xref: /dragonfly/sys/net/bridge/if_bridge.c (revision 25a2db75)
1 /*
2  * Copyright 2001 Wasabi Systems, Inc.
3  * All rights reserved.
4  *
5  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed for the NetBSD Project by
18  *	Wasabi Systems, Inc.
19  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by Jason L. Wright
51  * 4. The name of the author may not be used to endorse or promote products
52  *    derived from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
56  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
57  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
58  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
63  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp $
67  * $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $
68  * $FreeBSD: src/sys/net/if_bridge.c,v 1.26 2005/10/13 23:05:55 thompsa Exp $
69  */
70 
71 /*
72  * Network interface bridge support.
73  *
74  * TODO:
75  *
76  *	- Currently only supports Ethernet-like interfaces (Ethernet,
77  *	  802.11, VLANs on Ethernet, etc.)  Figure out a nice way
78  *	  to bridge other types of interfaces (FDDI-FDDI, and maybe
79  *	  consider heterogenous bridges).
80  *
81  *
82  * Bridge's route information is duplicated to each CPUs:
83  *
84  *      CPU0          CPU1          CPU2          CPU3
85  * +-----------+ +-----------+ +-----------+ +-----------+
86  * |  rtnode   | |  rtnode   | |  rtnode   | |  rtnode   |
87  * |           | |           | |           | |           |
88  * | dst eaddr | | dst eaddr | | dst eaddr | | dst eaddr |
89  * +-----------+ +-----------+ +-----------+ +-----------+
90  *       |         |                     |         |
91  *       |         |                     |         |
92  *       |         |     +----------+    |         |
93  *       |         |     |  rtinfo  |    |         |
94  *       |         +---->|          |<---+         |
95  *       |               |  flags   |              |
96  *       +-------------->|  timeout |<-------------+
97  *                       |  dst_ifp |
98  *                       +----------+
99  *
100  * We choose to put timeout and dst_ifp into shared part, so updating
101  * them will be cheaper than using message forwarding.  Also there is
102  * not need to use spinlock to protect the updating: timeout and dst_ifp
103  * is not related and specific field's updating order has no importance.
104  * The cache pollution by the share part should not be heavy: in a stable
105  * setup, dst_ifp probably will be not changed in rtnode's life time,
106  * while timeout is refreshed once per second; most of the time, timeout
107  * and dst_ifp are read-only accessed.
108  *
109  *
110  * Bridge route information installation on bridge_input path:
111  *
112  *      CPU0           CPU1         CPU2          CPU3
113  *
114  *                               tcp_thread2
115  *                                    |
116  *                                alloc nmsg
117  *                    snd nmsg        |
118  *                    w/o rtinfo      |
119  *      ifnet0<-----------------------+
120  *        |                           :
121  *    lookup dst                      :
122  *   rtnode exists?(Y)free nmsg       :
123  *        |(N)                        :
124  *        |
125  *  alloc rtinfo
126  *  alloc rtnode
127  * install rtnode
128  *        |
129  *        +---------->ifnet1
130  *        : fwd nmsg    |
131  *        : w/ rtinfo   |
132  *        :             |
133  *        :             |
134  *                 alloc rtnode
135  *               (w/ nmsg's rtinfo)
136  *                install rtnode
137  *                      |
138  *                      +---------->ifnet2
139  *                      : fwd nmsg    |
140  *                      : w/ rtinfo   |
141  *                      :             |
142  *                      :         same as ifnet1
143  *                                    |
144  *                                    +---------->ifnet3
145  *                                    : fwd nmsg    |
146  *                                    : w/ rtinfo   |
147  *                                    :             |
148  *                                    :         same as ifnet1
149  *                                               free nmsg
150  *                                                  :
151  *                                                  :
152  *
153  * The netmsgs forwarded between protocol threads and ifnet threads are
154  * allocated with (M_WAITOK|M_NULLOK), so it will not fail under most
155  * cases (route information is too precious to be not installed :).
156  * Since multiple threads may try to install route information for the
157  * same dst eaddr, we look up route information in ifnet0.  However, this
158  * looking up only need to be performed on ifnet0, which is the start
159  * point of the route information installation process.
160  *
161  *
162  * Bridge route information deleting/flushing:
163  *
164  *  CPU0            CPU1             CPU2             CPU3
165  *
166  * netisr0
167  *   |
168  * find suitable rtnodes,
169  * mark their rtinfo dead
170  *   |
171  *   | domsg <------------------------------------------+
172  *   |                                                  | replymsg
173  *   |                                                  |
174  *   V     fwdmsg           fwdmsg           fwdmsg     |
175  * ifnet0 --------> ifnet1 --------> ifnet2 --------> ifnet3
176  * delete rtnodes   delete rtnodes   delete rtnodes   delete rtnodes
177  * w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo
178  *                                                    free dead rtinfos
179  *
180  * All deleting/flushing operations are serialized by netisr0, so each
181  * operation only reaps the route information marked dead by itself.
182  *
183  *
184  * Bridge route information adding/deleting/flushing:
185  * Since all operation is serialized by the fixed message flow between
186  * ifnet threads, it is not possible to create corrupted per-cpu route
187  * information.
188  *
189  *
190  *
191  * Percpu member interface list iteration with blocking operation:
192  * Since one bridge could only delete one member interface at a time and
193  * the deleted member interface is not freed after netmsg_service_sync(),
194  * following way is used to make sure that even if the certain member
195  * interface is ripped from the percpu list during the blocking operation,
196  * the iteration still could keep going:
197  *
198  * TAILQ_FOREACH_MUTABLE(bif, sc->sc_iflists[mycpuid], bif_next, nbif) {
199  *     blocking operation;
200  *     blocking operation;
201  *     ...
202  *     ...
203  *     if (nbif != NULL && !nbif->bif_onlist) {
204  *         KKASSERT(bif->bif_onlist);
205  *         nbif = TAILQ_NEXT(bif, bif_next);
206  *     }
207  * }
208  *
209  * As mentioned above only one member interface could be unlinked from the
210  * percpu member interface list, so either bif or nbif may be not on the list,
211  * but _not_ both.  To keep the list iteration, we don't care about bif, but
212  * only nbif.  Since removed member interface will only be freed after we
213  * finish our work, it is safe to access any field in an unlinked bif (here
214  * bif_onlist).  If nbif is no longer on the list, then bif must be on the
215  * list, so we change nbif to the next element of bif and keep going.
216  */
217 
218 #include "opt_inet.h"
219 #include "opt_inet6.h"
220 
221 #include <sys/param.h>
222 #include <sys/mbuf.h>
223 #include <sys/malloc.h>
224 #include <sys/protosw.h>
225 #include <sys/systm.h>
226 #include <sys/time.h>
227 #include <sys/socket.h> /* for net/if.h */
228 #include <sys/sockio.h>
229 #include <sys/ctype.h>  /* string functions */
230 #include <sys/kernel.h>
231 #include <sys/random.h>
232 #include <sys/sysctl.h>
233 #include <sys/module.h>
234 #include <sys/proc.h>
235 #include <sys/priv.h>
236 #include <sys/lock.h>
237 #include <sys/thread.h>
238 #include <sys/thread2.h>
239 #include <sys/mpipe.h>
240 
241 #include <net/bpf.h>
242 #include <net/if.h>
243 #include <net/if_dl.h>
244 #include <net/if_types.h>
245 #include <net/if_var.h>
246 #include <net/pfil.h>
247 #include <net/ifq_var.h>
248 #include <net/if_clone.h>
249 
250 #include <netinet/in.h> /* for struct arpcom */
251 #include <netinet/in_systm.h>
252 #include <netinet/in_var.h>
253 #include <netinet/ip.h>
254 #include <netinet/ip_var.h>
255 #ifdef INET6
256 #include <netinet/ip6.h>
257 #include <netinet6/ip6_var.h>
258 #endif
259 #include <netinet/if_ether.h> /* for struct arpcom */
260 #include <net/bridge/if_bridgevar.h>
261 #include <net/if_llc.h>
262 #include <net/netmsg2.h>
263 #include <net/netisr2.h>
264 
265 #include <net/route.h>
266 #include <sys/in_cksum.h>
267 
268 /*
269  * Size of the route hash table.  Must be a power of two.
270  */
271 #ifndef BRIDGE_RTHASH_SIZE
272 #define	BRIDGE_RTHASH_SIZE		1024
273 #endif
274 
275 #define	BRIDGE_RTHASH_MASK		(BRIDGE_RTHASH_SIZE - 1)
276 
277 /*
278  * Maximum number of addresses to cache.
279  */
280 #ifndef BRIDGE_RTABLE_MAX
281 #define	BRIDGE_RTABLE_MAX		100
282 #endif
283 
284 /*
285  * Spanning tree defaults.
286  */
287 #define	BSTP_DEFAULT_MAX_AGE		(20 * 256)
288 #define	BSTP_DEFAULT_HELLO_TIME		(2 * 256)
289 #define	BSTP_DEFAULT_FORWARD_DELAY	(15 * 256)
290 #define	BSTP_DEFAULT_HOLD_TIME		(1 * 256)
291 #define	BSTP_DEFAULT_BRIDGE_PRIORITY	0x8000
292 #define	BSTP_DEFAULT_PORT_PRIORITY	0x80
293 #define	BSTP_DEFAULT_PATH_COST		55
294 
295 /*
296  * Timeout (in seconds) for entries learned dynamically.
297  */
298 #ifndef BRIDGE_RTABLE_TIMEOUT
299 #define	BRIDGE_RTABLE_TIMEOUT		(20 * 60)	/* same as ARP */
300 #endif
301 
302 /*
303  * Number of seconds between walks of the route list.
304  */
305 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD
306 #define	BRIDGE_RTABLE_PRUNE_PERIOD	(5 * 60)
307 #endif
308 
309 /*
310  * List of capabilities to mask on the member interface.
311  */
312 #define	BRIDGE_IFCAPS_MASK		(IFCAP_TXCSUM | IFCAP_TSO)
313 
314 typedef int	(*bridge_ctl_t)(struct bridge_softc *, void *);
315 
316 struct netmsg_brctl {
317 	struct netmsg_base	base;
318 	bridge_ctl_t		bc_func;
319 	struct bridge_softc	*bc_sc;
320 	void			*bc_arg;
321 };
322 
323 struct netmsg_brsaddr {
324 	struct netmsg_base	base;
325 	struct bridge_softc	*br_softc;
326 	struct ifnet		*br_dst_if;
327 	struct bridge_rtinfo	*br_rtinfo;
328 	int			br_setflags;
329 	uint8_t			br_dst[ETHER_ADDR_LEN];
330 	uint8_t			br_flags;
331 };
332 
333 struct netmsg_braddbif {
334 	struct netmsg_base	base;
335 	struct bridge_softc	*br_softc;
336 	struct bridge_ifinfo	*br_bif_info;
337 	struct ifnet		*br_bif_ifp;
338 };
339 
340 struct netmsg_brdelbif {
341 	struct netmsg_base	base;
342 	struct bridge_softc	*br_softc;
343 	struct bridge_ifinfo	*br_bif_info;
344 	struct bridge_iflist_head *br_bif_list;
345 };
346 
347 struct netmsg_brsflags {
348 	struct netmsg_base	base;
349 	struct bridge_softc	*br_softc;
350 	struct bridge_ifinfo	*br_bif_info;
351 	uint32_t		br_bif_flags;
352 };
353 
354 eventhandler_tag	bridge_detach_cookie = NULL;
355 
356 extern	struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
357 extern	int (*bridge_output_p)(struct ifnet *, struct mbuf *);
358 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
359 extern  struct ifnet *(*bridge_interface_p)(void *if_bridge);
360 
361 static int	bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
362 
363 static int	bridge_clone_create(struct if_clone *, int, caddr_t);
364 static int	bridge_clone_destroy(struct ifnet *);
365 
366 static int	bridge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
367 static void	bridge_mutecaps(struct bridge_ifinfo *, struct ifnet *, int);
368 static void	bridge_ifdetach(void *, struct ifnet *);
369 static void	bridge_init(void *);
370 static int	bridge_from_us(struct bridge_softc *, struct ether_header *);
371 static void	bridge_stop(struct ifnet *);
372 static void	bridge_start(struct ifnet *, struct ifaltq_subque *);
373 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *);
374 static int	bridge_output(struct ifnet *, struct mbuf *);
375 static struct ifnet *bridge_interface(void *if_bridge);
376 
377 static void	bridge_forward(struct bridge_softc *, struct mbuf *m);
378 
379 static void	bridge_timer_handler(netmsg_t);
380 static void	bridge_timer(void *);
381 
382 static void	bridge_start_bcast(struct bridge_softc *, struct mbuf *);
383 static void	bridge_broadcast(struct bridge_softc *, struct ifnet *,
384 		    struct mbuf *);
385 static void	bridge_span(struct bridge_softc *, struct mbuf *);
386 
387 static int	bridge_rtupdate(struct bridge_softc *, const uint8_t *,
388 		    struct ifnet *, uint8_t);
389 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *);
390 static void	bridge_rtreap(struct bridge_softc *);
391 static void	bridge_rtreap_async(struct bridge_softc *);
392 static void	bridge_rttrim(struct bridge_softc *);
393 static int	bridge_rtage_finddead(struct bridge_softc *);
394 static void	bridge_rtage(struct bridge_softc *);
395 static void	bridge_rtflush(struct bridge_softc *, int);
396 static int	bridge_rtdaddr(struct bridge_softc *, const uint8_t *);
397 static int	bridge_rtsaddr(struct bridge_softc *, const uint8_t *,
398 		    struct ifnet *, uint8_t);
399 static void	bridge_rtmsg_sync(struct bridge_softc *sc);
400 static void	bridge_rtreap_handler(netmsg_t);
401 static void	bridge_rtinstall_handler(netmsg_t);
402 static int	bridge_rtinstall_oncpu(struct bridge_softc *, const uint8_t *,
403 		    struct ifnet *, int, uint8_t, struct bridge_rtinfo **);
404 
405 static void	bridge_rtable_init(struct bridge_softc *);
406 static void	bridge_rtable_fini(struct bridge_softc *);
407 
408 static int	bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
409 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
410 		    const uint8_t *);
411 static void	bridge_rtnode_insert(struct bridge_softc *,
412 		    struct bridge_rtnode *);
413 static void	bridge_rtnode_destroy(struct bridge_softc *,
414 		    struct bridge_rtnode *);
415 
416 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
417 		    const char *name);
418 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
419 		    struct ifnet *ifp);
420 static struct bridge_iflist *bridge_lookup_member_ifinfo(struct bridge_softc *,
421 		    struct bridge_ifinfo *);
422 static void	bridge_delete_member(struct bridge_softc *,
423 		    struct bridge_iflist *, int);
424 static void	bridge_delete_span(struct bridge_softc *,
425 		    struct bridge_iflist *);
426 
427 static int	bridge_control(struct bridge_softc *, u_long,
428 			       bridge_ctl_t, void *);
429 static int	bridge_ioctl_init(struct bridge_softc *, void *);
430 static int	bridge_ioctl_stop(struct bridge_softc *, void *);
431 static int	bridge_ioctl_add(struct bridge_softc *, void *);
432 static int	bridge_ioctl_del(struct bridge_softc *, void *);
433 static void	bridge_ioctl_fillflags(struct bridge_softc *sc,
434 				struct bridge_iflist *bif, struct ifbreq *req);
435 static int	bridge_ioctl_gifflags(struct bridge_softc *, void *);
436 static int	bridge_ioctl_sifflags(struct bridge_softc *, void *);
437 static int	bridge_ioctl_scache(struct bridge_softc *, void *);
438 static int	bridge_ioctl_gcache(struct bridge_softc *, void *);
439 static int	bridge_ioctl_gifs(struct bridge_softc *, void *);
440 static int	bridge_ioctl_rts(struct bridge_softc *, void *);
441 static int	bridge_ioctl_saddr(struct bridge_softc *, void *);
442 static int	bridge_ioctl_sto(struct bridge_softc *, void *);
443 static int	bridge_ioctl_gto(struct bridge_softc *, void *);
444 static int	bridge_ioctl_daddr(struct bridge_softc *, void *);
445 static int	bridge_ioctl_flush(struct bridge_softc *, void *);
446 static int	bridge_ioctl_gpri(struct bridge_softc *, void *);
447 static int	bridge_ioctl_spri(struct bridge_softc *, void *);
448 static int	bridge_ioctl_reinit(struct bridge_softc *, void *);
449 static int	bridge_ioctl_ght(struct bridge_softc *, void *);
450 static int	bridge_ioctl_sht(struct bridge_softc *, void *);
451 static int	bridge_ioctl_gfd(struct bridge_softc *, void *);
452 static int	bridge_ioctl_sfd(struct bridge_softc *, void *);
453 static int	bridge_ioctl_gma(struct bridge_softc *, void *);
454 static int	bridge_ioctl_sma(struct bridge_softc *, void *);
455 static int	bridge_ioctl_sifprio(struct bridge_softc *, void *);
456 static int	bridge_ioctl_sifcost(struct bridge_softc *, void *);
457 static int	bridge_ioctl_addspan(struct bridge_softc *, void *);
458 static int	bridge_ioctl_delspan(struct bridge_softc *, void *);
459 static int	bridge_ioctl_sifbondwght(struct bridge_softc *, void *);
460 static int	bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *,
461 		    int);
462 static int	bridge_ip_checkbasic(struct mbuf **mp);
463 #ifdef INET6
464 static int	bridge_ip6_checkbasic(struct mbuf **mp);
465 #endif /* INET6 */
466 static int	bridge_fragment(struct ifnet *, struct mbuf *,
467 		    struct ether_header *, int, struct llc *);
468 static void	bridge_enqueue_handler(netmsg_t);
469 static void	bridge_handoff(struct bridge_softc *, struct ifnet *,
470 		    struct mbuf *, int);
471 
472 static void	bridge_del_bif_handler(netmsg_t);
473 static void	bridge_add_bif_handler(netmsg_t);
474 static void	bridge_del_bif(struct bridge_softc *, struct bridge_ifinfo *,
475 		    struct bridge_iflist_head *);
476 static void	bridge_add_bif(struct bridge_softc *, struct bridge_ifinfo *,
477 		    struct ifnet *);
478 
479 SYSCTL_DECL(_net_link);
480 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge");
481 
482 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */
483 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */
484 static int pfil_member = 1; /* run pfil hooks on the member interface */
485 static int bridge_debug;
486 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW,
487     &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled");
488 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW,
489     &pfil_bridge, 0, "Packet filter on the bridge interface");
490 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW,
491     &pfil_member, 0, "Packet filter on the member interface");
492 SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW,
493     &bridge_debug, 0, "Bridge debug mode");
494 
495 struct bridge_control_arg {
496 	union {
497 		struct ifbreq ifbreq;
498 		struct ifbifconf ifbifconf;
499 		struct ifbareq ifbareq;
500 		struct ifbaconf ifbaconf;
501 		struct ifbrparam ifbrparam;
502 	} bca_u;
503 	int	bca_len;
504 	void	*bca_uptr;
505 	void	*bca_kptr;
506 };
507 
508 struct bridge_control {
509 	bridge_ctl_t	bc_func;
510 	int		bc_argsize;
511 	int		bc_flags;
512 };
513 
514 #define	BC_F_COPYIN		0x01	/* copy arguments in */
515 #define	BC_F_COPYOUT		0x02	/* copy arguments out */
516 #define	BC_F_SUSER		0x04	/* do super-user check */
517 
518 const struct bridge_control bridge_control_table[] = {
519 	{ bridge_ioctl_add,		sizeof(struct ifbreq),
520 	  BC_F_COPYIN|BC_F_SUSER },
521 	{ bridge_ioctl_del,		sizeof(struct ifbreq),
522 	  BC_F_COPYIN|BC_F_SUSER },
523 
524 	{ bridge_ioctl_gifflags,	sizeof(struct ifbreq),
525 	  BC_F_COPYIN|BC_F_COPYOUT },
526 	{ bridge_ioctl_sifflags,	sizeof(struct ifbreq),
527 	  BC_F_COPYIN|BC_F_SUSER },
528 
529 	{ bridge_ioctl_scache,		sizeof(struct ifbrparam),
530 	  BC_F_COPYIN|BC_F_SUSER },
531 	{ bridge_ioctl_gcache,		sizeof(struct ifbrparam),
532 	  BC_F_COPYOUT },
533 
534 	{ bridge_ioctl_gifs,		sizeof(struct ifbifconf),
535 	  BC_F_COPYIN|BC_F_COPYOUT },
536 	{ bridge_ioctl_rts,		sizeof(struct ifbaconf),
537 	  BC_F_COPYIN|BC_F_COPYOUT },
538 
539 	{ bridge_ioctl_saddr,		sizeof(struct ifbareq),
540 	  BC_F_COPYIN|BC_F_SUSER },
541 
542 	{ bridge_ioctl_sto,		sizeof(struct ifbrparam),
543 	  BC_F_COPYIN|BC_F_SUSER },
544 	{ bridge_ioctl_gto,		sizeof(struct ifbrparam),
545 	  BC_F_COPYOUT },
546 
547 	{ bridge_ioctl_daddr,		sizeof(struct ifbareq),
548 	  BC_F_COPYIN|BC_F_SUSER },
549 
550 	{ bridge_ioctl_flush,		sizeof(struct ifbreq),
551 	  BC_F_COPYIN|BC_F_SUSER },
552 
553 	{ bridge_ioctl_gpri,		sizeof(struct ifbrparam),
554 	  BC_F_COPYOUT },
555 	{ bridge_ioctl_spri,		sizeof(struct ifbrparam),
556 	  BC_F_COPYIN|BC_F_SUSER },
557 
558 	{ bridge_ioctl_ght,		sizeof(struct ifbrparam),
559 	  BC_F_COPYOUT },
560 	{ bridge_ioctl_sht,		sizeof(struct ifbrparam),
561 	  BC_F_COPYIN|BC_F_SUSER },
562 
563 	{ bridge_ioctl_gfd,		sizeof(struct ifbrparam),
564 	  BC_F_COPYOUT },
565 	{ bridge_ioctl_sfd,		sizeof(struct ifbrparam),
566 	  BC_F_COPYIN|BC_F_SUSER },
567 
568 	{ bridge_ioctl_gma,		sizeof(struct ifbrparam),
569 	  BC_F_COPYOUT },
570 	{ bridge_ioctl_sma,		sizeof(struct ifbrparam),
571 	  BC_F_COPYIN|BC_F_SUSER },
572 
573 	{ bridge_ioctl_sifprio,		sizeof(struct ifbreq),
574 	  BC_F_COPYIN|BC_F_SUSER },
575 
576 	{ bridge_ioctl_sifcost,		sizeof(struct ifbreq),
577 	  BC_F_COPYIN|BC_F_SUSER },
578 
579 	{ bridge_ioctl_addspan,		sizeof(struct ifbreq),
580 	  BC_F_COPYIN|BC_F_SUSER },
581 	{ bridge_ioctl_delspan,		sizeof(struct ifbreq),
582 	  BC_F_COPYIN|BC_F_SUSER },
583 
584 	{ bridge_ioctl_sifbondwght,	sizeof(struct ifbreq),
585 	  BC_F_COPYIN|BC_F_SUSER },
586 
587 };
588 static const int bridge_control_table_size = NELEM(bridge_control_table);
589 
590 LIST_HEAD(, bridge_softc) bridge_list;
591 
592 struct if_clone bridge_cloner = IF_CLONE_INITIALIZER("bridge",
593 				bridge_clone_create,
594 				bridge_clone_destroy, 0, IF_MAXUNIT);
595 
596 static int
597 bridge_modevent(module_t mod, int type, void *data)
598 {
599 	switch (type) {
600 	case MOD_LOAD:
601 		LIST_INIT(&bridge_list);
602 		if_clone_attach(&bridge_cloner);
603 		bridge_input_p = bridge_input;
604 		bridge_output_p = bridge_output;
605 		bridge_interface_p = bridge_interface;
606 		bridge_detach_cookie = EVENTHANDLER_REGISTER(
607 		    ifnet_detach_event, bridge_ifdetach, NULL,
608 		    EVENTHANDLER_PRI_ANY);
609 #if 0 /* notyet */
610 		bstp_linkstate_p = bstp_linkstate;
611 #endif
612 		break;
613 	case MOD_UNLOAD:
614 		if (!LIST_EMPTY(&bridge_list))
615 			return (EBUSY);
616 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
617 		    bridge_detach_cookie);
618 		if_clone_detach(&bridge_cloner);
619 		bridge_input_p = NULL;
620 		bridge_output_p = NULL;
621 		bridge_interface_p = NULL;
622 #if 0 /* notyet */
623 		bstp_linkstate_p = NULL;
624 #endif
625 		break;
626 	default:
627 		return (EOPNOTSUPP);
628 	}
629 	return (0);
630 }
631 
632 static moduledata_t bridge_mod = {
633 	"if_bridge",
634 	bridge_modevent,
635 	0
636 };
637 
638 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
639 
640 
641 /*
642  * bridge_clone_create:
643  *
644  *	Create a new bridge instance.
645  */
646 static int
647 bridge_clone_create(struct if_clone *ifc, int unit, caddr_t param __unused)
648 {
649 	struct bridge_softc *sc;
650 	struct ifnet *ifp;
651 	u_char eaddr[6];
652 	int cpu, rnd;
653 
654 	sc = kmalloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
655 	ifp = sc->sc_ifp = &sc->sc_if;
656 
657 	sc->sc_brtmax = BRIDGE_RTABLE_MAX;
658 	sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
659 	sc->sc_bridge_max_age = BSTP_DEFAULT_MAX_AGE;
660 	sc->sc_bridge_hello_time = BSTP_DEFAULT_HELLO_TIME;
661 	sc->sc_bridge_forward_delay = BSTP_DEFAULT_FORWARD_DELAY;
662 	sc->sc_bridge_priority = BSTP_DEFAULT_BRIDGE_PRIORITY;
663 	sc->sc_hold_time = BSTP_DEFAULT_HOLD_TIME;
664 
665 	/* Initialize our routing table. */
666 	bridge_rtable_init(sc);
667 
668 	callout_init(&sc->sc_brcallout);
669 	netmsg_init(&sc->sc_brtimemsg, NULL, &netisr_adone_rport,
670 		    MSGF_DROPABLE, bridge_timer_handler);
671 	sc->sc_brtimemsg.lmsg.u.ms_resultp = sc;
672 
673 	callout_init(&sc->sc_bstpcallout);
674 	netmsg_init(&sc->sc_bstptimemsg, NULL, &netisr_adone_rport,
675 		    MSGF_DROPABLE, bstp_tick_handler);
676 	sc->sc_bstptimemsg.lmsg.u.ms_resultp = sc;
677 
678 	/* Initialize per-cpu member iface lists */
679 	sc->sc_iflists = kmalloc(sizeof(*sc->sc_iflists) * ncpus,
680 				 M_DEVBUF, M_WAITOK);
681 	for (cpu = 0; cpu < ncpus; ++cpu)
682 		TAILQ_INIT(&sc->sc_iflists[cpu]);
683 
684 	TAILQ_INIT(&sc->sc_spanlist);
685 
686 	ifp->if_softc = sc;
687 	if_initname(ifp, ifc->ifc_name, unit);
688 	ifp->if_mtu = ETHERMTU;
689 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
690 	ifp->if_ioctl = bridge_ioctl;
691 	ifp->if_start = bridge_start;
692 	ifp->if_init = bridge_init;
693 	ifp->if_type = IFT_ETHER;
694 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
695 	ifq_set_ready(&ifp->if_snd);
696 	ifp->if_hdrlen = ETHER_HDR_LEN;
697 
698 	/*
699 	 * Generate a random ethernet address and use the private AC:DE:48
700 	 * OUI code.
701 	 */
702 	rnd = karc4random();
703 	bcopy(&rnd, &eaddr[0], 4); /* ETHER_ADDR_LEN == 6 */
704 	rnd = karc4random();
705 	bcopy(&rnd, &eaddr[2], 4); /* ETHER_ADDR_LEN == 6 */
706 
707 	eaddr[0] &= ~1;	/* clear multicast bit */
708 	eaddr[0] |= 2;	/* set the LAA bit */
709 
710 	ether_ifattach(ifp, eaddr, NULL);
711 	/* Now undo some of the damage... */
712 	ifp->if_baudrate = 0;
713 	/*ifp->if_type = IFT_BRIDGE;*/
714 
715 	crit_enter();	/* XXX MP */
716 	LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
717 	crit_exit();
718 
719 	return (0);
720 }
721 
722 static void
723 bridge_delete_dispatch(netmsg_t msg)
724 {
725 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
726 	struct ifnet *bifp = sc->sc_ifp;
727 	struct bridge_iflist *bif;
728 
729 	ifnet_serialize_all(bifp);
730 
731 	while ((bif = TAILQ_FIRST(&sc->sc_iflists[mycpuid])) != NULL)
732 		bridge_delete_member(sc, bif, 0);
733 
734 	while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL)
735 		bridge_delete_span(sc, bif);
736 
737 	ifnet_deserialize_all(bifp);
738 
739 	lwkt_replymsg(&msg->lmsg, 0);
740 }
741 
742 /*
743  * bridge_clone_destroy:
744  *
745  *	Destroy a bridge instance.
746  */
747 static int
748 bridge_clone_destroy(struct ifnet *ifp)
749 {
750 	struct bridge_softc *sc = ifp->if_softc;
751 	struct netmsg_base msg;
752 
753 	ifnet_serialize_all(ifp);
754 
755 	bridge_stop(ifp);
756 	ifp->if_flags &= ~IFF_UP;
757 
758 	ifnet_deserialize_all(ifp);
759 
760 	netmsg_init(&msg, NULL, &curthread->td_msgport,
761 		    0, bridge_delete_dispatch);
762 	msg.lmsg.u.ms_resultp = sc;
763 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
764 
765 	crit_enter();	/* XXX MP */
766 	LIST_REMOVE(sc, sc_list);
767 	crit_exit();
768 
769 	ether_ifdetach(ifp);
770 
771 	/* Tear down the routing table. */
772 	bridge_rtable_fini(sc);
773 
774 	/* Free per-cpu member iface lists */
775 	kfree(sc->sc_iflists, M_DEVBUF);
776 
777 	kfree(sc, M_DEVBUF);
778 
779 	return 0;
780 }
781 
782 /*
783  * bridge_ioctl:
784  *
785  *	Handle a control request from the operator.
786  */
787 static int
788 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
789 {
790 	struct bridge_softc *sc = ifp->if_softc;
791 	struct bridge_control_arg args;
792 	struct ifdrv *ifd = (struct ifdrv *) data;
793 	const struct bridge_control *bc;
794 	int error = 0;
795 
796 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
797 
798 	switch (cmd) {
799 	case SIOCADDMULTI:
800 	case SIOCDELMULTI:
801 		break;
802 
803 	case SIOCGDRVSPEC:
804 	case SIOCSDRVSPEC:
805 		if (ifd->ifd_cmd >= bridge_control_table_size) {
806 			error = EINVAL;
807 			break;
808 		}
809 		bc = &bridge_control_table[ifd->ifd_cmd];
810 
811 		if (cmd == SIOCGDRVSPEC &&
812 		    (bc->bc_flags & BC_F_COPYOUT) == 0) {
813 			error = EINVAL;
814 			break;
815 		} else if (cmd == SIOCSDRVSPEC &&
816 			   (bc->bc_flags & BC_F_COPYOUT)) {
817 			error = EINVAL;
818 			break;
819 		}
820 
821 		if (bc->bc_flags & BC_F_SUSER) {
822 			error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY);
823 			if (error)
824 				break;
825 		}
826 
827 		if (ifd->ifd_len != bc->bc_argsize ||
828 		    ifd->ifd_len > sizeof(args.bca_u)) {
829 			error = EINVAL;
830 			break;
831 		}
832 
833 		memset(&args, 0, sizeof(args));
834 		if (bc->bc_flags & BC_F_COPYIN) {
835 			error = copyin(ifd->ifd_data, &args.bca_u,
836 				       ifd->ifd_len);
837 			if (error)
838 				break;
839 		}
840 
841 		error = bridge_control(sc, cmd, bc->bc_func, &args);
842 		if (error) {
843 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
844 			break;
845 		}
846 
847 		if (bc->bc_flags & BC_F_COPYOUT) {
848 			error = copyout(&args, ifd->ifd_data, ifd->ifd_len);
849 			if (args.bca_len != 0) {
850 				KKASSERT(args.bca_kptr != NULL);
851 				if (!error) {
852 					error = copyout(args.bca_kptr,
853 						args.bca_uptr, args.bca_len);
854 				}
855 				kfree(args.bca_kptr, M_TEMP);
856 			} else {
857 				KKASSERT(args.bca_kptr == NULL);
858 			}
859 		} else {
860 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
861 		}
862 		break;
863 
864 	case SIOCSIFFLAGS:
865 		if (!(ifp->if_flags & IFF_UP) &&
866 		    (ifp->if_flags & IFF_RUNNING)) {
867 			/*
868 			 * If interface is marked down and it is running,
869 			 * then stop it.
870 			 */
871 			bridge_stop(ifp);
872 		} else if ((ifp->if_flags & IFF_UP) &&
873 		    !(ifp->if_flags & IFF_RUNNING)) {
874 			/*
875 			 * If interface is marked up and it is stopped, then
876 			 * start it.
877 			 */
878 			ifp->if_init(sc);
879 		}
880 
881 		/*
882 		 * If running and link flag state change we have to
883 		 * reinitialize as well.
884 		 */
885 		if ((ifp->if_flags & IFF_RUNNING) &&
886 		    (ifp->if_flags & (IFF_LINK0|IFF_LINK1|IFF_LINK2)) !=
887 		    sc->sc_copy_flags) {
888 			sc->sc_copy_flags = ifp->if_flags &
889 					(IFF_LINK0|IFF_LINK1|IFF_LINK2);
890 			bridge_control(sc, 0, bridge_ioctl_reinit, NULL);
891 		}
892 
893 		break;
894 
895 	case SIOCSIFMTU:
896 		/* Do not allow the MTU to be changed on the bridge */
897 		error = EINVAL;
898 		break;
899 
900 	default:
901 		error = ether_ioctl(ifp, cmd, data);
902 		break;
903 	}
904 	return (error);
905 }
906 
907 /*
908  * bridge_mutecaps:
909  *
910  *	Clear or restore unwanted capabilities on the member interface
911  */
912 static void
913 bridge_mutecaps(struct bridge_ifinfo *bif_info, struct ifnet *ifp, int mute)
914 {
915 	struct ifreq ifr;
916 
917 	if (ifp->if_ioctl == NULL)
918 		return;
919 
920 	bzero(&ifr, sizeof(ifr));
921 	ifr.ifr_reqcap = ifp->if_capenable;
922 
923 	if (mute) {
924 		/* mask off and save capabilities */
925 		bif_info->bifi_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK;
926 		if (bif_info->bifi_mutecap != 0)
927 			ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK;
928 	} else {
929 		/* restore muted capabilities */
930 		ifr.ifr_reqcap |= bif_info->bifi_mutecap;
931 	}
932 
933 	if (bif_info->bifi_mutecap != 0) {
934 		ifnet_serialize_all(ifp);
935 		ifp->if_ioctl(ifp, SIOCSIFCAP, (caddr_t)&ifr, NULL);
936 		ifnet_deserialize_all(ifp);
937 	}
938 }
939 
940 /*
941  * bridge_lookup_member:
942  *
943  *	Lookup a bridge member interface.
944  */
945 static struct bridge_iflist *
946 bridge_lookup_member(struct bridge_softc *sc, const char *name)
947 {
948 	struct bridge_iflist *bif;
949 
950 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
951 		if (strcmp(bif->bif_ifp->if_xname, name) == 0)
952 			return (bif);
953 	}
954 	return (NULL);
955 }
956 
957 /*
958  * bridge_lookup_member_if:
959  *
960  *	Lookup a bridge member interface by ifnet*.
961  */
962 static struct bridge_iflist *
963 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
964 {
965 	struct bridge_iflist *bif;
966 
967 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
968 		if (bif->bif_ifp == member_ifp)
969 			return (bif);
970 	}
971 	return (NULL);
972 }
973 
974 /*
975  * bridge_lookup_member_ifinfo:
976  *
977  *	Lookup a bridge member interface by bridge_ifinfo.
978  */
979 static struct bridge_iflist *
980 bridge_lookup_member_ifinfo(struct bridge_softc *sc,
981 			    struct bridge_ifinfo *bif_info)
982 {
983 	struct bridge_iflist *bif;
984 
985 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
986 		if (bif->bif_info == bif_info)
987 			return (bif);
988 	}
989 	return (NULL);
990 }
991 
992 /*
993  * bridge_delete_member:
994  *
995  *	Delete the specified member interface.
996  */
997 static void
998 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif,
999     int gone)
1000 {
1001 	struct ifnet *ifs = bif->bif_ifp;
1002 	struct ifnet *bifp = sc->sc_ifp;
1003 	struct bridge_ifinfo *bif_info = bif->bif_info;
1004 	struct bridge_iflist_head saved_bifs;
1005 
1006 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1007 	KKASSERT(bif_info != NULL);
1008 
1009 	ifs->if_bridge = NULL;
1010 
1011 	/*
1012 	 * Release bridge interface's serializer:
1013 	 * - To avoid possible dead lock.
1014 	 * - Various sync operation will block the current thread.
1015 	 */
1016 	ifnet_deserialize_all(bifp);
1017 
1018 	if (!gone) {
1019 		switch (ifs->if_type) {
1020 		case IFT_ETHER:
1021 		case IFT_L2VLAN:
1022 			/*
1023 			 * Take the interface out of promiscuous mode.
1024 			 */
1025 			ifpromisc(ifs, 0);
1026 			bridge_mutecaps(bif_info, ifs, 0);
1027 			break;
1028 
1029 		case IFT_GIF:
1030 			break;
1031 
1032 		default:
1033 			panic("bridge_delete_member: impossible");
1034 			break;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Remove bifs from percpu linked list.
1040 	 *
1041 	 * Removed bifs are not freed immediately, instead,
1042 	 * they are saved in saved_bifs.  They will be freed
1043 	 * after we make sure that no one is accessing them,
1044 	 * i.e. after following netmsg_service_sync()
1045 	 */
1046 	TAILQ_INIT(&saved_bifs);
1047 	bridge_del_bif(sc, bif_info, &saved_bifs);
1048 
1049 	/*
1050 	 * Make sure that all protocol threads:
1051 	 * o  see 'ifs' if_bridge is changed
1052 	 * o  know that bif is removed from the percpu linked list
1053 	 */
1054 	netmsg_service_sync();
1055 
1056 	/*
1057 	 * Free the removed bifs
1058 	 */
1059 	KKASSERT(!TAILQ_EMPTY(&saved_bifs));
1060 	while ((bif = TAILQ_FIRST(&saved_bifs)) != NULL) {
1061 		TAILQ_REMOVE(&saved_bifs, bif, bif_next);
1062 		kfree(bif, M_DEVBUF);
1063 	}
1064 
1065 	/* See the comment in bridge_ioctl_stop() */
1066 	bridge_rtmsg_sync(sc);
1067 	bridge_rtdelete(sc, ifs, IFBF_FLUSHALL | IFBF_FLUSHSYNC);
1068 
1069 	ifnet_serialize_all(bifp);
1070 
1071 	if (bifp->if_flags & IFF_RUNNING)
1072 		bstp_initialization(sc);
1073 
1074 	/*
1075 	 * Free the bif_info after bstp_initialization(), so that
1076 	 * bridge_softc.sc_root_port will not reference a dangling
1077 	 * pointer.
1078 	 */
1079 	kfree(bif_info, M_DEVBUF);
1080 }
1081 
1082 /*
1083  * bridge_delete_span:
1084  *
1085  *	Delete the specified span interface.
1086  */
1087 static void
1088 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
1089 {
1090 	KASSERT(bif->bif_ifp->if_bridge == NULL,
1091 	    ("%s: not a span interface", __func__));
1092 
1093 	TAILQ_REMOVE(&sc->sc_iflists[mycpuid], bif, bif_next);
1094 	kfree(bif, M_DEVBUF);
1095 }
1096 
1097 static int
1098 bridge_ioctl_init(struct bridge_softc *sc, void *arg __unused)
1099 {
1100 	struct ifnet *ifp = sc->sc_ifp;
1101 
1102 	if (ifp->if_flags & IFF_RUNNING)
1103 		return 0;
1104 
1105 	callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz,
1106 	    bridge_timer, sc);
1107 
1108 	ifp->if_flags |= IFF_RUNNING;
1109 	bstp_initialization(sc);
1110 	return 0;
1111 }
1112 
1113 static int
1114 bridge_ioctl_stop(struct bridge_softc *sc, void *arg __unused)
1115 {
1116 	struct ifnet *ifp = sc->sc_ifp;
1117 
1118 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1119 		return 0;
1120 
1121 	callout_stop(&sc->sc_brcallout);
1122 
1123 	crit_enter();
1124 	lwkt_dropmsg(&sc->sc_brtimemsg.lmsg);
1125 	crit_exit();
1126 
1127 	bstp_stop(sc);
1128 
1129 	ifp->if_flags &= ~IFF_RUNNING;
1130 
1131 	ifnet_deserialize_all(ifp);
1132 
1133 	/* Let everyone know that we are stopped */
1134 	netmsg_service_sync();
1135 
1136 	/*
1137 	 * Sync ifnetX msgports in the order we forward rtnode
1138 	 * installation message.  This is used to make sure that
1139 	 * all rtnode installation messages sent by bridge_rtupdate()
1140 	 * during above netmsg_service_sync() are flushed.
1141 	 */
1142 	bridge_rtmsg_sync(sc);
1143 	bridge_rtflush(sc, IFBF_FLUSHDYN | IFBF_FLUSHSYNC);
1144 
1145 	ifnet_serialize_all(ifp);
1146 	return 0;
1147 }
1148 
1149 static int
1150 bridge_ioctl_add(struct bridge_softc *sc, void *arg)
1151 {
1152 	struct ifbreq *req = arg;
1153 	struct bridge_iflist *bif;
1154 	struct bridge_ifinfo *bif_info;
1155 	struct ifnet *ifs, *bifp;
1156 	int error = 0;
1157 
1158 	bifp = sc->sc_ifp;
1159 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1160 
1161 	ifs = ifunit(req->ifbr_ifsname);
1162 	if (ifs == NULL)
1163 		return (ENOENT);
1164 
1165 	/* If it's in the span list, it can't be a member. */
1166 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1167 		if (ifs == bif->bif_ifp)
1168 			return (EBUSY);
1169 
1170 	/* Allow the first Ethernet member to define the MTU */
1171 	if (ifs->if_type != IFT_GIF) {
1172 		if (TAILQ_EMPTY(&sc->sc_iflists[mycpuid])) {
1173 			bifp->if_mtu = ifs->if_mtu;
1174 		} else if (bifp->if_mtu != ifs->if_mtu) {
1175 			if_printf(bifp, "invalid MTU for %s\n", ifs->if_xname);
1176 			return (EINVAL);
1177 		}
1178 	}
1179 
1180 	if (ifs->if_bridge == sc)
1181 		return (EEXIST);
1182 
1183 	if (ifs->if_bridge != NULL)
1184 		return (EBUSY);
1185 
1186 	bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1187 	bif_info->bifi_priority = BSTP_DEFAULT_PORT_PRIORITY;
1188 	bif_info->bifi_path_cost = BSTP_DEFAULT_PATH_COST;
1189 	bif_info->bifi_ifp = ifs;
1190 	bif_info->bifi_bond_weight = 1;
1191 
1192 	/*
1193 	 * Release bridge interface's serializer:
1194 	 * - To avoid possible dead lock.
1195 	 * - Various sync operation will block the current thread.
1196 	 */
1197 	ifnet_deserialize_all(bifp);
1198 
1199 	switch (ifs->if_type) {
1200 	case IFT_ETHER:
1201 	case IFT_L2VLAN:
1202 		/*
1203 		 * Place the interface into promiscuous mode.
1204 		 */
1205 		error = ifpromisc(ifs, 1);
1206 		if (error) {
1207 			ifnet_serialize_all(bifp);
1208 			goto out;
1209 		}
1210 		bridge_mutecaps(bif_info, ifs, 1);
1211 		break;
1212 
1213 	case IFT_GIF: /* :^) */
1214 		break;
1215 
1216 	default:
1217 		error = EINVAL;
1218 		ifnet_serialize_all(bifp);
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * Add bifs to percpu linked lists
1224 	 */
1225 	bridge_add_bif(sc, bif_info, ifs);
1226 
1227 	ifnet_serialize_all(bifp);
1228 
1229 	if (bifp->if_flags & IFF_RUNNING)
1230 		bstp_initialization(sc);
1231 	else
1232 		bstp_stop(sc);
1233 
1234 	/*
1235 	 * Everything has been setup, so let the member interface
1236 	 * deliver packets to this bridge on its input/output path.
1237 	 */
1238 	ifs->if_bridge = sc;
1239 out:
1240 	if (error) {
1241 		if (bif_info != NULL)
1242 			kfree(bif_info, M_DEVBUF);
1243 	}
1244 	return (error);
1245 }
1246 
1247 static int
1248 bridge_ioctl_del(struct bridge_softc *sc, void *arg)
1249 {
1250 	struct ifbreq *req = arg;
1251 	struct bridge_iflist *bif;
1252 
1253 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1254 	if (bif == NULL)
1255 		return (ENOENT);
1256 
1257 	bridge_delete_member(sc, bif, 0);
1258 
1259 	return (0);
1260 }
1261 
1262 static int
1263 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
1264 {
1265 	struct ifbreq *req = arg;
1266 	struct bridge_iflist *bif;
1267 
1268 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1269 	if (bif == NULL)
1270 		return (ENOENT);
1271 	bridge_ioctl_fillflags(sc, bif, req);
1272 	return (0);
1273 }
1274 
1275 static void
1276 bridge_ioctl_fillflags(struct bridge_softc *sc, struct bridge_iflist *bif,
1277 		       struct ifbreq *req)
1278 {
1279 	req->ifbr_ifsflags = bif->bif_flags;
1280 	req->ifbr_state = bif->bif_state;
1281 	req->ifbr_priority = bif->bif_priority;
1282 	req->ifbr_path_cost = bif->bif_path_cost;
1283 	req->ifbr_bond_weight = bif->bif_bond_weight;
1284 	req->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1285 	if (bif->bif_flags & IFBIF_STP) {
1286 		req->ifbr_peer_root = bif->bif_peer_root;
1287 		req->ifbr_peer_bridge = bif->bif_peer_bridge;
1288 		req->ifbr_peer_cost = bif->bif_peer_cost;
1289 		req->ifbr_peer_port = bif->bif_peer_port;
1290 		if (bstp_supersedes_port_info(sc, bif)) {
1291 			req->ifbr_designated_root = bif->bif_peer_root;
1292 			req->ifbr_designated_bridge = bif->bif_peer_bridge;
1293 			req->ifbr_designated_cost = bif->bif_peer_cost;
1294 			req->ifbr_designated_port = bif->bif_peer_port;
1295 		} else {
1296 			req->ifbr_designated_root = sc->sc_bridge_id;
1297 			req->ifbr_designated_bridge = sc->sc_bridge_id;
1298 			req->ifbr_designated_cost = bif->bif_path_cost +
1299 						    bif->bif_peer_cost;
1300 			req->ifbr_designated_port = bif->bif_port_id;
1301 		}
1302 	} else {
1303 		req->ifbr_peer_root = 0;
1304 		req->ifbr_peer_bridge = 0;
1305 		req->ifbr_peer_cost = 0;
1306 		req->ifbr_peer_port = 0;
1307 		req->ifbr_designated_root = 0;
1308 		req->ifbr_designated_bridge = 0;
1309 		req->ifbr_designated_cost = 0;
1310 		req->ifbr_designated_port = 0;
1311 	}
1312 }
1313 
1314 static int
1315 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
1316 {
1317 	struct ifbreq *req = arg;
1318 	struct bridge_iflist *bif;
1319 	struct ifnet *bifp = sc->sc_ifp;
1320 
1321 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1322 	if (bif == NULL)
1323 		return (ENOENT);
1324 
1325 	if (req->ifbr_ifsflags & IFBIF_SPAN) {
1326 		/* SPAN is readonly */
1327 		return (EINVAL);
1328 	}
1329 
1330 	if (req->ifbr_ifsflags & IFBIF_STP) {
1331 		switch (bif->bif_ifp->if_type) {
1332 		case IFT_ETHER:
1333 			/* These can do spanning tree. */
1334 			break;
1335 
1336 		default:
1337 			/* Nothing else can. */
1338 			return (EINVAL);
1339 		}
1340 	}
1341 
1342 	bif->bif_flags = (bif->bif_flags & IFBIF_KEEPMASK) |
1343 			 (req->ifbr_ifsflags & ~IFBIF_KEEPMASK);
1344 	if (bifp->if_flags & IFF_RUNNING)
1345 		bstp_initialization(sc);
1346 
1347 	return (0);
1348 }
1349 
1350 static int
1351 bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
1352 {
1353 	struct ifbrparam *param = arg;
1354 	struct ifnet *ifp = sc->sc_ifp;
1355 
1356 	sc->sc_brtmax = param->ifbrp_csize;
1357 
1358 	ifnet_deserialize_all(ifp);
1359 	bridge_rttrim(sc);
1360 	ifnet_serialize_all(ifp);
1361 
1362 	return (0);
1363 }
1364 
1365 static int
1366 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
1367 {
1368 	struct ifbrparam *param = arg;
1369 
1370 	param->ifbrp_csize = sc->sc_brtmax;
1371 
1372 	return (0);
1373 }
1374 
1375 static int
1376 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg)
1377 {
1378 	struct bridge_control_arg *bc_arg = arg;
1379 	struct ifbifconf *bifc = arg;
1380 	struct bridge_iflist *bif;
1381 	struct ifbreq *breq;
1382 	int count, len;
1383 
1384 	count = 0;
1385 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next)
1386 		count++;
1387 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1388 		count++;
1389 
1390 	if (bifc->ifbic_len == 0) {
1391 		bifc->ifbic_len = sizeof(*breq) * count;
1392 		return 0;
1393 	} else if (count == 0 || bifc->ifbic_len < sizeof(*breq)) {
1394 		bifc->ifbic_len = 0;
1395 		return 0;
1396 	}
1397 
1398 	len = min(bifc->ifbic_len, sizeof(*breq) * count);
1399 	KKASSERT(len >= sizeof(*breq));
1400 
1401 	breq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1402 	if (breq == NULL) {
1403 		bifc->ifbic_len = 0;
1404 		return ENOMEM;
1405 	}
1406 	bc_arg->bca_kptr = breq;
1407 
1408 	count = 0;
1409 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1410 		if (len < sizeof(*breq))
1411 			break;
1412 
1413 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1414 			sizeof(breq->ifbr_ifsname));
1415 		bridge_ioctl_fillflags(sc, bif, breq);
1416 		breq++;
1417 		count++;
1418 		len -= sizeof(*breq);
1419 	}
1420 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
1421 		if (len < sizeof(*breq))
1422 			break;
1423 
1424 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1425 			sizeof(breq->ifbr_ifsname));
1426 		breq->ifbr_ifsflags = bif->bif_flags;
1427 		breq->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1428 		breq++;
1429 		count++;
1430 		len -= sizeof(*breq);
1431 	}
1432 
1433 	bifc->ifbic_len = sizeof(*breq) * count;
1434 	KKASSERT(bifc->ifbic_len > 0);
1435 
1436 	bc_arg->bca_len = bifc->ifbic_len;
1437 	bc_arg->bca_uptr = bifc->ifbic_req;
1438 	return 0;
1439 }
1440 
1441 static int
1442 bridge_ioctl_rts(struct bridge_softc *sc, void *arg)
1443 {
1444 	struct bridge_control_arg *bc_arg = arg;
1445 	struct ifbaconf *bac = arg;
1446 	struct bridge_rtnode *brt;
1447 	struct ifbareq *bareq;
1448 	int count, len;
1449 
1450 	count = 0;
1451 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list)
1452 		count++;
1453 
1454 	if (bac->ifbac_len == 0) {
1455 		bac->ifbac_len = sizeof(*bareq) * count;
1456 		return 0;
1457 	} else if (count == 0 || bac->ifbac_len < sizeof(*bareq)) {
1458 		bac->ifbac_len = 0;
1459 		return 0;
1460 	}
1461 
1462 	len = min(bac->ifbac_len, sizeof(*bareq) * count);
1463 	KKASSERT(len >= sizeof(*bareq));
1464 
1465 	bareq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1466 	if (bareq == NULL) {
1467 		bac->ifbac_len = 0;
1468 		return ENOMEM;
1469 	}
1470 	bc_arg->bca_kptr = bareq;
1471 
1472 	count = 0;
1473 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
1474 		struct bridge_rtinfo *bri = brt->brt_info;
1475 		unsigned long expire;
1476 
1477 		if (len < sizeof(*bareq))
1478 			break;
1479 
1480 		strlcpy(bareq->ifba_ifsname, bri->bri_ifp->if_xname,
1481 			sizeof(bareq->ifba_ifsname));
1482 		memcpy(bareq->ifba_dst, brt->brt_addr, sizeof(brt->brt_addr));
1483 		expire = bri->bri_expire;
1484 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
1485 		    time_second < expire)
1486 			bareq->ifba_expire = expire - time_second;
1487 		else
1488 			bareq->ifba_expire = 0;
1489 		bareq->ifba_flags = bri->bri_flags;
1490 		bareq++;
1491 		count++;
1492 		len -= sizeof(*bareq);
1493 	}
1494 
1495 	bac->ifbac_len = sizeof(*bareq) * count;
1496 	KKASSERT(bac->ifbac_len > 0);
1497 
1498 	bc_arg->bca_len = bac->ifbac_len;
1499 	bc_arg->bca_uptr = bac->ifbac_req;
1500 	return 0;
1501 }
1502 
1503 static int
1504 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg)
1505 {
1506 	struct ifbareq *req = arg;
1507 	struct bridge_iflist *bif;
1508 	struct ifnet *ifp = sc->sc_ifp;
1509 	int error;
1510 
1511 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1512 
1513 	bif = bridge_lookup_member(sc, req->ifba_ifsname);
1514 	if (bif == NULL)
1515 		return (ENOENT);
1516 
1517 	ifnet_deserialize_all(ifp);
1518 	error = bridge_rtsaddr(sc, req->ifba_dst, bif->bif_ifp,
1519 			       req->ifba_flags);
1520 	ifnet_serialize_all(ifp);
1521 	return (error);
1522 }
1523 
1524 static int
1525 bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
1526 {
1527 	struct ifbrparam *param = arg;
1528 
1529 	sc->sc_brttimeout = param->ifbrp_ctime;
1530 
1531 	return (0);
1532 }
1533 
1534 static int
1535 bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
1536 {
1537 	struct ifbrparam *param = arg;
1538 
1539 	param->ifbrp_ctime = sc->sc_brttimeout;
1540 
1541 	return (0);
1542 }
1543 
1544 static int
1545 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg)
1546 {
1547 	struct ifbareq *req = arg;
1548 	struct ifnet *ifp = sc->sc_ifp;
1549 	int error;
1550 
1551 	ifnet_deserialize_all(ifp);
1552 	error = bridge_rtdaddr(sc, req->ifba_dst);
1553 	ifnet_serialize_all(ifp);
1554 	return error;
1555 }
1556 
1557 static int
1558 bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
1559 {
1560 	struct ifbreq *req = arg;
1561 	struct ifnet *ifp = sc->sc_ifp;
1562 
1563 	ifnet_deserialize_all(ifp);
1564 	bridge_rtflush(sc, req->ifbr_ifsflags | IFBF_FLUSHSYNC);
1565 	ifnet_serialize_all(ifp);
1566 
1567 	return (0);
1568 }
1569 
1570 static int
1571 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
1572 {
1573 	struct ifbrparam *param = arg;
1574 
1575 	param->ifbrp_prio = sc->sc_bridge_priority;
1576 
1577 	return (0);
1578 }
1579 
1580 static int
1581 bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
1582 {
1583 	struct ifbrparam *param = arg;
1584 
1585 	sc->sc_bridge_priority = param->ifbrp_prio;
1586 
1587 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1588 		bstp_initialization(sc);
1589 
1590 	return (0);
1591 }
1592 
1593 static int
1594 bridge_ioctl_reinit(struct bridge_softc *sc, void *arg __unused)
1595 {
1596 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1597 		bstp_initialization(sc);
1598 	return (0);
1599 }
1600 
1601 static int
1602 bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
1603 {
1604 	struct ifbrparam *param = arg;
1605 
1606 	param->ifbrp_hellotime = sc->sc_bridge_hello_time >> 8;
1607 
1608 	return (0);
1609 }
1610 
1611 static int
1612 bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
1613 {
1614 	struct ifbrparam *param = arg;
1615 
1616 	if (param->ifbrp_hellotime == 0)
1617 		return (EINVAL);
1618 	sc->sc_bridge_hello_time = param->ifbrp_hellotime << 8;
1619 
1620 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1621 		bstp_initialization(sc);
1622 
1623 	return (0);
1624 }
1625 
1626 static int
1627 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
1628 {
1629 	struct ifbrparam *param = arg;
1630 
1631 	param->ifbrp_fwddelay = sc->sc_bridge_forward_delay >> 8;
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
1638 {
1639 	struct ifbrparam *param = arg;
1640 
1641 	if (param->ifbrp_fwddelay == 0)
1642 		return (EINVAL);
1643 	sc->sc_bridge_forward_delay = param->ifbrp_fwddelay << 8;
1644 
1645 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1646 		bstp_initialization(sc);
1647 
1648 	return (0);
1649 }
1650 
1651 static int
1652 bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
1653 {
1654 	struct ifbrparam *param = arg;
1655 
1656 	param->ifbrp_maxage = sc->sc_bridge_max_age >> 8;
1657 
1658 	return (0);
1659 }
1660 
1661 static int
1662 bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
1663 {
1664 	struct ifbrparam *param = arg;
1665 
1666 	if (param->ifbrp_maxage == 0)
1667 		return (EINVAL);
1668 	sc->sc_bridge_max_age = param->ifbrp_maxage << 8;
1669 
1670 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1671 		bstp_initialization(sc);
1672 
1673 	return (0);
1674 }
1675 
1676 static int
1677 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
1678 {
1679 	struct ifbreq *req = arg;
1680 	struct bridge_iflist *bif;
1681 
1682 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1683 	if (bif == NULL)
1684 		return (ENOENT);
1685 
1686 	bif->bif_priority = req->ifbr_priority;
1687 
1688 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1689 		bstp_initialization(sc);
1690 
1691 	return (0);
1692 }
1693 
1694 static int
1695 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
1696 {
1697 	struct ifbreq *req = arg;
1698 	struct bridge_iflist *bif;
1699 
1700 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1701 	if (bif == NULL)
1702 		return (ENOENT);
1703 
1704 	bif->bif_path_cost = req->ifbr_path_cost;
1705 
1706 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1707 		bstp_initialization(sc);
1708 
1709 	return (0);
1710 }
1711 
1712 static int
1713 bridge_ioctl_sifbondwght(struct bridge_softc *sc, void *arg)
1714 {
1715 	struct ifbreq *req = arg;
1716 	struct bridge_iflist *bif;
1717 
1718 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1719 	if (bif == NULL)
1720 		return (ENOENT);
1721 
1722 	bif->bif_bond_weight = req->ifbr_bond_weight;
1723 
1724 	/* no reinit needed */
1725 
1726 	return (0);
1727 }
1728 
1729 static int
1730 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
1731 {
1732 	struct ifbreq *req = arg;
1733 	struct bridge_iflist *bif;
1734 	struct ifnet *ifs;
1735 	struct bridge_ifinfo *bif_info;
1736 
1737 	ifs = ifunit(req->ifbr_ifsname);
1738 	if (ifs == NULL)
1739 		return (ENOENT);
1740 
1741 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1742 		if (ifs == bif->bif_ifp)
1743 			return (EBUSY);
1744 
1745 	if (ifs->if_bridge != NULL)
1746 		return (EBUSY);
1747 
1748 	switch (ifs->if_type) {
1749 	case IFT_ETHER:
1750 	case IFT_GIF:
1751 	case IFT_L2VLAN:
1752 		break;
1753 
1754 	default:
1755 		return (EINVAL);
1756 	}
1757 
1758 	/*
1759 	 * bif_info is needed for bif_flags
1760 	 */
1761         bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1762         bif_info->bifi_ifp = ifs;
1763 
1764 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
1765 	bif->bif_ifp = ifs;
1766 	bif->bif_info = bif_info;
1767 	bif->bif_flags = IFBIF_SPAN;
1768 	/* NOTE: span bif does not need bridge_ifinfo */
1769 
1770 	TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
1771 
1772 	sc->sc_span = 1;
1773 
1774 	return (0);
1775 }
1776 
1777 static int
1778 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
1779 {
1780 	struct ifbreq *req = arg;
1781 	struct bridge_iflist *bif;
1782 	struct ifnet *ifs;
1783 
1784 	ifs = ifunit(req->ifbr_ifsname);
1785 	if (ifs == NULL)
1786 		return (ENOENT);
1787 
1788 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1789 		if (ifs == bif->bif_ifp)
1790 			break;
1791 
1792 	if (bif == NULL)
1793 		return (ENOENT);
1794 
1795 	bridge_delete_span(sc, bif);
1796 
1797 	if (TAILQ_EMPTY(&sc->sc_spanlist))
1798 		sc->sc_span = 0;
1799 
1800 	return (0);
1801 }
1802 
1803 static void
1804 bridge_ifdetach_dispatch(netmsg_t msg)
1805 {
1806 	struct ifnet *ifp, *bifp;
1807 	struct bridge_softc *sc;
1808 	struct bridge_iflist *bif;
1809 
1810 	ifp = msg->lmsg.u.ms_resultp;
1811 	sc = ifp->if_bridge;
1812 
1813 	/* Check if the interface is a bridge member */
1814 	if (sc != NULL) {
1815 		bifp = sc->sc_ifp;
1816 
1817 		ifnet_serialize_all(bifp);
1818 
1819 		bif = bridge_lookup_member_if(sc, ifp);
1820 		if (bif != NULL) {
1821 			bridge_delete_member(sc, bif, 1);
1822 		} else {
1823 			/* XXX Why bif will be NULL? */
1824 		}
1825 
1826 		ifnet_deserialize_all(bifp);
1827 		goto reply;
1828 	}
1829 
1830 	crit_enter();	/* XXX MP */
1831 
1832 	/* Check if the interface is a span port */
1833 	LIST_FOREACH(sc, &bridge_list, sc_list) {
1834 		bifp = sc->sc_ifp;
1835 
1836 		ifnet_serialize_all(bifp);
1837 
1838 		TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1839 			if (ifp == bif->bif_ifp) {
1840 				bridge_delete_span(sc, bif);
1841 				break;
1842 			}
1843 
1844 		ifnet_deserialize_all(bifp);
1845 	}
1846 
1847 	crit_exit();
1848 
1849 reply:
1850 	lwkt_replymsg(&msg->lmsg, 0);
1851 }
1852 
1853 /*
1854  * bridge_ifdetach:
1855  *
1856  *	Detach an interface from a bridge.  Called when a member
1857  *	interface is detaching.
1858  */
1859 static void
1860 bridge_ifdetach(void *arg __unused, struct ifnet *ifp)
1861 {
1862 	struct netmsg_base msg;
1863 
1864 	netmsg_init(&msg, NULL, &curthread->td_msgport,
1865 		    0, bridge_ifdetach_dispatch);
1866 	msg.lmsg.u.ms_resultp = ifp;
1867 
1868 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
1869 }
1870 
1871 /*
1872  * bridge_init:
1873  *
1874  *	Initialize a bridge interface.
1875  */
1876 static void
1877 bridge_init(void *xsc)
1878 {
1879 	bridge_control(xsc, SIOCSIFFLAGS, bridge_ioctl_init, NULL);
1880 }
1881 
1882 /*
1883  * bridge_stop:
1884  *
1885  *	Stop the bridge interface.
1886  */
1887 static void
1888 bridge_stop(struct ifnet *ifp)
1889 {
1890 	bridge_control(ifp->if_softc, SIOCSIFFLAGS, bridge_ioctl_stop, NULL);
1891 }
1892 
1893 /*
1894  * Returns TRUE if the packet is being sent 'from us'... from our bridge
1895  * interface or from any member of our bridge interface.  This is used
1896  * later on to force the MAC to be the MAC of our bridge interface.
1897  */
1898 static int
1899 bridge_from_us(struct bridge_softc *sc, struct ether_header *eh)
1900 {
1901 	struct bridge_iflist *bif;
1902 
1903 	if (memcmp(eh->ether_shost, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN) == 0)
1904 		return (1);
1905 
1906 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1907 		if (memcmp(eh->ether_shost, IF_LLADDR(bif->bif_ifp),
1908 			   ETHER_ADDR_LEN) == 0) {
1909 			return (1);
1910 		}
1911 	}
1912 	return (0);
1913 }
1914 
1915 /*
1916  * bridge_enqueue:
1917  *
1918  *	Enqueue a packet on a bridge member interface.
1919  *
1920  */
1921 void
1922 bridge_enqueue(struct ifnet *dst_ifp, struct mbuf *m)
1923 {
1924 	struct netmsg_packet *nmp;
1925 
1926 	mbuftrackid(m, 64);
1927 
1928 	nmp = &m->m_hdr.mh_netmsg;
1929 	netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
1930 		    0, bridge_enqueue_handler);
1931 	nmp->nm_packet = m;
1932 	nmp->base.lmsg.u.ms_resultp = dst_ifp;
1933 
1934 	lwkt_sendmsg(netisr_cpuport(mycpuid), &nmp->base.lmsg);
1935 }
1936 
1937 /*
1938  * After looking up dst_if in our forwarding table we still have to
1939  * deal with channel bonding.  Find the best interface in the bonding set.
1940  */
1941 static struct ifnet *
1942 bridge_select_unicast(struct bridge_softc *sc, struct ifnet *dst_if,
1943 		      int from_blocking, struct mbuf *m)
1944 {
1945 	struct bridge_iflist *bif, *nbif;
1946 	struct ifnet *alt_if;
1947 	int alt_priority;
1948 	int priority;
1949 
1950 	/*
1951 	 * Unicast, kinda replicates the output side of bridge_output().
1952 	 *
1953 	 * Even though this is a uni-cast packet we may have to select
1954 	 * an interface from a bonding set.
1955 	 */
1956 	bif = bridge_lookup_member_if(sc, dst_if);
1957 	if (bif == NULL) {
1958 		/* Not a member of the bridge (anymore?) */
1959 		return NULL;
1960 	}
1961 
1962 	/*
1963 	 * If STP is enabled on the target we are an equal opportunity
1964 	 * employer and do not necessarily output to dst_if.  Instead
1965 	 * scan available links with the same MAC as the current dst_if
1966 	 * and choose the best one.
1967 	 *
1968 	 * We also need to do this because arp entries tag onto a particular
1969 	 * interface and if it happens to be dead then the packets will
1970 	 * go into a bit bucket.
1971 	 *
1972 	 * If LINK2 is set the matching links are bonded and we-round robin.
1973 	 * (the MAC address must be the same for the participating links).
1974 	 * In this case links in a STP FORWARDING or BONDED state are
1975 	 * allowed for unicast packets.
1976 	 */
1977 	if (bif->bif_flags & IFBIF_STP) {
1978 		alt_if = NULL;
1979 		alt_priority = 0;
1980 		priority = 0;
1981 
1982 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
1983 				     bif_next, nbif) {
1984 			/*
1985 			 * dst_if may imply a bonding set so we must compare
1986 			 * MAC addresses.
1987 			 */
1988 			if (memcmp(IF_LLADDR(bif->bif_ifp),
1989 				   IF_LLADDR(dst_if),
1990 				   ETHER_ADDR_LEN) != 0) {
1991 				continue;
1992 			}
1993 
1994 			if ((bif->bif_ifp->if_flags & IFF_RUNNING) == 0)
1995 				continue;
1996 
1997 			/*
1998 			 * NOTE: We allow tranmissions through a BLOCKING
1999 			 *	 or LEARNING interface only as a last resort.
2000 			 *	 We DISALLOW both cases if the receiving
2001 			 *
2002 			 * NOTE: If we send a packet through a learning
2003 			 *	 interface the receiving end (if also in
2004 			 *	 LEARNING) will throw it away, so this is
2005 			 *	 the ultimate last resort.
2006 			 */
2007 			switch(bif->bif_state) {
2008 			case BSTP_IFSTATE_BLOCKING:
2009 				if (from_blocking == 0 &&
2010 				    bif->bif_priority + 256 > alt_priority) {
2011 					alt_priority = bif->bif_priority + 256;
2012 					alt_if = bif->bif_ifp;
2013 				}
2014 				continue;
2015 			case BSTP_IFSTATE_LEARNING:
2016 				if (from_blocking == 0 &&
2017 				    bif->bif_priority > alt_priority) {
2018 					alt_priority = bif->bif_priority;
2019 					alt_if = bif->bif_ifp;
2020 				}
2021 				continue;
2022 			case BSTP_IFSTATE_L1BLOCKING:
2023 			case BSTP_IFSTATE_LISTENING:
2024 			case BSTP_IFSTATE_DISABLED:
2025 				continue;
2026 			default:
2027 				/* FORWARDING, BONDED */
2028 				break;
2029 			}
2030 
2031 			/*
2032 			 * XXX we need to use the toepliz hash or
2033 			 *     something like that instead of
2034 			 *     round-robining.
2035 			 */
2036 			if (sc->sc_ifp->if_flags & IFF_LINK2) {
2037 				dst_if = bif->bif_ifp;
2038 				if (++bif->bif_bond_count >=
2039 				    bif->bif_bond_weight) {
2040 					bif->bif_bond_count = 0;
2041 					TAILQ_REMOVE(&sc->sc_iflists[mycpuid],
2042 						     bif, bif_next);
2043 					TAILQ_INSERT_TAIL(
2044 						     &sc->sc_iflists[mycpuid],
2045 						     bif, bif_next);
2046 				}
2047 				priority = 1;
2048 				break;
2049 			}
2050 
2051 			/*
2052 			 * Select best interface in the FORWARDING or
2053 			 * BONDED set.  Well, there shouldn't be any
2054 			 * in a BONDED state if LINK2 is not set (they
2055 			 * will all be in a BLOCKING) state, but there
2056 			 * could be a transitory condition here.
2057 			 */
2058 			if (bif->bif_priority > priority) {
2059 				priority = bif->bif_priority;
2060 				dst_if = bif->bif_ifp;
2061 			}
2062 		}
2063 
2064 		/*
2065 		 * If no suitable interfaces were found but a suitable
2066 		 * alternative interface was found, use the alternative
2067 		 * interface.
2068 		 */
2069 		if (priority == 0 && alt_if)
2070 			dst_if = alt_if;
2071 	}
2072 
2073 	/*
2074 	 * At this point, we're dealing with a unicast frame
2075 	 * going to a different interface.
2076 	 */
2077 	if ((dst_if->if_flags & IFF_RUNNING) == 0)
2078 		dst_if = NULL;
2079 	return (dst_if);
2080 }
2081 
2082 
2083 /*
2084  * bridge_output:
2085  *
2086  *	Send output from a bridge member interface.  This
2087  *	performs the bridging function for locally originated
2088  *	packets.
2089  *
2090  *	The mbuf has the Ethernet header already attached.  We must
2091  *	enqueue or free the mbuf before returning.
2092  */
2093 static int
2094 bridge_output(struct ifnet *ifp, struct mbuf *m)
2095 {
2096 	struct bridge_softc *sc = ifp->if_bridge;
2097 	struct bridge_iflist *bif, *nbif;
2098 	struct ether_header *eh;
2099 	struct ifnet *dst_if, *alt_if, *bifp;
2100 	int from_us;
2101 	int alt_priority;
2102 
2103 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2104 	mbuftrackid(m, 65);
2105 
2106 	/*
2107 	 * Make sure that we are still a member of a bridge interface.
2108 	 */
2109 	if (sc == NULL) {
2110 		m_freem(m);
2111 		return (0);
2112 	}
2113 	bifp = sc->sc_ifp;
2114 
2115 	/*
2116 	 * Acquire header
2117 	 */
2118 	if (m->m_len < ETHER_HDR_LEN) {
2119 		m = m_pullup(m, ETHER_HDR_LEN);
2120 		if (m == NULL) {
2121 			IFNET_STAT_INC(bifp, oerrors, 1);
2122 			return (0);
2123 		}
2124 	}
2125 	eh = mtod(m, struct ether_header *);
2126 	from_us = bridge_from_us(sc, eh);
2127 
2128 	/*
2129 	 * If bridge is down, but the original output interface is up,
2130 	 * go ahead and send out that interface.  Otherwise, the packet
2131 	 * is dropped below.
2132 	 */
2133 	if ((bifp->if_flags & IFF_RUNNING) == 0) {
2134 		dst_if = ifp;
2135 		goto sendunicast;
2136 	}
2137 
2138 	/*
2139 	 * If the packet is a multicast, or we don't know a better way to
2140 	 * get there, send to all interfaces.
2141 	 */
2142 	if (ETHER_IS_MULTICAST(eh->ether_dhost))
2143 		dst_if = NULL;
2144 	else
2145 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2146 
2147 	if (dst_if == NULL) {
2148 		struct mbuf *mc;
2149 		int used = 0;
2150 		int found = 0;
2151 
2152 		if (sc->sc_span)
2153 			bridge_span(sc, m);
2154 
2155 		alt_if = NULL;
2156 		alt_priority = 0;
2157 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
2158 				     bif_next, nbif) {
2159 			dst_if = bif->bif_ifp;
2160 
2161 			if ((dst_if->if_flags & IFF_RUNNING) == 0)
2162 				continue;
2163 
2164 			/*
2165 			 * If this is not the original output interface,
2166 			 * and the interface is participating in spanning
2167 			 * tree, make sure the port is in a state that
2168 			 * allows forwarding.
2169 			 *
2170 			 * We keep track of a possible backup IF if we are
2171 			 * unable to find any interfaces to forward through.
2172 			 *
2173 			 * NOTE: Currently round-robining is not implemented
2174 			 *	 across bonded interface groups (needs an
2175 			 *	 algorithm to track each group somehow).
2176 			 *
2177 			 *	 Similarly we track only one alternative
2178 			 *	 interface if no suitable interfaces are
2179 			 *	 found.
2180 			 */
2181 			if (dst_if != ifp &&
2182 			    (bif->bif_flags & IFBIF_STP) != 0) {
2183 				switch (bif->bif_state) {
2184 				case BSTP_IFSTATE_BONDED:
2185 					if (bif->bif_priority + 512 >
2186 					    alt_priority) {
2187 						alt_priority =
2188 						    bif->bif_priority + 512;
2189 						alt_if = bif->bif_ifp;
2190 					}
2191 					continue;
2192 				case BSTP_IFSTATE_BLOCKING:
2193 					if (bif->bif_priority + 256 >
2194 					    alt_priority) {
2195 						alt_priority =
2196 						    bif->bif_priority + 256;
2197 						alt_if = bif->bif_ifp;
2198 					}
2199 					continue;
2200 				case BSTP_IFSTATE_LEARNING:
2201 					if (bif->bif_priority > alt_priority) {
2202 						alt_priority =
2203 						    bif->bif_priority;
2204 						alt_if = bif->bif_ifp;
2205 					}
2206 					continue;
2207 				case BSTP_IFSTATE_L1BLOCKING:
2208 				case BSTP_IFSTATE_LISTENING:
2209 				case BSTP_IFSTATE_DISABLED:
2210 					continue;
2211 				default:
2212 					/* FORWARDING */
2213 					break;
2214 				}
2215 			}
2216 
2217 			KKASSERT(used == 0);
2218 			if (TAILQ_NEXT(bif, bif_next) == NULL) {
2219 				used = 1;
2220 				mc = m;
2221 			} else {
2222 				mc = m_copypacket(m, MB_DONTWAIT);
2223 				if (mc == NULL) {
2224 					IFNET_STAT_INC(bifp, oerrors, 1);
2225 					continue;
2226 				}
2227 			}
2228 
2229 			/*
2230 			 * If the packet is 'from' us override ether_shost.
2231 			 */
2232 			bridge_handoff(sc, dst_if, mc, from_us);
2233 			found = 1;
2234 
2235 			if (nbif != NULL && !nbif->bif_onlist) {
2236 				KKASSERT(bif->bif_onlist);
2237 				nbif = TAILQ_NEXT(bif, bif_next);
2238 			}
2239 		}
2240 
2241 		/*
2242 		 * If we couldn't find anything use the backup interface
2243 		 * if we have one.
2244 		 */
2245 		if (found == 0 && alt_if) {
2246 			KKASSERT(used == 0);
2247 			mc = m;
2248 			used = 1;
2249 			bridge_handoff(sc, alt_if, mc, from_us);
2250 		}
2251 
2252 		if (used == 0)
2253 			m_freem(m);
2254 		return (0);
2255 	}
2256 
2257 	/*
2258 	 * Unicast
2259 	 */
2260 sendunicast:
2261 	dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2262 
2263 	if (sc->sc_span)
2264 		bridge_span(sc, m);
2265 	if (dst_if == NULL)
2266 		m_freem(m);
2267 	else
2268 		bridge_handoff(sc, dst_if, m, from_us);
2269 	return (0);
2270 }
2271 
2272 /*
2273  * Returns the bridge interface associated with an ifc.
2274  * Pass ifp->if_bridge (must not be NULL).  Used by the ARP
2275  * code to supply the bridge for the is-at info, making
2276  * the bridge responsible for matching local addresses.
2277  *
2278  * Without this the ARP code will supply bridge member interfaces
2279  * for the is-at which makes it difficult the bridge to fail-over
2280  * interfaces (amoung other things).
2281  */
2282 static struct ifnet *
2283 bridge_interface(void *if_bridge)
2284 {
2285 	struct bridge_softc *sc = if_bridge;
2286 	return (sc->sc_ifp);
2287 }
2288 
2289 /*
2290  * bridge_start:
2291  *
2292  *	Start output on a bridge.
2293  */
2294 static void
2295 bridge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2296 {
2297 	struct bridge_softc *sc = ifp->if_softc;
2298 
2299 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2300 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
2301 
2302 	ifsq_set_oactive(ifsq);
2303 	for (;;) {
2304 		struct ifnet *dst_if = NULL;
2305 		struct ether_header *eh;
2306 		struct mbuf *m;
2307 
2308 		m = ifsq_dequeue(ifsq, NULL);
2309 		if (m == NULL)
2310 			break;
2311 		mbuftrackid(m, 75);
2312 
2313 		if (m->m_len < sizeof(*eh)) {
2314 			m = m_pullup(m, sizeof(*eh));
2315 			if (m == NULL) {
2316 				IFNET_STAT_INC(ifp, oerrors, 1);
2317 				continue;
2318 			}
2319 		}
2320 		eh = mtod(m, struct ether_header *);
2321 
2322 		BPF_MTAP(ifp, m);
2323 		IFNET_STAT_INC(ifp, opackets, 1);
2324 
2325 		if ((m->m_flags & (M_BCAST|M_MCAST)) == 0)
2326 			dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2327 
2328 		/*
2329 		 * Multicast or broadcast
2330 		 */
2331 		if (dst_if == NULL) {
2332 			bridge_start_bcast(sc, m);
2333 			continue;
2334 		}
2335 
2336 		/*
2337 		 * Unicast
2338 		 */
2339 		dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2340 
2341 		if (dst_if == NULL)
2342 			m_freem(m);
2343 		else
2344 			bridge_enqueue(dst_if, m);
2345 	}
2346 	ifsq_clr_oactive(ifsq);
2347 }
2348 
2349 /*
2350  * bridge_forward:
2351  *
2352  *	Forward packets received on a bridge interface via the input
2353  *	path.
2354  *
2355  *	This implements the forwarding function of the bridge.
2356  */
2357 static void
2358 bridge_forward(struct bridge_softc *sc, struct mbuf *m)
2359 {
2360 	struct bridge_iflist *bif;
2361 	struct ifnet *src_if, *dst_if, *ifp;
2362 	struct ether_header *eh;
2363 	int from_blocking;
2364 
2365 	mbuftrackid(m, 66);
2366 	src_if = m->m_pkthdr.rcvif;
2367 	ifp = sc->sc_ifp;
2368 
2369 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2370 
2371 	IFNET_STAT_INC(ifp, ipackets, 1);
2372 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
2373 
2374 	/*
2375 	 * Look up the bridge_iflist.
2376 	 */
2377 	bif = bridge_lookup_member_if(sc, src_if);
2378 	if (bif == NULL) {
2379 		/* Interface is not a bridge member (anymore?) */
2380 		m_freem(m);
2381 		return;
2382 	}
2383 
2384 	/*
2385 	 * In spanning tree mode receiving a packet from an interface
2386 	 * in a BLOCKING state is allowed, it could be a member of last
2387 	 * resort from the sender's point of view, but forwarding it is
2388 	 * not allowed.
2389 	 *
2390 	 * The sender's spanning tree will eventually sync up and the
2391 	 * sender will go into a BLOCKING state too (but this still may be
2392 	 * an interface of last resort during state changes).
2393 	 */
2394 	if (bif->bif_flags & IFBIF_STP) {
2395 		switch (bif->bif_state) {
2396 		case BSTP_IFSTATE_L1BLOCKING:
2397 		case BSTP_IFSTATE_LISTENING:
2398 		case BSTP_IFSTATE_DISABLED:
2399 			m_freem(m);
2400 			return;
2401 		default:
2402 			/* learning, blocking, bonded, forwarding */
2403 			break;
2404 		}
2405 		from_blocking = (bif->bif_state == BSTP_IFSTATE_BLOCKING);
2406 	} else {
2407 		from_blocking = 0;
2408 	}
2409 
2410 	eh = mtod(m, struct ether_header *);
2411 
2412 	/*
2413 	 * If the interface is learning, and the source
2414 	 * address is valid and not multicast, record
2415 	 * the address.
2416 	 */
2417 	if ((bif->bif_flags & IFBIF_LEARNING) != 0 &&
2418 	    from_blocking == 0 &&
2419 	    ETHER_IS_MULTICAST(eh->ether_shost) == 0 &&
2420 	    (eh->ether_shost[0] == 0 &&
2421 	     eh->ether_shost[1] == 0 &&
2422 	     eh->ether_shost[2] == 0 &&
2423 	     eh->ether_shost[3] == 0 &&
2424 	     eh->ether_shost[4] == 0 &&
2425 	     eh->ether_shost[5] == 0) == 0) {
2426 		bridge_rtupdate(sc, eh->ether_shost, src_if, IFBAF_DYNAMIC);
2427 	}
2428 
2429 	/*
2430 	 * Don't forward from an interface in the listening or learning
2431 	 * state.  That is, in the learning state we learn information
2432 	 * but we throw away the packets.
2433 	 *
2434 	 * We let through packets on interfaces in the blocking state.
2435 	 * The blocking state is applicable to the send side, not the
2436 	 * receive side.
2437 	 */
2438 	if ((bif->bif_flags & IFBIF_STP) != 0 &&
2439 	    (bif->bif_state == BSTP_IFSTATE_LISTENING ||
2440 	     bif->bif_state == BSTP_IFSTATE_LEARNING)) {
2441 		m_freem(m);
2442 		return;
2443 	}
2444 
2445 	/*
2446 	 * At this point, the port either doesn't participate
2447 	 * in spanning tree or it is in the forwarding state.
2448 	 */
2449 
2450 	/*
2451 	 * If the packet is unicast, destined for someone on
2452 	 * "this" side of the bridge, drop it.
2453 	 *
2454 	 * src_if implies the entire bonding set so we have to compare MAC
2455 	 * addresses and not just if pointers.
2456 	 */
2457 	if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) {
2458 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2459 		if (dst_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
2460 				     ETHER_ADDR_LEN) == 0) {
2461 			m_freem(m);
2462 			return;
2463 		}
2464 	} else {
2465 		/* ...forward it to all interfaces. */
2466 		IFNET_STAT_INC(ifp, imcasts, 1);
2467 		dst_if = NULL;
2468 	}
2469 
2470 	/*
2471 	 * Brodcast if we do not have forwarding information.  However, if
2472 	 * we received the packet on a blocking interface we do not do this
2473 	 * (unless you really want to blow up your network).
2474 	 */
2475 	if (dst_if == NULL) {
2476 		if (from_blocking)
2477 			m_freem(m);
2478 		else
2479 			bridge_broadcast(sc, src_if, m);
2480 		return;
2481 	}
2482 
2483 	dst_if = bridge_select_unicast(sc, dst_if, from_blocking, m);
2484 
2485 	if (dst_if == NULL) {
2486 		m_freem(m);
2487 		return;
2488 	}
2489 
2490 	if (inet_pfil_hook.ph_hashooks > 0
2491 #ifdef INET6
2492 	    || inet6_pfil_hook.ph_hashooks > 0
2493 #endif
2494 	    ) {
2495 		if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0)
2496 			return;
2497 		if (m == NULL)
2498 			return;
2499 
2500 		if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0)
2501 			return;
2502 		if (m == NULL)
2503 			return;
2504 	}
2505 	bridge_handoff(sc, dst_if, m, 0);
2506 }
2507 
2508 /*
2509  * bridge_input:
2510  *
2511  *	Receive input from a member interface.  Queue the packet for
2512  *	bridging if it is not for us.
2513  */
2514 static struct mbuf *
2515 bridge_input(struct ifnet *ifp, struct mbuf *m)
2516 {
2517 	struct bridge_softc *sc = ifp->if_bridge;
2518 	struct bridge_iflist *bif;
2519 	struct ifnet *bifp, *new_ifp;
2520 	struct ether_header *eh;
2521 	struct mbuf *mc, *mc2;
2522 
2523 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2524 	mbuftrackid(m, 67);
2525 
2526 	/*
2527 	 * Make sure that we are still a member of a bridge interface.
2528 	 */
2529 	if (sc == NULL)
2530 		return m;
2531 
2532 	new_ifp = NULL;
2533 	bifp = sc->sc_ifp;
2534 
2535 	if ((bifp->if_flags & IFF_RUNNING) == 0)
2536 		goto out;
2537 
2538 	/*
2539 	 * Implement support for bridge monitoring.  If this flag has been
2540 	 * set on this interface, discard the packet once we push it through
2541 	 * the bpf(4) machinery, but before we do, increment various counters
2542 	 * associated with this bridge.
2543 	 */
2544 	if (bifp->if_flags & IFF_MONITOR) {
2545 	 	/* Change input interface to this bridge */
2546 		m->m_pkthdr.rcvif = bifp;
2547 
2548 		BPF_MTAP(bifp, m);
2549 
2550 		/* Update bridge's ifnet statistics */
2551 		IFNET_STAT_INC(bifp, ipackets, 1);
2552 		IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2553 		if (m->m_flags & (M_MCAST | M_BCAST))
2554 			IFNET_STAT_INC(bifp, imcasts, 1);
2555 
2556 		m_freem(m);
2557 		m = NULL;
2558 		goto out;
2559 	}
2560 
2561 	/*
2562 	 * Handle the ether_header
2563 	 *
2564 	 * In all cases if the packet is destined for us via our MAC
2565 	 * we must clear BRIDGE_MBUF_TAGGED to ensure that we don't
2566 	 * repeat the source MAC out the same interface.
2567 	 *
2568 	 * This first test against our bridge MAC is the fast-path.
2569 	 *
2570 	 * NOTE!  The bridge interface can serve as an endpoint for
2571 	 *	  communication but normally there are no IPs associated
2572 	 *	  with it so you cannot route through it.  Instead what
2573 	 *	  you do is point your default route *THROUGH* the bridge
2574 	 *	  to the actual default router for one of the bridged spaces.
2575 	 *
2576 	 *	  Another possibility is to put all your IP specifications
2577 	 *	  on the bridge instead of on the individual interfaces.  If
2578 	 *	  you do this it should be possible to use the bridge as an
2579 	 *	  end point and route (rather than switch) through it using
2580 	 *	  the default route or ipfw forwarding rules.
2581 	 */
2582 
2583 	/*
2584 	 * Acquire header
2585 	 */
2586 	if (m->m_len < ETHER_HDR_LEN) {
2587 		m = m_pullup(m, ETHER_HDR_LEN);
2588 		if (m == NULL)
2589 			goto out;
2590 	}
2591 	eh = mtod(m, struct ether_header *);
2592 	m->m_pkthdr.fw_flags |= BRIDGE_MBUF_TAGGED;
2593 	bcopy(eh, &m->m_pkthdr.br.ether, sizeof(*eh));
2594 
2595 	if ((bridge_debug & 1) &&
2596 	    (ntohs(eh->ether_type) == ETHERTYPE_ARP ||
2597 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP)) {
2598 		kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
2599 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x "
2600 			"lla %02x:%02x:%02x:%02x:%02x:%02x\n",
2601 			eh->ether_dhost[0],
2602 			eh->ether_dhost[1],
2603 			eh->ether_dhost[2],
2604 			eh->ether_dhost[3],
2605 			eh->ether_dhost[4],
2606 			eh->ether_dhost[5],
2607 			eh->ether_shost[0],
2608 			eh->ether_shost[1],
2609 			eh->ether_shost[2],
2610 			eh->ether_shost[3],
2611 			eh->ether_shost[4],
2612 			eh->ether_shost[5],
2613 			eh->ether_type,
2614 			((u_char *)IF_LLADDR(bifp))[0],
2615 			((u_char *)IF_LLADDR(bifp))[1],
2616 			((u_char *)IF_LLADDR(bifp))[2],
2617 			((u_char *)IF_LLADDR(bifp))[3],
2618 			((u_char *)IF_LLADDR(bifp))[4],
2619 			((u_char *)IF_LLADDR(bifp))[5]
2620 		);
2621 	}
2622 
2623 	if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) {
2624 		/*
2625 		 * If the packet is for us, set the packets source as the
2626 		 * bridge, and return the packet back to ifnet.if_input for
2627 		 * local processing.
2628 		 */
2629 		m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2630 		KASSERT(bifp->if_bridge == NULL,
2631 			("loop created in bridge_input"));
2632 		if (pfil_member != 0) {
2633 			if (inet_pfil_hook.ph_hashooks > 0
2634 #ifdef INET6
2635 			    || inet6_pfil_hook.ph_hashooks > 0
2636 #endif
2637 			) {
2638 				if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0)
2639 					goto out;
2640 				if (m == NULL)
2641 					goto out;
2642 			}
2643 		}
2644 		new_ifp = bifp;
2645 		goto out;
2646 	}
2647 
2648 	/*
2649 	 * Tap all packets arriving on the bridge, no matter if
2650 	 * they are local destinations or not.  In is in.
2651 	 */
2652 	BPF_MTAP(bifp, m);
2653 
2654 	bif = bridge_lookup_member_if(sc, ifp);
2655 	if (bif == NULL)
2656 		goto out;
2657 
2658 	if (sc->sc_span)
2659 		bridge_span(sc, m);
2660 
2661 	if (m->m_flags & (M_BCAST | M_MCAST)) {
2662 		/*
2663 		 * Tap off 802.1D packets; they do not get forwarded.
2664 		 */
2665 		if (memcmp(eh->ether_dhost, bstp_etheraddr,
2666 			    ETHER_ADDR_LEN) == 0) {
2667 			ifnet_serialize_all(bifp);
2668 			bstp_input(sc, bif, m);
2669 			ifnet_deserialize_all(bifp);
2670 
2671 			/* m is freed by bstp_input */
2672 			m = NULL;
2673 			goto out;
2674 		}
2675 
2676 		/*
2677 		 * Other than 802.11d packets, ignore packets if the
2678 		 * interface is not in a good state.
2679 		 *
2680 		 * NOTE: Broadcast/mcast packets received on a blocking or
2681 		 *	 learning interface are allowed for local processing.
2682 		 *
2683 		 *	 The sending side of a blocked port will stop
2684 		 *	 transmitting when a better alternative is found.
2685 		 *	 However, later on we will disallow the forwarding
2686 		 *	 of bcast/mcsat packets over a blocking interface.
2687 		 */
2688 		if (bif->bif_flags & IFBIF_STP) {
2689 			switch (bif->bif_state) {
2690 			case BSTP_IFSTATE_L1BLOCKING:
2691 			case BSTP_IFSTATE_LISTENING:
2692 			case BSTP_IFSTATE_DISABLED:
2693 				goto out;
2694 			default:
2695 				/* blocking, learning, bonded, forwarding */
2696 				break;
2697 			}
2698 		}
2699 
2700 		/*
2701 		 * Make a deep copy of the packet and enqueue the copy
2702 		 * for bridge processing; return the original packet for
2703 		 * local processing.
2704 		 */
2705 		mc = m_dup(m, MB_DONTWAIT);
2706 		if (mc == NULL)
2707 			goto out;
2708 
2709 		/*
2710 		 * It's just too dangerous to allow bcast/mcast over a
2711 		 * blocked interface, eventually the network will sort
2712 		 * itself out and a better path will be found.
2713 		 */
2714 		if ((bif->bif_flags & IFBIF_STP) == 0 ||
2715 		    bif->bif_state != BSTP_IFSTATE_BLOCKING) {
2716 			bridge_forward(sc, mc);
2717 		}
2718 
2719 		/*
2720 		 * Reinject the mbuf as arriving on the bridge so we have a
2721 		 * chance at claiming multicast packets. We can not loop back
2722 		 * here from ether_input as a bridge is never a member of a
2723 		 * bridge.
2724 		 */
2725 		KASSERT(bifp->if_bridge == NULL,
2726 			("loop created in bridge_input"));
2727 		mc2 = m_dup(m, MB_DONTWAIT);
2728 #ifdef notyet
2729 		if (mc2 != NULL) {
2730 			/* Keep the layer3 header aligned */
2731 			int i = min(mc2->m_pkthdr.len, max_protohdr);
2732 			mc2 = m_copyup(mc2, i, ETHER_ALIGN);
2733 		}
2734 #endif
2735 		if (mc2 != NULL) {
2736 			/*
2737 			 * Don't tap to bpf(4) again; we have already done
2738 			 * the tapping.
2739 			 *
2740 			 * Leave m_pkthdr.rcvif alone, so ARP replies are
2741 			 * processed as coming in on the correct interface.
2742 			 *
2743 			 * Clear the bridge flag for local processing in
2744 			 * case the packet gets routed.
2745 			 */
2746 			mc2->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2747 			ether_reinput_oncpu(bifp, mc2, 0);
2748 		}
2749 
2750 		/* Return the original packet for local processing. */
2751 		goto out;
2752 	}
2753 
2754 	/*
2755 	 * Input of a unicast packet.  We have to allow unicast packets
2756 	 * input from links in the BLOCKING state as this might be an
2757 	 * interface of last resort.
2758 	 *
2759 	 * NOTE: We explicitly ignore normal packets received on a link
2760 	 *	 in the BLOCKING state.  The point of being in that state
2761 	 *	 is to avoid getting duplicate packets.
2762 	 *
2763 	 *	 HOWEVER, if LINK2 is set the normal spanning tree code
2764 	 *	 will mark an interface BLOCKING to avoid multi-cast/broadcast
2765 	 *	 loops.  Unicast packets CAN still loop if we allow the
2766 	 *	 case (hence we only do it in LINK2), but it isn't quite as
2767 	 *	 bad as a broadcast packet looping.
2768 	 */
2769 	if (bif->bif_flags & IFBIF_STP) {
2770 		switch (bif->bif_state) {
2771 		case BSTP_IFSTATE_L1BLOCKING:
2772 		case BSTP_IFSTATE_LISTENING:
2773 		case BSTP_IFSTATE_DISABLED:
2774 			goto out;
2775 		default:
2776 			/* blocking, bonded, forwarding, learning */
2777 			break;
2778 		}
2779 	}
2780 
2781 	/*
2782 	 * Unicast.  Make sure it's not for us.
2783 	 *
2784 	 * This loop is MPSAFE; the only blocking operation (bridge_rtupdate)
2785 	 * is followed by breaking out of the loop.
2786 	 */
2787 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2788 		if (bif->bif_ifp->if_type != IFT_ETHER)
2789 			continue;
2790 
2791 		/*
2792 		 * It is destined for an interface linked to the bridge.
2793 		 * We want the bridge itself to take care of link level
2794 		 * forwarding to member interfaces so reinput on the bridge.
2795 		 * i.e. if you ping an IP on a target interface associated
2796 		 * with the bridge, the arp is-at response should indicate
2797 		 * the bridge MAC.
2798 		 *
2799 		 * Only update our addr list when learning if the port
2800 		 * is not in a blocking state.  If it is we still allow
2801 		 * the packet but we do not try to learn from it.
2802 		 */
2803 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_dhost,
2804 			   ETHER_ADDR_LEN) == 0) {
2805 			if (bif->bif_ifp != ifp) {
2806 				/* XXX loop prevention */
2807 				m->m_flags |= M_ETHER_BRIDGED;
2808 			}
2809 			if ((bif->bif_flags & IFBIF_LEARNING) &&
2810 			    ((bif->bif_flags & IFBIF_STP) == 0 ||
2811 			     bif->bif_state != BSTP_IFSTATE_BLOCKING)) {
2812 				bridge_rtupdate(sc, eh->ether_shost,
2813 						ifp, IFBAF_DYNAMIC);
2814 			}
2815 			new_ifp = bifp; /* not bif->bif_ifp */
2816 			m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2817 			goto out;
2818 		}
2819 
2820 		/*
2821 		 * Ignore received packets that were sent by us.
2822 		 */
2823 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_shost,
2824 			   ETHER_ADDR_LEN) == 0) {
2825 			m_freem(m);
2826 			m = NULL;
2827 			goto out;
2828 		}
2829 	}
2830 
2831 	/*
2832 	 * It isn't for us.
2833 	 *
2834 	 * Perform the bridge forwarding function, but disallow bridging
2835 	 * to interfaces in the blocking state if the packet came in on
2836 	 * an interface in the blocking state.
2837 	 */
2838 	bridge_forward(sc, m);
2839 	m = NULL;
2840 
2841 	/*
2842 	 * ether_reinput_oncpu() will reprocess rcvif as
2843 	 * coming from new_ifp (since we do not specify
2844 	 * REINPUT_KEEPRCVIF).
2845 	 */
2846 out:
2847 	if (new_ifp != NULL) {
2848 		/*
2849 		 * Clear the bridge flag for local processing in
2850 		 * case the packet gets routed.
2851 		 */
2852 		ether_reinput_oncpu(new_ifp, m, REINPUT_RUNBPF);
2853 		m = NULL;
2854 	}
2855 	return (m);
2856 }
2857 
2858 /*
2859  * bridge_start_bcast:
2860  *
2861  *	Broadcast the packet sent from bridge to all member
2862  *	interfaces.
2863  *	This is a simplified version of bridge_broadcast(), however,
2864  *	this function expects caller to hold bridge's serializer.
2865  */
2866 static void
2867 bridge_start_bcast(struct bridge_softc *sc, struct mbuf *m)
2868 {
2869 	struct bridge_iflist *bif;
2870 	struct mbuf *mc;
2871 	struct ifnet *dst_if, *alt_if, *bifp;
2872 	int used = 0;
2873 	int found = 0;
2874 	int alt_priority;
2875 
2876 	mbuftrackid(m, 68);
2877 	bifp = sc->sc_ifp;
2878 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
2879 
2880 	/*
2881 	 * Following loop is MPSAFE; nothing is blocking
2882 	 * in the loop body.
2883 	 *
2884 	 * NOTE: We transmit through an member in the BLOCKING state only
2885 	 *	 as a last resort.
2886 	 */
2887 	alt_if = NULL;
2888 	alt_priority = 0;
2889 
2890 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2891 		dst_if = bif->bif_ifp;
2892 
2893 		if (bif->bif_flags & IFBIF_STP) {
2894 			switch (bif->bif_state) {
2895 			case BSTP_IFSTATE_BLOCKING:
2896 				if (bif->bif_priority > alt_priority) {
2897 					alt_priority = bif->bif_priority;
2898 					alt_if = bif->bif_ifp;
2899 				}
2900 				/* fall through */
2901 			case BSTP_IFSTATE_L1BLOCKING:
2902 			case BSTP_IFSTATE_DISABLED:
2903 				continue;
2904 			default:
2905 				/* listening, learning, bonded, forwarding */
2906 				break;
2907 			}
2908 		}
2909 
2910 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
2911 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
2912 			continue;
2913 
2914 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2915 			continue;
2916 
2917 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
2918 			mc = m;
2919 			used = 1;
2920 		} else {
2921 			mc = m_copypacket(m, MB_DONTWAIT);
2922 			if (mc == NULL) {
2923 				IFNET_STAT_INC(bifp, oerrors, 1);
2924 				continue;
2925 			}
2926 		}
2927 		found = 1;
2928 		bridge_enqueue(dst_if, mc);
2929 	}
2930 
2931 	if (found == 0 && alt_if) {
2932 		KKASSERT(used == 0);
2933 		mc = m;
2934 		used = 1;
2935 		bridge_enqueue(alt_if, mc);
2936 	}
2937 
2938 	if (used == 0)
2939 		m_freem(m);
2940 }
2941 
2942 /*
2943  * bridge_broadcast:
2944  *
2945  *	Send a frame to all interfaces that are members of
2946  *	the bridge, except for the one on which the packet
2947  *	arrived.
2948  */
2949 static void
2950 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if,
2951 		 struct mbuf *m)
2952 {
2953 	struct bridge_iflist *bif, *nbif;
2954 	struct ether_header *eh;
2955 	struct mbuf *mc;
2956 	struct ifnet *dst_if, *alt_if, *bifp;
2957 	int used;
2958 	int found;
2959 	int alt_priority;
2960 	int from_us;
2961 
2962 	mbuftrackid(m, 69);
2963 	bifp = sc->sc_ifp;
2964 	ASSERT_IFNET_NOT_SERIALIZED_ALL(bifp);
2965 
2966 	eh = mtod(m, struct ether_header *);
2967 	from_us = bridge_from_us(sc, eh);
2968 
2969 	if (inet_pfil_hook.ph_hashooks > 0
2970 #ifdef INET6
2971 	    || inet6_pfil_hook.ph_hashooks > 0
2972 #endif
2973 	    ) {
2974 		if (bridge_pfil(&m, bifp, src_if, PFIL_IN) != 0)
2975 			return;
2976 		if (m == NULL)
2977 			return;
2978 
2979 		/* Filter on the bridge interface before broadcasting */
2980 		if (bridge_pfil(&m, bifp, NULL, PFIL_OUT) != 0)
2981 			return;
2982 		if (m == NULL)
2983 			return;
2984 	}
2985 
2986 	alt_if = NULL;
2987 	alt_priority = 0;
2988 	found = 0;
2989 	used = 0;
2990 
2991 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
2992 		dst_if = bif->bif_ifp;
2993 
2994 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2995 			continue;
2996 
2997 		/*
2998 		 * Don't bounce the packet out the same interface it came
2999 		 * in on.  We have to test MAC addresses because a packet
3000 		 * can come in a bonded interface and we don't want it to
3001 		 * be echod out the forwarding interface for the same bonding
3002 		 * set.
3003 		 */
3004 		if (src_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
3005 				     ETHER_ADDR_LEN) == 0) {
3006 			continue;
3007 		}
3008 
3009 		/*
3010 		 * Generally speaking we only broadcast through forwarding
3011 		 * interfaces.  If no interfaces are available we select
3012 		 * a BONDED, BLOCKING, or LEARNING interface to forward
3013 		 * through.
3014 		 */
3015 		if (bif->bif_flags & IFBIF_STP) {
3016 			switch (bif->bif_state) {
3017 			case BSTP_IFSTATE_BONDED:
3018 				if (bif->bif_priority + 512 > alt_priority) {
3019 					alt_priority = bif->bif_priority + 512;
3020 					alt_if = bif->bif_ifp;
3021 				}
3022 				continue;
3023 			case BSTP_IFSTATE_BLOCKING:
3024 				if (bif->bif_priority + 256 > alt_priority) {
3025 					alt_priority = bif->bif_priority + 256;
3026 					alt_if = bif->bif_ifp;
3027 				}
3028 				continue;
3029 			case BSTP_IFSTATE_LEARNING:
3030 				if (bif->bif_priority > alt_priority) {
3031 					alt_priority = bif->bif_priority;
3032 					alt_if = bif->bif_ifp;
3033 				}
3034 				continue;
3035 			case BSTP_IFSTATE_L1BLOCKING:
3036 			case BSTP_IFSTATE_DISABLED:
3037 			case BSTP_IFSTATE_LISTENING:
3038 				continue;
3039 			default:
3040 				/* forwarding */
3041 				break;
3042 			}
3043 		}
3044 
3045 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3046 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0) {
3047 			continue;
3048 		}
3049 
3050 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3051 			mc = m;
3052 			used = 1;
3053 		} else {
3054 			mc = m_copypacket(m, MB_DONTWAIT);
3055 			if (mc == NULL) {
3056 				IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3057 				continue;
3058 			}
3059 		}
3060 		found = 1;
3061 
3062 		/*
3063 		 * Filter on the output interface.  Pass a NULL bridge
3064 		 * interface pointer so we do not redundantly filter on
3065 		 * the bridge for each interface we broadcast on.
3066 		 */
3067 		if (inet_pfil_hook.ph_hashooks > 0
3068 #ifdef INET6
3069 		    || inet6_pfil_hook.ph_hashooks > 0
3070 #endif
3071 		    ) {
3072 			if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0)
3073 				continue;
3074 			if (mc == NULL)
3075 				continue;
3076 		}
3077 		bridge_handoff(sc, dst_if, mc, from_us);
3078 
3079 		if (nbif != NULL && !nbif->bif_onlist) {
3080 			KKASSERT(bif->bif_onlist);
3081 			nbif = TAILQ_NEXT(bif, bif_next);
3082 		}
3083 	}
3084 
3085 	if (found == 0 && alt_if) {
3086 		KKASSERT(used == 0);
3087 		mc = m;
3088 		used = 1;
3089 		bridge_enqueue(alt_if, mc);
3090 	}
3091 
3092 	if (used == 0)
3093 		m_freem(m);
3094 }
3095 
3096 /*
3097  * bridge_span:
3098  *
3099  *	Duplicate a packet out one or more interfaces that are in span mode,
3100  *	the original mbuf is unmodified.
3101  */
3102 static void
3103 bridge_span(struct bridge_softc *sc, struct mbuf *m)
3104 {
3105 	struct bridge_iflist *bif;
3106 	struct ifnet *dst_if, *bifp;
3107 	struct mbuf *mc;
3108 
3109 	mbuftrackid(m, 70);
3110 	bifp = sc->sc_ifp;
3111 	ifnet_serialize_all(bifp);
3112 
3113 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
3114 		dst_if = bif->bif_ifp;
3115 
3116 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3117 			continue;
3118 
3119 		mc = m_copypacket(m, MB_DONTWAIT);
3120 		if (mc == NULL) {
3121 			IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3122 			continue;
3123 		}
3124 		bridge_enqueue(dst_if, mc);
3125 	}
3126 
3127 	ifnet_deserialize_all(bifp);
3128 }
3129 
3130 static void
3131 bridge_rtmsg_sync_handler(netmsg_t msg)
3132 {
3133 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3134 }
3135 
3136 static void
3137 bridge_rtmsg_sync(struct bridge_softc *sc)
3138 {
3139 	struct netmsg_base msg;
3140 
3141 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3142 
3143 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3144 		    0, bridge_rtmsg_sync_handler);
3145 	ifnet_domsg(&msg.lmsg, 0);
3146 }
3147 
3148 static __inline void
3149 bridge_rtinfo_update(struct bridge_rtinfo *bri, struct ifnet *dst_if,
3150 		     int setflags, uint8_t flags, uint32_t timeo)
3151 {
3152 	if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3153 	    bri->bri_ifp != dst_if)
3154 		bri->bri_ifp = dst_if;
3155 	if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3156 	    bri->bri_expire != time_second + timeo)
3157 		bri->bri_expire = time_second + timeo;
3158 	if (setflags)
3159 		bri->bri_flags = flags;
3160 }
3161 
3162 static int
3163 bridge_rtinstall_oncpu(struct bridge_softc *sc, const uint8_t *dst,
3164 		       struct ifnet *dst_if, int setflags, uint8_t flags,
3165 		       struct bridge_rtinfo **bri0)
3166 {
3167 	struct bridge_rtnode *brt;
3168 	struct bridge_rtinfo *bri;
3169 
3170 	if (mycpuid == 0) {
3171 		brt = bridge_rtnode_lookup(sc, dst);
3172 		if (brt != NULL) {
3173 			/*
3174 			 * rtnode for 'dst' already exists.  We inform the
3175 			 * caller about this by leaving bri0 as NULL.  The
3176 			 * caller will terminate the intallation upon getting
3177 			 * NULL bri0.  However, we still need to update the
3178 			 * rtinfo.
3179 			 */
3180 			KKASSERT(*bri0 == NULL);
3181 
3182 			/* Update rtinfo */
3183 			bridge_rtinfo_update(brt->brt_info, dst_if, setflags,
3184 					     flags, sc->sc_brttimeout);
3185 			return 0;
3186 		}
3187 
3188 		/*
3189 		 * We only need to check brtcnt on CPU0, since if limit
3190 		 * is to be exceeded, ENOSPC is returned.  Caller knows
3191 		 * this and will terminate the installation.
3192 		 */
3193 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3194 			return ENOSPC;
3195 
3196 		KKASSERT(*bri0 == NULL);
3197 		bri = kmalloc(sizeof(struct bridge_rtinfo), M_DEVBUF,
3198 				  M_WAITOK | M_ZERO);
3199 		*bri0 = bri;
3200 
3201 		/* Setup rtinfo */
3202 		bri->bri_flags = IFBAF_DYNAMIC;
3203 		bridge_rtinfo_update(bri, dst_if, setflags, flags,
3204 				     sc->sc_brttimeout);
3205 	} else {
3206 		bri = *bri0;
3207 		KKASSERT(bri != NULL);
3208 	}
3209 
3210 	brt = kmalloc(sizeof(struct bridge_rtnode), M_DEVBUF,
3211 		      M_WAITOK | M_ZERO);
3212 	memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
3213 	brt->brt_info = bri;
3214 
3215 	bridge_rtnode_insert(sc, brt);
3216 	return 0;
3217 }
3218 
3219 static void
3220 bridge_rtinstall_handler(netmsg_t msg)
3221 {
3222 	struct netmsg_brsaddr *brmsg = (struct netmsg_brsaddr *)msg;
3223 	int error;
3224 
3225 	error = bridge_rtinstall_oncpu(brmsg->br_softc,
3226 				       brmsg->br_dst, brmsg->br_dst_if,
3227 				       brmsg->br_setflags, brmsg->br_flags,
3228 				       &brmsg->br_rtinfo);
3229 	if (error) {
3230 		KKASSERT(mycpuid == 0 && brmsg->br_rtinfo == NULL);
3231 		lwkt_replymsg(&brmsg->base.lmsg, error);
3232 		return;
3233 	} else if (brmsg->br_rtinfo == NULL) {
3234 		/* rtnode already exists for 'dst' */
3235 		KKASSERT(mycpuid == 0);
3236 		lwkt_replymsg(&brmsg->base.lmsg, 0);
3237 		return;
3238 	}
3239 	ifnet_forwardmsg(&brmsg->base.lmsg, mycpuid + 1);
3240 }
3241 
3242 /*
3243  * bridge_rtupdate:
3244  *
3245  *	Add/Update a bridge routing entry.
3246  */
3247 static int
3248 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst,
3249 		struct ifnet *dst_if, uint8_t flags)
3250 {
3251 	struct bridge_rtnode *brt;
3252 
3253 	/*
3254 	 * A route for this destination might already exist.  If so,
3255 	 * update it, otherwise create a new one.
3256 	 */
3257 	if ((brt = bridge_rtnode_lookup(sc, dst)) == NULL) {
3258 		struct netmsg_brsaddr *brmsg;
3259 
3260 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3261 			return ENOSPC;
3262 
3263 		brmsg = kmalloc(sizeof(*brmsg), M_LWKTMSG, M_WAITOK | M_NULLOK);
3264 		if (brmsg == NULL)
3265 			return ENOMEM;
3266 
3267 		netmsg_init(&brmsg->base, NULL, &netisr_afree_rport,
3268 			    0, bridge_rtinstall_handler);
3269 		memcpy(brmsg->br_dst, dst, ETHER_ADDR_LEN);
3270 		brmsg->br_dst_if = dst_if;
3271 		brmsg->br_flags = flags;
3272 		brmsg->br_setflags = 0;
3273 		brmsg->br_softc = sc;
3274 		brmsg->br_rtinfo = NULL;
3275 
3276 		ifnet_sendmsg(&brmsg->base.lmsg, 0);
3277 		return 0;
3278 	}
3279 	bridge_rtinfo_update(brt->brt_info, dst_if, 0, flags,
3280 			     sc->sc_brttimeout);
3281 	return 0;
3282 }
3283 
3284 static int
3285 bridge_rtsaddr(struct bridge_softc *sc, const uint8_t *dst,
3286 	       struct ifnet *dst_if, uint8_t flags)
3287 {
3288 	struct netmsg_brsaddr brmsg;
3289 
3290 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3291 
3292 	netmsg_init(&brmsg.base, NULL, &curthread->td_msgport,
3293 		    0, bridge_rtinstall_handler);
3294 	memcpy(brmsg.br_dst, dst, ETHER_ADDR_LEN);
3295 	brmsg.br_dst_if = dst_if;
3296 	brmsg.br_flags = flags;
3297 	brmsg.br_setflags = 1;
3298 	brmsg.br_softc = sc;
3299 	brmsg.br_rtinfo = NULL;
3300 
3301 	return ifnet_domsg(&brmsg.base.lmsg, 0);
3302 }
3303 
3304 /*
3305  * bridge_rtlookup:
3306  *
3307  *	Lookup the destination interface for an address.
3308  */
3309 static struct ifnet *
3310 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr)
3311 {
3312 	struct bridge_rtnode *brt;
3313 
3314 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3315 		return NULL;
3316 	return brt->brt_info->bri_ifp;
3317 }
3318 
3319 static void
3320 bridge_rtreap_handler(netmsg_t msg)
3321 {
3322 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3323 	struct bridge_rtnode *brt, *nbrt;
3324 
3325 	LIST_FOREACH_MUTABLE(brt, &sc->sc_rtlists[mycpuid], brt_list, nbrt) {
3326 		if (brt->brt_info->bri_dead)
3327 			bridge_rtnode_destroy(sc, brt);
3328 	}
3329 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3330 }
3331 
3332 static void
3333 bridge_rtreap(struct bridge_softc *sc)
3334 {
3335 	struct netmsg_base msg;
3336 
3337 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3338 
3339 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3340 		    0, bridge_rtreap_handler);
3341 	msg.lmsg.u.ms_resultp = sc;
3342 
3343 	ifnet_domsg(&msg.lmsg, 0);
3344 }
3345 
3346 static void
3347 bridge_rtreap_async(struct bridge_softc *sc)
3348 {
3349 	struct netmsg_base *msg;
3350 
3351 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK);
3352 
3353 	netmsg_init(msg, NULL, &netisr_afree_rport,
3354 		    0, bridge_rtreap_handler);
3355 	msg->lmsg.u.ms_resultp = sc;
3356 
3357 	ifnet_sendmsg(&msg->lmsg, 0);
3358 }
3359 
3360 /*
3361  * bridge_rttrim:
3362  *
3363  *	Trim the routine table so that we have a number
3364  *	of routing entries less than or equal to the
3365  *	maximum number.
3366  */
3367 static void
3368 bridge_rttrim(struct bridge_softc *sc)
3369 {
3370 	struct bridge_rtnode *brt;
3371 	int dead;
3372 
3373 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3374 
3375 	/* Make sure we actually need to do this. */
3376 	if (sc->sc_brtcnt <= sc->sc_brtmax)
3377 		return;
3378 
3379 	/*
3380 	 * Find out how many rtnodes are dead
3381 	 */
3382 	dead = bridge_rtage_finddead(sc);
3383 	KKASSERT(dead <= sc->sc_brtcnt);
3384 
3385 	if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3386 		/* Enough dead rtnodes are found */
3387 		bridge_rtreap(sc);
3388 		return;
3389 	}
3390 
3391 	/*
3392 	 * Kill some dynamic rtnodes to meet the brtmax
3393 	 */
3394 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3395 		struct bridge_rtinfo *bri = brt->brt_info;
3396 
3397 		if (bri->bri_dead) {
3398 			/*
3399 			 * We have counted this rtnode in
3400 			 * bridge_rtage_finddead()
3401 			 */
3402 			continue;
3403 		}
3404 
3405 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3406 			bri->bri_dead = 1;
3407 			++dead;
3408 			KKASSERT(dead <= sc->sc_brtcnt);
3409 
3410 			if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3411 				/* Enough rtnodes are collected */
3412 				break;
3413 			}
3414 		}
3415 	}
3416 	if (dead)
3417 		bridge_rtreap(sc);
3418 }
3419 
3420 /*
3421  * bridge_timer:
3422  *
3423  *	Aging timer for the bridge.
3424  */
3425 static void
3426 bridge_timer(void *arg)
3427 {
3428 	struct bridge_softc *sc = arg;
3429 	struct netmsg_base *msg;
3430 
3431 	KKASSERT(mycpuid == BRIDGE_CFGCPU);
3432 
3433 	crit_enter();
3434 
3435 	if (callout_pending(&sc->sc_brcallout) ||
3436 	    !callout_active(&sc->sc_brcallout)) {
3437 		crit_exit();
3438 		return;
3439 	}
3440 	callout_deactivate(&sc->sc_brcallout);
3441 
3442 	msg = &sc->sc_brtimemsg;
3443 	KKASSERT(msg->lmsg.ms_flags & MSGF_DONE);
3444 	lwkt_sendmsg(BRIDGE_CFGPORT, &msg->lmsg);
3445 
3446 	crit_exit();
3447 }
3448 
3449 static void
3450 bridge_timer_handler(netmsg_t msg)
3451 {
3452 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3453 
3454 	KKASSERT(&curthread->td_msgport == BRIDGE_CFGPORT);
3455 
3456 	crit_enter();
3457 	/* Reply ASAP */
3458 	lwkt_replymsg(&msg->lmsg, 0);
3459 	crit_exit();
3460 
3461 	bridge_rtage(sc);
3462 	if (sc->sc_ifp->if_flags & IFF_RUNNING) {
3463 		callout_reset(&sc->sc_brcallout,
3464 		    bridge_rtable_prune_period * hz, bridge_timer, sc);
3465 	}
3466 }
3467 
3468 static int
3469 bridge_rtage_finddead(struct bridge_softc *sc)
3470 {
3471 	struct bridge_rtnode *brt;
3472 	int dead = 0;
3473 
3474 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3475 		struct bridge_rtinfo *bri = brt->brt_info;
3476 
3477 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3478 		    time_second >= bri->bri_expire) {
3479 			bri->bri_dead = 1;
3480 			++dead;
3481 			KKASSERT(dead <= sc->sc_brtcnt);
3482 		}
3483 	}
3484 	return dead;
3485 }
3486 
3487 /*
3488  * bridge_rtage:
3489  *
3490  *	Perform an aging cycle.
3491  */
3492 static void
3493 bridge_rtage(struct bridge_softc *sc)
3494 {
3495 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3496 
3497 	if (bridge_rtage_finddead(sc))
3498 		bridge_rtreap(sc);
3499 }
3500 
3501 /*
3502  * bridge_rtflush:
3503  *
3504  *	Remove all dynamic addresses from the bridge.
3505  */
3506 static void
3507 bridge_rtflush(struct bridge_softc *sc, int bf)
3508 {
3509 	struct bridge_rtnode *brt;
3510 	int reap;
3511 
3512 	reap = 0;
3513 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3514 		struct bridge_rtinfo *bri = brt->brt_info;
3515 
3516 		if ((bf & IFBF_FLUSHALL) ||
3517 		    (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3518 			bri->bri_dead = 1;
3519 			reap = 1;
3520 		}
3521 	}
3522 	if (reap) {
3523 		if (bf & IFBF_FLUSHSYNC)
3524 			bridge_rtreap(sc);
3525 		else
3526 			bridge_rtreap_async(sc);
3527 	}
3528 }
3529 
3530 /*
3531  * bridge_rtdaddr:
3532  *
3533  *	Remove an address from the table.
3534  */
3535 static int
3536 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr)
3537 {
3538 	struct bridge_rtnode *brt;
3539 
3540 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3541 
3542 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3543 		return (ENOENT);
3544 
3545 	/* TODO: add a cheaper delete operation */
3546 	brt->brt_info->bri_dead = 1;
3547 	bridge_rtreap(sc);
3548 	return (0);
3549 }
3550 
3551 /*
3552  * bridge_rtdelete:
3553  *
3554  *	Delete routes to a speicifc member interface.
3555  */
3556 void
3557 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int bf)
3558 {
3559 	struct bridge_rtnode *brt;
3560 	int reap;
3561 
3562 	reap = 0;
3563 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3564 		struct bridge_rtinfo *bri = brt->brt_info;
3565 
3566 		if (bri->bri_ifp == ifp &&
3567 		    ((bf & IFBF_FLUSHALL) ||
3568 		     (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
3569 			bri->bri_dead = 1;
3570 			reap = 1;
3571 		}
3572 	}
3573 	if (reap) {
3574 		if (bf & IFBF_FLUSHSYNC)
3575 			bridge_rtreap(sc);
3576 		else
3577 			bridge_rtreap_async(sc);
3578 	}
3579 }
3580 
3581 /*
3582  * bridge_rtable_init:
3583  *
3584  *	Initialize the route table for this bridge.
3585  */
3586 static void
3587 bridge_rtable_init(struct bridge_softc *sc)
3588 {
3589 	int cpu;
3590 
3591 	/*
3592 	 * Initialize per-cpu hash tables
3593 	 */
3594 	sc->sc_rthashs = kmalloc(sizeof(*sc->sc_rthashs) * ncpus,
3595 				 M_DEVBUF, M_WAITOK);
3596 	for (cpu = 0; cpu < ncpus; ++cpu) {
3597 		int i;
3598 
3599 		sc->sc_rthashs[cpu] =
3600 		kmalloc(sizeof(struct bridge_rtnode_head) * BRIDGE_RTHASH_SIZE,
3601 			M_DEVBUF, M_WAITOK);
3602 
3603 		for (i = 0; i < BRIDGE_RTHASH_SIZE; i++)
3604 			LIST_INIT(&sc->sc_rthashs[cpu][i]);
3605 	}
3606 	sc->sc_rthash_key = karc4random();
3607 
3608 	/*
3609 	 * Initialize per-cpu lists
3610 	 */
3611 	sc->sc_rtlists = kmalloc(sizeof(struct bridge_rtnode_head) * ncpus,
3612 				 M_DEVBUF, M_WAITOK);
3613 	for (cpu = 0; cpu < ncpus; ++cpu)
3614 		LIST_INIT(&sc->sc_rtlists[cpu]);
3615 }
3616 
3617 /*
3618  * bridge_rtable_fini:
3619  *
3620  *	Deconstruct the route table for this bridge.
3621  */
3622 static void
3623 bridge_rtable_fini(struct bridge_softc *sc)
3624 {
3625 	int cpu;
3626 
3627 	/*
3628 	 * Free per-cpu hash tables
3629 	 */
3630 	for (cpu = 0; cpu < ncpus; ++cpu)
3631 		kfree(sc->sc_rthashs[cpu], M_DEVBUF);
3632 	kfree(sc->sc_rthashs, M_DEVBUF);
3633 
3634 	/*
3635 	 * Free per-cpu lists
3636 	 */
3637 	kfree(sc->sc_rtlists, M_DEVBUF);
3638 }
3639 
3640 /*
3641  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
3642  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
3643  */
3644 #define	mix(a, b, c)							\
3645 do {									\
3646 	a -= b; a -= c; a ^= (c >> 13);					\
3647 	b -= c; b -= a; b ^= (a << 8);					\
3648 	c -= a; c -= b; c ^= (b >> 13);					\
3649 	a -= b; a -= c; a ^= (c >> 12);					\
3650 	b -= c; b -= a; b ^= (a << 16);					\
3651 	c -= a; c -= b; c ^= (b >> 5);					\
3652 	a -= b; a -= c; a ^= (c >> 3);					\
3653 	b -= c; b -= a; b ^= (a << 10);					\
3654 	c -= a; c -= b; c ^= (b >> 15);					\
3655 } while (/*CONSTCOND*/0)
3656 
3657 static __inline uint32_t
3658 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
3659 {
3660 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
3661 
3662 	b += addr[5] << 8;
3663 	b += addr[4];
3664 	a += addr[3] << 24;
3665 	a += addr[2] << 16;
3666 	a += addr[1] << 8;
3667 	a += addr[0];
3668 
3669 	mix(a, b, c);
3670 
3671 	return (c & BRIDGE_RTHASH_MASK);
3672 }
3673 
3674 #undef mix
3675 
3676 static int
3677 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
3678 {
3679 	int i, d;
3680 
3681 	for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
3682 		d = ((int)a[i]) - ((int)b[i]);
3683 	}
3684 
3685 	return (d);
3686 }
3687 
3688 /*
3689  * bridge_rtnode_lookup:
3690  *
3691  *	Look up a bridge route node for the specified destination.
3692  */
3693 static struct bridge_rtnode *
3694 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr)
3695 {
3696 	struct bridge_rtnode *brt;
3697 	uint32_t hash;
3698 	int dir;
3699 
3700 	hash = bridge_rthash(sc, addr);
3701 	LIST_FOREACH(brt, &sc->sc_rthashs[mycpuid][hash], brt_hash) {
3702 		dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
3703 		if (dir == 0)
3704 			return (brt);
3705 		if (dir > 0)
3706 			return (NULL);
3707 	}
3708 
3709 	return (NULL);
3710 }
3711 
3712 /*
3713  * bridge_rtnode_insert:
3714  *
3715  *	Insert the specified bridge node into the route table.
3716  *	Caller has to make sure that rtnode does not exist.
3717  */
3718 static void
3719 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
3720 {
3721 	struct bridge_rtnode *lbrt;
3722 	uint32_t hash;
3723 	int dir;
3724 
3725 	hash = bridge_rthash(sc, brt->brt_addr);
3726 
3727 	lbrt = LIST_FIRST(&sc->sc_rthashs[mycpuid][hash]);
3728 	if (lbrt == NULL) {
3729 		LIST_INSERT_HEAD(&sc->sc_rthashs[mycpuid][hash],
3730 				  brt, brt_hash);
3731 		goto out;
3732 	}
3733 
3734 	do {
3735 		dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
3736 		KASSERT(dir != 0, ("rtnode already exist"));
3737 
3738 		if (dir > 0) {
3739 			LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
3740 			goto out;
3741 		}
3742 		if (LIST_NEXT(lbrt, brt_hash) == NULL) {
3743 			LIST_INSERT_AFTER(lbrt, brt, brt_hash);
3744 			goto out;
3745 		}
3746 		lbrt = LIST_NEXT(lbrt, brt_hash);
3747 	} while (lbrt != NULL);
3748 
3749 	panic("no suitable position found for rtnode");
3750 out:
3751 	LIST_INSERT_HEAD(&sc->sc_rtlists[mycpuid], brt, brt_list);
3752 	if (mycpuid == 0) {
3753 		/*
3754 		 * Update the brtcnt.
3755 		 * We only need to do it once and we do it on CPU0.
3756 		 */
3757 		sc->sc_brtcnt++;
3758 	}
3759 }
3760 
3761 /*
3762  * bridge_rtnode_destroy:
3763  *
3764  *	Destroy a bridge rtnode.
3765  */
3766 static void
3767 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
3768 {
3769 	LIST_REMOVE(brt, brt_hash);
3770 	LIST_REMOVE(brt, brt_list);
3771 
3772 	if (mycpuid + 1 == ncpus) {
3773 		/* Free rtinfo associated with rtnode on the last cpu */
3774 		kfree(brt->brt_info, M_DEVBUF);
3775 	}
3776 	kfree(brt, M_DEVBUF);
3777 
3778 	if (mycpuid == 0) {
3779 		/* Update brtcnt only on CPU0 */
3780 		sc->sc_brtcnt--;
3781 	}
3782 }
3783 
3784 static __inline int
3785 bridge_post_pfil(struct mbuf *m)
3786 {
3787 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED)
3788 		return EOPNOTSUPP;
3789 
3790 	/* Not yet */
3791 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED)
3792 		return EOPNOTSUPP;
3793 
3794 	return 0;
3795 }
3796 
3797 /*
3798  * Send bridge packets through pfil if they are one of the types pfil can deal
3799  * with, or if they are ARP or REVARP.  (pfil will pass ARP and REVARP without
3800  * question.) If *bifp or *ifp are NULL then packet filtering is skipped for
3801  * that interface.
3802  */
3803 static int
3804 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir)
3805 {
3806 	int snap, error, i, hlen;
3807 	struct ether_header *eh1, eh2;
3808 	struct ip *ip;
3809 	struct llc llc1;
3810 	u_int16_t ether_type;
3811 
3812 	snap = 0;
3813 	error = -1;	/* Default error if not error == 0 */
3814 
3815 	if (pfil_bridge == 0 && pfil_member == 0)
3816 		return (0); /* filtering is disabled */
3817 
3818 	i = min((*mp)->m_pkthdr.len, max_protohdr);
3819 	if ((*mp)->m_len < i) {
3820 		*mp = m_pullup(*mp, i);
3821 		if (*mp == NULL) {
3822 			kprintf("%s: m_pullup failed\n", __func__);
3823 			return (-1);
3824 		}
3825 	}
3826 
3827 	eh1 = mtod(*mp, struct ether_header *);
3828 	ether_type = ntohs(eh1->ether_type);
3829 
3830 	/*
3831 	 * Check for SNAP/LLC.
3832 	 */
3833 	if (ether_type < ETHERMTU) {
3834 		struct llc *llc2 = (struct llc *)(eh1 + 1);
3835 
3836 		if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
3837 		    llc2->llc_dsap == LLC_SNAP_LSAP &&
3838 		    llc2->llc_ssap == LLC_SNAP_LSAP &&
3839 		    llc2->llc_control == LLC_UI) {
3840 			ether_type = htons(llc2->llc_un.type_snap.ether_type);
3841 			snap = 1;
3842 		}
3843 	}
3844 
3845 	/*
3846 	 * If we're trying to filter bridge traffic, don't look at anything
3847 	 * other than IP and ARP traffic.  If the filter doesn't understand
3848 	 * IPv6, don't allow IPv6 through the bridge either.  This is lame
3849 	 * since if we really wanted, say, an AppleTalk filter, we are hosed,
3850 	 * but of course we don't have an AppleTalk filter to begin with.
3851 	 * (Note that since pfil doesn't understand ARP it will pass *ALL*
3852 	 * ARP traffic.)
3853 	 */
3854 	switch (ether_type) {
3855 	case ETHERTYPE_ARP:
3856 	case ETHERTYPE_REVARP:
3857 		return (0); /* Automatically pass */
3858 
3859 	case ETHERTYPE_IP:
3860 #ifdef INET6
3861 	case ETHERTYPE_IPV6:
3862 #endif /* INET6 */
3863 		break;
3864 
3865 	default:
3866 		/*
3867 		 * Check to see if the user wants to pass non-ip
3868 		 * packets, these will not be checked by pfil(9)
3869 		 * and passed unconditionally so the default is to drop.
3870 		 */
3871 		if (pfil_onlyip)
3872 			goto bad;
3873 	}
3874 
3875 	/* Strip off the Ethernet header and keep a copy. */
3876 	m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2);
3877 	m_adj(*mp, ETHER_HDR_LEN);
3878 
3879 	/* Strip off snap header, if present */
3880 	if (snap) {
3881 		m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1);
3882 		m_adj(*mp, sizeof(struct llc));
3883 	}
3884 
3885 	/*
3886 	 * Check the IP header for alignment and errors
3887 	 */
3888 	if (dir == PFIL_IN) {
3889 		switch (ether_type) {
3890 		case ETHERTYPE_IP:
3891 			error = bridge_ip_checkbasic(mp);
3892 			break;
3893 #ifdef INET6
3894 		case ETHERTYPE_IPV6:
3895 			error = bridge_ip6_checkbasic(mp);
3896 			break;
3897 #endif /* INET6 */
3898 		default:
3899 			error = 0;
3900 		}
3901 		if (error)
3902 			goto bad;
3903 	}
3904 
3905 	error = 0;
3906 
3907 	/*
3908 	 * Run the packet through pfil
3909 	 */
3910 	switch (ether_type) {
3911 	case ETHERTYPE_IP:
3912 		/*
3913 		 * before calling the firewall, swap fields the same as
3914 		 * IP does. here we assume the header is contiguous
3915 		 */
3916 		ip = mtod(*mp, struct ip *);
3917 
3918 		ip->ip_len = ntohs(ip->ip_len);
3919 		ip->ip_off = ntohs(ip->ip_off);
3920 
3921 		/*
3922 		 * Run pfil on the member interface and the bridge, both can
3923 		 * be skipped by clearing pfil_member or pfil_bridge.
3924 		 *
3925 		 * Keep the order:
3926 		 *   in_if -> bridge_if -> out_if
3927 		 */
3928 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) {
3929 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3930 			if (*mp == NULL || error != 0) /* filter may consume */
3931 				break;
3932 			error = bridge_post_pfil(*mp);
3933 			if (error)
3934 				break;
3935 		}
3936 
3937 		if (pfil_member && ifp != NULL) {
3938 			error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir);
3939 			if (*mp == NULL || error != 0) /* filter may consume */
3940 				break;
3941 			error = bridge_post_pfil(*mp);
3942 			if (error)
3943 				break;
3944 		}
3945 
3946 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL) {
3947 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3948 			if (*mp == NULL || error != 0) /* filter may consume */
3949 				break;
3950 			error = bridge_post_pfil(*mp);
3951 			if (error)
3952 				break;
3953 		}
3954 
3955 		/* check if we need to fragment the packet */
3956 		if (pfil_member && ifp != NULL && dir == PFIL_OUT) {
3957 			i = (*mp)->m_pkthdr.len;
3958 			if (i > ifp->if_mtu) {
3959 				error = bridge_fragment(ifp, *mp, &eh2, snap,
3960 					    &llc1);
3961 				return (error);
3962 			}
3963 		}
3964 
3965 		/* Recalculate the ip checksum and restore byte ordering */
3966 		ip = mtod(*mp, struct ip *);
3967 		hlen = ip->ip_hl << 2;
3968 		if (hlen < sizeof(struct ip))
3969 			goto bad;
3970 		if (hlen > (*mp)->m_len) {
3971 			if ((*mp = m_pullup(*mp, hlen)) == NULL)
3972 				goto bad;
3973 			ip = mtod(*mp, struct ip *);
3974 			if (ip == NULL)
3975 				goto bad;
3976 		}
3977 		ip->ip_len = htons(ip->ip_len);
3978 		ip->ip_off = htons(ip->ip_off);
3979 		ip->ip_sum = 0;
3980 		if (hlen == sizeof(struct ip))
3981 			ip->ip_sum = in_cksum_hdr(ip);
3982 		else
3983 			ip->ip_sum = in_cksum(*mp, hlen);
3984 
3985 		break;
3986 #ifdef INET6
3987 	case ETHERTYPE_IPV6:
3988 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL)
3989 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
3990 					dir);
3991 
3992 		if (*mp == NULL || error != 0) /* filter may consume */
3993 			break;
3994 
3995 		if (pfil_member && ifp != NULL)
3996 			error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp,
3997 					dir);
3998 
3999 		if (*mp == NULL || error != 0) /* filter may consume */
4000 			break;
4001 
4002 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL)
4003 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4004 					dir);
4005 		break;
4006 #endif
4007 	default:
4008 		error = 0;
4009 		break;
4010 	}
4011 
4012 	if (*mp == NULL)
4013 		return (error);
4014 	if (error != 0)
4015 		goto bad;
4016 
4017 	error = -1;
4018 
4019 	/*
4020 	 * Finally, put everything back the way it was and return
4021 	 */
4022 	if (snap) {
4023 		M_PREPEND(*mp, sizeof(struct llc), MB_DONTWAIT);
4024 		if (*mp == NULL)
4025 			return (error);
4026 		bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
4027 	}
4028 
4029 	M_PREPEND(*mp, ETHER_HDR_LEN, MB_DONTWAIT);
4030 	if (*mp == NULL)
4031 		return (error);
4032 	bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
4033 
4034 	return (0);
4035 
4036 bad:
4037 	m_freem(*mp);
4038 	*mp = NULL;
4039 	return (error);
4040 }
4041 
4042 /*
4043  * Perform basic checks on header size since
4044  * pfil assumes ip_input has already processed
4045  * it for it.  Cut-and-pasted from ip_input.c.
4046  * Given how simple the IPv6 version is,
4047  * does the IPv4 version really need to be
4048  * this complicated?
4049  *
4050  * XXX Should we update ipstat here, or not?
4051  * XXX Right now we update ipstat but not
4052  * XXX csum_counter.
4053  */
4054 static int
4055 bridge_ip_checkbasic(struct mbuf **mp)
4056 {
4057 	struct mbuf *m = *mp;
4058 	struct ip *ip;
4059 	int len, hlen;
4060 	u_short sum;
4061 
4062 	if (*mp == NULL)
4063 		return (-1);
4064 #if 0 /* notyet */
4065 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4066 		if ((m = m_copyup(m, sizeof(struct ip),
4067 			(max_linkhdr + 3) & ~3)) == NULL) {
4068 			/* XXXJRT new stat, please */
4069 			ipstat.ips_toosmall++;
4070 			goto bad;
4071 		}
4072 	} else
4073 #endif
4074 #ifndef __predict_false
4075 #define __predict_false(x) x
4076 #endif
4077 	 if (__predict_false(m->m_len < sizeof (struct ip))) {
4078 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
4079 			ipstat.ips_toosmall++;
4080 			goto bad;
4081 		}
4082 	}
4083 	ip = mtod(m, struct ip *);
4084 	if (ip == NULL) goto bad;
4085 
4086 	if (ip->ip_v != IPVERSION) {
4087 		ipstat.ips_badvers++;
4088 		goto bad;
4089 	}
4090 	hlen = ip->ip_hl << 2;
4091 	if (hlen < sizeof(struct ip)) { /* minimum header length */
4092 		ipstat.ips_badhlen++;
4093 		goto bad;
4094 	}
4095 	if (hlen > m->m_len) {
4096 		if ((m = m_pullup(m, hlen)) == NULL) {
4097 			ipstat.ips_badhlen++;
4098 			goto bad;
4099 		}
4100 		ip = mtod(m, struct ip *);
4101 		if (ip == NULL) goto bad;
4102 	}
4103 
4104 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
4105 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
4106 	} else {
4107 		if (hlen == sizeof(struct ip)) {
4108 			sum = in_cksum_hdr(ip);
4109 		} else {
4110 			sum = in_cksum(m, hlen);
4111 		}
4112 	}
4113 	if (sum) {
4114 		ipstat.ips_badsum++;
4115 		goto bad;
4116 	}
4117 
4118 	/* Retrieve the packet length. */
4119 	len = ntohs(ip->ip_len);
4120 
4121 	/*
4122 	 * Check for additional length bogosity
4123 	 */
4124 	if (len < hlen) {
4125 		ipstat.ips_badlen++;
4126 		goto bad;
4127 	}
4128 
4129 	/*
4130 	 * Check that the amount of data in the buffers
4131 	 * is as at least much as the IP header would have us expect.
4132 	 * Drop packet if shorter than we expect.
4133 	 */
4134 	if (m->m_pkthdr.len < len) {
4135 		ipstat.ips_tooshort++;
4136 		goto bad;
4137 	}
4138 
4139 	/* Checks out, proceed */
4140 	*mp = m;
4141 	return (0);
4142 
4143 bad:
4144 	*mp = m;
4145 	return (-1);
4146 }
4147 
4148 #ifdef INET6
4149 /*
4150  * Same as above, but for IPv6.
4151  * Cut-and-pasted from ip6_input.c.
4152  * XXX Should we update ip6stat, or not?
4153  */
4154 static int
4155 bridge_ip6_checkbasic(struct mbuf **mp)
4156 {
4157 	struct mbuf *m = *mp;
4158 	struct ip6_hdr *ip6;
4159 
4160 	/*
4161 	 * If the IPv6 header is not aligned, slurp it up into a new
4162 	 * mbuf with space for link headers, in the event we forward
4163 	 * it.  Otherwise, if it is aligned, make sure the entire base
4164 	 * IPv6 header is in the first mbuf of the chain.
4165 	 */
4166 #if 0 /* notyet */
4167 	if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4168 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4169 		if ((m = m_copyup(m, sizeof(struct ip6_hdr),
4170 			    (max_linkhdr + 3) & ~3)) == NULL) {
4171 			/* XXXJRT new stat, please */
4172 			ip6stat.ip6s_toosmall++;
4173 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4174 			goto bad;
4175 		}
4176 	} else
4177 #endif
4178 	if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
4179 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4180 		if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
4181 			ip6stat.ip6s_toosmall++;
4182 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4183 			goto bad;
4184 		}
4185 	}
4186 
4187 	ip6 = mtod(m, struct ip6_hdr *);
4188 
4189 	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
4190 		ip6stat.ip6s_badvers++;
4191 		in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
4192 		goto bad;
4193 	}
4194 
4195 	/* Checks out, proceed */
4196 	*mp = m;
4197 	return (0);
4198 
4199 bad:
4200 	*mp = m;
4201 	return (-1);
4202 }
4203 #endif /* INET6 */
4204 
4205 /*
4206  * bridge_fragment:
4207  *
4208  *	Return a fragmented mbuf chain.
4209  */
4210 static int
4211 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh,
4212     int snap, struct llc *llc)
4213 {
4214 	struct mbuf *m0;
4215 	struct ip *ip;
4216 	int error = -1;
4217 
4218 	if (m->m_len < sizeof(struct ip) &&
4219 	    (m = m_pullup(m, sizeof(struct ip))) == NULL)
4220 		goto out;
4221 	ip = mtod(m, struct ip *);
4222 
4223 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist,
4224 		    CSUM_DELAY_IP);
4225 	if (error)
4226 		goto out;
4227 
4228 	/* walk the chain and re-add the Ethernet header */
4229 	for (m0 = m; m0; m0 = m0->m_nextpkt) {
4230 		if (error == 0) {
4231 			if (snap) {
4232 				M_PREPEND(m0, sizeof(struct llc), MB_DONTWAIT);
4233 				if (m0 == NULL) {
4234 					error = ENOBUFS;
4235 					continue;
4236 				}
4237 				bcopy(llc, mtod(m0, caddr_t),
4238 				    sizeof(struct llc));
4239 			}
4240 			M_PREPEND(m0, ETHER_HDR_LEN, MB_DONTWAIT);
4241 			if (m0 == NULL) {
4242 				error = ENOBUFS;
4243 				continue;
4244 			}
4245 			bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN);
4246 		} else
4247 			m_freem(m);
4248 	}
4249 
4250 	if (error == 0)
4251 		ipstat.ips_fragmented++;
4252 
4253 	return (error);
4254 
4255 out:
4256 	if (m != NULL)
4257 		m_freem(m);
4258 	return (error);
4259 }
4260 
4261 static void
4262 bridge_enqueue_handler(netmsg_t msg)
4263 {
4264 	struct netmsg_packet *nmp;
4265 	struct ifnet *dst_ifp;
4266 	struct mbuf *m;
4267 
4268 	nmp = &msg->packet;
4269 	m = nmp->nm_packet;
4270 	dst_ifp = nmp->base.lmsg.u.ms_resultp;
4271 	mbuftrackid(m, 71);
4272 
4273 	bridge_handoff(dst_ifp->if_bridge, dst_ifp, m, 1);
4274 }
4275 
4276 static void
4277 bridge_handoff(struct bridge_softc *sc, struct ifnet *dst_ifp,
4278 	       struct mbuf *m, int from_us)
4279 {
4280 	struct mbuf *m0;
4281 	struct ifnet *bifp;
4282 
4283 	bifp = sc->sc_ifp;
4284 	mbuftrackid(m, 72);
4285 
4286 	/* We may be sending a fragment so traverse the mbuf */
4287 	for (; m; m = m0) {
4288 		struct altq_pktattr pktattr;
4289 
4290 		m0 = m->m_nextpkt;
4291 		m->m_nextpkt = NULL;
4292 
4293 		/*
4294 		 * If being sent from our host override ether_shost
4295 		 * with the bridge MAC.  This is mandatory for ARP
4296 		 * so things don't get confused.  In particular we
4297 		 * don't want ARPs to get associated with link interfaces
4298 		 * under the bridge which might or might not stay valid.
4299 		 *
4300 		 * Also override ether_shost when relaying a packet out
4301 		 * the same interface it came in on, due to multi-homed
4302 		 * addresses & default routes, otherwise switches will
4303 		 * get very confused.
4304 		 *
4305 		 * Otherwise if we are in transparent mode.
4306 		 */
4307 		if (from_us || m->m_pkthdr.rcvif == dst_ifp) {
4308 			m_copyback(m,
4309 				   offsetof(struct ether_header, ether_shost),
4310 				   ETHER_ADDR_LEN, IF_LLADDR(sc->sc_ifp));
4311 		} else if ((bifp->if_flags & IFF_LINK0) &&
4312 			   (m->m_pkthdr.fw_flags & BRIDGE_MBUF_TAGGED)) {
4313 			m_copyback(m,
4314 				   offsetof(struct ether_header, ether_shost),
4315 				   ETHER_ADDR_LEN,
4316 				   m->m_pkthdr.br.ether.ether_shost);
4317 		} /* else retain shost */
4318 
4319 		if (ifq_is_enabled(&dst_ifp->if_snd))
4320 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
4321 
4322 		ifq_dispatch(dst_ifp, m, &pktattr);
4323 	}
4324 }
4325 
4326 static void
4327 bridge_control_dispatch(netmsg_t msg)
4328 {
4329 	struct netmsg_brctl *bc_msg = (struct netmsg_brctl *)msg;
4330 	struct ifnet *bifp = bc_msg->bc_sc->sc_ifp;
4331 	int error;
4332 
4333 	ifnet_serialize_all(bifp);
4334 	error = bc_msg->bc_func(bc_msg->bc_sc, bc_msg->bc_arg);
4335 	ifnet_deserialize_all(bifp);
4336 
4337 	lwkt_replymsg(&bc_msg->base.lmsg, error);
4338 }
4339 
4340 static int
4341 bridge_control(struct bridge_softc *sc, u_long cmd,
4342 	       bridge_ctl_t bc_func, void *bc_arg)
4343 {
4344 	struct ifnet *bifp = sc->sc_ifp;
4345 	struct netmsg_brctl bc_msg;
4346 	int error;
4347 
4348 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
4349 
4350 	bzero(&bc_msg, sizeof(bc_msg));
4351 
4352 	netmsg_init(&bc_msg.base, NULL, &curthread->td_msgport,
4353 		    0, bridge_control_dispatch);
4354 	bc_msg.bc_func = bc_func;
4355 	bc_msg.bc_sc = sc;
4356 	bc_msg.bc_arg = bc_arg;
4357 
4358 	ifnet_deserialize_all(bifp);
4359 	error = lwkt_domsg(BRIDGE_CFGPORT, &bc_msg.base.lmsg, 0);
4360 	ifnet_serialize_all(bifp);
4361 	return error;
4362 }
4363 
4364 static void
4365 bridge_add_bif_handler(netmsg_t msg)
4366 {
4367 	struct netmsg_braddbif *amsg = (struct netmsg_braddbif *)msg;
4368 	struct bridge_softc *sc;
4369 	struct bridge_iflist *bif;
4370 
4371 	sc = amsg->br_softc;
4372 
4373 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
4374 	bif->bif_ifp = amsg->br_bif_ifp;
4375 	bif->bif_onlist = 1;
4376 	bif->bif_info = amsg->br_bif_info;
4377 
4378 	/*
4379 	 * runs through bif_info
4380 	 */
4381 	bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER;
4382 
4383 	TAILQ_INSERT_HEAD(&sc->sc_iflists[mycpuid], bif, bif_next);
4384 
4385 	ifnet_forwardmsg(&amsg->base.lmsg, mycpuid + 1);
4386 }
4387 
4388 static void
4389 bridge_add_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4390 	       struct ifnet *ifp)
4391 {
4392 	struct netmsg_braddbif amsg;
4393 
4394 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4395 
4396 	netmsg_init(&amsg.base, NULL, &curthread->td_msgport,
4397 		    0, bridge_add_bif_handler);
4398 	amsg.br_softc = sc;
4399 	amsg.br_bif_info = bif_info;
4400 	amsg.br_bif_ifp = ifp;
4401 
4402 	ifnet_domsg(&amsg.base.lmsg, 0);
4403 }
4404 
4405 static void
4406 bridge_del_bif_handler(netmsg_t msg)
4407 {
4408 	struct netmsg_brdelbif *dmsg = (struct netmsg_brdelbif *)msg;
4409 	struct bridge_softc *sc;
4410 	struct bridge_iflist *bif;
4411 
4412 	sc = dmsg->br_softc;
4413 
4414 	/*
4415 	 * Locate the bif associated with the br_bif_info
4416 	 * on the current CPU
4417 	 */
4418 	bif = bridge_lookup_member_ifinfo(sc, dmsg->br_bif_info);
4419 	KKASSERT(bif != NULL && bif->bif_onlist);
4420 
4421 	/* Remove the bif from the current CPU's iflist */
4422 	bif->bif_onlist = 0;
4423 	TAILQ_REMOVE(dmsg->br_bif_list, bif, bif_next);
4424 
4425 	/* Save the removed bif for later freeing */
4426 	TAILQ_INSERT_HEAD(dmsg->br_bif_list, bif, bif_next);
4427 
4428 	ifnet_forwardmsg(&dmsg->base.lmsg, mycpuid + 1);
4429 }
4430 
4431 static void
4432 bridge_del_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4433 	       struct bridge_iflist_head *saved_bifs)
4434 {
4435 	struct netmsg_brdelbif dmsg;
4436 
4437 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4438 
4439 	netmsg_init(&dmsg.base, NULL, &curthread->td_msgport,
4440 		    0, bridge_del_bif_handler);
4441 	dmsg.br_softc = sc;
4442 	dmsg.br_bif_info = bif_info;
4443 	dmsg.br_bif_list = saved_bifs;
4444 
4445 	ifnet_domsg(&dmsg.base.lmsg, 0);
4446 }
4447