifba_expire = expire - time_uptime;
1549 		else
1550 			bareq->ifba_expire = 0;
1551 		bareq->ifba_flags = bri->bri_flags;
1552 		bareq++;
1553 		count++;
1554 		len -= sizeof(*bareq);
1555 	}
1556 
1557 	bac->ifbac_len = sizeof(*bareq) * count;
1558 	KKASSERT(bac->ifbac_len > 0);
1559 
1560 	bc_arg->bca_len = bac->ifbac_len;
1561 	bc_arg->bca_uptr = bac->ifbac_req;
1562 	return 0;
1563 }
1564 
1565 static int
1566 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg)
1567 {
1568 	struct ifbareq *req = arg;
1569 	struct bridge_iflist *bif;
1570 	struct ifnet *ifp = sc->sc_ifp;
1571 	int error;
1572 
1573 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1574 
1575 	bif = bridge_lookup_member(sc, req->ifba_ifsname);
1576 	if (bif == NULL)
1577 		return (ENOENT);
1578 
1579 	ifnet_deserialize_all(ifp);
1580 	error = bridge_rtsaddr(sc, req->ifba_dst, bif->bif_ifp,
1581 			       req->ifba_flags);
1582 	ifnet_serialize_all(ifp);
1583 	return (error);
1584 }
1585 
1586 static int
1587 bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
1588 {
1589 	struct ifbrparam *param = arg;
1590 
1591 	sc->sc_brttimeout = param->ifbrp_ctime;
1592 
1593 	return (0);
1594 }
1595 
1596 static int
1597 bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
1598 {
1599 	struct ifbrparam *param = arg;
1600 
1601 	param->ifbrp_ctime = sc->sc_brttimeout;
1602 
1603 	return (0);
1604 }
1605 
1606 static int
1607 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg)
1608 {
1609 	struct ifbareq *req = arg;
1610 	struct ifnet *ifp = sc->sc_ifp;
1611 	int error;
1612 
1613 	ifnet_deserialize_all(ifp);
1614 	error = bridge_rtdaddr(sc, req->ifba_dst);
1615 	ifnet_serialize_all(ifp);
1616 	return error;
1617 }
1618 
1619 static int
1620 bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
1621 {
1622 	struct ifbreq *req = arg;
1623 	struct ifnet *ifp = sc->sc_ifp;
1624 
1625 	ifnet_deserialize_all(ifp);
1626 	bridge_rtflush(sc, req->ifbr_ifsflags | IFBF_FLUSHSYNC);
1627 	ifnet_serialize_all(ifp);
1628 
1629 	return (0);
1630 }
1631 
1632 static int
1633 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
1634 {
1635 	struct ifbrparam *param = arg;
1636 
1637 	param->ifbrp_prio = sc->sc_bridge_priority;
1638 
1639 	return (0);
1640 }
1641 
1642 static int
1643 bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
1644 {
1645 	struct ifbrparam *param = arg;
1646 
1647 	sc->sc_bridge_priority = param->ifbrp_prio;
1648 
1649 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1650 		bstp_initialization(sc);
1651 
1652 	return (0);
1653 }
1654 
1655 static int
1656 bridge_ioctl_reinit(struct bridge_softc *sc, void *arg __unused)
1657 {
1658 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1659 		bstp_initialization(sc);
1660 	return (0);
1661 }
1662 
1663 static int
1664 bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
1665 {
1666 	struct ifbrparam *param = arg;
1667 
1668 	param->ifbrp_hellotime = sc->sc_bridge_hello_time >> 8;
1669 
1670 	return (0);
1671 }
1672 
1673 static int
1674 bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
1675 {
1676 	struct ifbrparam *param = arg;
1677 
1678 	if (param->ifbrp_hellotime == 0)
1679 		return (EINVAL);
1680 	sc->sc_bridge_hello_time = param->ifbrp_hellotime << 8;
1681 
1682 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1683 		bstp_initialization(sc);
1684 
1685 	return (0);
1686 }
1687 
1688 static int
1689 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
1690 {
1691 	struct ifbrparam *param = arg;
1692 
1693 	param->ifbrp_fwddelay = sc->sc_bridge_forward_delay >> 8;
1694 
1695 	return (0);
1696 }
1697 
1698 static int
1699 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
1700 {
1701 	struct ifbrparam *param = arg;
1702 
1703 	if (param->ifbrp_fwddelay == 0)
1704 		return (EINVAL);
1705 	sc->sc_bridge_forward_delay = param->ifbrp_fwddelay << 8;
1706 
1707 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1708 		bstp_initialization(sc);
1709 
1710 	return (0);
1711 }
1712 
1713 static int
1714 bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
1715 {
1716 	struct ifbrparam *param = arg;
1717 
1718 	param->ifbrp_maxage = sc->sc_bridge_max_age >> 8;
1719 
1720 	return (0);
1721 }
1722 
1723 static int
1724 bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
1725 {
1726 	struct ifbrparam *param = arg;
1727 
1728 	if (param->ifbrp_maxage == 0)
1729 		return (EINVAL);
1730 	sc->sc_bridge_max_age = param->ifbrp_maxage << 8;
1731 
1732 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1733 		bstp_initialization(sc);
1734 
1735 	return (0);
1736 }
1737 
1738 static int
1739 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
1740 {
1741 	struct ifbreq *req = arg;
1742 	struct bridge_iflist *bif;
1743 
1744 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1745 	if (bif == NULL)
1746 		return (ENOENT);
1747 
1748 	bif->bif_priority = req->ifbr_priority;
1749 
1750 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1751 		bstp_initialization(sc);
1752 
1753 	return (0);
1754 }
1755 
1756 static int
1757 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
1758 {
1759 	struct ifbreq *req = arg;
1760 	struct bridge_iflist *bif;
1761 
1762 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1763 	if (bif == NULL)
1764 		return (ENOENT);
1765 
1766 	bif->bif_path_cost = req->ifbr_path_cost;
1767 
1768 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1769 		bstp_initialization(sc);
1770 
1771 	return (0);
1772 }
1773 
1774 static int
1775 bridge_ioctl_sifbondwght(struct bridge_softc *sc, void *arg)
1776 {
1777 	struct ifbreq *req = arg;
1778 	struct bridge_iflist *bif;
1779 
1780 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1781 	if (bif == NULL)
1782 		return (ENOENT);
1783 
1784 	bif->bif_bond_weight = req->ifbr_bond_weight;
1785 
1786 	/* no reinit needed */
1787 
1788 	return (0);
1789 }
1790 
1791 static int
1792 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
1793 {
1794 	struct ifbreq *req = arg;
1795 	struct bridge_iflist *bif;
1796 	struct ifnet *ifs;
1797 	struct bridge_ifinfo *bif_info;
1798 
1799 	ifs = ifunit_netisr(req->ifbr_ifsname);
1800 	if (ifs == NULL)
1801 		return (ENOENT);
1802 
1803 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1804 		if (ifs == bif->bif_ifp)
1805 			return (EBUSY);
1806 
1807 	if (ifs->if_bridge != NULL)
1808 		return (EBUSY);
1809 
1810 	switch (ifs->if_type) {
1811 	case IFT_ETHER:
1812 	case IFT_GIF:
1813 	case IFT_L2VLAN:
1814 		break;
1815 
1816 	default:
1817 		return (EINVAL);
1818 	}
1819 
1820 	/*
1821 	 * bif_info is needed for bif_flags
1822 	 */
1823         bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1824         bif_info->bifi_ifp = ifs;
1825 
1826 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
1827 	bif->bif_ifp = ifs;
1828 	bif->bif_info = bif_info;
1829 	bif->bif_flags = IFBIF_SPAN;
1830 	/* NOTE: span bif does not need bridge_ifinfo */
1831 
1832 	TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
1833 
1834 	sc->sc_span = 1;
1835 
1836 	return (0);
1837 }
1838 
1839 static int
1840 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
1841 {
1842 	struct ifbreq *req = arg;
1843 	struct bridge_iflist *bif;
1844 	struct ifnet *ifs;
1845 
1846 	ifs = ifunit_netisr(req->ifbr_ifsname);
1847 	if (ifs == NULL)
1848 		return (ENOENT);
1849 
1850 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1851 		if (ifs == bif->bif_ifp)
1852 			break;
1853 
1854 	if (bif == NULL)
1855 		return (ENOENT);
1856 
1857 	bridge_delete_span(sc, bif);
1858 
1859 	if (TAILQ_EMPTY(&sc->sc_spanlist))
1860 		sc->sc_span = 0;
1861 
1862 	return (0);
1863 }
1864 
1865 static void
1866 bridge_ifdetach_dispatch(netmsg_t msg)
1867 {
1868 	struct ifnet *ifp, *bifp;
1869 	struct bridge_softc *sc;
1870 	struct bridge_iflist *bif;
1871 
1872 	ifp = msg->lmsg.u.ms_resultp;
1873 	sc = ifp->if_bridge;
1874 
1875 	/* Check if the interface is a bridge member */
1876 	if (sc != NULL) {
1877 		bifp = sc->sc_ifp;
1878 
1879 		ifnet_serialize_all(bifp);
1880 
1881 		bif = bridge_lookup_member_if(sc, ifp);
1882 		if (bif != NULL) {
1883 			bridge_delete_member(sc, bif, 1);
1884 		} else {
1885 			/* XXX Why bif will be NULL? */
1886 		}
1887 
1888 		ifnet_deserialize_all(bifp);
1889 		goto reply;
1890 	}
1891 
1892 	crit_enter();	/* XXX MP */
1893 
1894 	/* Check if the interface is a span port */
1895 	LIST_FOREACH(sc, &bridge_list, sc_list) {
1896 		bifp = sc->sc_ifp;
1897 
1898 		ifnet_serialize_all(bifp);
1899 
1900 		TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1901 			if (ifp == bif->bif_ifp) {
1902 				bridge_delete_span(sc, bif);
1903 				break;
1904 			}
1905 
1906 		ifnet_deserialize_all(bifp);
1907 	}
1908 
1909 	crit_exit();
1910 
1911 reply:
1912 	lwkt_replymsg(&msg->lmsg, 0);
1913 }
1914 
1915 /*
1916  * bridge_ifdetach:
1917  *
1918  *	Detach an interface from a bridge.  Called when a member
1919  *	interface is detaching.
1920  */
1921 static void
1922 bridge_ifdetach(void *arg __unused, struct ifnet *ifp)
1923 {
1924 	struct netmsg_base msg;
1925 
1926 	netmsg_init(&msg, NULL, &curthread->td_msgport,
1927 		    0, bridge_ifdetach_dispatch);
1928 	msg.lmsg.u.ms_resultp = ifp;
1929 
1930 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
1931 }
1932 
1933 /*
1934  * bridge_init:
1935  *
1936  *	Initialize a bridge interface.
1937  */
1938 static void
1939 bridge_init(void *xsc)
1940 {
1941 	bridge_control(xsc, SIOCSIFFLAGS, bridge_ioctl_init, NULL);
1942 }
1943 
1944 /*
1945  * bridge_stop:
1946  *
1947  *	Stop the bridge interface.
1948  */
1949 static void
1950 bridge_stop(struct ifnet *ifp)
1951 {
1952 	bridge_control(ifp->if_softc, SIOCSIFFLAGS, bridge_ioctl_stop, NULL);
1953 }
1954 
1955 /*
1956  * Returns TRUE if the packet is being sent 'from us'... from our bridge
1957  * interface or from any member of our bridge interface.  This is used
1958  * later on to force the MAC to be the MAC of our bridge interface.
1959  */
1960 static int
1961 bridge_from_us(struct bridge_softc *sc, struct ether_header *eh)
1962 {
1963 	struct bridge_iflist *bif;
1964 
1965 	if (memcmp(eh->ether_shost, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN) == 0)
1966 		return (1);
1967 
1968 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1969 		if (memcmp(eh->ether_shost, IF_LLADDR(bif->bif_ifp),
1970 			   ETHER_ADDR_LEN) == 0)
1971 	        {
1972 			return (1);
1973 		}
1974 	}
1975 	return (0);
1976 }
1977 
1978 /*
1979  * bridge_enqueue:
1980  *
1981  *	Enqueue a packet on a bridge member interface.
1982  *
1983  */
1984 void
1985 bridge_enqueue(struct ifnet *dst_ifp, struct mbuf *m)
1986 {
1987 	struct netmsg_packet *nmp;
1988 
1989 	mbuftrackid(m, 64);
1990 
1991 	nmp = &m->m_hdr.mh_netmsg;
1992 	netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
1993 		    0, bridge_enqueue_handler);
1994 	nmp->nm_packet = m;
1995 	nmp->base.lmsg.u.ms_resultp = dst_ifp;
1996 
1997 	lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), &nmp->base.lmsg);
1998 }
1999 
2000 /*
2001  * After looking up dst_if in our forwarding table we still have to
2002  * deal with channel bonding.  Find the best interface in the bonding set.
2003  */
2004 static struct ifnet *
2005 bridge_select_unicast(struct bridge_softc *sc, struct ifnet *dst_if,
2006 		      int from_blocking, struct mbuf *m)
2007 {
2008 	struct bridge_iflist *bif, *alt_bif, *nbif;
2009 	int alt_priority, alt_count;
2010 	uint8_t alt_state;
2011 
2012 	/*
2013 	 * Unicast, kinda replicates the output side of bridge_output().
2014 	 *
2015 	 * Even though this is a uni-cast packet we may have to select
2016 	 * an interface from a bonding set.
2017 	 */
2018 	bif = bridge_lookup_member_if(sc, dst_if);
2019 	if (bif == NULL) {
2020 		/* Not a member of the bridge (anymore?) */
2021 		return NULL;
2022 	}
2023 
2024 	/*
2025 	 * Send directly if the interface is not part of the spanning
2026 	 * tree.
2027 	 */
2028 	if ((bif->bif_flags & IFBIF_STP) == 0) {
2029 		goto sendunicast;
2030 	}
2031 
2032 	/*
2033 	 * If STP is enabled on the target we are an equal opportunity
2034 	 * employer and do not necessarily output to dst_if.  Instead
2035 	 * scan available links with the same MAC as the current dst_if
2036 	 * and choose the best one.
2037 	 *
2038 	 * We also need to do this because arp or other cached entries might
2039 	 * be tagged to the wrong port after a fail-over.  We don't want to
2040 	 * route packets to dead ports when perfectly good ones exist.
2041 	 *
2042 	 * If LINK2 is set on the bridge, any interfaces in the same bonding
2043 	 * set as dst_if with the same priority will be round-robined.  If
2044 	 * different priorities, only the highest priority is chosen.  In
2045 	 * this case links in a STP FORWARDING or BONDED state are allowed
2046 	 * for unicast packets.
2047 	 */
2048 	alt_state = BSTP_IFSTATE_LEARNING;
2049 	alt_bif = NULL;
2050 	alt_priority = 0;
2051 	alt_count = 0;
2052 
2053 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
2054 		/*
2055 		 * Ignore interfaces not in the same bonding set as dst_if
2056 		 * or which are not running.
2057 		 */
2058 		if (memcmp(IF_LLADDR(bif->bif_ifp), IF_LLADDR(dst_if),
2059 			   ETHER_ADDR_LEN) != 0)
2060 		{
2061 			continue;
2062 		}
2063 
2064 		if ((bif->bif_ifp->if_flags & IFF_RUNNING) == 0)
2065 			continue;
2066 
2067 		/*
2068 		 * NOTE: We allow tranmissions through a BLOCKING
2069 		 *	 or LEARNING interface only as a last resort.
2070 		 *	 We DISALLOW both cases if the receiving
2071 		 *
2072 		 * NOTE: If we send a packet through a learning
2073 		 *	 interface the receiving end (if also in
2074 		 *	 LEARNING) will throw it away, so this is
2075 		 *	 the ultimate last resort.
2076 		 */
2077 		switch(bif->bif_state) {
2078 		case BSTP_IFSTATE_LEARNING:
2079 			if (from_blocking == 0 &&
2080 			    alt_state == BSTP_IFSTATE_LEARNING &&
2081 			    bif->bif_priority > alt_priority)
2082 			{
2083 				alt_priority = bif->bif_priority;
2084 				alt_bif = bif;
2085 			}
2086 			break;
2087 		case BSTP_IFSTATE_BLOCKING:
2088 			if (from_blocking == 0 &&
2089 			    (alt_state == BSTP_IFSTATE_LEARNING ||
2090 			     (alt_state == BSTP_IFSTATE_BLOCKING &&
2091 			      bif->bif_priority > alt_priority)))
2092 			{
2093 				alt_state = BSTP_IFSTATE_BLOCKING;
2094 				alt_priority = bif->bif_priority;
2095 				alt_bif = bif;
2096 			}
2097 			break;
2098 		case BSTP_IFSTATE_L1BLOCKING:
2099 		case BSTP_IFSTATE_LISTENING:
2100 		case BSTP_IFSTATE_DISABLED:
2101 			break;
2102 		default:
2103 			/*
2104 			 * Select the best interface in the FORWARDING
2105 			 * set (or BONDING, but there shouldn't be any
2106 			 * when LINK2 is not set).
2107 			 */
2108 			if (alt_state != BSTP_IFSTATE_BONDED ||
2109 			    bif->bif_priority > alt_priority)
2110 			{
2111 				alt_state = BSTP_IFSTATE_BONDED;
2112 				alt_priority = bif->bif_priority;
2113 				alt_bif = bif;
2114 				alt_count = 0;
2115 			} else if (alt_state == BSTP_IFSTATE_BONDED &&
2116 				   bif->bif_priority == alt_priority)
2117 			{
2118 				/*
2119 				 * Round-robin
2120 				 */
2121 				++alt_count;
2122 			}
2123 			break;
2124 		}
2125 	}
2126 
2127 	/*
2128 	 * If bonding is enabled (LINK2) and there were multiple interfaces
2129 	 * at the selected priority level, count packets and switch the
2130 	 * output interface.
2131 	 *
2132 	 * XXX need to use the toepliz hash or something like that instead
2133 	 * of a dumb packet round-robin.
2134 	 */
2135 	if (alt_count && (sc->sc_ifp->if_flags & IFF_LINK2)) {
2136 		if (++alt_bif->bif_bond_count >= alt_bif->bif_bond_weight) {
2137 			alt_bif->bif_bond_count = 0;
2138 			TAILQ_REMOVE(&sc->sc_iflists[mycpuid],
2139 				     alt_bif, bif_next);
2140 			TAILQ_INSERT_TAIL(
2141 				     &sc->sc_iflists[mycpuid],
2142 				     alt_bif, bif_next);
2143 		}
2144 	}
2145 
2146 	/*
2147 	 * After loop, alt_if is the interface we selected.  alt_if can
2148 	 * be NULL.
2149 	 */
2150 	if (alt_bif)
2151 		dst_if = alt_bif->bif_ifp;
2152 
2153 sendunicast:
2154 	/*
2155 	 * At this point, we're dealing with a unicast frame
2156 	 * going to a different interface.
2157 	 */
2158 	if ((dst_if->if_flags & IFF_RUNNING) == 0)
2159 		dst_if = NULL;
2160 	return (dst_if);
2161 }
2162 
2163 
2164 /*
2165  * bridge_output
2166  *
2167  * Issue locally originated (not forwarded) packet to the bridge.  ifp
2168  * is the nominal interface the system route table is trying to send
2169  * it to, but we get here because that interface is part of the bridge
2170  * so really the packet is being sent to the whole bridge.
2171  *
2172  * The mbuf has the Ethernet header already attached.  We must
2173  * enqueue or free the mbuf before returning.
2174  */
2175 static int
2176 bridge_output(struct ifnet *ifp, struct mbuf *m)
2177 {
2178 	struct bridge_softc *sc = ifp->if_bridge;
2179 	struct bridge_iflist *bif, *nbif;
2180 	struct ether_header *eh;
2181 	struct ifnet *dst_if, *alt_if, *bifp;
2182 	int from_us;
2183 	int alt_priority;
2184 	uint8_t alt_state;
2185 	struct mbuf *mc;
2186 	int used;
2187 	int found;
2188 
2189 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2190 	ASSERT_NETISR_NCPUS(mycpuid);
2191 	mbuftrackid(m, 65);
2192 
2193 	/*
2194 	 * Make sure that we are still a member of a bridge interface.
2195 	 */
2196 	if (sc == NULL) {
2197 		m_freem(m);
2198 		return (0);
2199 	}
2200 	bifp = sc->sc_ifp;
2201 
2202 	/*
2203 	 * Acquire header
2204 	 */
2205 	if (m->m_len < ETHER_HDR_LEN) {
2206 		m = m_pullup(m, ETHER_HDR_LEN);
2207 		if (m == NULL) {
2208 			IFNET_STAT_INC(bifp, oerrors, 1);
2209 			return (0);
2210 		}
2211 	}
2212 	eh = mtod(m, struct ether_header *);
2213 	from_us = bridge_from_us(sc, eh);
2214 
2215 	/*
2216 	 * If bridge is down, but the original output interface is up,
2217 	 * go ahead and send out that interface.  Otherwise, the packet
2218 	 * is dropped below.
2219 	 */
2220 	if ((bifp->if_flags & IFF_RUNNING) == 0) {
2221 		dst_if = ifp;
2222 		goto sendunicast;
2223 	}
2224 
2225 	/*
2226 	 * If the packet is a broadcast or multicast, or we don't know a better
2227 	 * way to get there, send to all interfaces except the originating one.
2228 	 */
2229 	if (ETHER_IS_MULTICAST(eh->ether_dhost))
2230 		dst_if = NULL;
2231 	else
2232 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2233 
2234 	if (dst_if)
2235 		goto sendunicast;
2236 
2237 	used = 0;
2238 	found = 0;
2239 
2240 	if (sc->sc_span)
2241 		bridge_span(sc, m);
2242 
2243 	alt_if = NULL;
2244 	alt_priority = 0;
2245 	alt_state = BSTP_IFSTATE_LEARNING;
2246 
2247 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
2248 		dst_if = bif->bif_ifp;
2249 
2250 		/*
2251 		 * Ignore interfaces marked down
2252 		 *
2253 		 * NOTE: Since the packet is originated on the machine, the
2254 		 *	 original interface the system tried to send it to
2255 		 *	 (ifp), which is part of the bridge, is not treated
2256 		 *	 specially verses other interfaces on the bridge.
2257 		 */
2258 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2259 			continue;
2260 
2261 		/*
2262 		 * Issue to all FORWARDING STP-enabled interfaces and
2263 		 * to all non-STP interfaces.  Keep track of a possible
2264 		 * backup to a BONDED, BLOCKING, or LEARNING interfaces
2265 		 * (in that priority) in case no other interfaces are found.
2266 		 */
2267 		if (bif->bif_flags & IFBIF_STP) {
2268 			switch (bif->bif_state) {
2269 			case BSTP_IFSTATE_BONDED:
2270 				if (alt_state != BSTP_IFSTATE_BONDED ||
2271 				    bif->bif_priority > alt_priority)
2272 				{
2273 					alt_state = BSTP_IFSTATE_BONDED;
2274 					alt_priority = bif->bif_priority;
2275 					alt_if = bif->bif_ifp;
2276 				}
2277 				continue;
2278 			case BSTP_IFSTATE_BLOCKING:
2279 				if (alt_state == BSTP_IFSTATE_LEARNING ||
2280 				    (alt_state == BSTP_IFSTATE_BLOCKING &&
2281 				     bif->bif_priority > alt_priority))
2282 				{
2283 					alt_state = BSTP_IFSTATE_BLOCKING;
2284 					alt_priority = bif->bif_priority;
2285 					alt_if = bif->bif_ifp;
2286 				}
2287 				continue;
2288 			case BSTP_IFSTATE_LEARNING:
2289 				if (alt_state == BSTP_IFSTATE_LEARNING &&
2290 				    bif->bif_priority > alt_priority)
2291 				{
2292 					alt_priority = bif->bif_priority;
2293 					alt_if = bif->bif_ifp;
2294 				}
2295 				continue;
2296 			case BSTP_IFSTATE_L1BLOCKING:
2297 			case BSTP_IFSTATE_LISTENING:
2298 			case BSTP_IFSTATE_DISABLED:
2299 				/*
2300 				 * Ignore interfaces in these states
2301 				 */
2302 				continue;
2303 			default:
2304 				/* FORWARDING */
2305 				break;
2306 			}
2307 		}
2308 
2309 		/*
2310 		 * Copy the packet to dstif
2311 		 */
2312 		KKASSERT(used == 0);
2313 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
2314 			used = 1;
2315 			mc = m;
2316 		} else {
2317 			mc = m_copypacket(m, M_NOWAIT);
2318 			if (mc == NULL) {
2319 				IFNET_STAT_INC(bifp, oerrors, 1);
2320 				continue;
2321 			}
2322 		}
2323 
2324 		/*
2325 		 * If the packet is 'from' us override ether_shost.
2326 		 */
2327 		bridge_handoff(sc, dst_if, mc, from_us);
2328 		found = 1;
2329 
2330 		if (nbif != NULL && !nbif->bif_onlist) {
2331 			KKASSERT(bif->bif_onlist);
2332 			nbif = TAILQ_NEXT(bif, bif_next);
2333 		}
2334 	}
2335 
2336 	/*
2337 	 * If we couldn't find anything use the backup interface
2338 	 * if we have one.
2339 	 */
2340 	if (found == 0 && alt_if) {
2341 		KKASSERT(used == 0);
2342 		mc = m;
2343 		used = 1;
2344 		bridge_handoff(sc, alt_if, mc, from_us);
2345 	}
2346 
2347 	if (used == 0)
2348 		m_freem(m);
2349 	return (0);
2350 
2351 	/*
2352 	 * Unicast
2353 	 */
2354 sendunicast:
2355 	dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2356 
2357 	if (sc->sc_span)
2358 		bridge_span(sc, m);
2359 	if (dst_if == NULL)
2360 		m_freem(m);
2361 	else
2362 		bridge_handoff(sc, dst_if, m, from_us);
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Returns the bridge interface associated with an ifc.
2368  * Pass ifp->if_bridge (must not be NULL).  Used by the ARP
2369  * code to supply the bridge for the is-at info, making
2370  * the bridge responsible for matching local addresses.
2371  *
2372  * Without this the ARP code will supply bridge member interfaces
2373  * for the is-at which makes it difficult the bridge to fail-over
2374  * interfaces (among other things).
2375  */
2376 static struct ifnet *
2377 bridge_interface(void *if_bridge)
2378 {
2379 	struct bridge_softc *sc = if_bridge;
2380 	return (sc->sc_ifp);
2381 }
2382 
2383 /*
2384  * bridge_start:
2385  *
2386  *	Start output on a bridge.
2387  */
2388 static void
2389 bridge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2390 {
2391 	struct bridge_softc *sc = ifp->if_softc;
2392 
2393 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2394 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
2395 	ASSERT_NETISR_NCPUS(mycpuid);
2396 
2397 	ifsq_set_oactive(ifsq);
2398 	for (;;) {
2399 		struct ifnet *dst_if = NULL;
2400 		struct ether_header *eh;
2401 		struct mbuf *m;
2402 
2403 		m = ifsq_dequeue(ifsq);
2404 		if (m == NULL)
2405 			break;
2406 		mbuftrackid(m, 75);
2407 
2408 		if (m->m_len < sizeof(*eh)) {
2409 			m = m_pullup(m, sizeof(*eh));
2410 			if (m == NULL) {
2411 				IFNET_STAT_INC(ifp, oerrors, 1);
2412 				continue;
2413 			}
2414 		}
2415 		eh = mtod(m, struct ether_header *);
2416 
2417 		BPF_MTAP(ifp, m);
2418 		IFNET_STAT_INC(ifp, opackets, 1);
2419 
2420 		if ((m->m_flags & (M_BCAST|M_MCAST)) == 0)
2421 			dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2422 
2423 		/*
2424 		 * Multicast or broadcast
2425 		 */
2426 		if (dst_if == NULL) {
2427 			bridge_start_bcast(sc, m);
2428 			continue;
2429 		}
2430 
2431 		/*
2432 		 * Unicast
2433 		 */
2434 		dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2435 
2436 		if (dst_if == NULL)
2437 			m_freem(m);
2438 		else
2439 			bridge_enqueue(dst_if, m);
2440 	}
2441 	ifsq_clr_oactive(ifsq);
2442 }
2443 
2444 /*
2445  * bridge_forward:
2446  *
2447  *	Forward packets received on a bridge interface via the input
2448  *	path.
2449  *
2450  *	This implements the forwarding function of the bridge.
2451  */
2452 static void
2453 bridge_forward(struct bridge_softc *sc, struct mbuf *m)
2454 {
2455 	struct bridge_iflist *bif;
2456 	struct ifnet *src_if, *dst_if, *ifp;
2457 	struct ether_header *eh;
2458 	int from_blocking;
2459 
2460 	mbuftrackid(m, 66);
2461 	src_if = m->m_pkthdr.rcvif;
2462 	ifp = sc->sc_ifp;
2463 
2464 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2465 
2466 	/*
2467 	 * packet coming in on the bridge is also going out on the bridge,
2468 	 * but ether code won't adjust output stats for the bridge because
2469 	 * we are changing the interface to something else.
2470 	 */
2471 	IFNET_STAT_INC(ifp, opackets, 1);
2472 	IFNET_STAT_INC(ifp, obytes, m->m_pkthdr.len);
2473 
2474 	/*
2475 	 * Look up the bridge_iflist.
2476 	 */
2477 	bif = bridge_lookup_member_if(sc, src_if);
2478 	if (bif == NULL) {
2479 		/* Interface is not a bridge member (anymore?) */
2480 		m_freem(m);
2481 		return;
2482 	}
2483 
2484 	/*
2485 	 * In spanning tree mode receiving a packet from an interface
2486 	 * in a BLOCKING state is allowed, it could be a member of last
2487 	 * resort from the sender's point of view, but forwarding it is
2488 	 * not allowed.
2489 	 *
2490 	 * The sender's spanning tree will eventually sync up and the
2491 	 * sender will go into a BLOCKING state too (but this still may be
2492 	 * an interface of last resort during state changes).
2493 	 */
2494 	if (bif->bif_flags & IFBIF_STP) {
2495 		switch (bif->bif_state) {
2496 		case BSTP_IFSTATE_L1BLOCKING:
2497 		case BSTP_IFSTATE_LISTENING:
2498 		case BSTP_IFSTATE_DISABLED:
2499 			m_freem(m);
2500 			return;
2501 		default:
2502 			/* learning, blocking, bonded, forwarding */
2503 			break;
2504 		}
2505 		from_blocking = (bif->bif_state == BSTP_IFSTATE_BLOCKING);
2506 	} else {
2507 		from_blocking = 0;
2508 	}
2509 
2510 	eh = mtod(m, struct ether_header *);
2511 
2512 	/*
2513 	 * If the interface is learning, and the source
2514 	 * address is valid and not multicast, record
2515 	 * the address.
2516 	 */
2517 	if ((bif->bif_flags & IFBIF_LEARNING) != 0 &&
2518 	    from_blocking == 0 &&
2519 	    ETHER_IS_MULTICAST(eh->ether_shost) == 0 &&
2520 	    (eh->ether_shost[0] == 0 &&
2521 	     eh->ether_shost[1] == 0 &&
2522 	     eh->ether_shost[2] == 0 &&
2523 	     eh->ether_shost[3] == 0 &&
2524 	     eh->ether_shost[4] == 0 &&
2525 	     eh->ether_shost[5] == 0) == 0)
2526 	{
2527 		bridge_rtupdate(sc, eh->ether_shost, src_if, IFBAF_DYNAMIC);
2528 	}
2529 
2530 	/*
2531 	 * Don't forward from an interface in the listening or learning
2532 	 * state.  That is, in the learning state we learn information
2533 	 * but we throw away the packets.
2534 	 *
2535 	 * We let through packets on interfaces in the blocking state.
2536 	 * The blocking state is applicable to the send side, not the
2537 	 * receive side.
2538 	 */
2539 	if ((bif->bif_flags & IFBIF_STP) != 0 &&
2540 	    (bif->bif_state == BSTP_IFSTATE_LISTENING ||
2541 	     bif->bif_state == BSTP_IFSTATE_LEARNING)) {
2542 		m_freem(m);
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * At this point, the port either doesn't participate
2548 	 * in spanning tree or it is in the forwarding state.
2549 	 */
2550 
2551 	/*
2552 	 * If the packet is unicast, destined for someone on
2553 	 * "this" side of the bridge, drop it.
2554 	 *
2555 	 * src_if implies the entire bonding set so we have to compare MAC
2556 	 * addresses and not just if pointers.
2557 	 */
2558 	if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) {
2559 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2560 		if (dst_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
2561 				     ETHER_ADDR_LEN) == 0) {
2562 			m_freem(m);
2563 			return;
2564 		}
2565 	} else {
2566 		/* ...forward it to all interfaces. */
2567 		IFNET_STAT_INC(ifp, imcasts, 1);
2568 		dst_if = NULL;
2569 	}
2570 
2571 	/*
2572 	 * Brodcast if we do not have forwarding information.  However, if
2573 	 * we received the packet on a blocking interface we do not do this
2574 	 * (unless you really want to blow up your network).
2575 	 */
2576 	if (dst_if == NULL) {
2577 		if (from_blocking)
2578 			m_freem(m);
2579 		else
2580 			bridge_broadcast(sc, src_if, m);
2581 		return;
2582 	}
2583 
2584 	dst_if = bridge_select_unicast(sc, dst_if, from_blocking, m);
2585 
2586 	if (dst_if == NULL) {
2587 		m_freem(m);
2588 		return;
2589 	}
2590 
2591 	if (inet_pfil_hook.ph_hashooks > 0
2592 #ifdef INET6
2593 	    || inet6_pfil_hook.ph_hashooks > 0
2594 #endif
2595 	    ) {
2596 		if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0)
2597 			return;
2598 		if (m == NULL)
2599 			return;
2600 
2601 		if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0)
2602 			return;
2603 		if (m == NULL)
2604 			return;
2605 	}
2606 	bridge_handoff(sc, dst_if, m, 0);
2607 }
2608 
2609 /*
2610  * bridge_input:
2611  *
2612  *	Receive input from a member interface.  Queue the packet for
2613  *	bridging if it is not for us.
2614  */
2615 static struct mbuf *
2616 bridge_input(struct ifnet *ifp, struct mbuf *m)
2617 {
2618 	struct bridge_softc *sc = ifp->if_bridge;
2619 	struct bridge_iflist *bif;
2620 	struct ifnet *bifp, *new_ifp;
2621 	struct ether_header *eh;
2622 	struct mbuf *mc, *mc2;
2623 
2624 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2625 	ASSERT_NETISR_NCPUS(mycpuid);
2626 	mbuftrackid(m, 67);
2627 
2628 	/*
2629 	 * Make sure that we are still a member of a bridge interface.
2630 	 */
2631 	if (sc == NULL)
2632 		return m;
2633 
2634 	new_ifp = NULL;
2635 	bifp = sc->sc_ifp;
2636 
2637 	if ((bifp->if_flags & IFF_RUNNING) == 0)
2638 		goto out;
2639 
2640 	/*
2641 	 * Implement support for bridge monitoring.  If this flag has been
2642 	 * set on this interface, discard the packet once we push it through
2643 	 * the bpf(4) machinery, but before we do, increment various counters
2644 	 * associated with this bridge.
2645 	 */
2646 	if (bifp->if_flags & IFF_MONITOR) {
2647 		/*
2648 		 * Change input interface to this bridge
2649 		 *
2650 		 * Update bridge's ifnet statistics
2651 		 */
2652 		m->m_pkthdr.rcvif = bifp;
2653 
2654 		BPF_MTAP(bifp, m);
2655 		IFNET_STAT_INC(bifp, ipackets, 1);
2656 		IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2657 		if (m->m_flags & (M_MCAST | M_BCAST))
2658 			IFNET_STAT_INC(bifp, imcasts, 1);
2659 
2660 		m_freem(m);
2661 		m = NULL;
2662 		goto out;
2663 	}
2664 
2665 	/*
2666 	 * Handle the ether_header
2667 	 *
2668 	 * In all cases if the packet is destined for us via our MAC
2669 	 * we must clear BRIDGE_MBUF_TAGGED to ensure that we don't
2670 	 * repeat the source MAC out the same interface.
2671 	 *
2672 	 * This first test against our bridge MAC is the fast-path.
2673 	 *
2674 	 * NOTE!  The bridge interface can serve as an endpoint for
2675 	 *	  communication but normally there are no IPs associated
2676 	 *	  with it so you cannot route through it.  Instead what
2677 	 *	  you do is point your default route *THROUGH* the bridge
2678 	 *	  to the actual default router for one of the bridged spaces.
2679 	 *
2680 	 *	  Another possibility is to put all your IP specifications
2681 	 *	  on the bridge instead of on the individual interfaces.  If
2682 	 *	  you do this it should be possible to use the bridge as an
2683 	 *	  end point and route (rather than switch) through it using
2684 	 *	  the default route or ipfw forwarding rules.
2685 	 */
2686 
2687 	/*
2688 	 * Acquire header
2689 	 */
2690 	if (m->m_len < ETHER_HDR_LEN) {
2691 		m = m_pullup(m, ETHER_HDR_LEN);
2692 		if (m == NULL)
2693 			goto out;
2694 	}
2695 	eh = mtod(m, struct ether_header *);
2696 	m->m_pkthdr.fw_flags |= BRIDGE_MBUF_TAGGED;
2697 	bcopy(eh->ether_shost, m->m_pkthdr.ether_br_shost, ETHER_ADDR_LEN);
2698 
2699 	if ((bridge_debug & 1) &&
2700 	    (ntohs(eh->ether_type) == ETHERTYPE_ARP ||
2701 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP)) {
2702 		kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
2703 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x "
2704 			"lla %02x:%02x:%02x:%02x:%02x:%02x\n",
2705 			eh->ether_dhost[0],
2706 			eh->ether_dhost[1],
2707 			eh->ether_dhost[2],
2708 			eh->ether_dhost[3],
2709 			eh->ether_dhost[4],
2710 			eh->ether_dhost[5],
2711 			eh->ether_shost[0],
2712 			eh->ether_shost[1],
2713 			eh->ether_shost[2],
2714 			eh->ether_shost[3],
2715 			eh->ether_shost[4],
2716 			eh->ether_shost[5],
2717 			eh->ether_type,
2718 			((u_char *)IF_LLADDR(bifp))[0],
2719 			((u_char *)IF_LLADDR(bifp))[1],
2720 			((u_char *)IF_LLADDR(bifp))[2],
2721 			((u_char *)IF_LLADDR(bifp))[3],
2722 			((u_char *)IF_LLADDR(bifp))[4],
2723 			((u_char *)IF_LLADDR(bifp))[5]
2724 		);
2725 	}
2726 
2727 	/*
2728 	 * If the packet is for us, set the packets source as the
2729 	 * bridge, and return the packet back to ifnet.if_input for
2730 	 * local processing.
2731 	 */
2732 	if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) {
2733 		/*
2734 		 * We must still record the source interface in our
2735 		 * addr cache, otherwise our bridge won't know where
2736 		 * to send responses and will broadcast them.
2737 		 */
2738 		bif = bridge_lookup_member_if(sc, ifp);
2739 		if ((bif->bif_flags & IFBIF_LEARNING) &&
2740 		    ((bif->bif_flags & IFBIF_STP) == 0 ||
2741 		     bif->bif_state != BSTP_IFSTATE_BLOCKING))
2742 		{
2743 			bridge_rtupdate(sc, eh->ether_shost,
2744 					ifp, IFBAF_DYNAMIC);
2745 		}
2746 
2747 		/*
2748 		 * Perform pfil hooks.
2749 		 */
2750 		m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2751 		KASSERT(bifp->if_bridge == NULL,
2752 			("loop created in bridge_input"));
2753 		if (pfil_member != 0) {
2754 			if (inet_pfil_hook.ph_hashooks > 0
2755 #ifdef INET6
2756 			    || inet6_pfil_hook.ph_hashooks > 0
2757 #endif
2758 			) {
2759 				if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0)
2760 					goto out;
2761 				if (m == NULL)
2762 					goto out;
2763 			}
2764 		}
2765 
2766 		/*
2767 		 * Set new_ifp and skip to the end.  This will trigger code
2768 		 * to reinput the packet and run it into our stack.
2769 		 */
2770 		new_ifp = bifp;
2771 		goto out;
2772 	}
2773 
2774 	/*
2775 	 * Tap all packets arriving on the bridge, no matter if
2776 	 * they are local destinations or not.  In is in.
2777 	 *
2778 	 * Update bridge's ifnet statistics
2779 	 */
2780 	BPF_MTAP(bifp, m);
2781 	IFNET_STAT_INC(bifp, ipackets, 1);
2782 	IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2783 	if (m->m_flags & (M_MCAST | M_BCAST))
2784 		IFNET_STAT_INC(bifp, imcasts, 1);
2785 
2786 	bif = bridge_lookup_member_if(sc, ifp);
2787 	if (bif == NULL)
2788 		goto out;
2789 
2790 	if (sc->sc_span)
2791 		bridge_span(sc, m);
2792 
2793 	if (m->m_flags & (M_BCAST | M_MCAST)) {
2794 		/*
2795 		 * Tap off 802.1D packets; they do not get forwarded.
2796 		 */
2797 		if (memcmp(eh->ether_dhost, bstp_etheraddr,
2798 			    ETHER_ADDR_LEN) == 0) {
2799 			ifnet_serialize_all(bifp);
2800 			bstp_input(sc, bif, m);
2801 			ifnet_deserialize_all(bifp);
2802 
2803 			/* m is freed by bstp_input */
2804 			m = NULL;
2805 			goto out;
2806 		}
2807 
2808 		/*
2809 		 * Other than 802.11d packets, ignore packets if the
2810 		 * interface is not in a good state.
2811 		 *
2812 		 * NOTE: Broadcast/mcast packets received on a blocking or
2813 		 *	 learning interface are allowed for local processing.
2814 		 *
2815 		 *	 The sending side of a blocked port will stop
2816 		 *	 transmitting when a better alternative is found.
2817 		 *	 However, later on we will disallow the forwarding
2818 		 *	 of bcast/mcsat packets over a blocking interface.
2819 		 */
2820 		if (bif->bif_flags & IFBIF_STP) {
2821 			switch (bif->bif_state) {
2822 			case BSTP_IFSTATE_L1BLOCKING:
2823 			case BSTP_IFSTATE_LISTENING:
2824 			case BSTP_IFSTATE_DISABLED:
2825 				goto out;
2826 			default:
2827 				/* blocking, learning, bonded, forwarding */
2828 				break;
2829 			}
2830 		}
2831 
2832 		/*
2833 		 * Make a deep copy of the packet and enqueue the copy
2834 		 * for bridge processing; return the original packet for
2835 		 * local processing.
2836 		 */
2837 		mc = m_dup(m, M_NOWAIT);
2838 		if (mc == NULL)
2839 			goto out;
2840 
2841 		/*
2842 		 * It's just too dangerous to allow bcast/mcast over a
2843 		 * blocked interface, eventually the network will sort
2844 		 * itself out and a better path will be found.
2845 		 */
2846 		if ((bif->bif_flags & IFBIF_STP) == 0 ||
2847 		    bif->bif_state != BSTP_IFSTATE_BLOCKING)
2848 		{
2849 			bridge_forward(sc, mc);
2850 		}
2851 
2852 		/*
2853 		 * Reinject the mbuf as arriving on the bridge so we have a
2854 		 * chance at claiming multicast packets. We can not loop back
2855 		 * here from ether_input as a bridge is never a member of a
2856 		 * bridge.
2857 		 */
2858 		KASSERT(bifp->if_bridge == NULL,
2859 			("loop created in bridge_input"));
2860 		mc2 = m_dup(m, M_NOWAIT);
2861 #ifdef notyet
2862 		if (mc2 != NULL) {
2863 			/* Keep the layer3 header aligned */
2864 			int i = min(mc2->m_pkthdr.len, max_protohdr);
2865 			mc2 = m_copyup(mc2, i, ETHER_ALIGN);
2866 		}
2867 #endif
2868 		if (mc2 != NULL) {
2869 			/*
2870 			 * Don't tap to bpf(4) again; we have already done
2871 			 * the tapping.
2872 			 *
2873 			 * Leave m_pkthdr.rcvif alone, so ARP replies are
2874 			 * processed as coming in on the correct interface.
2875 			 *
2876 			 * Clear the bridge flag for local processing in
2877 			 * case the packet gets routed.
2878 			 */
2879 			mc2->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2880 			ether_reinput_oncpu(bifp, mc2, 0);
2881 		}
2882 
2883 		/* Return the original packet for local processing. */
2884 		goto out;
2885 	}
2886 
2887 	/*
2888 	 * Input of a unicast packet.  We have to allow unicast packets
2889 	 * input from links in the BLOCKING state as this might be an
2890 	 * interface of last resort.
2891 	 *
2892 	 * NOTE: We explicitly ignore normal packets received on a link
2893 	 *	 in the BLOCKING state.  The point of being in that state
2894 	 *	 is to avoid getting duplicate packets.
2895 	 *
2896 	 *	 HOWEVER, if LINK2 is set the normal spanning tree code
2897 	 *	 will mark an interface BLOCKING to avoid multi-cast/broadcast
2898 	 *	 loops.  Unicast packets CAN still loop if we allow the
2899 	 *	 case (hence we only do it in LINK2), but it isn't quite as
2900 	 *	 bad as a broadcast packet looping.
2901 	 */
2902 	if (bif->bif_flags & IFBIF_STP) {
2903 		switch (bif->bif_state) {
2904 		case BSTP_IFSTATE_L1BLOCKING:
2905 		case BSTP_IFSTATE_LISTENING:
2906 		case BSTP_IFSTATE_DISABLED:
2907 			goto out;
2908 		default:
2909 			/* blocking, bonded, forwarding, learning */
2910 			break;
2911 		}
2912 	}
2913 
2914 	/*
2915 	 * Unicast.  Make sure it's not for us.
2916 	 *
2917 	 * This loop is MPSAFE; the only blocking operation (bridge_rtupdate)
2918 	 * is followed by breaking out of the loop.
2919 	 */
2920 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2921 		if (bif->bif_ifp->if_type != IFT_ETHER)
2922 			continue;
2923 
2924 		/*
2925 		 * It is destined for an interface linked to the bridge.
2926 		 * We want the bridge itself to take care of link level
2927 		 * forwarding to member interfaces so reinput on the bridge.
2928 		 * i.e. if you ping an IP on a target interface associated
2929 		 * with the bridge, the arp is-at response should indicate
2930 		 * the bridge MAC.
2931 		 *
2932 		 * Only update our addr list when learning if the port
2933 		 * is not in a blocking state.  If it is we still allow
2934 		 * the packet but we do not try to learn from it.
2935 		 */
2936 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_dhost,
2937 			   ETHER_ADDR_LEN) == 0) {
2938 			if (bif->bif_ifp != ifp) {
2939 				/* XXX loop prevention */
2940 				m->m_flags |= M_ETHER_BRIDGED;
2941 			}
2942 			if ((bif->bif_flags & IFBIF_LEARNING) &&
2943 			    ((bif->bif_flags & IFBIF_STP) == 0 ||
2944 			     bif->bif_state != BSTP_IFSTATE_BLOCKING)) {
2945 				bridge_rtupdate(sc, eh->ether_shost,
2946 						ifp, IFBAF_DYNAMIC);
2947 			}
2948 			new_ifp = bifp; /* not bif->bif_ifp */
2949 			m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2950 			goto out;
2951 		}
2952 
2953 		/*
2954 		 * Ignore received packets that were sent by us.
2955 		 */
2956 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_shost,
2957 			   ETHER_ADDR_LEN) == 0) {
2958 			m_freem(m);
2959 			m = NULL;
2960 			goto out;
2961 		}
2962 	}
2963 
2964 	/*
2965 	 * It isn't for us.
2966 	 *
2967 	 * Perform the bridge forwarding function, but disallow bridging
2968 	 * to interfaces in the blocking state if the packet came in on
2969 	 * an interface in the blocking state.
2970 	 *
2971 	 * (bridge_forward also updates the addr cache).
2972 	 */
2973 	bridge_forward(sc, m);
2974 	m = NULL;
2975 
2976 	/*
2977 	 * ether_reinput_oncpu() will reprocess rcvif as
2978 	 * coming from new_ifp (since we do not specify
2979 	 * REINPUT_KEEPRCVIF).
2980 	 */
2981 out:
2982 	if (new_ifp != NULL) {
2983 		/*
2984 		 * Clear the bridge flag for local processing in
2985 		 * case the packet gets routed.
2986 		 */
2987 		ether_reinput_oncpu(new_ifp, m, REINPUT_RUNBPF);
2988 		m = NULL;
2989 	}
2990 	return (m);
2991 }
2992 
2993 /*
2994  * bridge_start_bcast:
2995  *
2996  *	Broadcast the packet sent from bridge to all member
2997  *	interfaces.
2998  *	This is a simplified version of bridge_broadcast(), however,
2999  *	this function expects caller to hold bridge's serializer.
3000  */
3001 static void
3002 bridge_start_bcast(struct bridge_softc *sc, struct mbuf *m)
3003 {
3004 	struct bridge_iflist *bif;
3005 	struct mbuf *mc;
3006 	struct ifnet *dst_if, *alt_if, *bifp;
3007 	int used = 0;
3008 	int found = 0;
3009 	int alt_priority;
3010 
3011 	mbuftrackid(m, 68);
3012 	bifp = sc->sc_ifp;
3013 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
3014 
3015 	/*
3016 	 * Following loop is MPSAFE; nothing is blocking
3017 	 * in the loop body.
3018 	 *
3019 	 * NOTE: We transmit through an member in the BLOCKING state only
3020 	 *	 as a last resort.
3021 	 */
3022 	alt_if = NULL;
3023 	alt_priority = 0;
3024 
3025 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
3026 		dst_if = bif->bif_ifp;
3027 
3028 		if (bif->bif_flags & IFBIF_STP) {
3029 			switch (bif->bif_state) {
3030 			case BSTP_IFSTATE_BLOCKING:
3031 				if (bif->bif_priority > alt_priority) {
3032 					alt_priority = bif->bif_priority;
3033 					alt_if = bif->bif_ifp;
3034 				}
3035 				/* fall through */
3036 			case BSTP_IFSTATE_L1BLOCKING:
3037 			case BSTP_IFSTATE_DISABLED:
3038 				continue;
3039 			default:
3040 				/* listening, learning, bonded, forwarding */
3041 				break;
3042 			}
3043 		}
3044 
3045 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3046 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
3047 			continue;
3048 
3049 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3050 			continue;
3051 
3052 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3053 			mc = m;
3054 			used = 1;
3055 		} else {
3056 			mc = m_copypacket(m, M_NOWAIT);
3057 			if (mc == NULL) {
3058 				IFNET_STAT_INC(bifp, oerrors, 1);
3059 				continue;
3060 			}
3061 		}
3062 		found = 1;
3063 		bridge_enqueue(dst_if, mc);
3064 	}
3065 
3066 	if (found == 0 && alt_if) {
3067 		KKASSERT(used == 0);
3068 		mc = m;
3069 		used = 1;
3070 		bridge_enqueue(alt_if, mc);
3071 	}
3072 
3073 	if (used == 0)
3074 		m_freem(m);
3075 }
3076 
3077 /*
3078  * bridge_broadcast:
3079  *
3080  * Send a frame to all interfaces that are members of the bridge, except
3081  * for the one on which the packet arrived.
3082  */
3083 static void
3084 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if, struct mbuf *m)
3085 {
3086 	struct bridge_iflist *bif, *nbif;
3087 	struct ether_header *eh;
3088 	struct mbuf *mc;
3089 	struct ifnet *dst_if, *alt_if, *bifp;
3090 	int used;
3091 	int found;
3092 	int alt_priority;
3093 	int from_us;
3094 	uint8_t alt_state;
3095 
3096 	mbuftrackid(m, 69);
3097 	bifp = sc->sc_ifp;
3098 	ASSERT_IFNET_NOT_SERIALIZED_ALL(bifp);
3099 
3100 	eh = mtod(m, struct ether_header *);
3101 	from_us = bridge_from_us(sc, eh);
3102 
3103 	if (inet_pfil_hook.ph_hashooks > 0
3104 #ifdef INET6
3105 	    || inet6_pfil_hook.ph_hashooks > 0
3106 #endif
3107 	    )
3108 	{
3109 		if (bridge_pfil(&m, bifp, src_if, PFIL_IN) != 0)
3110 			return;
3111 		if (m == NULL)
3112 			return;
3113 
3114 		/* Filter on the bridge interface before broadcasting */
3115 		if (bridge_pfil(&m, bifp, NULL, PFIL_OUT) != 0)
3116 			return;
3117 		if (m == NULL)
3118 			return;
3119 	}
3120 
3121 	alt_state = BSTP_IFSTATE_LEARNING;
3122 	alt_if = NULL;
3123 	alt_priority = 0;
3124 	found = 0;
3125 	used = 0;
3126 
3127 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
3128 		dst_if = bif->bif_ifp;
3129 
3130 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3131 			continue;
3132 
3133 		/*
3134 		 * Don't bounce the packet out the same interface it came
3135 		 * in on.  We have to test MAC addresses because a packet
3136 		 * can come in a bonded interface and we don't want it to
3137 		 * be echod out the forwarding interface for the same bonding
3138 		 * set.
3139 		 */
3140 		if (src_if &&
3141 		    memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
3142 			   ETHER_ADDR_LEN) == 0)
3143 	        {
3144 			continue;
3145 		}
3146 
3147 		/*
3148 		 * Generally speaking we only broadcast through forwarding
3149 		 * interfaces.  If no interfaces are available we select
3150 		 * a BONDED, BLOCKING, or LEARNING interface to forward
3151 		 * through.
3152 		 */
3153 		if (bif->bif_flags & IFBIF_STP) {
3154 			switch (bif->bif_state) {
3155 			case BSTP_IFSTATE_LEARNING:
3156 				if (alt_state == BSTP_IFSTATE_LEARNING &&
3157 				    bif->bif_priority > alt_priority)
3158 				{
3159 					alt_priority = bif->bif_priority;
3160 					alt_if = bif->bif_ifp;
3161 				}
3162 				continue;
3163 			case BSTP_IFSTATE_BLOCKING:
3164 				if (alt_state == BSTP_IFSTATE_LEARNING ||
3165 				    (alt_state == BSTP_IFSTATE_BLOCKING &&
3166 				     bif->bif_priority > alt_priority))
3167 				{
3168 					alt_state = BSTP_IFSTATE_BLOCKING;
3169 					alt_priority = bif->bif_priority;
3170 					alt_if = bif->bif_ifp;
3171 				}
3172 				continue;
3173 			case BSTP_IFSTATE_BONDED:
3174 				if (alt_state != BSTP_IFSTATE_BONDED ||
3175 				    bif->bif_priority > alt_priority)
3176 				{
3177 					alt_state = BSTP_IFSTATE_BONDED;
3178 					alt_priority = bif->bif_priority;
3179 					alt_if = bif->bif_ifp;
3180 				}
3181 				continue;
3182 			case BSTP_IFSTATE_L1BLOCKING:
3183 			case BSTP_IFSTATE_DISABLED:
3184 			case BSTP_IFSTATE_LISTENING:
3185 				continue;
3186 			default:
3187 				/* forwarding */
3188 				break;
3189 			}
3190 		}
3191 
3192 		/*
3193 		 * FORWARDING
3194 		 */
3195 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3196 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
3197 		{
3198 			continue;
3199 		}
3200 
3201 		/*
3202 		 * Last interface in list?
3203 		 */
3204 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3205 			mc = m;
3206 			used = 1;
3207 		} else {
3208 			mc = m_copypacket(m, M_NOWAIT);
3209 			if (mc == NULL) {
3210 				IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3211 				continue;
3212 			}
3213 		}
3214 		found = 1;
3215 
3216 		/*
3217 		 * Filter on the output interface.  Pass a NULL bridge
3218 		 * interface pointer so we do not redundantly filter on
3219 		 * the bridge for each interface we broadcast on.
3220 		 */
3221 		if (inet_pfil_hook.ph_hashooks > 0
3222 #ifdef INET6
3223 		    || inet6_pfil_hook.ph_hashooks > 0
3224 #endif
3225 		    )
3226 		{
3227 			if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0)
3228 				continue;
3229 			if (mc == NULL)
3230 				continue;
3231 		}
3232 		bridge_handoff(sc, dst_if, mc, from_us);
3233 
3234 		if (nbif != NULL && !nbif->bif_onlist) {
3235 			KKASSERT(bif->bif_onlist);
3236 			nbif = TAILQ_NEXT(bif, bif_next);
3237 		}
3238 	}
3239 
3240 	if (found == 0 && alt_if) {
3241 		KKASSERT(used == 0);
3242 		mc = m;
3243 		used = 1;
3244 		bridge_enqueue(alt_if, mc);
3245 	}
3246 
3247 	if (used == 0)
3248 		m_freem(m);
3249 }
3250 
3251 /*
3252  * bridge_span:
3253  *
3254  *	Duplicate a packet out one or more interfaces that are in span mode,
3255  *	the original mbuf is unmodified.
3256  */
3257 static void
3258 bridge_span(struct bridge_softc *sc, struct mbuf *m)
3259 {
3260 	struct bridge_iflist *bif;
3261 	struct ifnet *dst_if, *bifp;
3262 	struct mbuf *mc;
3263 
3264 	mbuftrackid(m, 70);
3265 	bifp = sc->sc_ifp;
3266 	ifnet_serialize_all(bifp);
3267 
3268 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
3269 		dst_if = bif->bif_ifp;
3270 
3271 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3272 			continue;
3273 
3274 		mc = m_copypacket(m, M_NOWAIT);
3275 		if (mc == NULL) {
3276 			IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3277 			continue;
3278 		}
3279 		bridge_enqueue(dst_if, mc);
3280 	}
3281 
3282 	ifnet_deserialize_all(bifp);
3283 }
3284 
3285 static void
3286 bridge_rtmsg_sync_handler(netmsg_t msg)
3287 {
3288 	netisr_forwardmsg(&msg->base, mycpuid + 1);
3289 }
3290 
3291 static void
3292 bridge_rtmsg_sync(struct bridge_softc *sc)
3293 {
3294 	struct netmsg_base msg;
3295 
3296 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3297 
3298 	/* XXX use netmsg_service_sync */
3299 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3300 		    0, bridge_rtmsg_sync_handler);
3301 	netisr_domsg(&msg, 0);
3302 }
3303 
3304 static __inline void
3305 bridge_rtinfo_update(struct bridge_rtinfo *bri, struct ifnet *dst_if,
3306 		     int setflags, uint8_t flags, uint32_t timeo)
3307 {
3308 	if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3309 	    bri->bri_ifp != dst_if)
3310 		bri->bri_ifp = dst_if;
3311 	if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3312 	    bri->bri_expire != time_uptime + timeo)
3313 		bri->bri_expire = time_uptime + timeo;
3314 	if (setflags)
3315 		bri->bri_flags = flags;
3316 }
3317 
3318 static int
3319 bridge_rtinstall_oncpu(struct bridge_softc *sc, const uint8_t *dst,
3320 		       struct ifnet *dst_if, int setflags, uint8_t flags,
3321 		       struct bridge_rtinfo **bri0)
3322 {
3323 	struct bridge_rtnode *brt;
3324 	struct bridge_rtinfo *bri;
3325 
3326 	if (mycpuid == 0) {
3327 		brt = bridge_rtnode_lookup(sc, dst);
3328 		if (brt != NULL) {
3329 			/*
3330 			 * rtnode for 'dst' already exists.  We inform the
3331 			 * caller about this by leaving bri0 as NULL.  The
3332 			 * caller will terminate the intallation upon getting
3333 			 * NULL bri0.  However, we still need to update the
3334 			 * rtinfo.
3335 			 */
3336 			KKASSERT(*bri0 == NULL);
3337 
3338 			/* Update rtinfo */
3339 			bridge_rtinfo_update(brt->brt_info, dst_if, setflags,
3340 					     flags, sc->sc_brttimeout);
3341 			return 0;
3342 		}
3343 
3344 		/*
3345 		 * We only need to check brtcnt on CPU0, since if limit
3346 		 * is to be exceeded, ENOSPC is returned.  Caller knows
3347 		 * this and will terminate the installation.
3348 		 */
3349 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3350 			return ENOSPC;
3351 
3352 		KKASSERT(*bri0 == NULL);
3353 		bri = kmalloc(sizeof(struct bridge_rtinfo), M_DEVBUF,
3354 				  M_WAITOK | M_ZERO);
3355 		*bri0 = bri;
3356 
3357 		/* Setup rtinfo */
3358 		bri->bri_flags = IFBAF_DYNAMIC;
3359 		bridge_rtinfo_update(bri, dst_if, setflags, flags,
3360 				     sc->sc_brttimeout);
3361 	} else {
3362 		bri = *bri0;
3363 		KKASSERT(bri != NULL);
3364 	}
3365 
3366 	brt = kmalloc(sizeof(struct bridge_rtnode), M_DEVBUF,
3367 		      M_WAITOK | M_ZERO);
3368 	memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
3369 	brt->brt_info = bri;
3370 	atomic_add_int(&bri->bri_refs, 1);
3371 
3372 	bridge_rtnode_insert(sc, brt);
3373 	return 0;
3374 }
3375 
3376 static void
3377 bridge_rtinstall_handler(netmsg_t msg)
3378 {
3379 	struct netmsg_brsaddr *brmsg = (struct netmsg_brsaddr *)msg;
3380 	int error;
3381 
3382 	error = bridge_rtinstall_oncpu(brmsg->br_softc,
3383 				       brmsg->br_dst, brmsg->br_dst_if,
3384 				       brmsg->br_setflags, brmsg->br_flags,
3385 				       &brmsg->br_rtinfo);
3386 	if (error) {
3387 		KKASSERT(mycpuid == 0 && brmsg->br_rtinfo == NULL);
3388 		netisr_replymsg(&brmsg->base, error);
3389 		return;
3390 	} else if (brmsg->br_rtinfo == NULL) {
3391 		/* rtnode already exists for 'dst' */
3392 		KKASSERT(mycpuid == 0);
3393 		netisr_replymsg(&brmsg->base, 0);
3394 		return;
3395 	}
3396 	netisr_forwardmsg(&brmsg->base, mycpuid + 1);
3397 }
3398 
3399 /*
3400  * bridge_rtupdate:
3401  *
3402  *	Add/Update a bridge routing entry.
3403  */
3404 static int
3405 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst,
3406 		struct ifnet *dst_if, uint8_t flags)
3407 {
3408 	struct bridge_rtnode *brt;
3409 
3410 	/*
3411 	 * A route for this destination might already exist.  If so,
3412 	 * update it, otherwise create a new one.
3413 	 */
3414 	if ((brt = bridge_rtnode_lookup(sc, dst)) == NULL) {
3415 		struct netmsg_brsaddr *brmsg;
3416 
3417 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3418 			return ENOSPC;
3419 
3420 		brmsg = kmalloc(sizeof(*brmsg), M_LWKTMSG, M_WAITOK | M_NULLOK);
3421 		if (brmsg == NULL)
3422 			return ENOMEM;
3423 
3424 		netmsg_init(&brmsg->base, NULL, &netisr_afree_rport,
3425 			    0, bridge_rtinstall_handler);
3426 		memcpy(brmsg->br_dst, dst, ETHER_ADDR_LEN);
3427 		brmsg->br_dst_if = dst_if;
3428 		brmsg->br_flags = flags;
3429 		brmsg->br_setflags = 0;
3430 		brmsg->br_softc = sc;
3431 		brmsg->br_rtinfo = NULL;
3432 
3433 		netisr_sendmsg(&brmsg->base, 0);
3434 		return 0;
3435 	}
3436 	bridge_rtinfo_update(brt->brt_info, dst_if, 0, flags,
3437 			     sc->sc_brttimeout);
3438 	return 0;
3439 }
3440 
3441 static int
3442 bridge_rtsaddr(struct bridge_softc *sc, const uint8_t *dst,
3443 	       struct ifnet *dst_if, uint8_t flags)
3444 {
3445 	struct netmsg_brsaddr brmsg;
3446 
3447 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3448 
3449 	netmsg_init(&brmsg.base, NULL, &curthread->td_msgport,
3450 		    0, bridge_rtinstall_handler);
3451 	memcpy(brmsg.br_dst, dst, ETHER_ADDR_LEN);
3452 	brmsg.br_dst_if = dst_if;
3453 	brmsg.br_flags = flags;
3454 	brmsg.br_setflags = 1;
3455 	brmsg.br_softc = sc;
3456 	brmsg.br_rtinfo = NULL;
3457 
3458 	return netisr_domsg(&brmsg.base, 0);
3459 }
3460 
3461 /*
3462  * bridge_rtlookup:
3463  *
3464  *	Lookup the destination interface for an address.
3465  */
3466 static struct ifnet *
3467 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr)
3468 {
3469 	struct bridge_rtnode *brt;
3470 
3471 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3472 		return NULL;
3473 	return brt->brt_info->bri_ifp;
3474 }
3475 
3476 static void
3477 bridge_rtreap_handler(netmsg_t msg)
3478 {
3479 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3480 	struct bridge_rtnode *brt, *nbrt;
3481 
3482 	LIST_FOREACH_MUTABLE(brt, &sc->sc_rtlists[mycpuid], brt_list, nbrt) {
3483 		if (brt->brt_info->bri_dead)
3484 			bridge_rtnode_destroy(sc, brt);
3485 	}
3486 	netisr_forwardmsg(&msg->base, mycpuid + 1);
3487 }
3488 
3489 static void
3490 bridge_rtreap(struct bridge_softc *sc)
3491 {
3492 	struct netmsg_base msg;
3493 
3494 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3495 
3496 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3497 		    0, bridge_rtreap_handler);
3498 	msg.lmsg.u.ms_resultp = sc;
3499 
3500 	netisr_domsg(&msg, 0);
3501 }
3502 
3503 static void
3504 bridge_rtreap_async(struct bridge_softc *sc)
3505 {
3506 	struct netmsg_base *msg;
3507 
3508 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK);
3509 
3510 	netmsg_init(msg, NULL, &netisr_afree_rport,
3511 		    0, bridge_rtreap_handler);
3512 	msg->lmsg.u.ms_resultp = sc;
3513 
3514 	netisr_sendmsg(msg, 0);
3515 }
3516 
3517 /*
3518  * bridge_rttrim:
3519  *
3520  *	Trim the routine table so that we have a number
3521  *	of routing entries less than or equal to the
3522  *	maximum number.
3523  */
3524 static void
3525 bridge_rttrim(struct bridge_softc *sc)
3526 {
3527 	struct bridge_rtnode *brt;
3528 	int dead;
3529 
3530 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3531 
3532 	/* Make sure we actually need to do this. */
3533 	if (sc->sc_brtcnt <= sc->sc_brtmax)
3534 		return;
3535 
3536 	/*
3537 	 * Find out how many rtnodes are dead
3538 	 */
3539 	dead = bridge_rtage_finddead(sc);
3540 	KKASSERT(dead <= sc->sc_brtcnt);
3541 
3542 	if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3543 		/* Enough dead rtnodes are found */
3544 		bridge_rtreap(sc);
3545 		return;
3546 	}
3547 
3548 	/*
3549 	 * Kill some dynamic rtnodes to meet the brtmax
3550 	 */
3551 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3552 		struct bridge_rtinfo *bri = brt->brt_info;
3553 
3554 		if (bri->bri_dead) {
3555 			/*
3556 			 * We have counted this rtnode in
3557 			 * bridge_rtage_finddead()
3558 			 */
3559 			continue;
3560 		}
3561 
3562 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3563 			bri->bri_dead = 1;
3564 			++dead;
3565 			KKASSERT(dead <= sc->sc_brtcnt);
3566 
3567 			if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3568 				/* Enough rtnodes are collected */
3569 				break;
3570 			}
3571 		}
3572 	}
3573 	if (dead)
3574 		bridge_rtreap(sc);
3575 }
3576 
3577 /*
3578  * bridge_timer:
3579  *
3580  *	Aging timer for the bridge.
3581  */
3582 static void
3583 bridge_timer(void *arg)
3584 {
3585 	struct bridge_softc *sc = arg;
3586 	struct netmsg_base *msg;
3587 
3588 	KKASSERT(mycpuid == BRIDGE_CFGCPU);
3589 
3590 	crit_enter();
3591 
3592 	if (callout_pending(&sc->sc_brcallout) ||
3593 	    !callout_active(&sc->sc_brcallout)) {
3594 		crit_exit();
3595 		return;
3596 	}
3597 	callout_deactivate(&sc->sc_brcallout);
3598 
3599 	msg = &sc->sc_brtimemsg;
3600 	KKASSERT(msg->lmsg.ms_flags & MSGF_DONE);
3601 	lwkt_sendmsg_oncpu(BRIDGE_CFGPORT, &msg->lmsg);
3602 
3603 	crit_exit();
3604 }
3605 
3606 static void
3607 bridge_timer_handler(netmsg_t msg)
3608 {
3609 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3610 
3611 	KKASSERT(&curthread->td_msgport == BRIDGE_CFGPORT);
3612 
3613 	crit_enter();
3614 	/* Reply ASAP */
3615 	lwkt_replymsg(&msg->lmsg, 0);
3616 	crit_exit();
3617 
3618 	bridge_rtage(sc);
3619 	if (sc->sc_ifp->if_flags & IFF_RUNNING) {
3620 		callout_reset(&sc->sc_brcallout,
3621 		    bridge_rtable_prune_period * hz, bridge_timer, sc);
3622 	}
3623 }
3624 
3625 static int
3626 bridge_rtage_finddead(struct bridge_softc *sc)
3627 {
3628 	struct bridge_rtnode *brt;
3629 	int dead = 0;
3630 
3631 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3632 		struct bridge_rtinfo *bri = brt->brt_info;
3633 
3634 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3635 		    time_uptime >= bri->bri_expire) {
3636 			bri->bri_dead = 1;
3637 			++dead;
3638 			KKASSERT(dead <= sc->sc_brtcnt);
3639 		}
3640 	}
3641 	return dead;
3642 }
3643 
3644 /*
3645  * bridge_rtage:
3646  *
3647  *	Perform an aging cycle.
3648  */
3649 static void
3650 bridge_rtage(struct bridge_softc *sc)
3651 {
3652 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3653 
3654 	if (bridge_rtage_finddead(sc))
3655 		bridge_rtreap(sc);
3656 }
3657 
3658 /*
3659  * bridge_rtflush:
3660  *
3661  *	Remove all dynamic addresses from the bridge.
3662  */
3663 static void
3664 bridge_rtflush(struct bridge_softc *sc, int bf)
3665 {
3666 	struct bridge_rtnode *brt;
3667 	int reap;
3668 
3669 	reap = 0;
3670 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3671 		struct bridge_rtinfo *bri = brt->brt_info;
3672 
3673 		if ((bf & IFBF_FLUSHALL) ||
3674 		    (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3675 			bri->bri_dead = 1;
3676 			reap = 1;
3677 		}
3678 	}
3679 	if (reap) {
3680 		if (bf & IFBF_FLUSHSYNC)
3681 			bridge_rtreap(sc);
3682 		else
3683 			bridge_rtreap_async(sc);
3684 	}
3685 }
3686 
3687 /*
3688  * bridge_rtdaddr:
3689  *
3690  *	Remove an address from the table.
3691  */
3692 static int
3693 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr)
3694 {
3695 	struct bridge_rtnode *brt;
3696 
3697 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3698 
3699 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3700 		return (ENOENT);
3701 
3702 	/* TODO: add a cheaper delete operation */
3703 	brt->brt_info->bri_dead = 1;
3704 	bridge_rtreap(sc);
3705 	return (0);
3706 }
3707 
3708 /*
3709  * bridge_rtdelete:
3710  *
3711  *	Delete routes to a speicifc member interface.
3712  */
3713 void
3714 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int bf)
3715 {
3716 	struct bridge_rtnode *brt;
3717 	int reap;
3718 
3719 	reap = 0;
3720 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3721 		struct bridge_rtinfo *bri = brt->brt_info;
3722 
3723 		if (bri->bri_ifp == ifp &&
3724 		    ((bf & IFBF_FLUSHALL) ||
3725 		     (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
3726 			bri->bri_dead = 1;
3727 			reap = 1;
3728 		}
3729 	}
3730 	if (reap) {
3731 		if (bf & IFBF_FLUSHSYNC)
3732 			bridge_rtreap(sc);
3733 		else
3734 			bridge_rtreap_async(sc);
3735 	}
3736 }
3737 
3738 /*
3739  * bridge_rtable_init:
3740  *
3741  *	Initialize the route table for this bridge.
3742  */
3743 static void
3744 bridge_rtable_init(struct bridge_softc *sc)
3745 {
3746 	int cpu;
3747 
3748 	/*
3749 	 * Initialize per-cpu hash tables
3750 	 */
3751 	sc->sc_rthashs = kmalloc(sizeof(*sc->sc_rthashs) * netisr_ncpus,
3752 				 M_DEVBUF, M_WAITOK);
3753 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
3754 		int i;
3755 
3756 		sc->sc_rthashs[cpu] =
3757 		kmalloc(sizeof(struct bridge_rtnode_head) * BRIDGE_RTHASH_SIZE,
3758 			M_DEVBUF, M_WAITOK);
3759 
3760 		for (i = 0; i < BRIDGE_RTHASH_SIZE; i++)
3761 			LIST_INIT(&sc->sc_rthashs[cpu][i]);
3762 	}
3763 	sc->sc_rthash_key = karc4random();
3764 
3765 	/*
3766 	 * Initialize per-cpu lists
3767 	 */
3768 	sc->sc_rtlists =
3769 	    kmalloc(sizeof(struct bridge_rtnode_head) * netisr_ncpus,
3770 	    M_DEVBUF, M_WAITOK);
3771 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
3772 		LIST_INIT(&sc->sc_rtlists[cpu]);
3773 }
3774 
3775 /*
3776  * bridge_rtable_fini:
3777  *
3778  *	Deconstruct the route table for this bridge.
3779  */
3780 static void
3781 bridge_rtable_fini(struct bridge_softc *sc)
3782 {
3783 	int cpu;
3784 
3785 	/*
3786 	 * Free per-cpu hash tables
3787 	 */
3788 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
3789 		kfree(sc->sc_rthashs[cpu], M_DEVBUF);
3790 	kfree(sc->sc_rthashs, M_DEVBUF);
3791 
3792 	/*
3793 	 * Free per-cpu lists
3794 	 */
3795 	kfree(sc->sc_rtlists, M_DEVBUF);
3796 }
3797 
3798 /*
3799  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
3800  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
3801  */
3802 #define	mix(a, b, c)							\
3803 do {									\
3804 	a -= b; a -= c; a ^= (c >> 13);					\
3805 	b -= c; b -= a; b ^= (a << 8);					\
3806 	c -= a; c -= b; c ^= (b >> 13);					\
3807 	a -= b; a -= c; a ^= (c >> 12);					\
3808 	b -= c; b -= a; b ^= (a << 16);					\
3809 	c -= a; c -= b; c ^= (b >> 5);					\
3810 	a -= b; a -= c; a ^= (c >> 3);					\
3811 	b -= c; b -= a; b ^= (a << 10);					\
3812 	c -= a; c -= b; c ^= (b >> 15);					\
3813 } while (/*CONSTCOND*/0)
3814 
3815 static __inline uint32_t
3816 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
3817 {
3818 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
3819 
3820 	b += addr[5] << 8;
3821 	b += addr[4];
3822 	a += addr[3] << 24;
3823 	a += addr[2] << 16;
3824 	a += addr[1] << 8;
3825 	a += addr[0];
3826 
3827 	mix(a, b, c);
3828 
3829 	return (c & BRIDGE_RTHASH_MASK);
3830 }
3831 
3832 #undef mix
3833 
3834 static int
3835 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
3836 {
3837 	int i, d;
3838 
3839 	for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
3840 		d = ((int)a[i]) - ((int)b[i]);
3841 	}
3842 
3843 	return (d);
3844 }
3845 
3846 /*
3847  * bridge_rtnode_lookup:
3848  *
3849  *	Look up a bridge route node for the specified destination.
3850  */
3851 static struct bridge_rtnode *
3852 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr)
3853 {
3854 	struct bridge_rtnode *brt;
3855 	uint32_t hash;
3856 	int dir;
3857 
3858 	hash = bridge_rthash(sc, addr);
3859 	LIST_FOREACH(brt, &sc->sc_rthashs[mycpuid][hash], brt_hash) {
3860 		dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
3861 		if (dir == 0)
3862 			return (brt);
3863 		if (dir > 0)
3864 			return (NULL);
3865 	}
3866 
3867 	return (NULL);
3868 }
3869 
3870 /*
3871  * bridge_rtnode_insert:
3872  *
3873  *	Insert the specified bridge node into the route table.
3874  *	Caller has to make sure that rtnode does not exist.
3875  */
3876 static void
3877 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
3878 {
3879 	struct bridge_rtnode *lbrt;
3880 	uint32_t hash;
3881 	int dir;
3882 
3883 	hash = bridge_rthash(sc, brt->brt_addr);
3884 
3885 	lbrt = LIST_FIRST(&sc->sc_rthashs[mycpuid][hash]);
3886 	if (lbrt == NULL) {
3887 		LIST_INSERT_HEAD(&sc->sc_rthashs[mycpuid][hash],
3888 				  brt, brt_hash);
3889 		goto out;
3890 	}
3891 
3892 	do {
3893 		dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
3894 		KASSERT(dir != 0, ("rtnode already exist"));
3895 
3896 		if (dir > 0) {
3897 			LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
3898 			goto out;
3899 		}
3900 		if (LIST_NEXT(lbrt, brt_hash) == NULL) {
3901 			LIST_INSERT_AFTER(lbrt, brt, brt_hash);
3902 			goto out;
3903 		}
3904 		lbrt = LIST_NEXT(lbrt, brt_hash);
3905 	} while (lbrt != NULL);
3906 
3907 	panic("no suitable position found for rtnode");
3908 out:
3909 	LIST_INSERT_HEAD(&sc->sc_rtlists[mycpuid], brt, brt_list);
3910 	if (mycpuid == 0) {
3911 		/*
3912 		 * Update the brtcnt.
3913 		 * We only need to do it once and we do it on CPU0.
3914 		 */
3915 		sc->sc_brtcnt++;
3916 	}
3917 }
3918 
3919 /*
3920  * bridge_rtnode_destroy:
3921  *
3922  *	Destroy a bridge rtnode.
3923  */
3924 static void
3925 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
3926 {
3927 	struct bridge_rtinfo *bri;
3928 
3929 	LIST_REMOVE(brt, brt_hash);
3930 	LIST_REMOVE(brt, brt_list);
3931 
3932 	bri = brt->brt_info;
3933 
3934 	/*
3935 	 * The bri_dead flag can be set asynchronously and catch some gc's
3936 	 * in the middle, don't free bri until all references have actually
3937 	 * gone away.
3938 	 */
3939 	if (atomic_fetchadd_int(&bri->bri_refs, -1) == 1) {
3940 		/* Free rtinfo associated with rtnode on the last cpu */
3941 		kfree(bri, M_DEVBUF);
3942 		brt->brt_info = NULL;	/* safety */
3943 	}
3944 	kfree(brt, M_DEVBUF);
3945 
3946 	if (mycpuid == 0) {
3947 		/* Update brtcnt only on CPU0 */
3948 		sc->sc_brtcnt--;
3949 	}
3950 }
3951 
3952 static __inline int
3953 bridge_post_pfil(struct mbuf *m)
3954 {
3955 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED)
3956 		return EOPNOTSUPP;
3957 
3958 	/* Not yet */
3959 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED)
3960 		return EOPNOTSUPP;
3961 
3962 	return 0;
3963 }
3964 
3965 /*
3966  * Send bridge packets through pfil if they are one of the types pfil can deal
3967  * with, or if they are ARP or REVARP.  (pfil will pass ARP and REVARP without
3968  * question.) If *bifp or *ifp are NULL then packet filtering is skipped for
3969  * that interface.
3970  */
3971 static int
3972 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir)
3973 {
3974 	int snap, error, i, hlen;
3975 	struct ether_header *eh1, eh2;
3976 	struct ip *ip;
3977 	struct llc llc1;
3978 	u_int16_t ether_type;
3979 
3980 	snap = 0;
3981 	error = -1;	/* Default error if not error == 0 */
3982 
3983 	if (pfil_bridge == 0 && pfil_member == 0)
3984 		return (0); /* filtering is disabled */
3985 
3986 	i = min((*mp)->m_pkthdr.len, max_protohdr);
3987 	if ((*mp)->m_len < i) {
3988 		*mp = m_pullup(*mp, i);
3989 		if (*mp == NULL) {
3990 			kprintf("%s: m_pullup failed\n", __func__);
3991 			return (-1);
3992 		}
3993 	}
3994 
3995 	eh1 = mtod(*mp, struct ether_header *);
3996 	ether_type = ntohs(eh1->ether_type);
3997 
3998 	/*
3999 	 * Check for SNAP/LLC.
4000 	 */
4001 	if (ether_type < ETHERMTU) {
4002 		struct llc *llc2 = (struct llc *)(eh1 + 1);
4003 
4004 		if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
4005 		    llc2->llc_dsap == LLC_SNAP_LSAP &&
4006 		    llc2->llc_ssap == LLC_SNAP_LSAP &&
4007 		    llc2->llc_control == LLC_UI) {
4008 			ether_type = htons(llc2->llc_un.type_snap.ether_type);
4009 			snap = 1;
4010 		}
4011 	}
4012 
4013 	/*
4014 	 * If we're trying to filter bridge traffic, don't look at anything
4015 	 * other than IP and ARP traffic.  If the filter doesn't understand
4016 	 * IPv6, don't allow IPv6 through the bridge either.  This is lame
4017 	 * since if we really wanted, say, an AppleTalk filter, we are hosed,
4018 	 * but of course we don't have an AppleTalk filter to begin with.
4019 	 * (Note that since pfil doesn't understand ARP it will pass *ALL*
4020 	 * ARP traffic.)
4021 	 */
4022 	switch (ether_type) {
4023 	case ETHERTYPE_ARP:
4024 	case ETHERTYPE_REVARP:
4025 		return (0); /* Automatically pass */
4026 
4027 	case ETHERTYPE_IP:
4028 #ifdef INET6
4029 	case ETHERTYPE_IPV6:
4030 #endif /* INET6 */
4031 		break;
4032 
4033 	default:
4034 		/*
4035 		 * Check to see if the user wants to pass non-ip
4036 		 * packets, these will not be checked by pfil(9)
4037 		 * and passed unconditionally so the default is to drop.
4038 		 */
4039 		if (pfil_onlyip)
4040 			goto bad;
4041 	}
4042 
4043 	/* Strip off the Ethernet header and keep a copy. */
4044 	m_copydata(*mp, 0, ETHER_HDR_LEN, &eh2);
4045 	m_adj(*mp, ETHER_HDR_LEN);
4046 
4047 	/* Strip off snap header, if present */
4048 	if (snap) {
4049 		m_copydata(*mp, 0, sizeof(struct llc), &llc1);
4050 		m_adj(*mp, sizeof(struct llc));
4051 	}
4052 
4053 	/*
4054 	 * Check the IP header for alignment and errors
4055 	 */
4056 	if (dir == PFIL_IN) {
4057 		switch (ether_type) {
4058 		case ETHERTYPE_IP:
4059 			error = bridge_ip_checkbasic(mp);
4060 			break;
4061 #ifdef INET6
4062 		case ETHERTYPE_IPV6:
4063 			error = bridge_ip6_checkbasic(mp);
4064 			break;
4065 #endif /* INET6 */
4066 		default:
4067 			error = 0;
4068 		}
4069 		if (error)
4070 			goto bad;
4071 	}
4072 
4073 	error = 0;
4074 
4075 	/*
4076 	 * Run the packet through pfil
4077 	 */
4078 	switch (ether_type) {
4079 	case ETHERTYPE_IP:
4080 		/*
4081 		 * Run pfil on the member interface and the bridge, both can
4082 		 * be skipped by clearing pfil_member or pfil_bridge.
4083 		 *
4084 		 * Keep the order:
4085 		 *   in_if -> bridge_if -> out_if
4086 		 */
4087 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) {
4088 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
4089 			if (*mp == NULL || error != 0) /* filter may consume */
4090 				break;
4091 			error = bridge_post_pfil(*mp);
4092 			if (error)
4093 				break;
4094 		}
4095 
4096 		if (pfil_member && ifp != NULL) {
4097 			error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir);
4098 			if (*mp == NULL || error != 0) /* filter may consume */
4099 				break;
4100 			error = bridge_post_pfil(*mp);
4101 			if (error)
4102 				break;
4103 		}
4104 
4105 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL) {
4106 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
4107 			if (*mp == NULL || error != 0) /* filter may consume */
4108 				break;
4109 			error = bridge_post_pfil(*mp);
4110 			if (error)
4111 				break;
4112 		}
4113 
4114 		/* check if we need to fragment the packet */
4115 		if (pfil_member && ifp != NULL && dir == PFIL_OUT) {
4116 			i = (*mp)->m_pkthdr.len;
4117 			if (i > ifp->if_mtu) {
4118 				error = bridge_fragment(ifp, *mp, &eh2, snap,
4119 					    &llc1);
4120 				return (error);
4121 			}
4122 		}
4123 
4124 		/* Recalculate the ip checksum and restore byte ordering */
4125 		ip = mtod(*mp, struct ip *);
4126 		hlen = ip->ip_hl << 2;
4127 		if (hlen < sizeof(struct ip))
4128 			goto bad;
4129 		if (hlen > (*mp)->m_len) {
4130 			if ((*mp = m_pullup(*mp, hlen)) == NULL)
4131 				goto bad;
4132 			ip = mtod(*mp, struct ip *);
4133 			if (ip == NULL)
4134 				goto bad;
4135 		}
4136 		ip->ip_sum = 0;
4137 		if (hlen == sizeof(struct ip))
4138 			ip->ip_sum = in_cksum_hdr(ip);
4139 		else
4140 			ip->ip_sum = in_cksum(*mp, hlen);
4141 
4142 		break;
4143 #ifdef INET6
4144 	case ETHERTYPE_IPV6:
4145 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL)
4146 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4147 					dir);
4148 
4149 		if (*mp == NULL || error != 0) /* filter may consume */
4150 			break;
4151 
4152 		if (pfil_member && ifp != NULL)
4153 			error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp,
4154 					dir);
4155 
4156 		if (*mp == NULL || error != 0) /* filter may consume */
4157 			break;
4158 
4159 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL)
4160 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4161 					dir);
4162 		break;
4163 #endif
4164 	default:
4165 		error = 0;
4166 		break;
4167 	}
4168 
4169 	if (*mp == NULL)
4170 		return (error);
4171 	if (error != 0)
4172 		goto bad;
4173 
4174 	error = -1;
4175 
4176 	/*
4177 	 * Finally, put everything back the way it was and return
4178 	 */
4179 	if (snap) {
4180 		M_PREPEND(*mp, sizeof(struct llc), M_NOWAIT);
4181 		if (*mp == NULL)
4182 			return (error);
4183 		bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
4184 	}
4185 
4186 	M_PREPEND(*mp, ETHER_HDR_LEN, M_NOWAIT);
4187 	if (*mp == NULL)
4188 		return (error);
4189 	bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
4190 
4191 	return (0);
4192 
4193 bad:
4194 	m_freem(*mp);
4195 	*mp = NULL;
4196 	return (error);
4197 }
4198 
4199 /*
4200  * Perform basic checks on header size since
4201  * pfil assumes ip_input has already processed
4202  * it for it.  Cut-and-pasted from ip_input.c.
4203  * Given how simple the IPv6 version is,
4204  * does the IPv4 version really need to be
4205  * this complicated?
4206  *
4207  * XXX Should we update ipstat here, or not?
4208  * XXX Right now we update ipstat but not
4209  * XXX csum_counter.
4210  */
4211 static int
4212 bridge_ip_checkbasic(struct mbuf **mp)
4213 {
4214 	struct mbuf *m = *mp;
4215 	struct ip *ip;
4216 	int len, hlen;
4217 	u_short sum;
4218 
4219 	if (*mp == NULL)
4220 		return (-1);
4221 #if 0 /* notyet */
4222 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4223 		if ((m = m_copyup(m, sizeof(struct ip),
4224 			(max_linkhdr + 3) & ~3)) == NULL) {
4225 			/* XXXJRT new stat, please */
4226 			ipstat.ips_toosmall++;
4227 			goto bad;
4228 		}
4229 	} else
4230 #endif
4231 #ifndef __predict_false
4232 #define __predict_false(x) x
4233 #endif
4234 	 if (__predict_false(m->m_len < sizeof (struct ip))) {
4235 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
4236 			ipstat.ips_toosmall++;
4237 			goto bad;
4238 		}
4239 	}
4240 	ip = mtod(m, struct ip *);
4241 	if (ip == NULL) goto bad;
4242 
4243 	if (ip->ip_v != IPVERSION) {
4244 		ipstat.ips_badvers++;
4245 		goto bad;
4246 	}
4247 	hlen = ip->ip_hl << 2;
4248 	if (hlen < sizeof(struct ip)) { /* minimum header length */
4249 		ipstat.ips_badhlen++;
4250 		goto bad;
4251 	}
4252 	if (hlen > m->m_len) {
4253 		if ((m = m_pullup(m, hlen)) == NULL) {
4254 			ipstat.ips_badhlen++;
4255 			goto bad;
4256 		}
4257 		ip = mtod(m, struct ip *);
4258 		if (ip == NULL) goto bad;
4259 	}
4260 
4261 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
4262 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
4263 	} else {
4264 		if (hlen == sizeof(struct ip)) {
4265 			sum = in_cksum_hdr(ip);
4266 		} else {
4267 			sum = in_cksum(m, hlen);
4268 		}
4269 	}
4270 	if (sum) {
4271 		ipstat.ips_badsum++;
4272 		goto bad;
4273 	}
4274 
4275 	/* Retrieve the packet length. */
4276 	len = ntohs(ip->ip_len);
4277 
4278 	/*
4279 	 * Check for additional length bogosity
4280 	 */
4281 	if (len < hlen) {
4282 		ipstat.ips_badlen++;
4283 		goto bad;
4284 	}
4285 
4286 	/*
4287 	 * Check that the amount of data in the buffers
4288 	 * is as at least much as the IP header would have us expect.
4289 	 * Drop packet if shorter than we expect.
4290 	 */
4291 	if (m->m_pkthdr.len < len) {
4292 		ipstat.ips_tooshort++;
4293 		goto bad;
4294 	}
4295 
4296 	/* Checks out, proceed */
4297 	*mp = m;
4298 	return (0);
4299 
4300 bad:
4301 	*mp = m;
4302 	return (-1);
4303 }
4304 
4305 #ifdef INET6
4306 /*
4307  * Same as above, but for IPv6.
4308  * Cut-and-pasted from ip6_input.c.
4309  * XXX Should we update ip6stat, or not?
4310  */
4311 static int
4312 bridge_ip6_checkbasic(struct mbuf **mp)
4313 {
4314 	struct mbuf *m = *mp;
4315 	struct ip6_hdr *ip6;
4316 
4317 	/*
4318 	 * If the IPv6 header is not aligned, slurp it up into a new
4319 	 * mbuf with space for link headers, in the event we forward
4320 	 * it.  Otherwise, if it is aligned, make sure the entire base
4321 	 * IPv6 header is in the first mbuf of the chain.
4322 	 */
4323 #if 0 /* notyet */
4324 	if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4325 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4326 		if ((m = m_copyup(m, sizeof(struct ip6_hdr),
4327 			    (max_linkhdr + 3) & ~3)) == NULL) {
4328 			/* XXXJRT new stat, please */
4329 			ip6stat.ip6s_toosmall++;
4330 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4331 			goto bad;
4332 		}
4333 	} else
4334 #endif
4335 	if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
4336 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4337 		if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
4338 			ip6stat.ip6s_toosmall++;
4339 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4340 			goto bad;
4341 		}
4342 	}
4343 
4344 	ip6 = mtod(m, struct ip6_hdr *);
4345 
4346 	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
4347 		ip6stat.ip6s_badvers++;
4348 		in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
4349 		goto bad;
4350 	}
4351 
4352 	/* Checks out, proceed */
4353 	*mp = m;
4354 	return (0);
4355 
4356 bad:
4357 	*mp = m;
4358 	return (-1);
4359 }
4360 #endif /* INET6 */
4361 
4362 /*
4363  * bridge_fragment:
4364  *
4365  *	Return a fragmented mbuf chain.
4366  */
4367 static int
4368 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh,
4369     int snap, struct llc *llc)
4370 {
4371 	struct mbuf *m0;
4372 	struct ip *ip;
4373 	int error = -1;
4374 
4375 	if (m->m_len < sizeof(struct ip) &&
4376 	    (m = m_pullup(m, sizeof(struct ip))) == NULL)
4377 		goto out;
4378 	ip = mtod(m, struct ip *);
4379 
4380 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist,
4381 		    CSUM_DELAY_IP);
4382 	if (error)
4383 		goto out;
4384 
4385 	/* walk the chain and re-add the Ethernet header */
4386 	for (m0 = m; m0; m0 = m0->m_nextpkt) {
4387 		if (error == 0) {
4388 			if (snap) {
4389 				M_PREPEND(m0, sizeof(struct llc), M_NOWAIT);
4390 				if (m0 == NULL) {
4391 					error = ENOBUFS;
4392 					continue;
4393 				}
4394 				bcopy(llc, mtod(m0, caddr_t),
4395 				    sizeof(struct llc));
4396 			}
4397 			M_PREPEND(m0, ETHER_HDR_LEN, M_NOWAIT);
4398 			if (m0 == NULL) {
4399 				error = ENOBUFS;
4400 				continue;
4401 			}
4402 			bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN);
4403 		} else
4404 			m_freem(m);
4405 	}
4406 
4407 	if (error == 0)
4408 		ipstat.ips_fragmented++;
4409 
4410 	return (error);
4411 
4412 out:
4413 	if (m != NULL)
4414 		m_freem(m);
4415 	return (error);
4416 }
4417 
4418 static void
4419 bridge_enqueue_handler(netmsg_t msg)
4420 {
4421 	struct netmsg_packet *nmp;
4422 	struct ifnet *dst_ifp;
4423 	struct mbuf *m;
4424 
4425 	nmp = &msg->packet;
4426 	m = nmp->nm_packet;
4427 	dst_ifp = nmp->base.lmsg.u.ms_resultp;
4428 	mbuftrackid(m, 71);
4429 
4430 	bridge_handoff(dst_ifp->if_bridge, dst_ifp, m, 1);
4431 }
4432 
4433 static void
4434 bridge_handoff(struct bridge_softc *sc, struct ifnet *dst_ifp,
4435 	       struct mbuf *m, int from_us)
4436 {
4437 	struct mbuf *m0;
4438 	struct ifnet *bifp;
4439 
4440 	bifp = sc->sc_ifp;
4441 	mbuftrackid(m, 72);
4442 
4443 	/* We may be sending a fragment so traverse the mbuf */
4444 	for (; m; m = m0) {
4445 		struct altq_pktattr pktattr;
4446 
4447 		m0 = m->m_nextpkt;
4448 		m->m_nextpkt = NULL;
4449 
4450 		/*
4451 		 * If being sent from our host override ether_shost
4452 		 * with the bridge MAC.  This is mandatory for ARP
4453 		 * so things don't get confused.  In particular we
4454 		 * don't want ARPs to get associated with link interfaces
4455 		 * under the bridge which might or might not stay valid.
4456 		 *
4457 		 * Also override ether_shost when relaying a packet out
4458 		 * the same interface it came in on, due to multi-homed
4459 		 * addresses & default routes, otherwise switches will
4460 		 * get very confused.
4461 		 *
4462 		 * Otherwise if we are in transparent mode.
4463 		 */
4464 		if (from_us || m->m_pkthdr.rcvif == dst_ifp) {
4465 			m_copyback(m,
4466 				   offsetof(struct ether_header, ether_shost),
4467 				   ETHER_ADDR_LEN, IF_LLADDR(sc->sc_ifp));
4468 		} else if ((bifp->if_flags & IFF_LINK0) &&
4469 			   (m->m_pkthdr.fw_flags & BRIDGE_MBUF_TAGGED)) {
4470 			m_copyback(m,
4471 				   offsetof(struct ether_header, ether_shost),
4472 				   ETHER_ADDR_LEN,
4473 				   m->m_pkthdr.ether_br_shost);
4474 		} /* else retain shost */
4475 
4476 		if (ifq_is_enabled(&dst_ifp->if_snd))
4477 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
4478 
4479 		ifq_dispatch(dst_ifp, m, &pktattr);
4480 	}
4481 }
4482 
4483 static void
4484 bridge_control_dispatch(netmsg_t msg)
4485 {
4486 	struct netmsg_brctl *bc_msg = (struct netmsg_brctl *)msg;
4487 	struct ifnet *bifp = bc_msg->bc_sc->sc_ifp;
4488 	int error;
4489 
4490 	ifnet_serialize_all(bifp);
4491 	error = bc_msg->bc_func(bc_msg->bc_sc, bc_msg->bc_arg);
4492 	ifnet_deserialize_all(bifp);
4493 
4494 	lwkt_replymsg(&bc_msg->base.lmsg, error);
4495 }
4496 
4497 static int
4498 bridge_control(struct bridge_softc *sc, u_long cmd,
4499 	       bridge_ctl_t bc_func, void *bc_arg)
4500 {
4501 	struct ifnet *bifp = sc->sc_ifp;
4502 	struct netmsg_brctl bc_msg;
4503 	int error;
4504 
4505 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
4506 
4507 	bzero(&bc_msg, sizeof(bc_msg));
4508 
4509 	netmsg_init(&bc_msg.base, NULL, &curthread->td_msgport,
4510 		    0, bridge_control_dispatch);
4511 	bc_msg.bc_func = bc_func;
4512 	bc_msg.bc_sc = sc;
4513 	bc_msg.bc_arg = bc_arg;
4514 
4515 	ifnet_deserialize_all(bifp);
4516 	error = lwkt_domsg(BRIDGE_CFGPORT, &bc_msg.base.lmsg, 0);
4517 	ifnet_serialize_all(bifp);
4518 	return error;
4519 }
4520 
4521 static void
4522 bridge_add_bif_handler(netmsg_t msg)
4523 {
4524 	struct netmsg_braddbif *amsg = (struct netmsg_braddbif *)msg;
4525 	struct bridge_softc *sc;
4526 	struct bridge_iflist *bif;
4527 
4528 	sc = amsg->br_softc;
4529 
4530 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
4531 	bif->bif_ifp = amsg->br_bif_ifp;
4532 	bif->bif_onlist = 1;
4533 	bif->bif_info = amsg->br_bif_info;
4534 
4535 	/*
4536 	 * runs through bif_info
4537 	 */
4538 	bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER;
4539 
4540 	TAILQ_INSERT_HEAD(&sc->sc_iflists[mycpuid], bif, bif_next);
4541 
4542 	netisr_forwardmsg(&amsg->base, mycpuid + 1);
4543 }
4544 
4545 static void
4546 bridge_add_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4547 	       struct ifnet *ifp)
4548 {
4549 	struct netmsg_braddbif amsg;
4550 
4551 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4552 
4553 	netmsg_init(&amsg.base, NULL, &curthread->td_msgport,
4554 		    0, bridge_add_bif_handler);
4555 	amsg.br_softc = sc;
4556 	amsg.br_bif_info = bif_info;
4557 	amsg.br_bif_ifp = ifp;
4558 
4559 	netisr_domsg(&amsg.base, 0);
4560 }
4561 
4562 static void
4563 bridge_del_bif_handler(netmsg_t msg)
4564 {
4565 	struct netmsg_brdelbif *dmsg = (struct netmsg_brdelbif *)msg;
4566 	struct bridge_softc *sc;
4567 	struct bridge_iflist *bif;
4568 
4569 	sc = dmsg->br_softc;
4570 
4571 	/*
4572 	 * Locate the bif associated with the br_bif_info
4573 	 * on the current CPU
4574 	 */
4575 	bif = bridge_lookup_member_ifinfo(sc, dmsg->br_bif_info);
4576 	KKASSERT(bif != NULL && bif->bif_onlist);
4577 
4578 	/* Remove the bif from the current CPU's iflist */
4579 	bif->bif_onlist = 0;
4580 	TAILQ_REMOVE(dmsg->br_bif_list, bif, bif_next);
4581 
4582 	/* Save the removed bif for later freeing */
4583 	TAILQ_INSERT_HEAD(dmsg->br_bif_list, bif, bif_next);
4584 
4585 	netisr_forwardmsg(&dmsg->base, mycpuid + 1);
4586 }
4587 
4588 static void
4589 bridge_del_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4590 	       struct bridge_iflist_head *saved_bifs)
4591 {
4592 	struct netmsg_brdelbif dmsg;
4593 
4594 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4595 
4596 	netmsg_init(&dmsg.base, NULL, &curthread->td_msgport,
4597 		    0, bridge_del_bif_handler);
4598 	dmsg.br_softc = sc;
4599 	dmsg.br_bif_info = bif_info;
4600 	dmsg.br_bif_list = saved_bifs;
4601 
4602 	netisr_domsg(&dmsg.base, 0);
4603 }
4604