xref: /dragonfly/sys/net/bridge/if_bridge.c (revision 65d793b5)
1 /*
2  * Copyright 2001 Wasabi Systems, Inc.
3  * All rights reserved.
4  *
5  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed for the NetBSD Project by
18  *	Wasabi Systems, Inc.
19  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by Jason L. Wright
51  * 4. The name of the author may not be used to endorse or promote products
52  *    derived from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
56  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
57  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
58  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
63  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp $
67  * $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $
68  * $FreeBSD: src/sys/net/if_bridge.c,v 1.26 2005/10/13 23:05:55 thompsa Exp $
69  */
70 
71 /*
72  * Network interface bridge support.
73  *
74  * TODO:
75  *
76  *	- Currently only supports Ethernet-like interfaces (Ethernet,
77  *	  802.11, VLANs on Ethernet, etc.)  Figure out a nice way
78  *	  to bridge other types of interfaces (FDDI-FDDI, and maybe
79  *	  consider heterogenous bridges).
80  *
81  *
82  * Bridge's route information is duplicated to each CPUs:
83  *
84  *      CPU0          CPU1          CPU2          CPU3
85  * +-----------+ +-----------+ +-----------+ +-----------+
86  * |  rtnode   | |  rtnode   | |  rtnode   | |  rtnode   |
87  * |           | |           | |           | |           |
88  * | dst eaddr | | dst eaddr | | dst eaddr | | dst eaddr |
89  * +-----------+ +-----------+ +-----------+ +-----------+
90  *       |         |                     |         |
91  *       |         |                     |         |
92  *       |         |     +----------+    |         |
93  *       |         |     |  rtinfo  |    |         |
94  *       |         +---->|          |<---+         |
95  *       |               |  flags   |              |
96  *       +-------------->|  timeout |<-------------+
97  *                       |  dst_ifp |
98  *                       +----------+
99  *
100  * We choose to put timeout and dst_ifp into shared part, so updating
101  * them will be cheaper than using message forwarding.  Also there is
102  * not need to use spinlock to protect the updating: timeout and dst_ifp
103  * is not related and specific field's updating order has no importance.
104  * The cache pollution by the share part should not be heavy: in a stable
105  * setup, dst_ifp probably will be not changed in rtnode's life time,
106  * while timeout is refreshed once per second; most of the time, timeout
107  * and dst_ifp are read-only accessed.
108  *
109  *
110  * Bridge route information installation on bridge_input path:
111  *
112  *      CPU0           CPU1         CPU2          CPU3
113  *
114  *                               tcp_thread2
115  *                                    |
116  *                                alloc nmsg
117  *                    snd nmsg        |
118  *                    w/o rtinfo      |
119  *      ifnet0<-----------------------+
120  *        |                           :
121  *    lookup dst                      :
122  *   rtnode exists?(Y)free nmsg       :
123  *        |(N)                        :
124  *        |
125  *  alloc rtinfo
126  *  alloc rtnode
127  * install rtnode
128  *        |
129  *        +---------->ifnet1
130  *        : fwd nmsg    |
131  *        : w/ rtinfo   |
132  *        :             |
133  *        :             |
134  *                 alloc rtnode
135  *               (w/ nmsg's rtinfo)
136  *                install rtnode
137  *                      |
138  *                      +---------->ifnet2
139  *                      : fwd nmsg    |
140  *                      : w/ rtinfo   |
141  *                      :             |
142  *                      :         same as ifnet1
143  *                                    |
144  *                                    +---------->ifnet3
145  *                                    : fwd nmsg    |
146  *                                    : w/ rtinfo   |
147  *                                    :             |
148  *                                    :         same as ifnet1
149  *                                               free nmsg
150  *                                                  :
151  *                                                  :
152  *
153  * The netmsgs forwarded between protocol threads and ifnet threads are
154  * allocated with (M_WAITOK|M_NULLOK), so it will not fail under most
155  * cases (route information is too precious to be not installed :).
156  * Since multiple threads may try to install route information for the
157  * same dst eaddr, we look up route information in ifnet0.  However, this
158  * looking up only need to be performed on ifnet0, which is the start
159  * point of the route information installation process.
160  *
161  *
162  * Bridge route information deleting/flushing:
163  *
164  *  CPU0            CPU1             CPU2             CPU3
165  *
166  * netisr0
167  *   |
168  * find suitable rtnodes,
169  * mark their rtinfo dead
170  *   |
171  *   | domsg <------------------------------------------+
172  *   |                                                  | replymsg
173  *   |                                                  |
174  *   V     fwdmsg           fwdmsg           fwdmsg     |
175  * ifnet0 --------> ifnet1 --------> ifnet2 --------> ifnet3
176  * delete rtnodes   delete rtnodes   delete rtnodes   delete rtnodes
177  * w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo
178  *                                                    free dead rtinfos
179  *
180  * All deleting/flushing operations are serialized by netisr0, so each
181  * operation only reaps the route information marked dead by itself.
182  *
183  *
184  * Bridge route information adding/deleting/flushing:
185  * Since all operation is serialized by the fixed message flow between
186  * ifnet threads, it is not possible to create corrupted per-cpu route
187  * information.
188  *
189  *
190  *
191  * Percpu member interface list iteration with blocking operation:
192  * Since one bridge could only delete one member interface at a time and
193  * the deleted member interface is not freed after netmsg_service_sync(),
194  * following way is used to make sure that even if the certain member
195  * interface is ripped from the percpu list during the blocking operation,
196  * the iteration still could keep going:
197  *
198  * TAILQ_FOREACH_MUTABLE(bif, sc->sc_iflists[mycpuid], bif_next, nbif) {
199  *     blocking operation;
200  *     blocking operation;
201  *     ...
202  *     ...
203  *     if (nbif != NULL && !nbif->bif_onlist) {
204  *         KKASSERT(bif->bif_onlist);
205  *         nbif = TAILQ_NEXT(bif, bif_next);
206  *     }
207  * }
208  *
209  * As mentioned above only one member interface could be unlinked from the
210  * percpu member interface list, so either bif or nbif may be not on the list,
211  * but _not_ both.  To keep the list iteration, we don't care about bif, but
212  * only nbif.  Since removed member interface will only be freed after we
213  * finish our work, it is safe to access any field in an unlinked bif (here
214  * bif_onlist).  If nbif is no longer on the list, then bif must be on the
215  * list, so we change nbif to the next element of bif and keep going.
216  */
217 
218 #include "opt_inet.h"
219 #include "opt_inet6.h"
220 
221 #include <sys/param.h>
222 #include <sys/mbuf.h>
223 #include <sys/malloc.h>
224 #include <sys/protosw.h>
225 #include <sys/systm.h>
226 #include <sys/time.h>
227 #include <sys/socket.h> /* for net/if.h */
228 #include <sys/sockio.h>
229 #include <sys/ctype.h>  /* string functions */
230 #include <sys/kernel.h>
231 #include <sys/random.h>
232 #include <sys/sysctl.h>
233 #include <sys/module.h>
234 #include <sys/proc.h>
235 #include <sys/priv.h>
236 #include <sys/lock.h>
237 #include <sys/thread.h>
238 #include <sys/thread2.h>
239 #include <sys/mpipe.h>
240 
241 #include <net/bpf.h>
242 #include <net/if.h>
243 #include <net/if_dl.h>
244 #include <net/if_types.h>
245 #include <net/if_var.h>
246 #include <net/pfil.h>
247 #include <net/ifq_var.h>
248 #include <net/if_clone.h>
249 
250 #include <netinet/in.h> /* for struct arpcom */
251 #include <netinet/in_systm.h>
252 #include <netinet/in_var.h>
253 #include <netinet/ip.h>
254 #include <netinet/ip_var.h>
255 #ifdef INET6
256 #include <netinet/ip6.h>
257 #include <netinet6/ip6_var.h>
258 #endif
259 #include <netinet/if_ether.h> /* for struct arpcom */
260 #include <net/bridge/if_bridgevar.h>
261 #include <net/if_llc.h>
262 #include <net/netmsg2.h>
263 
264 #include <net/route.h>
265 #include <sys/in_cksum.h>
266 
267 /*
268  * Size of the route hash table.  Must be a power of two.
269  */
270 #ifndef BRIDGE_RTHASH_SIZE
271 #define	BRIDGE_RTHASH_SIZE		1024
272 #endif
273 
274 #define	BRIDGE_RTHASH_MASK		(BRIDGE_RTHASH_SIZE - 1)
275 
276 /*
277  * Maximum number of addresses to cache.
278  */
279 #ifndef BRIDGE_RTABLE_MAX
280 #define	BRIDGE_RTABLE_MAX		100
281 #endif
282 
283 /*
284  * Spanning tree defaults.
285  */
286 #define	BSTP_DEFAULT_MAX_AGE		(20 * 256)
287 #define	BSTP_DEFAULT_HELLO_TIME		(2 * 256)
288 #define	BSTP_DEFAULT_FORWARD_DELAY	(15 * 256)
289 #define	BSTP_DEFAULT_HOLD_TIME		(1 * 256)
290 #define	BSTP_DEFAULT_BRIDGE_PRIORITY	0x8000
291 #define	BSTP_DEFAULT_PORT_PRIORITY	0x80
292 #define	BSTP_DEFAULT_PATH_COST		55
293 
294 /*
295  * Timeout (in seconds) for entries learned dynamically.
296  */
297 #ifndef BRIDGE_RTABLE_TIMEOUT
298 #define	BRIDGE_RTABLE_TIMEOUT		(20 * 60)	/* same as ARP */
299 #endif
300 
301 /*
302  * Number of seconds between walks of the route list.
303  */
304 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD
305 #define	BRIDGE_RTABLE_PRUNE_PERIOD	(5 * 60)
306 #endif
307 
308 /*
309  * List of capabilities to mask on the member interface.
310  */
311 #define	BRIDGE_IFCAPS_MASK		(IFCAP_TXCSUM | IFCAP_TSO)
312 
313 typedef int	(*bridge_ctl_t)(struct bridge_softc *, void *);
314 
315 struct netmsg_brctl {
316 	struct netmsg_base	base;
317 	bridge_ctl_t		bc_func;
318 	struct bridge_softc	*bc_sc;
319 	void			*bc_arg;
320 };
321 
322 struct netmsg_brsaddr {
323 	struct netmsg_base	base;
324 	struct bridge_softc	*br_softc;
325 	struct ifnet		*br_dst_if;
326 	struct bridge_rtinfo	*br_rtinfo;
327 	int			br_setflags;
328 	uint8_t			br_dst[ETHER_ADDR_LEN];
329 	uint8_t			br_flags;
330 };
331 
332 struct netmsg_braddbif {
333 	struct netmsg_base	base;
334 	struct bridge_softc	*br_softc;
335 	struct bridge_ifinfo	*br_bif_info;
336 	struct ifnet		*br_bif_ifp;
337 };
338 
339 struct netmsg_brdelbif {
340 	struct netmsg_base	base;
341 	struct bridge_softc	*br_softc;
342 	struct bridge_ifinfo	*br_bif_info;
343 	struct bridge_iflist_head *br_bif_list;
344 };
345 
346 struct netmsg_brsflags {
347 	struct netmsg_base	base;
348 	struct bridge_softc	*br_softc;
349 	struct bridge_ifinfo	*br_bif_info;
350 	uint32_t		br_bif_flags;
351 };
352 
353 eventhandler_tag	bridge_detach_cookie = NULL;
354 
355 extern	struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
356 extern	int (*bridge_output_p)(struct ifnet *, struct mbuf *);
357 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
358 extern  struct ifnet *(*bridge_interface_p)(void *if_bridge);
359 
360 static int	bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
361 
362 static int	bridge_clone_create(struct if_clone *, int, caddr_t);
363 static int	bridge_clone_destroy(struct ifnet *);
364 
365 static int	bridge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
366 static void	bridge_mutecaps(struct bridge_ifinfo *, struct ifnet *, int);
367 static void	bridge_ifdetach(void *, struct ifnet *);
368 static void	bridge_init(void *);
369 static int	bridge_from_us(struct bridge_softc *, struct ether_header *);
370 static void	bridge_stop(struct ifnet *);
371 static void	bridge_start(struct ifnet *, struct ifaltq_subque *);
372 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *);
373 static int	bridge_output(struct ifnet *, struct mbuf *);
374 static struct ifnet *bridge_interface(void *if_bridge);
375 
376 static void	bridge_forward(struct bridge_softc *, struct mbuf *m);
377 
378 static void	bridge_timer_handler(netmsg_t);
379 static void	bridge_timer(void *);
380 
381 static void	bridge_start_bcast(struct bridge_softc *, struct mbuf *);
382 static void	bridge_broadcast(struct bridge_softc *, struct ifnet *,
383 		    struct mbuf *);
384 static void	bridge_span(struct bridge_softc *, struct mbuf *);
385 
386 static int	bridge_rtupdate(struct bridge_softc *, const uint8_t *,
387 		    struct ifnet *, uint8_t);
388 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *);
389 static void	bridge_rtreap(struct bridge_softc *);
390 static void	bridge_rtreap_async(struct bridge_softc *);
391 static void	bridge_rttrim(struct bridge_softc *);
392 static int	bridge_rtage_finddead(struct bridge_softc *);
393 static void	bridge_rtage(struct bridge_softc *);
394 static void	bridge_rtflush(struct bridge_softc *, int);
395 static int	bridge_rtdaddr(struct bridge_softc *, const uint8_t *);
396 static int	bridge_rtsaddr(struct bridge_softc *, const uint8_t *,
397 		    struct ifnet *, uint8_t);
398 static void	bridge_rtmsg_sync(struct bridge_softc *sc);
399 static void	bridge_rtreap_handler(netmsg_t);
400 static void	bridge_rtinstall_handler(netmsg_t);
401 static int	bridge_rtinstall_oncpu(struct bridge_softc *, const uint8_t *,
402 		    struct ifnet *, int, uint8_t, struct bridge_rtinfo **);
403 
404 static void	bridge_rtable_init(struct bridge_softc *);
405 static void	bridge_rtable_fini(struct bridge_softc *);
406 
407 static int	bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
408 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
409 		    const uint8_t *);
410 static void	bridge_rtnode_insert(struct bridge_softc *,
411 		    struct bridge_rtnode *);
412 static void	bridge_rtnode_destroy(struct bridge_softc *,
413 		    struct bridge_rtnode *);
414 
415 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
416 		    const char *name);
417 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
418 		    struct ifnet *ifp);
419 static struct bridge_iflist *bridge_lookup_member_ifinfo(struct bridge_softc *,
420 		    struct bridge_ifinfo *);
421 static void	bridge_delete_member(struct bridge_softc *,
422 		    struct bridge_iflist *, int);
423 static void	bridge_delete_span(struct bridge_softc *,
424 		    struct bridge_iflist *);
425 
426 static int	bridge_control(struct bridge_softc *, u_long,
427 			       bridge_ctl_t, void *);
428 static int	bridge_ioctl_init(struct bridge_softc *, void *);
429 static int	bridge_ioctl_stop(struct bridge_softc *, void *);
430 static int	bridge_ioctl_add(struct bridge_softc *, void *);
431 static int	bridge_ioctl_del(struct bridge_softc *, void *);
432 static void	bridge_ioctl_fillflags(struct bridge_softc *sc,
433 				struct bridge_iflist *bif, struct ifbreq *req);
434 static int	bridge_ioctl_gifflags(struct bridge_softc *, void *);
435 static int	bridge_ioctl_sifflags(struct bridge_softc *, void *);
436 static int	bridge_ioctl_scache(struct bridge_softc *, void *);
437 static int	bridge_ioctl_gcache(struct bridge_softc *, void *);
438 static int	bridge_ioctl_gifs(struct bridge_softc *, void *);
439 static int	bridge_ioctl_rts(struct bridge_softc *, void *);
440 static int	bridge_ioctl_saddr(struct bridge_softc *, void *);
441 static int	bridge_ioctl_sto(struct bridge_softc *, void *);
442 static int	bridge_ioctl_gto(struct bridge_softc *, void *);
443 static int	bridge_ioctl_daddr(struct bridge_softc *, void *);
444 static int	bridge_ioctl_flush(struct bridge_softc *, void *);
445 static int	bridge_ioctl_gpri(struct bridge_softc *, void *);
446 static int	bridge_ioctl_spri(struct bridge_softc *, void *);
447 static int	bridge_ioctl_reinit(struct bridge_softc *, void *);
448 static int	bridge_ioctl_ght(struct bridge_softc *, void *);
449 static int	bridge_ioctl_sht(struct bridge_softc *, void *);
450 static int	bridge_ioctl_gfd(struct bridge_softc *, void *);
451 static int	bridge_ioctl_sfd(struct bridge_softc *, void *);
452 static int	bridge_ioctl_gma(struct bridge_softc *, void *);
453 static int	bridge_ioctl_sma(struct bridge_softc *, void *);
454 static int	bridge_ioctl_sifprio(struct bridge_softc *, void *);
455 static int	bridge_ioctl_sifcost(struct bridge_softc *, void *);
456 static int	bridge_ioctl_addspan(struct bridge_softc *, void *);
457 static int	bridge_ioctl_delspan(struct bridge_softc *, void *);
458 static int	bridge_ioctl_sifbondwght(struct bridge_softc *, void *);
459 static int	bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *,
460 		    int);
461 static int	bridge_ip_checkbasic(struct mbuf **mp);
462 #ifdef INET6
463 static int	bridge_ip6_checkbasic(struct mbuf **mp);
464 #endif /* INET6 */
465 static int	bridge_fragment(struct ifnet *, struct mbuf *,
466 		    struct ether_header *, int, struct llc *);
467 static void	bridge_enqueue_handler(netmsg_t);
468 static void	bridge_handoff(struct bridge_softc *, struct ifnet *,
469 		    struct mbuf *, int);
470 
471 static void	bridge_del_bif_handler(netmsg_t);
472 static void	bridge_add_bif_handler(netmsg_t);
473 static void	bridge_del_bif(struct bridge_softc *, struct bridge_ifinfo *,
474 		    struct bridge_iflist_head *);
475 static void	bridge_add_bif(struct bridge_softc *, struct bridge_ifinfo *,
476 		    struct ifnet *);
477 
478 SYSCTL_DECL(_net_link);
479 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge");
480 
481 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */
482 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */
483 static int pfil_member = 1; /* run pfil hooks on the member interface */
484 static int bridge_debug;
485 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW,
486     &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled");
487 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW,
488     &pfil_bridge, 0, "Packet filter on the bridge interface");
489 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW,
490     &pfil_member, 0, "Packet filter on the member interface");
491 SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW,
492     &bridge_debug, 0, "Bridge debug mode");
493 
494 struct bridge_control_arg {
495 	union {
496 		struct ifbreq ifbreq;
497 		struct ifbifconf ifbifconf;
498 		struct ifbareq ifbareq;
499 		struct ifbaconf ifbaconf;
500 		struct ifbrparam ifbrparam;
501 	} bca_u;
502 	int	bca_len;
503 	void	*bca_uptr;
504 	void	*bca_kptr;
505 };
506 
507 struct bridge_control {
508 	bridge_ctl_t	bc_func;
509 	int		bc_argsize;
510 	int		bc_flags;
511 };
512 
513 #define	BC_F_COPYIN		0x01	/* copy arguments in */
514 #define	BC_F_COPYOUT		0x02	/* copy arguments out */
515 #define	BC_F_SUSER		0x04	/* do super-user check */
516 
517 const struct bridge_control bridge_control_table[] = {
518 	{ bridge_ioctl_add,		sizeof(struct ifbreq),
519 	  BC_F_COPYIN|BC_F_SUSER },
520 	{ bridge_ioctl_del,		sizeof(struct ifbreq),
521 	  BC_F_COPYIN|BC_F_SUSER },
522 
523 	{ bridge_ioctl_gifflags,	sizeof(struct ifbreq),
524 	  BC_F_COPYIN|BC_F_COPYOUT },
525 	{ bridge_ioctl_sifflags,	sizeof(struct ifbreq),
526 	  BC_F_COPYIN|BC_F_SUSER },
527 
528 	{ bridge_ioctl_scache,		sizeof(struct ifbrparam),
529 	  BC_F_COPYIN|BC_F_SUSER },
530 	{ bridge_ioctl_gcache,		sizeof(struct ifbrparam),
531 	  BC_F_COPYOUT },
532 
533 	{ bridge_ioctl_gifs,		sizeof(struct ifbifconf),
534 	  BC_F_COPYIN|BC_F_COPYOUT },
535 	{ bridge_ioctl_rts,		sizeof(struct ifbaconf),
536 	  BC_F_COPYIN|BC_F_COPYOUT },
537 
538 	{ bridge_ioctl_saddr,		sizeof(struct ifbareq),
539 	  BC_F_COPYIN|BC_F_SUSER },
540 
541 	{ bridge_ioctl_sto,		sizeof(struct ifbrparam),
542 	  BC_F_COPYIN|BC_F_SUSER },
543 	{ bridge_ioctl_gto,		sizeof(struct ifbrparam),
544 	  BC_F_COPYOUT },
545 
546 	{ bridge_ioctl_daddr,		sizeof(struct ifbareq),
547 	  BC_F_COPYIN|BC_F_SUSER },
548 
549 	{ bridge_ioctl_flush,		sizeof(struct ifbreq),
550 	  BC_F_COPYIN|BC_F_SUSER },
551 
552 	{ bridge_ioctl_gpri,		sizeof(struct ifbrparam),
553 	  BC_F_COPYOUT },
554 	{ bridge_ioctl_spri,		sizeof(struct ifbrparam),
555 	  BC_F_COPYIN|BC_F_SUSER },
556 
557 	{ bridge_ioctl_ght,		sizeof(struct ifbrparam),
558 	  BC_F_COPYOUT },
559 	{ bridge_ioctl_sht,		sizeof(struct ifbrparam),
560 	  BC_F_COPYIN|BC_F_SUSER },
561 
562 	{ bridge_ioctl_gfd,		sizeof(struct ifbrparam),
563 	  BC_F_COPYOUT },
564 	{ bridge_ioctl_sfd,		sizeof(struct ifbrparam),
565 	  BC_F_COPYIN|BC_F_SUSER },
566 
567 	{ bridge_ioctl_gma,		sizeof(struct ifbrparam),
568 	  BC_F_COPYOUT },
569 	{ bridge_ioctl_sma,		sizeof(struct ifbrparam),
570 	  BC_F_COPYIN|BC_F_SUSER },
571 
572 	{ bridge_ioctl_sifprio,		sizeof(struct ifbreq),
573 	  BC_F_COPYIN|BC_F_SUSER },
574 
575 	{ bridge_ioctl_sifcost,		sizeof(struct ifbreq),
576 	  BC_F_COPYIN|BC_F_SUSER },
577 
578 	{ bridge_ioctl_addspan,		sizeof(struct ifbreq),
579 	  BC_F_COPYIN|BC_F_SUSER },
580 	{ bridge_ioctl_delspan,		sizeof(struct ifbreq),
581 	  BC_F_COPYIN|BC_F_SUSER },
582 
583 	{ bridge_ioctl_sifbondwght,	sizeof(struct ifbreq),
584 	  BC_F_COPYIN|BC_F_SUSER },
585 
586 };
587 static const int bridge_control_table_size = NELEM(bridge_control_table);
588 
589 LIST_HEAD(, bridge_softc) bridge_list;
590 
591 struct if_clone bridge_cloner = IF_CLONE_INITIALIZER("bridge",
592 				bridge_clone_create,
593 				bridge_clone_destroy, 0, IF_MAXUNIT);
594 
595 static int
596 bridge_modevent(module_t mod, int type, void *data)
597 {
598 	switch (type) {
599 	case MOD_LOAD:
600 		LIST_INIT(&bridge_list);
601 		if_clone_attach(&bridge_cloner);
602 		bridge_input_p = bridge_input;
603 		bridge_output_p = bridge_output;
604 		bridge_interface_p = bridge_interface;
605 		bridge_detach_cookie = EVENTHANDLER_REGISTER(
606 		    ifnet_detach_event, bridge_ifdetach, NULL,
607 		    EVENTHANDLER_PRI_ANY);
608 #if 0 /* notyet */
609 		bstp_linkstate_p = bstp_linkstate;
610 #endif
611 		break;
612 	case MOD_UNLOAD:
613 		if (!LIST_EMPTY(&bridge_list))
614 			return (EBUSY);
615 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
616 		    bridge_detach_cookie);
617 		if_clone_detach(&bridge_cloner);
618 		bridge_input_p = NULL;
619 		bridge_output_p = NULL;
620 		bridge_interface_p = NULL;
621 #if 0 /* notyet */
622 		bstp_linkstate_p = NULL;
623 #endif
624 		break;
625 	default:
626 		return (EOPNOTSUPP);
627 	}
628 	return (0);
629 }
630 
631 static moduledata_t bridge_mod = {
632 	"if_bridge",
633 	bridge_modevent,
634 	0
635 };
636 
637 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
638 
639 
640 /*
641  * bridge_clone_create:
642  *
643  *	Create a new bridge instance.
644  */
645 static int
646 bridge_clone_create(struct if_clone *ifc, int unit, caddr_t param __unused)
647 {
648 	struct bridge_softc *sc;
649 	struct ifnet *ifp;
650 	u_char eaddr[6];
651 	int cpu, rnd;
652 
653 	sc = kmalloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
654 	ifp = sc->sc_ifp = &sc->sc_if;
655 
656 	sc->sc_brtmax = BRIDGE_RTABLE_MAX;
657 	sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
658 	sc->sc_bridge_max_age = BSTP_DEFAULT_MAX_AGE;
659 	sc->sc_bridge_hello_time = BSTP_DEFAULT_HELLO_TIME;
660 	sc->sc_bridge_forward_delay = BSTP_DEFAULT_FORWARD_DELAY;
661 	sc->sc_bridge_priority = BSTP_DEFAULT_BRIDGE_PRIORITY;
662 	sc->sc_hold_time = BSTP_DEFAULT_HOLD_TIME;
663 
664 	/* Initialize our routing table. */
665 	bridge_rtable_init(sc);
666 
667 	callout_init(&sc->sc_brcallout);
668 	netmsg_init(&sc->sc_brtimemsg, NULL, &netisr_adone_rport,
669 		    MSGF_DROPABLE, bridge_timer_handler);
670 	sc->sc_brtimemsg.lmsg.u.ms_resultp = sc;
671 
672 	callout_init(&sc->sc_bstpcallout);
673 	netmsg_init(&sc->sc_bstptimemsg, NULL, &netisr_adone_rport,
674 		    MSGF_DROPABLE, bstp_tick_handler);
675 	sc->sc_bstptimemsg.lmsg.u.ms_resultp = sc;
676 
677 	/* Initialize per-cpu member iface lists */
678 	sc->sc_iflists = kmalloc(sizeof(*sc->sc_iflists) * ncpus,
679 				 M_DEVBUF, M_WAITOK);
680 	for (cpu = 0; cpu < ncpus; ++cpu)
681 		TAILQ_INIT(&sc->sc_iflists[cpu]);
682 
683 	TAILQ_INIT(&sc->sc_spanlist);
684 
685 	ifp->if_softc = sc;
686 	if_initname(ifp, ifc->ifc_name, unit);
687 	ifp->if_mtu = ETHERMTU;
688 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
689 	ifp->if_ioctl = bridge_ioctl;
690 	ifp->if_start = bridge_start;
691 	ifp->if_init = bridge_init;
692 	ifp->if_type = IFT_ETHER;
693 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
694 	ifq_set_ready(&ifp->if_snd);
695 	ifp->if_hdrlen = ETHER_HDR_LEN;
696 
697 	/*
698 	 * Generate a random ethernet address and use the private AC:DE:48
699 	 * OUI code.
700 	 */
701 	rnd = karc4random();
702 	bcopy(&rnd, &eaddr[0], 4); /* ETHER_ADDR_LEN == 6 */
703 	rnd = karc4random();
704 	bcopy(&rnd, &eaddr[2], 4); /* ETHER_ADDR_LEN == 6 */
705 
706 	eaddr[0] &= ~1;	/* clear multicast bit */
707 	eaddr[0] |= 2;	/* set the LAA bit */
708 
709 	ether_ifattach(ifp, eaddr, NULL);
710 	/* Now undo some of the damage... */
711 	ifp->if_baudrate = 0;
712 	/*ifp->if_type = IFT_BRIDGE;*/
713 
714 	crit_enter();	/* XXX MP */
715 	LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
716 	crit_exit();
717 
718 	return (0);
719 }
720 
721 static void
722 bridge_delete_dispatch(netmsg_t msg)
723 {
724 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
725 	struct ifnet *bifp = sc->sc_ifp;
726 	struct bridge_iflist *bif;
727 
728 	ifnet_serialize_all(bifp);
729 
730 	while ((bif = TAILQ_FIRST(&sc->sc_iflists[mycpuid])) != NULL)
731 		bridge_delete_member(sc, bif, 0);
732 
733 	while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL)
734 		bridge_delete_span(sc, bif);
735 
736 	ifnet_deserialize_all(bifp);
737 
738 	lwkt_replymsg(&msg->lmsg, 0);
739 }
740 
741 /*
742  * bridge_clone_destroy:
743  *
744  *	Destroy a bridge instance.
745  */
746 static int
747 bridge_clone_destroy(struct ifnet *ifp)
748 {
749 	struct bridge_softc *sc = ifp->if_softc;
750 	struct netmsg_base msg;
751 
752 	ifnet_serialize_all(ifp);
753 
754 	bridge_stop(ifp);
755 	ifp->if_flags &= ~IFF_UP;
756 
757 	ifnet_deserialize_all(ifp);
758 
759 	netmsg_init(&msg, NULL, &curthread->td_msgport,
760 		    0, bridge_delete_dispatch);
761 	msg.lmsg.u.ms_resultp = sc;
762 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
763 
764 	crit_enter();	/* XXX MP */
765 	LIST_REMOVE(sc, sc_list);
766 	crit_exit();
767 
768 	ether_ifdetach(ifp);
769 
770 	/* Tear down the routing table. */
771 	bridge_rtable_fini(sc);
772 
773 	/* Free per-cpu member iface lists */
774 	kfree(sc->sc_iflists, M_DEVBUF);
775 
776 	kfree(sc, M_DEVBUF);
777 
778 	return 0;
779 }
780 
781 /*
782  * bridge_ioctl:
783  *
784  *	Handle a control request from the operator.
785  */
786 static int
787 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
788 {
789 	struct bridge_softc *sc = ifp->if_softc;
790 	struct bridge_control_arg args;
791 	struct ifdrv *ifd = (struct ifdrv *) data;
792 	const struct bridge_control *bc;
793 	int error = 0;
794 
795 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
796 
797 	switch (cmd) {
798 	case SIOCADDMULTI:
799 	case SIOCDELMULTI:
800 		break;
801 
802 	case SIOCGDRVSPEC:
803 	case SIOCSDRVSPEC:
804 		if (ifd->ifd_cmd >= bridge_control_table_size) {
805 			error = EINVAL;
806 			break;
807 		}
808 		bc = &bridge_control_table[ifd->ifd_cmd];
809 
810 		if (cmd == SIOCGDRVSPEC &&
811 		    (bc->bc_flags & BC_F_COPYOUT) == 0) {
812 			error = EINVAL;
813 			break;
814 		} else if (cmd == SIOCSDRVSPEC &&
815 			   (bc->bc_flags & BC_F_COPYOUT)) {
816 			error = EINVAL;
817 			break;
818 		}
819 
820 		if (bc->bc_flags & BC_F_SUSER) {
821 			error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY);
822 			if (error)
823 				break;
824 		}
825 
826 		if (ifd->ifd_len != bc->bc_argsize ||
827 		    ifd->ifd_len > sizeof(args.bca_u)) {
828 			error = EINVAL;
829 			break;
830 		}
831 
832 		memset(&args, 0, sizeof(args));
833 		if (bc->bc_flags & BC_F_COPYIN) {
834 			error = copyin(ifd->ifd_data, &args.bca_u,
835 				       ifd->ifd_len);
836 			if (error)
837 				break;
838 		}
839 
840 		error = bridge_control(sc, cmd, bc->bc_func, &args);
841 		if (error) {
842 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
843 			break;
844 		}
845 
846 		if (bc->bc_flags & BC_F_COPYOUT) {
847 			error = copyout(&args, ifd->ifd_data, ifd->ifd_len);
848 			if (args.bca_len != 0) {
849 				KKASSERT(args.bca_kptr != NULL);
850 				if (!error) {
851 					error = copyout(args.bca_kptr,
852 						args.bca_uptr, args.bca_len);
853 				}
854 				kfree(args.bca_kptr, M_TEMP);
855 			} else {
856 				KKASSERT(args.bca_kptr == NULL);
857 			}
858 		} else {
859 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
860 		}
861 		break;
862 
863 	case SIOCSIFFLAGS:
864 		if (!(ifp->if_flags & IFF_UP) &&
865 		    (ifp->if_flags & IFF_RUNNING)) {
866 			/*
867 			 * If interface is marked down and it is running,
868 			 * then stop it.
869 			 */
870 			bridge_stop(ifp);
871 		} else if ((ifp->if_flags & IFF_UP) &&
872 		    !(ifp->if_flags & IFF_RUNNING)) {
873 			/*
874 			 * If interface is marked up and it is stopped, then
875 			 * start it.
876 			 */
877 			ifp->if_init(sc);
878 		}
879 
880 		/*
881 		 * If running and link flag state change we have to
882 		 * reinitialize as well.
883 		 */
884 		if ((ifp->if_flags & IFF_RUNNING) &&
885 		    (ifp->if_flags & (IFF_LINK0|IFF_LINK1|IFF_LINK2)) !=
886 		    sc->sc_copy_flags) {
887 			sc->sc_copy_flags = ifp->if_flags &
888 					(IFF_LINK0|IFF_LINK1|IFF_LINK2);
889 			bridge_control(sc, 0, bridge_ioctl_reinit, NULL);
890 		}
891 
892 		break;
893 
894 	case SIOCSIFMTU:
895 		/* Do not allow the MTU to be changed on the bridge */
896 		error = EINVAL;
897 		break;
898 
899 	default:
900 		error = ether_ioctl(ifp, cmd, data);
901 		break;
902 	}
903 	return (error);
904 }
905 
906 /*
907  * bridge_mutecaps:
908  *
909  *	Clear or restore unwanted capabilities on the member interface
910  */
911 static void
912 bridge_mutecaps(struct bridge_ifinfo *bif_info, struct ifnet *ifp, int mute)
913 {
914 	struct ifreq ifr;
915 
916 	if (ifp->if_ioctl == NULL)
917 		return;
918 
919 	bzero(&ifr, sizeof(ifr));
920 	ifr.ifr_reqcap = ifp->if_capenable;
921 
922 	if (mute) {
923 		/* mask off and save capabilities */
924 		bif_info->bifi_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK;
925 		if (bif_info->bifi_mutecap != 0)
926 			ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK;
927 	} else {
928 		/* restore muted capabilities */
929 		ifr.ifr_reqcap |= bif_info->bifi_mutecap;
930 	}
931 
932 	if (bif_info->bifi_mutecap != 0) {
933 		ifnet_serialize_all(ifp);
934 		ifp->if_ioctl(ifp, SIOCSIFCAP, (caddr_t)&ifr, NULL);
935 		ifnet_deserialize_all(ifp);
936 	}
937 }
938 
939 /*
940  * bridge_lookup_member:
941  *
942  *	Lookup a bridge member interface.
943  */
944 static struct bridge_iflist *
945 bridge_lookup_member(struct bridge_softc *sc, const char *name)
946 {
947 	struct bridge_iflist *bif;
948 
949 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
950 		if (strcmp(bif->bif_ifp->if_xname, name) == 0)
951 			return (bif);
952 	}
953 	return (NULL);
954 }
955 
956 /*
957  * bridge_lookup_member_if:
958  *
959  *	Lookup a bridge member interface by ifnet*.
960  */
961 static struct bridge_iflist *
962 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
963 {
964 	struct bridge_iflist *bif;
965 
966 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
967 		if (bif->bif_ifp == member_ifp)
968 			return (bif);
969 	}
970 	return (NULL);
971 }
972 
973 /*
974  * bridge_lookup_member_ifinfo:
975  *
976  *	Lookup a bridge member interface by bridge_ifinfo.
977  */
978 static struct bridge_iflist *
979 bridge_lookup_member_ifinfo(struct bridge_softc *sc,
980 			    struct bridge_ifinfo *bif_info)
981 {
982 	struct bridge_iflist *bif;
983 
984 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
985 		if (bif->bif_info == bif_info)
986 			return (bif);
987 	}
988 	return (NULL);
989 }
990 
991 /*
992  * bridge_delete_member:
993  *
994  *	Delete the specified member interface.
995  */
996 static void
997 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif,
998     int gone)
999 {
1000 	struct ifnet *ifs = bif->bif_ifp;
1001 	struct ifnet *bifp = sc->sc_ifp;
1002 	struct bridge_ifinfo *bif_info = bif->bif_info;
1003 	struct bridge_iflist_head saved_bifs;
1004 
1005 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1006 	KKASSERT(bif_info != NULL);
1007 
1008 	ifs->if_bridge = NULL;
1009 
1010 	/*
1011 	 * Release bridge interface's serializer:
1012 	 * - To avoid possible dead lock.
1013 	 * - Various sync operation will block the current thread.
1014 	 */
1015 	ifnet_deserialize_all(bifp);
1016 
1017 	if (!gone) {
1018 		switch (ifs->if_type) {
1019 		case IFT_ETHER:
1020 		case IFT_L2VLAN:
1021 			/*
1022 			 * Take the interface out of promiscuous mode.
1023 			 */
1024 			ifpromisc(ifs, 0);
1025 			bridge_mutecaps(bif_info, ifs, 0);
1026 			break;
1027 
1028 		case IFT_GIF:
1029 			break;
1030 
1031 		default:
1032 			panic("bridge_delete_member: impossible");
1033 			break;
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * Remove bifs from percpu linked list.
1039 	 *
1040 	 * Removed bifs are not freed immediately, instead,
1041 	 * they are saved in saved_bifs.  They will be freed
1042 	 * after we make sure that no one is accessing them,
1043 	 * i.e. after following netmsg_service_sync()
1044 	 */
1045 	TAILQ_INIT(&saved_bifs);
1046 	bridge_del_bif(sc, bif_info, &saved_bifs);
1047 
1048 	/*
1049 	 * Make sure that all protocol threads:
1050 	 * o  see 'ifs' if_bridge is changed
1051 	 * o  know that bif is removed from the percpu linked list
1052 	 */
1053 	netmsg_service_sync();
1054 
1055 	/*
1056 	 * Free the removed bifs
1057 	 */
1058 	KKASSERT(!TAILQ_EMPTY(&saved_bifs));
1059 	while ((bif = TAILQ_FIRST(&saved_bifs)) != NULL) {
1060 		TAILQ_REMOVE(&saved_bifs, bif, bif_next);
1061 		kfree(bif, M_DEVBUF);
1062 	}
1063 
1064 	/* See the comment in bridge_ioctl_stop() */
1065 	bridge_rtmsg_sync(sc);
1066 	bridge_rtdelete(sc, ifs, IFBF_FLUSHALL | IFBF_FLUSHSYNC);
1067 
1068 	ifnet_serialize_all(bifp);
1069 
1070 	if (bifp->if_flags & IFF_RUNNING)
1071 		bstp_initialization(sc);
1072 
1073 	/*
1074 	 * Free the bif_info after bstp_initialization(), so that
1075 	 * bridge_softc.sc_root_port will not reference a dangling
1076 	 * pointer.
1077 	 */
1078 	kfree(bif_info, M_DEVBUF);
1079 }
1080 
1081 /*
1082  * bridge_delete_span:
1083  *
1084  *	Delete the specified span interface.
1085  */
1086 static void
1087 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
1088 {
1089 	KASSERT(bif->bif_ifp->if_bridge == NULL,
1090 	    ("%s: not a span interface", __func__));
1091 
1092 	TAILQ_REMOVE(&sc->sc_iflists[mycpuid], bif, bif_next);
1093 	kfree(bif, M_DEVBUF);
1094 }
1095 
1096 static int
1097 bridge_ioctl_init(struct bridge_softc *sc, void *arg __unused)
1098 {
1099 	struct ifnet *ifp = sc->sc_ifp;
1100 
1101 	if (ifp->if_flags & IFF_RUNNING)
1102 		return 0;
1103 
1104 	callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz,
1105 	    bridge_timer, sc);
1106 
1107 	ifp->if_flags |= IFF_RUNNING;
1108 	bstp_initialization(sc);
1109 	return 0;
1110 }
1111 
1112 static int
1113 bridge_ioctl_stop(struct bridge_softc *sc, void *arg __unused)
1114 {
1115 	struct ifnet *ifp = sc->sc_ifp;
1116 
1117 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1118 		return 0;
1119 
1120 	callout_stop(&sc->sc_brcallout);
1121 
1122 	crit_enter();
1123 	lwkt_dropmsg(&sc->sc_brtimemsg.lmsg);
1124 	crit_exit();
1125 
1126 	bstp_stop(sc);
1127 
1128 	ifp->if_flags &= ~IFF_RUNNING;
1129 
1130 	ifnet_deserialize_all(ifp);
1131 
1132 	/* Let everyone know that we are stopped */
1133 	netmsg_service_sync();
1134 
1135 	/*
1136 	 * Sync ifnetX msgports in the order we forward rtnode
1137 	 * installation message.  This is used to make sure that
1138 	 * all rtnode installation messages sent by bridge_rtupdate()
1139 	 * during above netmsg_service_sync() are flushed.
1140 	 */
1141 	bridge_rtmsg_sync(sc);
1142 	bridge_rtflush(sc, IFBF_FLUSHDYN | IFBF_FLUSHSYNC);
1143 
1144 	ifnet_serialize_all(ifp);
1145 	return 0;
1146 }
1147 
1148 static int
1149 bridge_ioctl_add(struct bridge_softc *sc, void *arg)
1150 {
1151 	struct ifbreq *req = arg;
1152 	struct bridge_iflist *bif;
1153 	struct bridge_ifinfo *bif_info;
1154 	struct ifnet *ifs, *bifp;
1155 	int error = 0;
1156 
1157 	bifp = sc->sc_ifp;
1158 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1159 
1160 	ifs = ifunit(req->ifbr_ifsname);
1161 	if (ifs == NULL)
1162 		return (ENOENT);
1163 
1164 	/* If it's in the span list, it can't be a member. */
1165 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1166 		if (ifs == bif->bif_ifp)
1167 			return (EBUSY);
1168 
1169 	/* Allow the first Ethernet member to define the MTU */
1170 	if (ifs->if_type != IFT_GIF) {
1171 		if (TAILQ_EMPTY(&sc->sc_iflists[mycpuid])) {
1172 			bifp->if_mtu = ifs->if_mtu;
1173 		} else if (bifp->if_mtu != ifs->if_mtu) {
1174 			if_printf(bifp, "invalid MTU for %s\n", ifs->if_xname);
1175 			return (EINVAL);
1176 		}
1177 	}
1178 
1179 	if (ifs->if_bridge == sc)
1180 		return (EEXIST);
1181 
1182 	if (ifs->if_bridge != NULL)
1183 		return (EBUSY);
1184 
1185 	bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1186 	bif_info->bifi_priority = BSTP_DEFAULT_PORT_PRIORITY;
1187 	bif_info->bifi_path_cost = BSTP_DEFAULT_PATH_COST;
1188 	bif_info->bifi_ifp = ifs;
1189 	bif_info->bifi_bond_weight = 1;
1190 
1191 	/*
1192 	 * Release bridge interface's serializer:
1193 	 * - To avoid possible dead lock.
1194 	 * - Various sync operation will block the current thread.
1195 	 */
1196 	ifnet_deserialize_all(bifp);
1197 
1198 	switch (ifs->if_type) {
1199 	case IFT_ETHER:
1200 	case IFT_L2VLAN:
1201 		/*
1202 		 * Place the interface into promiscuous mode.
1203 		 */
1204 		error = ifpromisc(ifs, 1);
1205 		if (error) {
1206 			ifnet_serialize_all(bifp);
1207 			goto out;
1208 		}
1209 		bridge_mutecaps(bif_info, ifs, 1);
1210 		break;
1211 
1212 	case IFT_GIF: /* :^) */
1213 		break;
1214 
1215 	default:
1216 		error = EINVAL;
1217 		ifnet_serialize_all(bifp);
1218 		goto out;
1219 	}
1220 
1221 	/*
1222 	 * Add bifs to percpu linked lists
1223 	 */
1224 	bridge_add_bif(sc, bif_info, ifs);
1225 
1226 	ifnet_serialize_all(bifp);
1227 
1228 	if (bifp->if_flags & IFF_RUNNING)
1229 		bstp_initialization(sc);
1230 	else
1231 		bstp_stop(sc);
1232 
1233 	/*
1234 	 * Everything has been setup, so let the member interface
1235 	 * deliver packets to this bridge on its input/output path.
1236 	 */
1237 	ifs->if_bridge = sc;
1238 out:
1239 	if (error) {
1240 		if (bif_info != NULL)
1241 			kfree(bif_info, M_DEVBUF);
1242 	}
1243 	return (error);
1244 }
1245 
1246 static int
1247 bridge_ioctl_del(struct bridge_softc *sc, void *arg)
1248 {
1249 	struct ifbreq *req = arg;
1250 	struct bridge_iflist *bif;
1251 
1252 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1253 	if (bif == NULL)
1254 		return (ENOENT);
1255 
1256 	bridge_delete_member(sc, bif, 0);
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
1263 {
1264 	struct ifbreq *req = arg;
1265 	struct bridge_iflist *bif;
1266 
1267 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1268 	if (bif == NULL)
1269 		return (ENOENT);
1270 	bridge_ioctl_fillflags(sc, bif, req);
1271 	return (0);
1272 }
1273 
1274 static void
1275 bridge_ioctl_fillflags(struct bridge_softc *sc, struct bridge_iflist *bif,
1276 		       struct ifbreq *req)
1277 {
1278 	req->ifbr_ifsflags = bif->bif_flags;
1279 	req->ifbr_state = bif->bif_state;
1280 	req->ifbr_priority = bif->bif_priority;
1281 	req->ifbr_path_cost = bif->bif_path_cost;
1282 	req->ifbr_bond_weight = bif->bif_bond_weight;
1283 	req->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1284 	if (bif->bif_flags & IFBIF_STP) {
1285 		req->ifbr_peer_root = bif->bif_peer_root;
1286 		req->ifbr_peer_bridge = bif->bif_peer_bridge;
1287 		req->ifbr_peer_cost = bif->bif_peer_cost;
1288 		req->ifbr_peer_port = bif->bif_peer_port;
1289 		if (bstp_supersedes_port_info(sc, bif)) {
1290 			req->ifbr_designated_root = bif->bif_peer_root;
1291 			req->ifbr_designated_bridge = bif->bif_peer_bridge;
1292 			req->ifbr_designated_cost = bif->bif_peer_cost;
1293 			req->ifbr_designated_port = bif->bif_peer_port;
1294 		} else {
1295 			req->ifbr_designated_root = sc->sc_bridge_id;
1296 			req->ifbr_designated_bridge = sc->sc_bridge_id;
1297 			req->ifbr_designated_cost = bif->bif_path_cost +
1298 						    bif->bif_peer_cost;
1299 			req->ifbr_designated_port = bif->bif_port_id;
1300 		}
1301 	} else {
1302 		req->ifbr_peer_root = 0;
1303 		req->ifbr_peer_bridge = 0;
1304 		req->ifbr_peer_cost = 0;
1305 		req->ifbr_peer_port = 0;
1306 		req->ifbr_designated_root = 0;
1307 		req->ifbr_designated_bridge = 0;
1308 		req->ifbr_designated_cost = 0;
1309 		req->ifbr_designated_port = 0;
1310 	}
1311 }
1312 
1313 static int
1314 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
1315 {
1316 	struct ifbreq *req = arg;
1317 	struct bridge_iflist *bif;
1318 	struct ifnet *bifp = sc->sc_ifp;
1319 
1320 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1321 	if (bif == NULL)
1322 		return (ENOENT);
1323 
1324 	if (req->ifbr_ifsflags & IFBIF_SPAN) {
1325 		/* SPAN is readonly */
1326 		return (EINVAL);
1327 	}
1328 
1329 	if (req->ifbr_ifsflags & IFBIF_STP) {
1330 		switch (bif->bif_ifp->if_type) {
1331 		case IFT_ETHER:
1332 			/* These can do spanning tree. */
1333 			break;
1334 
1335 		default:
1336 			/* Nothing else can. */
1337 			return (EINVAL);
1338 		}
1339 	}
1340 
1341 	bif->bif_flags = (bif->bif_flags & IFBIF_KEEPMASK) |
1342 			 (req->ifbr_ifsflags & ~IFBIF_KEEPMASK);
1343 	if (bifp->if_flags & IFF_RUNNING)
1344 		bstp_initialization(sc);
1345 
1346 	return (0);
1347 }
1348 
1349 static int
1350 bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
1351 {
1352 	struct ifbrparam *param = arg;
1353 	struct ifnet *ifp = sc->sc_ifp;
1354 
1355 	sc->sc_brtmax = param->ifbrp_csize;
1356 
1357 	ifnet_deserialize_all(ifp);
1358 	bridge_rttrim(sc);
1359 	ifnet_serialize_all(ifp);
1360 
1361 	return (0);
1362 }
1363 
1364 static int
1365 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
1366 {
1367 	struct ifbrparam *param = arg;
1368 
1369 	param->ifbrp_csize = sc->sc_brtmax;
1370 
1371 	return (0);
1372 }
1373 
1374 static int
1375 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg)
1376 {
1377 	struct bridge_control_arg *bc_arg = arg;
1378 	struct ifbifconf *bifc = arg;
1379 	struct bridge_iflist *bif;
1380 	struct ifbreq *breq;
1381 	int count, len;
1382 
1383 	count = 0;
1384 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next)
1385 		count++;
1386 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1387 		count++;
1388 
1389 	if (bifc->ifbic_len == 0) {
1390 		bifc->ifbic_len = sizeof(*breq) * count;
1391 		return 0;
1392 	} else if (count == 0 || bifc->ifbic_len < sizeof(*breq)) {
1393 		bifc->ifbic_len = 0;
1394 		return 0;
1395 	}
1396 
1397 	len = min(bifc->ifbic_len, sizeof(*breq) * count);
1398 	KKASSERT(len >= sizeof(*breq));
1399 
1400 	breq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1401 	if (breq == NULL) {
1402 		bifc->ifbic_len = 0;
1403 		return ENOMEM;
1404 	}
1405 	bc_arg->bca_kptr = breq;
1406 
1407 	count = 0;
1408 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1409 		if (len < sizeof(*breq))
1410 			break;
1411 
1412 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1413 			sizeof(breq->ifbr_ifsname));
1414 		bridge_ioctl_fillflags(sc, bif, breq);
1415 		breq++;
1416 		count++;
1417 		len -= sizeof(*breq);
1418 	}
1419 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
1420 		if (len < sizeof(*breq))
1421 			break;
1422 
1423 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1424 			sizeof(breq->ifbr_ifsname));
1425 		breq->ifbr_ifsflags = bif->bif_flags;
1426 		breq->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1427 		breq++;
1428 		count++;
1429 		len -= sizeof(*breq);
1430 	}
1431 
1432 	bifc->ifbic_len = sizeof(*breq) * count;
1433 	KKASSERT(bifc->ifbic_len > 0);
1434 
1435 	bc_arg->bca_len = bifc->ifbic_len;
1436 	bc_arg->bca_uptr = bifc->ifbic_req;
1437 	return 0;
1438 }
1439 
1440 static int
1441 bridge_ioctl_rts(struct bridge_softc *sc, void *arg)
1442 {
1443 	struct bridge_control_arg *bc_arg = arg;
1444 	struct ifbaconf *bac = arg;
1445 	struct bridge_rtnode *brt;
1446 	struct ifbareq *bareq;
1447 	int count, len;
1448 
1449 	count = 0;
1450 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list)
1451 		count++;
1452 
1453 	if (bac->ifbac_len == 0) {
1454 		bac->ifbac_len = sizeof(*bareq) * count;
1455 		return 0;
1456 	} else if (count == 0 || bac->ifbac_len < sizeof(*bareq)) {
1457 		bac->ifbac_len = 0;
1458 		return 0;
1459 	}
1460 
1461 	len = min(bac->ifbac_len, sizeof(*bareq) * count);
1462 	KKASSERT(len >= sizeof(*bareq));
1463 
1464 	bareq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1465 	if (bareq == NULL) {
1466 		bac->ifbac_len = 0;
1467 		return ENOMEM;
1468 	}
1469 	bc_arg->bca_kptr = bareq;
1470 
1471 	count = 0;
1472 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
1473 		struct bridge_rtinfo *bri = brt->brt_info;
1474 		unsigned long expire;
1475 
1476 		if (len < sizeof(*bareq))
1477 			break;
1478 
1479 		strlcpy(bareq->ifba_ifsname, bri->bri_ifp->if_xname,
1480 			sizeof(bareq->ifba_ifsname));
1481 		memcpy(bareq->ifba_dst, brt->brt_addr, sizeof(brt->brt_addr));
1482 		expire = bri->bri_expire;
1483 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
1484 		    time_second < expire)
1485 			bareq->ifba_expire = expire - time_second;
1486 		else
1487 			bareq->ifba_expire = 0;
1488 		bareq->ifba_flags = bri->bri_flags;
1489 		bareq++;
1490 		count++;
1491 		len -= sizeof(*bareq);
1492 	}
1493 
1494 	bac->ifbac_len = sizeof(*bareq) * count;
1495 	KKASSERT(bac->ifbac_len > 0);
1496 
1497 	bc_arg->bca_len = bac->ifbac_len;
1498 	bc_arg->bca_uptr = bac->ifbac_req;
1499 	return 0;
1500 }
1501 
1502 static int
1503 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg)
1504 {
1505 	struct ifbareq *req = arg;
1506 	struct bridge_iflist *bif;
1507 	struct ifnet *ifp = sc->sc_ifp;
1508 	int error;
1509 
1510 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1511 
1512 	bif = bridge_lookup_member(sc, req->ifba_ifsname);
1513 	if (bif == NULL)
1514 		return (ENOENT);
1515 
1516 	ifnet_deserialize_all(ifp);
1517 	error = bridge_rtsaddr(sc, req->ifba_dst, bif->bif_ifp,
1518 			       req->ifba_flags);
1519 	ifnet_serialize_all(ifp);
1520 	return (error);
1521 }
1522 
1523 static int
1524 bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
1525 {
1526 	struct ifbrparam *param = arg;
1527 
1528 	sc->sc_brttimeout = param->ifbrp_ctime;
1529 
1530 	return (0);
1531 }
1532 
1533 static int
1534 bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
1535 {
1536 	struct ifbrparam *param = arg;
1537 
1538 	param->ifbrp_ctime = sc->sc_brttimeout;
1539 
1540 	return (0);
1541 }
1542 
1543 static int
1544 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg)
1545 {
1546 	struct ifbareq *req = arg;
1547 	struct ifnet *ifp = sc->sc_ifp;
1548 	int error;
1549 
1550 	ifnet_deserialize_all(ifp);
1551 	error = bridge_rtdaddr(sc, req->ifba_dst);
1552 	ifnet_serialize_all(ifp);
1553 	return error;
1554 }
1555 
1556 static int
1557 bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
1558 {
1559 	struct ifbreq *req = arg;
1560 	struct ifnet *ifp = sc->sc_ifp;
1561 
1562 	ifnet_deserialize_all(ifp);
1563 	bridge_rtflush(sc, req->ifbr_ifsflags | IFBF_FLUSHSYNC);
1564 	ifnet_serialize_all(ifp);
1565 
1566 	return (0);
1567 }
1568 
1569 static int
1570 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
1571 {
1572 	struct ifbrparam *param = arg;
1573 
1574 	param->ifbrp_prio = sc->sc_bridge_priority;
1575 
1576 	return (0);
1577 }
1578 
1579 static int
1580 bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
1581 {
1582 	struct ifbrparam *param = arg;
1583 
1584 	sc->sc_bridge_priority = param->ifbrp_prio;
1585 
1586 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1587 		bstp_initialization(sc);
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 bridge_ioctl_reinit(struct bridge_softc *sc, void *arg __unused)
1594 {
1595 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1596 		bstp_initialization(sc);
1597 	return (0);
1598 }
1599 
1600 static int
1601 bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
1602 {
1603 	struct ifbrparam *param = arg;
1604 
1605 	param->ifbrp_hellotime = sc->sc_bridge_hello_time >> 8;
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
1612 {
1613 	struct ifbrparam *param = arg;
1614 
1615 	if (param->ifbrp_hellotime == 0)
1616 		return (EINVAL);
1617 	sc->sc_bridge_hello_time = param->ifbrp_hellotime << 8;
1618 
1619 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1620 		bstp_initialization(sc);
1621 
1622 	return (0);
1623 }
1624 
1625 static int
1626 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
1627 {
1628 	struct ifbrparam *param = arg;
1629 
1630 	param->ifbrp_fwddelay = sc->sc_bridge_forward_delay >> 8;
1631 
1632 	return (0);
1633 }
1634 
1635 static int
1636 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
1637 {
1638 	struct ifbrparam *param = arg;
1639 
1640 	if (param->ifbrp_fwddelay == 0)
1641 		return (EINVAL);
1642 	sc->sc_bridge_forward_delay = param->ifbrp_fwddelay << 8;
1643 
1644 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1645 		bstp_initialization(sc);
1646 
1647 	return (0);
1648 }
1649 
1650 static int
1651 bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
1652 {
1653 	struct ifbrparam *param = arg;
1654 
1655 	param->ifbrp_maxage = sc->sc_bridge_max_age >> 8;
1656 
1657 	return (0);
1658 }
1659 
1660 static int
1661 bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
1662 {
1663 	struct ifbrparam *param = arg;
1664 
1665 	if (param->ifbrp_maxage == 0)
1666 		return (EINVAL);
1667 	sc->sc_bridge_max_age = param->ifbrp_maxage << 8;
1668 
1669 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1670 		bstp_initialization(sc);
1671 
1672 	return (0);
1673 }
1674 
1675 static int
1676 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
1677 {
1678 	struct ifbreq *req = arg;
1679 	struct bridge_iflist *bif;
1680 
1681 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1682 	if (bif == NULL)
1683 		return (ENOENT);
1684 
1685 	bif->bif_priority = req->ifbr_priority;
1686 
1687 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1688 		bstp_initialization(sc);
1689 
1690 	return (0);
1691 }
1692 
1693 static int
1694 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
1695 {
1696 	struct ifbreq *req = arg;
1697 	struct bridge_iflist *bif;
1698 
1699 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1700 	if (bif == NULL)
1701 		return (ENOENT);
1702 
1703 	bif->bif_path_cost = req->ifbr_path_cost;
1704 
1705 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1706 		bstp_initialization(sc);
1707 
1708 	return (0);
1709 }
1710 
1711 static int
1712 bridge_ioctl_sifbondwght(struct bridge_softc *sc, void *arg)
1713 {
1714 	struct ifbreq *req = arg;
1715 	struct bridge_iflist *bif;
1716 
1717 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1718 	if (bif == NULL)
1719 		return (ENOENT);
1720 
1721 	bif->bif_bond_weight = req->ifbr_bond_weight;
1722 
1723 	/* no reinit needed */
1724 
1725 	return (0);
1726 }
1727 
1728 static int
1729 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
1730 {
1731 	struct ifbreq *req = arg;
1732 	struct bridge_iflist *bif;
1733 	struct ifnet *ifs;
1734 	struct bridge_ifinfo *bif_info;
1735 
1736 	ifs = ifunit(req->ifbr_ifsname);
1737 	if (ifs == NULL)
1738 		return (ENOENT);
1739 
1740 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1741 		if (ifs == bif->bif_ifp)
1742 			return (EBUSY);
1743 
1744 	if (ifs->if_bridge != NULL)
1745 		return (EBUSY);
1746 
1747 	switch (ifs->if_type) {
1748 	case IFT_ETHER:
1749 	case IFT_GIF:
1750 	case IFT_L2VLAN:
1751 		break;
1752 
1753 	default:
1754 		return (EINVAL);
1755 	}
1756 
1757 	/*
1758 	 * bif_info is needed for bif_flags
1759 	 */
1760         bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1761         bif_info->bifi_ifp = ifs;
1762 
1763 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
1764 	bif->bif_ifp = ifs;
1765 	bif->bif_info = bif_info;
1766 	bif->bif_flags = IFBIF_SPAN;
1767 	/* NOTE: span bif does not need bridge_ifinfo */
1768 
1769 	TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
1770 
1771 	sc->sc_span = 1;
1772 
1773 	return (0);
1774 }
1775 
1776 static int
1777 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
1778 {
1779 	struct ifbreq *req = arg;
1780 	struct bridge_iflist *bif;
1781 	struct ifnet *ifs;
1782 
1783 	ifs = ifunit(req->ifbr_ifsname);
1784 	if (ifs == NULL)
1785 		return (ENOENT);
1786 
1787 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1788 		if (ifs == bif->bif_ifp)
1789 			break;
1790 
1791 	if (bif == NULL)
1792 		return (ENOENT);
1793 
1794 	bridge_delete_span(sc, bif);
1795 
1796 	if (TAILQ_EMPTY(&sc->sc_spanlist))
1797 		sc->sc_span = 0;
1798 
1799 	return (0);
1800 }
1801 
1802 static void
1803 bridge_ifdetach_dispatch(netmsg_t msg)
1804 {
1805 	struct ifnet *ifp, *bifp;
1806 	struct bridge_softc *sc;
1807 	struct bridge_iflist *bif;
1808 
1809 	ifp = msg->lmsg.u.ms_resultp;
1810 	sc = ifp->if_bridge;
1811 
1812 	/* Check if the interface is a bridge member */
1813 	if (sc != NULL) {
1814 		bifp = sc->sc_ifp;
1815 
1816 		ifnet_serialize_all(bifp);
1817 
1818 		bif = bridge_lookup_member_if(sc, ifp);
1819 		if (bif != NULL) {
1820 			bridge_delete_member(sc, bif, 1);
1821 		} else {
1822 			/* XXX Why bif will be NULL? */
1823 		}
1824 
1825 		ifnet_deserialize_all(bifp);
1826 		goto reply;
1827 	}
1828 
1829 	crit_enter();	/* XXX MP */
1830 
1831 	/* Check if the interface is a span port */
1832 	LIST_FOREACH(sc, &bridge_list, sc_list) {
1833 		bifp = sc->sc_ifp;
1834 
1835 		ifnet_serialize_all(bifp);
1836 
1837 		TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1838 			if (ifp == bif->bif_ifp) {
1839 				bridge_delete_span(sc, bif);
1840 				break;
1841 			}
1842 
1843 		ifnet_deserialize_all(bifp);
1844 	}
1845 
1846 	crit_exit();
1847 
1848 reply:
1849 	lwkt_replymsg(&msg->lmsg, 0);
1850 }
1851 
1852 /*
1853  * bridge_ifdetach:
1854  *
1855  *	Detach an interface from a bridge.  Called when a member
1856  *	interface is detaching.
1857  */
1858 static void
1859 bridge_ifdetach(void *arg __unused, struct ifnet *ifp)
1860 {
1861 	struct netmsg_base msg;
1862 
1863 	netmsg_init(&msg, NULL, &curthread->td_msgport,
1864 		    0, bridge_ifdetach_dispatch);
1865 	msg.lmsg.u.ms_resultp = ifp;
1866 
1867 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
1868 }
1869 
1870 /*
1871  * bridge_init:
1872  *
1873  *	Initialize a bridge interface.
1874  */
1875 static void
1876 bridge_init(void *xsc)
1877 {
1878 	bridge_control(xsc, SIOCSIFFLAGS, bridge_ioctl_init, NULL);
1879 }
1880 
1881 /*
1882  * bridge_stop:
1883  *
1884  *	Stop the bridge interface.
1885  */
1886 static void
1887 bridge_stop(struct ifnet *ifp)
1888 {
1889 	bridge_control(ifp->if_softc, SIOCSIFFLAGS, bridge_ioctl_stop, NULL);
1890 }
1891 
1892 /*
1893  * Returns TRUE if the packet is being sent 'from us'... from our bridge
1894  * interface or from any member of our bridge interface.  This is used
1895  * later on to force the MAC to be the MAC of our bridge interface.
1896  */
1897 static int
1898 bridge_from_us(struct bridge_softc *sc, struct ether_header *eh)
1899 {
1900 	struct bridge_iflist *bif;
1901 
1902 	if (memcmp(eh->ether_shost, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN) == 0)
1903 		return (1);
1904 
1905 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1906 		if (memcmp(eh->ether_shost, IF_LLADDR(bif->bif_ifp),
1907 			   ETHER_ADDR_LEN) == 0) {
1908 			return (1);
1909 		}
1910 	}
1911 	return (0);
1912 }
1913 
1914 /*
1915  * bridge_enqueue:
1916  *
1917  *	Enqueue a packet on a bridge member interface.
1918  *
1919  */
1920 void
1921 bridge_enqueue(struct ifnet *dst_ifp, struct mbuf *m)
1922 {
1923 	struct netmsg_packet *nmp;
1924 
1925 	mbuftrackid(m, 64);
1926 
1927 	nmp = &m->m_hdr.mh_netmsg;
1928 	netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
1929 		    0, bridge_enqueue_handler);
1930 	nmp->nm_packet = m;
1931 	nmp->base.lmsg.u.ms_resultp = dst_ifp;
1932 
1933 	lwkt_sendmsg(netisr_portfn(mycpu->gd_cpuid), &nmp->base.lmsg);
1934 }
1935 
1936 /*
1937  * After looking up dst_if in our forwarding table we still have to
1938  * deal with channel bonding.  Find the best interface in the bonding set.
1939  */
1940 static struct ifnet *
1941 bridge_select_unicast(struct bridge_softc *sc, struct ifnet *dst_if,
1942 		      int from_blocking, struct mbuf *m)
1943 {
1944 	struct bridge_iflist *bif, *nbif;
1945 	struct ifnet *alt_if;
1946 	int alt_priority;
1947 	int priority;
1948 
1949 	/*
1950 	 * Unicast, kinda replicates the output side of bridge_output().
1951 	 *
1952 	 * Even though this is a uni-cast packet we may have to select
1953 	 * an interface from a bonding set.
1954 	 */
1955 	bif = bridge_lookup_member_if(sc, dst_if);
1956 	if (bif == NULL) {
1957 		/* Not a member of the bridge (anymore?) */
1958 		return NULL;
1959 	}
1960 
1961 	/*
1962 	 * If STP is enabled on the target we are an equal opportunity
1963 	 * employer and do not necessarily output to dst_if.  Instead
1964 	 * scan available links with the same MAC as the current dst_if
1965 	 * and choose the best one.
1966 	 *
1967 	 * We also need to do this because arp entries tag onto a particular
1968 	 * interface and if it happens to be dead then the packets will
1969 	 * go into a bit bucket.
1970 	 *
1971 	 * If LINK2 is set the matching links are bonded and we-round robin.
1972 	 * (the MAC address must be the same for the participating links).
1973 	 * In this case links in a STP FORWARDING or BONDED state are
1974 	 * allowed for unicast packets.
1975 	 */
1976 	if (bif->bif_flags & IFBIF_STP) {
1977 		alt_if = NULL;
1978 		alt_priority = 0;
1979 		priority = 0;
1980 
1981 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
1982 				     bif_next, nbif) {
1983 			/*
1984 			 * dst_if may imply a bonding set so we must compare
1985 			 * MAC addresses.
1986 			 */
1987 			if (memcmp(IF_LLADDR(bif->bif_ifp),
1988 				   IF_LLADDR(dst_if),
1989 				   ETHER_ADDR_LEN) != 0) {
1990 				continue;
1991 			}
1992 
1993 			if ((bif->bif_ifp->if_flags & IFF_RUNNING) == 0)
1994 				continue;
1995 
1996 			/*
1997 			 * NOTE: We allow tranmissions through a BLOCKING
1998 			 *	 or LEARNING interface only as a last resort.
1999 			 *	 We DISALLOW both cases if the receiving
2000 			 *
2001 			 * NOTE: If we send a packet through a learning
2002 			 *	 interface the receiving end (if also in
2003 			 *	 LEARNING) will throw it away, so this is
2004 			 *	 the ultimate last resort.
2005 			 */
2006 			switch(bif->bif_state) {
2007 			case BSTP_IFSTATE_BLOCKING:
2008 				if (from_blocking == 0 &&
2009 				    bif->bif_priority + 256 > alt_priority) {
2010 					alt_priority = bif->bif_priority + 256;
2011 					alt_if = bif->bif_ifp;
2012 				}
2013 				continue;
2014 			case BSTP_IFSTATE_LEARNING:
2015 				if (from_blocking == 0 &&
2016 				    bif->bif_priority > alt_priority) {
2017 					alt_priority = bif->bif_priority;
2018 					alt_if = bif->bif_ifp;
2019 				}
2020 				continue;
2021 			case BSTP_IFSTATE_L1BLOCKING:
2022 			case BSTP_IFSTATE_LISTENING:
2023 			case BSTP_IFSTATE_DISABLED:
2024 				continue;
2025 			default:
2026 				/* FORWARDING, BONDED */
2027 				break;
2028 			}
2029 
2030 			/*
2031 			 * XXX we need to use the toepliz hash or
2032 			 *     something like that instead of
2033 			 *     round-robining.
2034 			 */
2035 			if (sc->sc_ifp->if_flags & IFF_LINK2) {
2036 				dst_if = bif->bif_ifp;
2037 				if (++bif->bif_bond_count >=
2038 				    bif->bif_bond_weight) {
2039 					bif->bif_bond_count = 0;
2040 					TAILQ_REMOVE(&sc->sc_iflists[mycpuid],
2041 						     bif, bif_next);
2042 					TAILQ_INSERT_TAIL(
2043 						     &sc->sc_iflists[mycpuid],
2044 						     bif, bif_next);
2045 				}
2046 				priority = 1;
2047 				break;
2048 			}
2049 
2050 			/*
2051 			 * Select best interface in the FORWARDING or
2052 			 * BONDED set.  Well, there shouldn't be any
2053 			 * in a BONDED state if LINK2 is not set (they
2054 			 * will all be in a BLOCKING) state, but there
2055 			 * could be a transitory condition here.
2056 			 */
2057 			if (bif->bif_priority > priority) {
2058 				priority = bif->bif_priority;
2059 				dst_if = bif->bif_ifp;
2060 			}
2061 		}
2062 
2063 		/*
2064 		 * If no suitable interfaces were found but a suitable
2065 		 * alternative interface was found, use the alternative
2066 		 * interface.
2067 		 */
2068 		if (priority == 0 && alt_if)
2069 			dst_if = alt_if;
2070 	}
2071 
2072 	/*
2073 	 * At this point, we're dealing with a unicast frame
2074 	 * going to a different interface.
2075 	 */
2076 	if ((dst_if->if_flags & IFF_RUNNING) == 0)
2077 		dst_if = NULL;
2078 	return (dst_if);
2079 }
2080 
2081 
2082 /*
2083  * bridge_output:
2084  *
2085  *	Send output from a bridge member interface.  This
2086  *	performs the bridging function for locally originated
2087  *	packets.
2088  *
2089  *	The mbuf has the Ethernet header already attached.  We must
2090  *	enqueue or free the mbuf before returning.
2091  */
2092 static int
2093 bridge_output(struct ifnet *ifp, struct mbuf *m)
2094 {
2095 	struct bridge_softc *sc = ifp->if_bridge;
2096 	struct bridge_iflist *bif, *nbif;
2097 	struct ether_header *eh;
2098 	struct ifnet *dst_if, *alt_if, *bifp;
2099 	int from_us;
2100 	int alt_priority;
2101 
2102 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2103 	mbuftrackid(m, 65);
2104 
2105 	/*
2106 	 * Make sure that we are still a member of a bridge interface.
2107 	 */
2108 	if (sc == NULL) {
2109 		m_freem(m);
2110 		return (0);
2111 	}
2112 	bifp = sc->sc_ifp;
2113 
2114 	/*
2115 	 * Acquire header
2116 	 */
2117 	if (m->m_len < ETHER_HDR_LEN) {
2118 		m = m_pullup(m, ETHER_HDR_LEN);
2119 		if (m == NULL) {
2120 			IFNET_STAT_INC(bifp, oerrors, 1);
2121 			return (0);
2122 		}
2123 	}
2124 	eh = mtod(m, struct ether_header *);
2125 	from_us = bridge_from_us(sc, eh);
2126 
2127 	/*
2128 	 * If bridge is down, but the original output interface is up,
2129 	 * go ahead and send out that interface.  Otherwise, the packet
2130 	 * is dropped below.
2131 	 */
2132 	if ((bifp->if_flags & IFF_RUNNING) == 0) {
2133 		dst_if = ifp;
2134 		goto sendunicast;
2135 	}
2136 
2137 	/*
2138 	 * If the packet is a multicast, or we don't know a better way to
2139 	 * get there, send to all interfaces.
2140 	 */
2141 	if (ETHER_IS_MULTICAST(eh->ether_dhost))
2142 		dst_if = NULL;
2143 	else
2144 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2145 
2146 	if (dst_if == NULL) {
2147 		struct mbuf *mc;
2148 		int used = 0;
2149 		int found = 0;
2150 
2151 		if (sc->sc_span)
2152 			bridge_span(sc, m);
2153 
2154 		alt_if = NULL;
2155 		alt_priority = 0;
2156 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
2157 				     bif_next, nbif) {
2158 			dst_if = bif->bif_ifp;
2159 
2160 			if ((dst_if->if_flags & IFF_RUNNING) == 0)
2161 				continue;
2162 
2163 			/*
2164 			 * If this is not the original output interface,
2165 			 * and the interface is participating in spanning
2166 			 * tree, make sure the port is in a state that
2167 			 * allows forwarding.
2168 			 *
2169 			 * We keep track of a possible backup IF if we are
2170 			 * unable to find any interfaces to forward through.
2171 			 *
2172 			 * NOTE: Currently round-robining is not implemented
2173 			 *	 across bonded interface groups (needs an
2174 			 *	 algorithm to track each group somehow).
2175 			 *
2176 			 *	 Similarly we track only one alternative
2177 			 *	 interface if no suitable interfaces are
2178 			 *	 found.
2179 			 */
2180 			if (dst_if != ifp &&
2181 			    (bif->bif_flags & IFBIF_STP) != 0) {
2182 				switch (bif->bif_state) {
2183 				case BSTP_IFSTATE_BONDED:
2184 					if (bif->bif_priority + 512 >
2185 					    alt_priority) {
2186 						alt_priority =
2187 						    bif->bif_priority + 512;
2188 						alt_if = bif->bif_ifp;
2189 					}
2190 					continue;
2191 				case BSTP_IFSTATE_BLOCKING:
2192 					if (bif->bif_priority + 256 >
2193 					    alt_priority) {
2194 						alt_priority =
2195 						    bif->bif_priority + 256;
2196 						alt_if = bif->bif_ifp;
2197 					}
2198 					continue;
2199 				case BSTP_IFSTATE_LEARNING:
2200 					if (bif->bif_priority > alt_priority) {
2201 						alt_priority =
2202 						    bif->bif_priority;
2203 						alt_if = bif->bif_ifp;
2204 					}
2205 					continue;
2206 				case BSTP_IFSTATE_L1BLOCKING:
2207 				case BSTP_IFSTATE_LISTENING:
2208 				case BSTP_IFSTATE_DISABLED:
2209 					continue;
2210 				default:
2211 					/* FORWARDING */
2212 					break;
2213 				}
2214 			}
2215 
2216 			KKASSERT(used == 0);
2217 			if (TAILQ_NEXT(bif, bif_next) == NULL) {
2218 				used = 1;
2219 				mc = m;
2220 			} else {
2221 				mc = m_copypacket(m, MB_DONTWAIT);
2222 				if (mc == NULL) {
2223 					IFNET_STAT_INC(bifp, oerrors, 1);
2224 					continue;
2225 				}
2226 			}
2227 
2228 			/*
2229 			 * If the packet is 'from' us override ether_shost.
2230 			 */
2231 			bridge_handoff(sc, dst_if, mc, from_us);
2232 			found = 1;
2233 
2234 			if (nbif != NULL && !nbif->bif_onlist) {
2235 				KKASSERT(bif->bif_onlist);
2236 				nbif = TAILQ_NEXT(bif, bif_next);
2237 			}
2238 		}
2239 
2240 		/*
2241 		 * If we couldn't find anything use the backup interface
2242 		 * if we have one.
2243 		 */
2244 		if (found == 0 && alt_if) {
2245 			KKASSERT(used == 0);
2246 			mc = m;
2247 			used = 1;
2248 			bridge_handoff(sc, alt_if, mc, from_us);
2249 		}
2250 
2251 		if (used == 0)
2252 			m_freem(m);
2253 		return (0);
2254 	}
2255 
2256 	/*
2257 	 * Unicast
2258 	 */
2259 sendunicast:
2260 	dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2261 
2262 	if (sc->sc_span)
2263 		bridge_span(sc, m);
2264 	if (dst_if == NULL)
2265 		m_freem(m);
2266 	else
2267 		bridge_handoff(sc, dst_if, m, from_us);
2268 	return (0);
2269 }
2270 
2271 /*
2272  * Returns the bridge interface associated with an ifc.
2273  * Pass ifp->if_bridge (must not be NULL).  Used by the ARP
2274  * code to supply the bridge for the is-at info, making
2275  * the bridge responsible for matching local addresses.
2276  *
2277  * Without this the ARP code will supply bridge member interfaces
2278  * for the is-at which makes it difficult the bridge to fail-over
2279  * interfaces (amoung other things).
2280  */
2281 static struct ifnet *
2282 bridge_interface(void *if_bridge)
2283 {
2284 	struct bridge_softc *sc = if_bridge;
2285 	return (sc->sc_ifp);
2286 }
2287 
2288 /*
2289  * bridge_start:
2290  *
2291  *	Start output on a bridge.
2292  */
2293 static void
2294 bridge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2295 {
2296 	struct bridge_softc *sc = ifp->if_softc;
2297 
2298 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2299 	ASSERT_IFNET_SERIALIZED_TX(ifp, ifsq);
2300 
2301 	ifsq_set_oactive(ifsq);
2302 	for (;;) {
2303 		struct ifnet *dst_if = NULL;
2304 		struct ether_header *eh;
2305 		struct mbuf *m;
2306 
2307 		m = ifsq_dequeue(ifsq, NULL);
2308 		if (m == NULL)
2309 			break;
2310 		mbuftrackid(m, 75);
2311 
2312 		if (m->m_len < sizeof(*eh)) {
2313 			m = m_pullup(m, sizeof(*eh));
2314 			if (m == NULL) {
2315 				IFNET_STAT_INC(ifp, oerrors, 1);
2316 				continue;
2317 			}
2318 		}
2319 		eh = mtod(m, struct ether_header *);
2320 
2321 		BPF_MTAP(ifp, m);
2322 		IFNET_STAT_INC(ifp, opackets, 1);
2323 
2324 		if ((m->m_flags & (M_BCAST|M_MCAST)) == 0)
2325 			dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2326 
2327 		/*
2328 		 * Multicast or broadcast
2329 		 */
2330 		if (dst_if == NULL) {
2331 			bridge_start_bcast(sc, m);
2332 			continue;
2333 		}
2334 
2335 		/*
2336 		 * Unicast
2337 		 */
2338 		dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2339 
2340 		if (dst_if == NULL)
2341 			m_freem(m);
2342 		else
2343 			bridge_enqueue(dst_if, m);
2344 	}
2345 	ifsq_clr_oactive(ifsq);
2346 }
2347 
2348 /*
2349  * bridge_forward:
2350  *
2351  *	Forward packets received on a bridge interface via the input
2352  *	path.
2353  *
2354  *	This implements the forwarding function of the bridge.
2355  */
2356 static void
2357 bridge_forward(struct bridge_softc *sc, struct mbuf *m)
2358 {
2359 	struct bridge_iflist *bif;
2360 	struct ifnet *src_if, *dst_if, *ifp;
2361 	struct ether_header *eh;
2362 	int from_blocking;
2363 
2364 	mbuftrackid(m, 66);
2365 	src_if = m->m_pkthdr.rcvif;
2366 	ifp = sc->sc_ifp;
2367 
2368 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2369 
2370 	IFNET_STAT_INC(ifp, ipackets, 1);
2371 	IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
2372 
2373 	/*
2374 	 * Look up the bridge_iflist.
2375 	 */
2376 	bif = bridge_lookup_member_if(sc, src_if);
2377 	if (bif == NULL) {
2378 		/* Interface is not a bridge member (anymore?) */
2379 		m_freem(m);
2380 		return;
2381 	}
2382 
2383 	/*
2384 	 * In spanning tree mode receiving a packet from an interface
2385 	 * in a BLOCKING state is allowed, it could be a member of last
2386 	 * resort from the sender's point of view, but forwarding it is
2387 	 * not allowed.
2388 	 *
2389 	 * The sender's spanning tree will eventually sync up and the
2390 	 * sender will go into a BLOCKING state too (but this still may be
2391 	 * an interface of last resort during state changes).
2392 	 */
2393 	if (bif->bif_flags & IFBIF_STP) {
2394 		switch (bif->bif_state) {
2395 		case BSTP_IFSTATE_L1BLOCKING:
2396 		case BSTP_IFSTATE_LISTENING:
2397 		case BSTP_IFSTATE_DISABLED:
2398 			m_freem(m);
2399 			return;
2400 		default:
2401 			/* learning, blocking, bonded, forwarding */
2402 			break;
2403 		}
2404 		from_blocking = (bif->bif_state == BSTP_IFSTATE_BLOCKING);
2405 	} else {
2406 		from_blocking = 0;
2407 	}
2408 
2409 	eh = mtod(m, struct ether_header *);
2410 
2411 	/*
2412 	 * If the interface is learning, and the source
2413 	 * address is valid and not multicast, record
2414 	 * the address.
2415 	 */
2416 	if ((bif->bif_flags & IFBIF_LEARNING) != 0 &&
2417 	    from_blocking == 0 &&
2418 	    ETHER_IS_MULTICAST(eh->ether_shost) == 0 &&
2419 	    (eh->ether_shost[0] == 0 &&
2420 	     eh->ether_shost[1] == 0 &&
2421 	     eh->ether_shost[2] == 0 &&
2422 	     eh->ether_shost[3] == 0 &&
2423 	     eh->ether_shost[4] == 0 &&
2424 	     eh->ether_shost[5] == 0) == 0) {
2425 		bridge_rtupdate(sc, eh->ether_shost, src_if, IFBAF_DYNAMIC);
2426 	}
2427 
2428 	/*
2429 	 * Don't forward from an interface in the listening or learning
2430 	 * state.  That is, in the learning state we learn information
2431 	 * but we throw away the packets.
2432 	 *
2433 	 * We let through packets on interfaces in the blocking state.
2434 	 * The blocking state is applicable to the send side, not the
2435 	 * receive side.
2436 	 */
2437 	if ((bif->bif_flags & IFBIF_STP) != 0 &&
2438 	    (bif->bif_state == BSTP_IFSTATE_LISTENING ||
2439 	     bif->bif_state == BSTP_IFSTATE_LEARNING)) {
2440 		m_freem(m);
2441 		return;
2442 	}
2443 
2444 	/*
2445 	 * At this point, the port either doesn't participate
2446 	 * in spanning tree or it is in the forwarding state.
2447 	 */
2448 
2449 	/*
2450 	 * If the packet is unicast, destined for someone on
2451 	 * "this" side of the bridge, drop it.
2452 	 *
2453 	 * src_if implies the entire bonding set so we have to compare MAC
2454 	 * addresses and not just if pointers.
2455 	 */
2456 	if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) {
2457 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2458 		if (dst_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
2459 				     ETHER_ADDR_LEN) == 0) {
2460 			m_freem(m);
2461 			return;
2462 		}
2463 	} else {
2464 		/* ...forward it to all interfaces. */
2465 		IFNET_STAT_INC(ifp, imcasts, 1);
2466 		dst_if = NULL;
2467 	}
2468 
2469 	/*
2470 	 * Brodcast if we do not have forwarding information.  However, if
2471 	 * we received the packet on a blocking interface we do not do this
2472 	 * (unless you really want to blow up your network).
2473 	 */
2474 	if (dst_if == NULL) {
2475 		if (from_blocking)
2476 			m_freem(m);
2477 		else
2478 			bridge_broadcast(sc, src_if, m);
2479 		return;
2480 	}
2481 
2482 	dst_if = bridge_select_unicast(sc, dst_if, from_blocking, m);
2483 
2484 	if (dst_if == NULL) {
2485 		m_freem(m);
2486 		return;
2487 	}
2488 
2489 	if (inet_pfil_hook.ph_hashooks > 0
2490 #ifdef INET6
2491 	    || inet6_pfil_hook.ph_hashooks > 0
2492 #endif
2493 	    ) {
2494 		if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0)
2495 			return;
2496 		if (m == NULL)
2497 			return;
2498 
2499 		if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0)
2500 			return;
2501 		if (m == NULL)
2502 			return;
2503 	}
2504 	bridge_handoff(sc, dst_if, m, 0);
2505 }
2506 
2507 /*
2508  * bridge_input:
2509  *
2510  *	Receive input from a member interface.  Queue the packet for
2511  *	bridging if it is not for us.
2512  */
2513 static struct mbuf *
2514 bridge_input(struct ifnet *ifp, struct mbuf *m)
2515 {
2516 	struct bridge_softc *sc = ifp->if_bridge;
2517 	struct bridge_iflist *bif;
2518 	struct ifnet *bifp, *new_ifp;
2519 	struct ether_header *eh;
2520 	struct mbuf *mc, *mc2;
2521 
2522 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2523 	mbuftrackid(m, 67);
2524 
2525 	/*
2526 	 * Make sure that we are still a member of a bridge interface.
2527 	 */
2528 	if (sc == NULL)
2529 		return m;
2530 
2531 	new_ifp = NULL;
2532 	bifp = sc->sc_ifp;
2533 
2534 	if ((bifp->if_flags & IFF_RUNNING) == 0)
2535 		goto out;
2536 
2537 	/*
2538 	 * Implement support for bridge monitoring.  If this flag has been
2539 	 * set on this interface, discard the packet once we push it through
2540 	 * the bpf(4) machinery, but before we do, increment various counters
2541 	 * associated with this bridge.
2542 	 */
2543 	if (bifp->if_flags & IFF_MONITOR) {
2544 	 	/* Change input interface to this bridge */
2545 		m->m_pkthdr.rcvif = bifp;
2546 
2547 		BPF_MTAP(bifp, m);
2548 
2549 		/* Update bridge's ifnet statistics */
2550 		IFNET_STAT_INC(bifp, ipackets, 1);
2551 		IFNET_STAT_INC(bifp, ibytes, m->m_pkthdr.len);
2552 		if (m->m_flags & (M_MCAST | M_BCAST))
2553 			IFNET_STAT_INC(bifp, imcasts, 1);
2554 
2555 		m_freem(m);
2556 		m = NULL;
2557 		goto out;
2558 	}
2559 
2560 	/*
2561 	 * Handle the ether_header
2562 	 *
2563 	 * In all cases if the packet is destined for us via our MAC
2564 	 * we must clear BRIDGE_MBUF_TAGGED to ensure that we don't
2565 	 * repeat the source MAC out the same interface.
2566 	 *
2567 	 * This first test against our bridge MAC is the fast-path.
2568 	 *
2569 	 * NOTE!  The bridge interface can serve as an endpoint for
2570 	 *	  communication but normally there are no IPs associated
2571 	 *	  with it so you cannot route through it.  Instead what
2572 	 *	  you do is point your default route *THROUGH* the bridge
2573 	 *	  to the actual default router for one of the bridged spaces.
2574 	 *
2575 	 *	  Another possibility is to put all your IP specifications
2576 	 *	  on the bridge instead of on the individual interfaces.  If
2577 	 *	  you do this it should be possible to use the bridge as an
2578 	 *	  end point and route (rather than switch) through it using
2579 	 *	  the default route or ipfw forwarding rules.
2580 	 */
2581 
2582 	/*
2583 	 * Acquire header
2584 	 */
2585 	if (m->m_len < ETHER_HDR_LEN) {
2586 		m = m_pullup(m, ETHER_HDR_LEN);
2587 		if (m == NULL)
2588 			goto out;
2589 	}
2590 	eh = mtod(m, struct ether_header *);
2591 	m->m_pkthdr.fw_flags |= BRIDGE_MBUF_TAGGED;
2592 	bcopy(eh, &m->m_pkthdr.br.ether, sizeof(*eh));
2593 
2594 	if ((bridge_debug & 1) &&
2595 	    (ntohs(eh->ether_type) == ETHERTYPE_ARP ||
2596 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP)) {
2597 		kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
2598 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x "
2599 			"lla %02x:%02x:%02x:%02x:%02x:%02x\n",
2600 			eh->ether_dhost[0],
2601 			eh->ether_dhost[1],
2602 			eh->ether_dhost[2],
2603 			eh->ether_dhost[3],
2604 			eh->ether_dhost[4],
2605 			eh->ether_dhost[5],
2606 			eh->ether_shost[0],
2607 			eh->ether_shost[1],
2608 			eh->ether_shost[2],
2609 			eh->ether_shost[3],
2610 			eh->ether_shost[4],
2611 			eh->ether_shost[5],
2612 			eh->ether_type,
2613 			((u_char *)IF_LLADDR(bifp))[0],
2614 			((u_char *)IF_LLADDR(bifp))[1],
2615 			((u_char *)IF_LLADDR(bifp))[2],
2616 			((u_char *)IF_LLADDR(bifp))[3],
2617 			((u_char *)IF_LLADDR(bifp))[4],
2618 			((u_char *)IF_LLADDR(bifp))[5]
2619 		);
2620 	}
2621 
2622 	if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) {
2623 		/*
2624 		 * If the packet is for us, set the packets source as the
2625 		 * bridge, and return the packet back to ifnet.if_input for
2626 		 * local processing.
2627 		 */
2628 		m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2629 		KASSERT(bifp->if_bridge == NULL,
2630 			("loop created in bridge_input"));
2631 		if (pfil_member != 0) {
2632 			if (inet_pfil_hook.ph_hashooks > 0
2633 #ifdef INET6
2634 			    || inet6_pfil_hook.ph_hashooks > 0
2635 #endif
2636 			) {
2637 				if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0)
2638 					goto out;
2639 				if (m == NULL)
2640 					goto out;
2641 			}
2642 		}
2643 		new_ifp = bifp;
2644 		goto out;
2645 	}
2646 
2647 	/*
2648 	 * Tap all packets arriving on the bridge, no matter if
2649 	 * they are local destinations or not.  In is in.
2650 	 */
2651 	BPF_MTAP(bifp, m);
2652 
2653 	bif = bridge_lookup_member_if(sc, ifp);
2654 	if (bif == NULL)
2655 		goto out;
2656 
2657 	if (sc->sc_span)
2658 		bridge_span(sc, m);
2659 
2660 	if (m->m_flags & (M_BCAST | M_MCAST)) {
2661 		/*
2662 		 * Tap off 802.1D packets; they do not get forwarded.
2663 		 */
2664 		if (memcmp(eh->ether_dhost, bstp_etheraddr,
2665 			    ETHER_ADDR_LEN) == 0) {
2666 			ifnet_serialize_all(bifp);
2667 			bstp_input(sc, bif, m);
2668 			ifnet_deserialize_all(bifp);
2669 
2670 			/* m is freed by bstp_input */
2671 			m = NULL;
2672 			goto out;
2673 		}
2674 
2675 		/*
2676 		 * Other than 802.11d packets, ignore packets if the
2677 		 * interface is not in a good state.
2678 		 *
2679 		 * NOTE: Broadcast/mcast packets received on a blocking or
2680 		 *	 learning interface are allowed for local processing.
2681 		 *
2682 		 *	 The sending side of a blocked port will stop
2683 		 *	 transmitting when a better alternative is found.
2684 		 *	 However, later on we will disallow the forwarding
2685 		 *	 of bcast/mcsat packets over a blocking interface.
2686 		 */
2687 		if (bif->bif_flags & IFBIF_STP) {
2688 			switch (bif->bif_state) {
2689 			case BSTP_IFSTATE_L1BLOCKING:
2690 			case BSTP_IFSTATE_LISTENING:
2691 			case BSTP_IFSTATE_DISABLED:
2692 				goto out;
2693 			default:
2694 				/* blocking, learning, bonded, forwarding */
2695 				break;
2696 			}
2697 		}
2698 
2699 		/*
2700 		 * Make a deep copy of the packet and enqueue the copy
2701 		 * for bridge processing; return the original packet for
2702 		 * local processing.
2703 		 */
2704 		mc = m_dup(m, MB_DONTWAIT);
2705 		if (mc == NULL)
2706 			goto out;
2707 
2708 		/*
2709 		 * It's just too dangerous to allow bcast/mcast over a
2710 		 * blocked interface, eventually the network will sort
2711 		 * itself out and a better path will be found.
2712 		 */
2713 		if ((bif->bif_flags & IFBIF_STP) == 0 ||
2714 		    bif->bif_state != BSTP_IFSTATE_BLOCKING) {
2715 			bridge_forward(sc, mc);
2716 		}
2717 
2718 		/*
2719 		 * Reinject the mbuf as arriving on the bridge so we have a
2720 		 * chance at claiming multicast packets. We can not loop back
2721 		 * here from ether_input as a bridge is never a member of a
2722 		 * bridge.
2723 		 */
2724 		KASSERT(bifp->if_bridge == NULL,
2725 			("loop created in bridge_input"));
2726 		mc2 = m_dup(m, MB_DONTWAIT);
2727 #ifdef notyet
2728 		if (mc2 != NULL) {
2729 			/* Keep the layer3 header aligned */
2730 			int i = min(mc2->m_pkthdr.len, max_protohdr);
2731 			mc2 = m_copyup(mc2, i, ETHER_ALIGN);
2732 		}
2733 #endif
2734 		if (mc2 != NULL) {
2735 			/*
2736 			 * Don't tap to bpf(4) again; we have already done
2737 			 * the tapping.
2738 			 *
2739 			 * Leave m_pkthdr.rcvif alone, so ARP replies are
2740 			 * processed as coming in on the correct interface.
2741 			 *
2742 			 * Clear the bridge flag for local processing in
2743 			 * case the packet gets routed.
2744 			 */
2745 			mc2->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2746 			ether_reinput_oncpu(bifp, mc2, 0);
2747 		}
2748 
2749 		/* Return the original packet for local processing. */
2750 		goto out;
2751 	}
2752 
2753 	/*
2754 	 * Input of a unicast packet.  We have to allow unicast packets
2755 	 * input from links in the BLOCKING state as this might be an
2756 	 * interface of last resort.
2757 	 *
2758 	 * NOTE: We explicitly ignore normal packets received on a link
2759 	 *	 in the BLOCKING state.  The point of being in that state
2760 	 *	 is to avoid getting duplicate packets.
2761 	 *
2762 	 *	 HOWEVER, if LINK2 is set the normal spanning tree code
2763 	 *	 will mark an interface BLOCKING to avoid multi-cast/broadcast
2764 	 *	 loops.  Unicast packets CAN still loop if we allow the
2765 	 *	 case (hence we only do it in LINK2), but it isn't quite as
2766 	 *	 bad as a broadcast packet looping.
2767 	 */
2768 	if (bif->bif_flags & IFBIF_STP) {
2769 		switch (bif->bif_state) {
2770 		case BSTP_IFSTATE_L1BLOCKING:
2771 		case BSTP_IFSTATE_LISTENING:
2772 		case BSTP_IFSTATE_DISABLED:
2773 			goto out;
2774 		default:
2775 			/* blocking, bonded, forwarding, learning */
2776 			break;
2777 		}
2778 	}
2779 
2780 	/*
2781 	 * Unicast.  Make sure it's not for us.
2782 	 *
2783 	 * This loop is MPSAFE; the only blocking operation (bridge_rtupdate)
2784 	 * is followed by breaking out of the loop.
2785 	 */
2786 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2787 		if (bif->bif_ifp->if_type != IFT_ETHER)
2788 			continue;
2789 
2790 		/*
2791 		 * It is destined for an interface linked to the bridge.
2792 		 * We want the bridge itself to take care of link level
2793 		 * forwarding to member interfaces so reinput on the bridge.
2794 		 * i.e. if you ping an IP on a target interface associated
2795 		 * with the bridge, the arp is-at response should indicate
2796 		 * the bridge MAC.
2797 		 *
2798 		 * Only update our addr list when learning if the port
2799 		 * is not in a blocking state.  If it is we still allow
2800 		 * the packet but we do not try to learn from it.
2801 		 */
2802 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_dhost,
2803 			   ETHER_ADDR_LEN) == 0) {
2804 			if (bif->bif_ifp != ifp) {
2805 				/* XXX loop prevention */
2806 				m->m_flags |= M_ETHER_BRIDGED;
2807 			}
2808 			if ((bif->bif_flags & IFBIF_LEARNING) &&
2809 			    ((bif->bif_flags & IFBIF_STP) == 0 ||
2810 			     bif->bif_state != BSTP_IFSTATE_BLOCKING)) {
2811 				bridge_rtupdate(sc, eh->ether_shost,
2812 						ifp, IFBAF_DYNAMIC);
2813 			}
2814 			new_ifp = bifp; /* not bif->bif_ifp */
2815 			m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2816 			goto out;
2817 		}
2818 
2819 		/*
2820 		 * Ignore received packets that were sent by us.
2821 		 */
2822 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_shost,
2823 			   ETHER_ADDR_LEN) == 0) {
2824 			m_freem(m);
2825 			m = NULL;
2826 			goto out;
2827 		}
2828 	}
2829 
2830 	/*
2831 	 * It isn't for us.
2832 	 *
2833 	 * Perform the bridge forwarding function, but disallow bridging
2834 	 * to interfaces in the blocking state if the packet came in on
2835 	 * an interface in the blocking state.
2836 	 */
2837 	bridge_forward(sc, m);
2838 	m = NULL;
2839 
2840 	/*
2841 	 * ether_reinput_oncpu() will reprocess rcvif as
2842 	 * coming from new_ifp (since we do not specify
2843 	 * REINPUT_KEEPRCVIF).
2844 	 */
2845 out:
2846 	if (new_ifp != NULL) {
2847 		/*
2848 		 * Clear the bridge flag for local processing in
2849 		 * case the packet gets routed.
2850 		 */
2851 		ether_reinput_oncpu(new_ifp, m, REINPUT_RUNBPF);
2852 		m = NULL;
2853 	}
2854 	return (m);
2855 }
2856 
2857 /*
2858  * bridge_start_bcast:
2859  *
2860  *	Broadcast the packet sent from bridge to all member
2861  *	interfaces.
2862  *	This is a simplified version of bridge_broadcast(), however,
2863  *	this function expects caller to hold bridge's serializer.
2864  */
2865 static void
2866 bridge_start_bcast(struct bridge_softc *sc, struct mbuf *m)
2867 {
2868 	struct bridge_iflist *bif;
2869 	struct mbuf *mc;
2870 	struct ifnet *dst_if, *alt_if, *bifp;
2871 	int used = 0;
2872 	int found = 0;
2873 	int alt_priority;
2874 
2875 	mbuftrackid(m, 68);
2876 	bifp = sc->sc_ifp;
2877 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
2878 
2879 	/*
2880 	 * Following loop is MPSAFE; nothing is blocking
2881 	 * in the loop body.
2882 	 *
2883 	 * NOTE: We transmit through an member in the BLOCKING state only
2884 	 *	 as a last resort.
2885 	 */
2886 	alt_if = NULL;
2887 	alt_priority = 0;
2888 
2889 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2890 		dst_if = bif->bif_ifp;
2891 
2892 		if (bif->bif_flags & IFBIF_STP) {
2893 			switch (bif->bif_state) {
2894 			case BSTP_IFSTATE_BLOCKING:
2895 				if (bif->bif_priority > alt_priority) {
2896 					alt_priority = bif->bif_priority;
2897 					alt_if = bif->bif_ifp;
2898 				}
2899 				/* fall through */
2900 			case BSTP_IFSTATE_L1BLOCKING:
2901 			case BSTP_IFSTATE_DISABLED:
2902 				continue;
2903 			default:
2904 				/* listening, learning, bonded, forwarding */
2905 				break;
2906 			}
2907 		}
2908 
2909 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
2910 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
2911 			continue;
2912 
2913 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2914 			continue;
2915 
2916 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
2917 			mc = m;
2918 			used = 1;
2919 		} else {
2920 			mc = m_copypacket(m, MB_DONTWAIT);
2921 			if (mc == NULL) {
2922 				IFNET_STAT_INC(bifp, oerrors, 1);
2923 				continue;
2924 			}
2925 		}
2926 		found = 1;
2927 		bridge_enqueue(dst_if, mc);
2928 	}
2929 
2930 	if (found == 0 && alt_if) {
2931 		KKASSERT(used == 0);
2932 		mc = m;
2933 		used = 1;
2934 		bridge_enqueue(alt_if, mc);
2935 	}
2936 
2937 	if (used == 0)
2938 		m_freem(m);
2939 }
2940 
2941 /*
2942  * bridge_broadcast:
2943  *
2944  *	Send a frame to all interfaces that are members of
2945  *	the bridge, except for the one on which the packet
2946  *	arrived.
2947  */
2948 static void
2949 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if,
2950 		 struct mbuf *m)
2951 {
2952 	struct bridge_iflist *bif, *nbif;
2953 	struct ether_header *eh;
2954 	struct mbuf *mc;
2955 	struct ifnet *dst_if, *alt_if, *bifp;
2956 	int used;
2957 	int found;
2958 	int alt_priority;
2959 	int from_us;
2960 
2961 	mbuftrackid(m, 69);
2962 	bifp = sc->sc_ifp;
2963 	ASSERT_IFNET_NOT_SERIALIZED_ALL(bifp);
2964 
2965 	eh = mtod(m, struct ether_header *);
2966 	from_us = bridge_from_us(sc, eh);
2967 
2968 	if (inet_pfil_hook.ph_hashooks > 0
2969 #ifdef INET6
2970 	    || inet6_pfil_hook.ph_hashooks > 0
2971 #endif
2972 	    ) {
2973 		if (bridge_pfil(&m, bifp, src_if, PFIL_IN) != 0)
2974 			return;
2975 		if (m == NULL)
2976 			return;
2977 
2978 		/* Filter on the bridge interface before broadcasting */
2979 		if (bridge_pfil(&m, bifp, NULL, PFIL_OUT) != 0)
2980 			return;
2981 		if (m == NULL)
2982 			return;
2983 	}
2984 
2985 	alt_if = NULL;
2986 	alt_priority = 0;
2987 	found = 0;
2988 	used = 0;
2989 
2990 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
2991 		dst_if = bif->bif_ifp;
2992 
2993 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2994 			continue;
2995 
2996 		/*
2997 		 * Don't bounce the packet out the same interface it came
2998 		 * in on.  We have to test MAC addresses because a packet
2999 		 * can come in a bonded interface and we don't want it to
3000 		 * be echod out the forwarding interface for the same bonding
3001 		 * set.
3002 		 */
3003 		if (src_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
3004 				     ETHER_ADDR_LEN) == 0) {
3005 			continue;
3006 		}
3007 
3008 		/*
3009 		 * Generally speaking we only broadcast through forwarding
3010 		 * interfaces.  If no interfaces are available we select
3011 		 * a BONDED, BLOCKING, or LEARNING interface to forward
3012 		 * through.
3013 		 */
3014 		if (bif->bif_flags & IFBIF_STP) {
3015 			switch (bif->bif_state) {
3016 			case BSTP_IFSTATE_BONDED:
3017 				if (bif->bif_priority + 512 > alt_priority) {
3018 					alt_priority = bif->bif_priority + 512;
3019 					alt_if = bif->bif_ifp;
3020 				}
3021 				continue;
3022 			case BSTP_IFSTATE_BLOCKING:
3023 				if (bif->bif_priority + 256 > alt_priority) {
3024 					alt_priority = bif->bif_priority + 256;
3025 					alt_if = bif->bif_ifp;
3026 				}
3027 				continue;
3028 			case BSTP_IFSTATE_LEARNING:
3029 				if (bif->bif_priority > alt_priority) {
3030 					alt_priority = bif->bif_priority;
3031 					alt_if = bif->bif_ifp;
3032 				}
3033 				continue;
3034 			case BSTP_IFSTATE_L1BLOCKING:
3035 			case BSTP_IFSTATE_DISABLED:
3036 			case BSTP_IFSTATE_LISTENING:
3037 				continue;
3038 			default:
3039 				/* forwarding */
3040 				break;
3041 			}
3042 		}
3043 
3044 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3045 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0) {
3046 			continue;
3047 		}
3048 
3049 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3050 			mc = m;
3051 			used = 1;
3052 		} else {
3053 			mc = m_copypacket(m, MB_DONTWAIT);
3054 			if (mc == NULL) {
3055 				IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3056 				continue;
3057 			}
3058 		}
3059 		found = 1;
3060 
3061 		/*
3062 		 * Filter on the output interface.  Pass a NULL bridge
3063 		 * interface pointer so we do not redundantly filter on
3064 		 * the bridge for each interface we broadcast on.
3065 		 */
3066 		if (inet_pfil_hook.ph_hashooks > 0
3067 #ifdef INET6
3068 		    || inet6_pfil_hook.ph_hashooks > 0
3069 #endif
3070 		    ) {
3071 			if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0)
3072 				continue;
3073 			if (mc == NULL)
3074 				continue;
3075 		}
3076 		bridge_handoff(sc, dst_if, mc, from_us);
3077 
3078 		if (nbif != NULL && !nbif->bif_onlist) {
3079 			KKASSERT(bif->bif_onlist);
3080 			nbif = TAILQ_NEXT(bif, bif_next);
3081 		}
3082 	}
3083 
3084 	if (found == 0 && alt_if) {
3085 		KKASSERT(used == 0);
3086 		mc = m;
3087 		used = 1;
3088 		bridge_enqueue(alt_if, mc);
3089 	}
3090 
3091 	if (used == 0)
3092 		m_freem(m);
3093 }
3094 
3095 /*
3096  * bridge_span:
3097  *
3098  *	Duplicate a packet out one or more interfaces that are in span mode,
3099  *	the original mbuf is unmodified.
3100  */
3101 static void
3102 bridge_span(struct bridge_softc *sc, struct mbuf *m)
3103 {
3104 	struct bridge_iflist *bif;
3105 	struct ifnet *dst_if, *bifp;
3106 	struct mbuf *mc;
3107 
3108 	mbuftrackid(m, 70);
3109 	bifp = sc->sc_ifp;
3110 	ifnet_serialize_all(bifp);
3111 
3112 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
3113 		dst_if = bif->bif_ifp;
3114 
3115 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3116 			continue;
3117 
3118 		mc = m_copypacket(m, MB_DONTWAIT);
3119 		if (mc == NULL) {
3120 			IFNET_STAT_INC(sc->sc_ifp, oerrors, 1);
3121 			continue;
3122 		}
3123 		bridge_enqueue(dst_if, mc);
3124 	}
3125 
3126 	ifnet_deserialize_all(bifp);
3127 }
3128 
3129 static void
3130 bridge_rtmsg_sync_handler(netmsg_t msg)
3131 {
3132 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3133 }
3134 
3135 static void
3136 bridge_rtmsg_sync(struct bridge_softc *sc)
3137 {
3138 	struct netmsg_base msg;
3139 
3140 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3141 
3142 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3143 		    0, bridge_rtmsg_sync_handler);
3144 	ifnet_domsg(&msg.lmsg, 0);
3145 }
3146 
3147 static __inline void
3148 bridge_rtinfo_update(struct bridge_rtinfo *bri, struct ifnet *dst_if,
3149 		     int setflags, uint8_t flags, uint32_t timeo)
3150 {
3151 	if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3152 	    bri->bri_ifp != dst_if)
3153 		bri->bri_ifp = dst_if;
3154 	if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3155 	    bri->bri_expire != time_second + timeo)
3156 		bri->bri_expire = time_second + timeo;
3157 	if (setflags)
3158 		bri->bri_flags = flags;
3159 }
3160 
3161 static int
3162 bridge_rtinstall_oncpu(struct bridge_softc *sc, const uint8_t *dst,
3163 		       struct ifnet *dst_if, int setflags, uint8_t flags,
3164 		       struct bridge_rtinfo **bri0)
3165 {
3166 	struct bridge_rtnode *brt;
3167 	struct bridge_rtinfo *bri;
3168 
3169 	if (mycpuid == 0) {
3170 		brt = bridge_rtnode_lookup(sc, dst);
3171 		if (brt != NULL) {
3172 			/*
3173 			 * rtnode for 'dst' already exists.  We inform the
3174 			 * caller about this by leaving bri0 as NULL.  The
3175 			 * caller will terminate the intallation upon getting
3176 			 * NULL bri0.  However, we still need to update the
3177 			 * rtinfo.
3178 			 */
3179 			KKASSERT(*bri0 == NULL);
3180 
3181 			/* Update rtinfo */
3182 			bridge_rtinfo_update(brt->brt_info, dst_if, setflags,
3183 					     flags, sc->sc_brttimeout);
3184 			return 0;
3185 		}
3186 
3187 		/*
3188 		 * We only need to check brtcnt on CPU0, since if limit
3189 		 * is to be exceeded, ENOSPC is returned.  Caller knows
3190 		 * this and will terminate the installation.
3191 		 */
3192 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3193 			return ENOSPC;
3194 
3195 		KKASSERT(*bri0 == NULL);
3196 		bri = kmalloc(sizeof(struct bridge_rtinfo), M_DEVBUF,
3197 				  M_WAITOK | M_ZERO);
3198 		*bri0 = bri;
3199 
3200 		/* Setup rtinfo */
3201 		bri->bri_flags = IFBAF_DYNAMIC;
3202 		bridge_rtinfo_update(bri, dst_if, setflags, flags,
3203 				     sc->sc_brttimeout);
3204 	} else {
3205 		bri = *bri0;
3206 		KKASSERT(bri != NULL);
3207 	}
3208 
3209 	brt = kmalloc(sizeof(struct bridge_rtnode), M_DEVBUF,
3210 		      M_WAITOK | M_ZERO);
3211 	memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
3212 	brt->brt_info = bri;
3213 
3214 	bridge_rtnode_insert(sc, brt);
3215 	return 0;
3216 }
3217 
3218 static void
3219 bridge_rtinstall_handler(netmsg_t msg)
3220 {
3221 	struct netmsg_brsaddr *brmsg = (struct netmsg_brsaddr *)msg;
3222 	int error;
3223 
3224 	error = bridge_rtinstall_oncpu(brmsg->br_softc,
3225 				       brmsg->br_dst, brmsg->br_dst_if,
3226 				       brmsg->br_setflags, brmsg->br_flags,
3227 				       &brmsg->br_rtinfo);
3228 	if (error) {
3229 		KKASSERT(mycpuid == 0 && brmsg->br_rtinfo == NULL);
3230 		lwkt_replymsg(&brmsg->base.lmsg, error);
3231 		return;
3232 	} else if (brmsg->br_rtinfo == NULL) {
3233 		/* rtnode already exists for 'dst' */
3234 		KKASSERT(mycpuid == 0);
3235 		lwkt_replymsg(&brmsg->base.lmsg, 0);
3236 		return;
3237 	}
3238 	ifnet_forwardmsg(&brmsg->base.lmsg, mycpuid + 1);
3239 }
3240 
3241 /*
3242  * bridge_rtupdate:
3243  *
3244  *	Add/Update a bridge routing entry.
3245  */
3246 static int
3247 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst,
3248 		struct ifnet *dst_if, uint8_t flags)
3249 {
3250 	struct bridge_rtnode *brt;
3251 
3252 	/*
3253 	 * A route for this destination might already exist.  If so,
3254 	 * update it, otherwise create a new one.
3255 	 */
3256 	if ((brt = bridge_rtnode_lookup(sc, dst)) == NULL) {
3257 		struct netmsg_brsaddr *brmsg;
3258 
3259 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3260 			return ENOSPC;
3261 
3262 		brmsg = kmalloc(sizeof(*brmsg), M_LWKTMSG, M_WAITOK | M_NULLOK);
3263 		if (brmsg == NULL)
3264 			return ENOMEM;
3265 
3266 		netmsg_init(&brmsg->base, NULL, &netisr_afree_rport,
3267 			    0, bridge_rtinstall_handler);
3268 		memcpy(brmsg->br_dst, dst, ETHER_ADDR_LEN);
3269 		brmsg->br_dst_if = dst_if;
3270 		brmsg->br_flags = flags;
3271 		brmsg->br_setflags = 0;
3272 		brmsg->br_softc = sc;
3273 		brmsg->br_rtinfo = NULL;
3274 
3275 		ifnet_sendmsg(&brmsg->base.lmsg, 0);
3276 		return 0;
3277 	}
3278 	bridge_rtinfo_update(brt->brt_info, dst_if, 0, flags,
3279 			     sc->sc_brttimeout);
3280 	return 0;
3281 }
3282 
3283 static int
3284 bridge_rtsaddr(struct bridge_softc *sc, const uint8_t *dst,
3285 	       struct ifnet *dst_if, uint8_t flags)
3286 {
3287 	struct netmsg_brsaddr brmsg;
3288 
3289 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3290 
3291 	netmsg_init(&brmsg.base, NULL, &curthread->td_msgport,
3292 		    0, bridge_rtinstall_handler);
3293 	memcpy(brmsg.br_dst, dst, ETHER_ADDR_LEN);
3294 	brmsg.br_dst_if = dst_if;
3295 	brmsg.br_flags = flags;
3296 	brmsg.br_setflags = 1;
3297 	brmsg.br_softc = sc;
3298 	brmsg.br_rtinfo = NULL;
3299 
3300 	return ifnet_domsg(&brmsg.base.lmsg, 0);
3301 }
3302 
3303 /*
3304  * bridge_rtlookup:
3305  *
3306  *	Lookup the destination interface for an address.
3307  */
3308 static struct ifnet *
3309 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr)
3310 {
3311 	struct bridge_rtnode *brt;
3312 
3313 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3314 		return NULL;
3315 	return brt->brt_info->bri_ifp;
3316 }
3317 
3318 static void
3319 bridge_rtreap_handler(netmsg_t msg)
3320 {
3321 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3322 	struct bridge_rtnode *brt, *nbrt;
3323 
3324 	LIST_FOREACH_MUTABLE(brt, &sc->sc_rtlists[mycpuid], brt_list, nbrt) {
3325 		if (brt->brt_info->bri_dead)
3326 			bridge_rtnode_destroy(sc, brt);
3327 	}
3328 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3329 }
3330 
3331 static void
3332 bridge_rtreap(struct bridge_softc *sc)
3333 {
3334 	struct netmsg_base msg;
3335 
3336 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3337 
3338 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3339 		    0, bridge_rtreap_handler);
3340 	msg.lmsg.u.ms_resultp = sc;
3341 
3342 	ifnet_domsg(&msg.lmsg, 0);
3343 }
3344 
3345 static void
3346 bridge_rtreap_async(struct bridge_softc *sc)
3347 {
3348 	struct netmsg_base *msg;
3349 
3350 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK);
3351 
3352 	netmsg_init(msg, NULL, &netisr_afree_rport,
3353 		    0, bridge_rtreap_handler);
3354 	msg->lmsg.u.ms_resultp = sc;
3355 
3356 	ifnet_sendmsg(&msg->lmsg, 0);
3357 }
3358 
3359 /*
3360  * bridge_rttrim:
3361  *
3362  *	Trim the routine table so that we have a number
3363  *	of routing entries less than or equal to the
3364  *	maximum number.
3365  */
3366 static void
3367 bridge_rttrim(struct bridge_softc *sc)
3368 {
3369 	struct bridge_rtnode *brt;
3370 	int dead;
3371 
3372 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3373 
3374 	/* Make sure we actually need to do this. */
3375 	if (sc->sc_brtcnt <= sc->sc_brtmax)
3376 		return;
3377 
3378 	/*
3379 	 * Find out how many rtnodes are dead
3380 	 */
3381 	dead = bridge_rtage_finddead(sc);
3382 	KKASSERT(dead <= sc->sc_brtcnt);
3383 
3384 	if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3385 		/* Enough dead rtnodes are found */
3386 		bridge_rtreap(sc);
3387 		return;
3388 	}
3389 
3390 	/*
3391 	 * Kill some dynamic rtnodes to meet the brtmax
3392 	 */
3393 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3394 		struct bridge_rtinfo *bri = brt->brt_info;
3395 
3396 		if (bri->bri_dead) {
3397 			/*
3398 			 * We have counted this rtnode in
3399 			 * bridge_rtage_finddead()
3400 			 */
3401 			continue;
3402 		}
3403 
3404 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3405 			bri->bri_dead = 1;
3406 			++dead;
3407 			KKASSERT(dead <= sc->sc_brtcnt);
3408 
3409 			if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3410 				/* Enough rtnodes are collected */
3411 				break;
3412 			}
3413 		}
3414 	}
3415 	if (dead)
3416 		bridge_rtreap(sc);
3417 }
3418 
3419 /*
3420  * bridge_timer:
3421  *
3422  *	Aging timer for the bridge.
3423  */
3424 static void
3425 bridge_timer(void *arg)
3426 {
3427 	struct bridge_softc *sc = arg;
3428 	struct netmsg_base *msg;
3429 
3430 	KKASSERT(mycpuid == BRIDGE_CFGCPU);
3431 
3432 	crit_enter();
3433 
3434 	if (callout_pending(&sc->sc_brcallout) ||
3435 	    !callout_active(&sc->sc_brcallout)) {
3436 		crit_exit();
3437 		return;
3438 	}
3439 	callout_deactivate(&sc->sc_brcallout);
3440 
3441 	msg = &sc->sc_brtimemsg;
3442 	KKASSERT(msg->lmsg.ms_flags & MSGF_DONE);
3443 	lwkt_sendmsg(BRIDGE_CFGPORT, &msg->lmsg);
3444 
3445 	crit_exit();
3446 }
3447 
3448 static void
3449 bridge_timer_handler(netmsg_t msg)
3450 {
3451 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3452 
3453 	KKASSERT(&curthread->td_msgport == BRIDGE_CFGPORT);
3454 
3455 	crit_enter();
3456 	/* Reply ASAP */
3457 	lwkt_replymsg(&msg->lmsg, 0);
3458 	crit_exit();
3459 
3460 	bridge_rtage(sc);
3461 	if (sc->sc_ifp->if_flags & IFF_RUNNING) {
3462 		callout_reset(&sc->sc_brcallout,
3463 		    bridge_rtable_prune_period * hz, bridge_timer, sc);
3464 	}
3465 }
3466 
3467 static int
3468 bridge_rtage_finddead(struct bridge_softc *sc)
3469 {
3470 	struct bridge_rtnode *brt;
3471 	int dead = 0;
3472 
3473 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3474 		struct bridge_rtinfo *bri = brt->brt_info;
3475 
3476 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3477 		    time_second >= bri->bri_expire) {
3478 			bri->bri_dead = 1;
3479 			++dead;
3480 			KKASSERT(dead <= sc->sc_brtcnt);
3481 		}
3482 	}
3483 	return dead;
3484 }
3485 
3486 /*
3487  * bridge_rtage:
3488  *
3489  *	Perform an aging cycle.
3490  */
3491 static void
3492 bridge_rtage(struct bridge_softc *sc)
3493 {
3494 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3495 
3496 	if (bridge_rtage_finddead(sc))
3497 		bridge_rtreap(sc);
3498 }
3499 
3500 /*
3501  * bridge_rtflush:
3502  *
3503  *	Remove all dynamic addresses from the bridge.
3504  */
3505 static void
3506 bridge_rtflush(struct bridge_softc *sc, int bf)
3507 {
3508 	struct bridge_rtnode *brt;
3509 	int reap;
3510 
3511 	reap = 0;
3512 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3513 		struct bridge_rtinfo *bri = brt->brt_info;
3514 
3515 		if ((bf & IFBF_FLUSHALL) ||
3516 		    (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3517 			bri->bri_dead = 1;
3518 			reap = 1;
3519 		}
3520 	}
3521 	if (reap) {
3522 		if (bf & IFBF_FLUSHSYNC)
3523 			bridge_rtreap(sc);
3524 		else
3525 			bridge_rtreap_async(sc);
3526 	}
3527 }
3528 
3529 /*
3530  * bridge_rtdaddr:
3531  *
3532  *	Remove an address from the table.
3533  */
3534 static int
3535 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr)
3536 {
3537 	struct bridge_rtnode *brt;
3538 
3539 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3540 
3541 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3542 		return (ENOENT);
3543 
3544 	/* TODO: add a cheaper delete operation */
3545 	brt->brt_info->bri_dead = 1;
3546 	bridge_rtreap(sc);
3547 	return (0);
3548 }
3549 
3550 /*
3551  * bridge_rtdelete:
3552  *
3553  *	Delete routes to a speicifc member interface.
3554  */
3555 void
3556 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int bf)
3557 {
3558 	struct bridge_rtnode *brt;
3559 	int reap;
3560 
3561 	reap = 0;
3562 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3563 		struct bridge_rtinfo *bri = brt->brt_info;
3564 
3565 		if (bri->bri_ifp == ifp &&
3566 		    ((bf & IFBF_FLUSHALL) ||
3567 		     (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
3568 			bri->bri_dead = 1;
3569 			reap = 1;
3570 		}
3571 	}
3572 	if (reap) {
3573 		if (bf & IFBF_FLUSHSYNC)
3574 			bridge_rtreap(sc);
3575 		else
3576 			bridge_rtreap_async(sc);
3577 	}
3578 }
3579 
3580 /*
3581  * bridge_rtable_init:
3582  *
3583  *	Initialize the route table for this bridge.
3584  */
3585 static void
3586 bridge_rtable_init(struct bridge_softc *sc)
3587 {
3588 	int cpu;
3589 
3590 	/*
3591 	 * Initialize per-cpu hash tables
3592 	 */
3593 	sc->sc_rthashs = kmalloc(sizeof(*sc->sc_rthashs) * ncpus,
3594 				 M_DEVBUF, M_WAITOK);
3595 	for (cpu = 0; cpu < ncpus; ++cpu) {
3596 		int i;
3597 
3598 		sc->sc_rthashs[cpu] =
3599 		kmalloc(sizeof(struct bridge_rtnode_head) * BRIDGE_RTHASH_SIZE,
3600 			M_DEVBUF, M_WAITOK);
3601 
3602 		for (i = 0; i < BRIDGE_RTHASH_SIZE; i++)
3603 			LIST_INIT(&sc->sc_rthashs[cpu][i]);
3604 	}
3605 	sc->sc_rthash_key = karc4random();
3606 
3607 	/*
3608 	 * Initialize per-cpu lists
3609 	 */
3610 	sc->sc_rtlists = kmalloc(sizeof(struct bridge_rtnode_head) * ncpus,
3611 				 M_DEVBUF, M_WAITOK);
3612 	for (cpu = 0; cpu < ncpus; ++cpu)
3613 		LIST_INIT(&sc->sc_rtlists[cpu]);
3614 }
3615 
3616 /*
3617  * bridge_rtable_fini:
3618  *
3619  *	Deconstruct the route table for this bridge.
3620  */
3621 static void
3622 bridge_rtable_fini(struct bridge_softc *sc)
3623 {
3624 	int cpu;
3625 
3626 	/*
3627 	 * Free per-cpu hash tables
3628 	 */
3629 	for (cpu = 0; cpu < ncpus; ++cpu)
3630 		kfree(sc->sc_rthashs[cpu], M_DEVBUF);
3631 	kfree(sc->sc_rthashs, M_DEVBUF);
3632 
3633 	/*
3634 	 * Free per-cpu lists
3635 	 */
3636 	kfree(sc->sc_rtlists, M_DEVBUF);
3637 }
3638 
3639 /*
3640  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
3641  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
3642  */
3643 #define	mix(a, b, c)							\
3644 do {									\
3645 	a -= b; a -= c; a ^= (c >> 13);					\
3646 	b -= c; b -= a; b ^= (a << 8);					\
3647 	c -= a; c -= b; c ^= (b >> 13);					\
3648 	a -= b; a -= c; a ^= (c >> 12);					\
3649 	b -= c; b -= a; b ^= (a << 16);					\
3650 	c -= a; c -= b; c ^= (b >> 5);					\
3651 	a -= b; a -= c; a ^= (c >> 3);					\
3652 	b -= c; b -= a; b ^= (a << 10);					\
3653 	c -= a; c -= b; c ^= (b >> 15);					\
3654 } while (/*CONSTCOND*/0)
3655 
3656 static __inline uint32_t
3657 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
3658 {
3659 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
3660 
3661 	b += addr[5] << 8;
3662 	b += addr[4];
3663 	a += addr[3] << 24;
3664 	a += addr[2] << 16;
3665 	a += addr[1] << 8;
3666 	a += addr[0];
3667 
3668 	mix(a, b, c);
3669 
3670 	return (c & BRIDGE_RTHASH_MASK);
3671 }
3672 
3673 #undef mix
3674 
3675 static int
3676 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
3677 {
3678 	int i, d;
3679 
3680 	for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
3681 		d = ((int)a[i]) - ((int)b[i]);
3682 	}
3683 
3684 	return (d);
3685 }
3686 
3687 /*
3688  * bridge_rtnode_lookup:
3689  *
3690  *	Look up a bridge route node for the specified destination.
3691  */
3692 static struct bridge_rtnode *
3693 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr)
3694 {
3695 	struct bridge_rtnode *brt;
3696 	uint32_t hash;
3697 	int dir;
3698 
3699 	hash = bridge_rthash(sc, addr);
3700 	LIST_FOREACH(brt, &sc->sc_rthashs[mycpuid][hash], brt_hash) {
3701 		dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
3702 		if (dir == 0)
3703 			return (brt);
3704 		if (dir > 0)
3705 			return (NULL);
3706 	}
3707 
3708 	return (NULL);
3709 }
3710 
3711 /*
3712  * bridge_rtnode_insert:
3713  *
3714  *	Insert the specified bridge node into the route table.
3715  *	Caller has to make sure that rtnode does not exist.
3716  */
3717 static void
3718 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
3719 {
3720 	struct bridge_rtnode *lbrt;
3721 	uint32_t hash;
3722 	int dir;
3723 
3724 	hash = bridge_rthash(sc, brt->brt_addr);
3725 
3726 	lbrt = LIST_FIRST(&sc->sc_rthashs[mycpuid][hash]);
3727 	if (lbrt == NULL) {
3728 		LIST_INSERT_HEAD(&sc->sc_rthashs[mycpuid][hash],
3729 				  brt, brt_hash);
3730 		goto out;
3731 	}
3732 
3733 	do {
3734 		dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
3735 		KASSERT(dir != 0, ("rtnode already exist"));
3736 
3737 		if (dir > 0) {
3738 			LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
3739 			goto out;
3740 		}
3741 		if (LIST_NEXT(lbrt, brt_hash) == NULL) {
3742 			LIST_INSERT_AFTER(lbrt, brt, brt_hash);
3743 			goto out;
3744 		}
3745 		lbrt = LIST_NEXT(lbrt, brt_hash);
3746 	} while (lbrt != NULL);
3747 
3748 	panic("no suitable position found for rtnode");
3749 out:
3750 	LIST_INSERT_HEAD(&sc->sc_rtlists[mycpuid], brt, brt_list);
3751 	if (mycpuid == 0) {
3752 		/*
3753 		 * Update the brtcnt.
3754 		 * We only need to do it once and we do it on CPU0.
3755 		 */
3756 		sc->sc_brtcnt++;
3757 	}
3758 }
3759 
3760 /*
3761  * bridge_rtnode_destroy:
3762  *
3763  *	Destroy a bridge rtnode.
3764  */
3765 static void
3766 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
3767 {
3768 	LIST_REMOVE(brt, brt_hash);
3769 	LIST_REMOVE(brt, brt_list);
3770 
3771 	if (mycpuid + 1 == ncpus) {
3772 		/* Free rtinfo associated with rtnode on the last cpu */
3773 		kfree(brt->brt_info, M_DEVBUF);
3774 	}
3775 	kfree(brt, M_DEVBUF);
3776 
3777 	if (mycpuid == 0) {
3778 		/* Update brtcnt only on CPU0 */
3779 		sc->sc_brtcnt--;
3780 	}
3781 }
3782 
3783 static __inline int
3784 bridge_post_pfil(struct mbuf *m)
3785 {
3786 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED)
3787 		return EOPNOTSUPP;
3788 
3789 	/* Not yet */
3790 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED)
3791 		return EOPNOTSUPP;
3792 
3793 	return 0;
3794 }
3795 
3796 /*
3797  * Send bridge packets through pfil if they are one of the types pfil can deal
3798  * with, or if they are ARP or REVARP.  (pfil will pass ARP and REVARP without
3799  * question.) If *bifp or *ifp are NULL then packet filtering is skipped for
3800  * that interface.
3801  */
3802 static int
3803 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir)
3804 {
3805 	int snap, error, i, hlen;
3806 	struct ether_header *eh1, eh2;
3807 	struct ip *ip;
3808 	struct llc llc1;
3809 	u_int16_t ether_type;
3810 
3811 	snap = 0;
3812 	error = -1;	/* Default error if not error == 0 */
3813 
3814 	if (pfil_bridge == 0 && pfil_member == 0)
3815 		return (0); /* filtering is disabled */
3816 
3817 	i = min((*mp)->m_pkthdr.len, max_protohdr);
3818 	if ((*mp)->m_len < i) {
3819 		*mp = m_pullup(*mp, i);
3820 		if (*mp == NULL) {
3821 			kprintf("%s: m_pullup failed\n", __func__);
3822 			return (-1);
3823 		}
3824 	}
3825 
3826 	eh1 = mtod(*mp, struct ether_header *);
3827 	ether_type = ntohs(eh1->ether_type);
3828 
3829 	/*
3830 	 * Check for SNAP/LLC.
3831 	 */
3832 	if (ether_type < ETHERMTU) {
3833 		struct llc *llc2 = (struct llc *)(eh1 + 1);
3834 
3835 		if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
3836 		    llc2->llc_dsap == LLC_SNAP_LSAP &&
3837 		    llc2->llc_ssap == LLC_SNAP_LSAP &&
3838 		    llc2->llc_control == LLC_UI) {
3839 			ether_type = htons(llc2->llc_un.type_snap.ether_type);
3840 			snap = 1;
3841 		}
3842 	}
3843 
3844 	/*
3845 	 * If we're trying to filter bridge traffic, don't look at anything
3846 	 * other than IP and ARP traffic.  If the filter doesn't understand
3847 	 * IPv6, don't allow IPv6 through the bridge either.  This is lame
3848 	 * since if we really wanted, say, an AppleTalk filter, we are hosed,
3849 	 * but of course we don't have an AppleTalk filter to begin with.
3850 	 * (Note that since pfil doesn't understand ARP it will pass *ALL*
3851 	 * ARP traffic.)
3852 	 */
3853 	switch (ether_type) {
3854 	case ETHERTYPE_ARP:
3855 	case ETHERTYPE_REVARP:
3856 		return (0); /* Automatically pass */
3857 
3858 	case ETHERTYPE_IP:
3859 #ifdef INET6
3860 	case ETHERTYPE_IPV6:
3861 #endif /* INET6 */
3862 		break;
3863 
3864 	default:
3865 		/*
3866 		 * Check to see if the user wants to pass non-ip
3867 		 * packets, these will not be checked by pfil(9)
3868 		 * and passed unconditionally so the default is to drop.
3869 		 */
3870 		if (pfil_onlyip)
3871 			goto bad;
3872 	}
3873 
3874 	/* Strip off the Ethernet header and keep a copy. */
3875 	m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2);
3876 	m_adj(*mp, ETHER_HDR_LEN);
3877 
3878 	/* Strip off snap header, if present */
3879 	if (snap) {
3880 		m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1);
3881 		m_adj(*mp, sizeof(struct llc));
3882 	}
3883 
3884 	/*
3885 	 * Check the IP header for alignment and errors
3886 	 */
3887 	if (dir == PFIL_IN) {
3888 		switch (ether_type) {
3889 		case ETHERTYPE_IP:
3890 			error = bridge_ip_checkbasic(mp);
3891 			break;
3892 #ifdef INET6
3893 		case ETHERTYPE_IPV6:
3894 			error = bridge_ip6_checkbasic(mp);
3895 			break;
3896 #endif /* INET6 */
3897 		default:
3898 			error = 0;
3899 		}
3900 		if (error)
3901 			goto bad;
3902 	}
3903 
3904 	error = 0;
3905 
3906 	/*
3907 	 * Run the packet through pfil
3908 	 */
3909 	switch (ether_type) {
3910 	case ETHERTYPE_IP:
3911 		/*
3912 		 * before calling the firewall, swap fields the same as
3913 		 * IP does. here we assume the header is contiguous
3914 		 */
3915 		ip = mtod(*mp, struct ip *);
3916 
3917 		ip->ip_len = ntohs(ip->ip_len);
3918 		ip->ip_off = ntohs(ip->ip_off);
3919 
3920 		/*
3921 		 * Run pfil on the member interface and the bridge, both can
3922 		 * be skipped by clearing pfil_member or pfil_bridge.
3923 		 *
3924 		 * Keep the order:
3925 		 *   in_if -> bridge_if -> out_if
3926 		 */
3927 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) {
3928 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3929 			if (*mp == NULL || error != 0) /* filter may consume */
3930 				break;
3931 			error = bridge_post_pfil(*mp);
3932 			if (error)
3933 				break;
3934 		}
3935 
3936 		if (pfil_member && ifp != NULL) {
3937 			error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir);
3938 			if (*mp == NULL || error != 0) /* filter may consume */
3939 				break;
3940 			error = bridge_post_pfil(*mp);
3941 			if (error)
3942 				break;
3943 		}
3944 
3945 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL) {
3946 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3947 			if (*mp == NULL || error != 0) /* filter may consume */
3948 				break;
3949 			error = bridge_post_pfil(*mp);
3950 			if (error)
3951 				break;
3952 		}
3953 
3954 		/* check if we need to fragment the packet */
3955 		if (pfil_member && ifp != NULL && dir == PFIL_OUT) {
3956 			i = (*mp)->m_pkthdr.len;
3957 			if (i > ifp->if_mtu) {
3958 				error = bridge_fragment(ifp, *mp, &eh2, snap,
3959 					    &llc1);
3960 				return (error);
3961 			}
3962 		}
3963 
3964 		/* Recalculate the ip checksum and restore byte ordering */
3965 		ip = mtod(*mp, struct ip *);
3966 		hlen = ip->ip_hl << 2;
3967 		if (hlen < sizeof(struct ip))
3968 			goto bad;
3969 		if (hlen > (*mp)->m_len) {
3970 			if ((*mp = m_pullup(*mp, hlen)) == NULL)
3971 				goto bad;
3972 			ip = mtod(*mp, struct ip *);
3973 			if (ip == NULL)
3974 				goto bad;
3975 		}
3976 		ip->ip_len = htons(ip->ip_len);
3977 		ip->ip_off = htons(ip->ip_off);
3978 		ip->ip_sum = 0;
3979 		if (hlen == sizeof(struct ip))
3980 			ip->ip_sum = in_cksum_hdr(ip);
3981 		else
3982 			ip->ip_sum = in_cksum(*mp, hlen);
3983 
3984 		break;
3985 #ifdef INET6
3986 	case ETHERTYPE_IPV6:
3987 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL)
3988 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
3989 					dir);
3990 
3991 		if (*mp == NULL || error != 0) /* filter may consume */
3992 			break;
3993 
3994 		if (pfil_member && ifp != NULL)
3995 			error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp,
3996 					dir);
3997 
3998 		if (*mp == NULL || error != 0) /* filter may consume */
3999 			break;
4000 
4001 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL)
4002 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4003 					dir);
4004 		break;
4005 #endif
4006 	default:
4007 		error = 0;
4008 		break;
4009 	}
4010 
4011 	if (*mp == NULL)
4012 		return (error);
4013 	if (error != 0)
4014 		goto bad;
4015 
4016 	error = -1;
4017 
4018 	/*
4019 	 * Finally, put everything back the way it was and return
4020 	 */
4021 	if (snap) {
4022 		M_PREPEND(*mp, sizeof(struct llc), MB_DONTWAIT);
4023 		if (*mp == NULL)
4024 			return (error);
4025 		bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
4026 	}
4027 
4028 	M_PREPEND(*mp, ETHER_HDR_LEN, MB_DONTWAIT);
4029 	if (*mp == NULL)
4030 		return (error);
4031 	bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
4032 
4033 	return (0);
4034 
4035 bad:
4036 	m_freem(*mp);
4037 	*mp = NULL;
4038 	return (error);
4039 }
4040 
4041 /*
4042  * Perform basic checks on header size since
4043  * pfil assumes ip_input has already processed
4044  * it for it.  Cut-and-pasted from ip_input.c.
4045  * Given how simple the IPv6 version is,
4046  * does the IPv4 version really need to be
4047  * this complicated?
4048  *
4049  * XXX Should we update ipstat here, or not?
4050  * XXX Right now we update ipstat but not
4051  * XXX csum_counter.
4052  */
4053 static int
4054 bridge_ip_checkbasic(struct mbuf **mp)
4055 {
4056 	struct mbuf *m = *mp;
4057 	struct ip *ip;
4058 	int len, hlen;
4059 	u_short sum;
4060 
4061 	if (*mp == NULL)
4062 		return (-1);
4063 #if 0 /* notyet */
4064 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4065 		if ((m = m_copyup(m, sizeof(struct ip),
4066 			(max_linkhdr + 3) & ~3)) == NULL) {
4067 			/* XXXJRT new stat, please */
4068 			ipstat.ips_toosmall++;
4069 			goto bad;
4070 		}
4071 	} else
4072 #endif
4073 #ifndef __predict_false
4074 #define __predict_false(x) x
4075 #endif
4076 	 if (__predict_false(m->m_len < sizeof (struct ip))) {
4077 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
4078 			ipstat.ips_toosmall++;
4079 			goto bad;
4080 		}
4081 	}
4082 	ip = mtod(m, struct ip *);
4083 	if (ip == NULL) goto bad;
4084 
4085 	if (ip->ip_v != IPVERSION) {
4086 		ipstat.ips_badvers++;
4087 		goto bad;
4088 	}
4089 	hlen = ip->ip_hl << 2;
4090 	if (hlen < sizeof(struct ip)) { /* minimum header length */
4091 		ipstat.ips_badhlen++;
4092 		goto bad;
4093 	}
4094 	if (hlen > m->m_len) {
4095 		if ((m = m_pullup(m, hlen)) == NULL) {
4096 			ipstat.ips_badhlen++;
4097 			goto bad;
4098 		}
4099 		ip = mtod(m, struct ip *);
4100 		if (ip == NULL) goto bad;
4101 	}
4102 
4103 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
4104 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
4105 	} else {
4106 		if (hlen == sizeof(struct ip)) {
4107 			sum = in_cksum_hdr(ip);
4108 		} else {
4109 			sum = in_cksum(m, hlen);
4110 		}
4111 	}
4112 	if (sum) {
4113 		ipstat.ips_badsum++;
4114 		goto bad;
4115 	}
4116 
4117 	/* Retrieve the packet length. */
4118 	len = ntohs(ip->ip_len);
4119 
4120 	/*
4121 	 * Check for additional length bogosity
4122 	 */
4123 	if (len < hlen) {
4124 		ipstat.ips_badlen++;
4125 		goto bad;
4126 	}
4127 
4128 	/*
4129 	 * Check that the amount of data in the buffers
4130 	 * is as at least much as the IP header would have us expect.
4131 	 * Drop packet if shorter than we expect.
4132 	 */
4133 	if (m->m_pkthdr.len < len) {
4134 		ipstat.ips_tooshort++;
4135 		goto bad;
4136 	}
4137 
4138 	/* Checks out, proceed */
4139 	*mp = m;
4140 	return (0);
4141 
4142 bad:
4143 	*mp = m;
4144 	return (-1);
4145 }
4146 
4147 #ifdef INET6
4148 /*
4149  * Same as above, but for IPv6.
4150  * Cut-and-pasted from ip6_input.c.
4151  * XXX Should we update ip6stat, or not?
4152  */
4153 static int
4154 bridge_ip6_checkbasic(struct mbuf **mp)
4155 {
4156 	struct mbuf *m = *mp;
4157 	struct ip6_hdr *ip6;
4158 
4159 	/*
4160 	 * If the IPv6 header is not aligned, slurp it up into a new
4161 	 * mbuf with space for link headers, in the event we forward
4162 	 * it.  Otherwise, if it is aligned, make sure the entire base
4163 	 * IPv6 header is in the first mbuf of the chain.
4164 	 */
4165 #if 0 /* notyet */
4166 	if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4167 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4168 		if ((m = m_copyup(m, sizeof(struct ip6_hdr),
4169 			    (max_linkhdr + 3) & ~3)) == NULL) {
4170 			/* XXXJRT new stat, please */
4171 			ip6stat.ip6s_toosmall++;
4172 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4173 			goto bad;
4174 		}
4175 	} else
4176 #endif
4177 	if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
4178 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4179 		if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
4180 			ip6stat.ip6s_toosmall++;
4181 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4182 			goto bad;
4183 		}
4184 	}
4185 
4186 	ip6 = mtod(m, struct ip6_hdr *);
4187 
4188 	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
4189 		ip6stat.ip6s_badvers++;
4190 		in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
4191 		goto bad;
4192 	}
4193 
4194 	/* Checks out, proceed */
4195 	*mp = m;
4196 	return (0);
4197 
4198 bad:
4199 	*mp = m;
4200 	return (-1);
4201 }
4202 #endif /* INET6 */
4203 
4204 /*
4205  * bridge_fragment:
4206  *
4207  *	Return a fragmented mbuf chain.
4208  */
4209 static int
4210 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh,
4211     int snap, struct llc *llc)
4212 {
4213 	struct mbuf *m0;
4214 	struct ip *ip;
4215 	int error = -1;
4216 
4217 	if (m->m_len < sizeof(struct ip) &&
4218 	    (m = m_pullup(m, sizeof(struct ip))) == NULL)
4219 		goto out;
4220 	ip = mtod(m, struct ip *);
4221 
4222 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist,
4223 		    CSUM_DELAY_IP);
4224 	if (error)
4225 		goto out;
4226 
4227 	/* walk the chain and re-add the Ethernet header */
4228 	for (m0 = m; m0; m0 = m0->m_nextpkt) {
4229 		if (error == 0) {
4230 			if (snap) {
4231 				M_PREPEND(m0, sizeof(struct llc), MB_DONTWAIT);
4232 				if (m0 == NULL) {
4233 					error = ENOBUFS;
4234 					continue;
4235 				}
4236 				bcopy(llc, mtod(m0, caddr_t),
4237 				    sizeof(struct llc));
4238 			}
4239 			M_PREPEND(m0, ETHER_HDR_LEN, MB_DONTWAIT);
4240 			if (m0 == NULL) {
4241 				error = ENOBUFS;
4242 				continue;
4243 			}
4244 			bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN);
4245 		} else
4246 			m_freem(m);
4247 	}
4248 
4249 	if (error == 0)
4250 		ipstat.ips_fragmented++;
4251 
4252 	return (error);
4253 
4254 out:
4255 	if (m != NULL)
4256 		m_freem(m);
4257 	return (error);
4258 }
4259 
4260 static void
4261 bridge_enqueue_handler(netmsg_t msg)
4262 {
4263 	struct netmsg_packet *nmp;
4264 	struct ifnet *dst_ifp;
4265 	struct mbuf *m;
4266 
4267 	nmp = &msg->packet;
4268 	m = nmp->nm_packet;
4269 	dst_ifp = nmp->base.lmsg.u.ms_resultp;
4270 	mbuftrackid(m, 71);
4271 
4272 	bridge_handoff(dst_ifp->if_bridge, dst_ifp, m, 1);
4273 }
4274 
4275 static void
4276 bridge_handoff(struct bridge_softc *sc, struct ifnet *dst_ifp,
4277 	       struct mbuf *m, int from_us)
4278 {
4279 	struct mbuf *m0;
4280 	struct ifnet *bifp;
4281 
4282 	bifp = sc->sc_ifp;
4283 	mbuftrackid(m, 72);
4284 
4285 	/* We may be sending a fragment so traverse the mbuf */
4286 	for (; m; m = m0) {
4287 		struct altq_pktattr pktattr;
4288 
4289 		m0 = m->m_nextpkt;
4290 		m->m_nextpkt = NULL;
4291 
4292 		/*
4293 		 * If being sent from our host override ether_shost
4294 		 * with the bridge MAC.  This is mandatory for ARP
4295 		 * so things don't get confused.  In particular we
4296 		 * don't want ARPs to get associated with link interfaces
4297 		 * under the bridge which might or might not stay valid.
4298 		 *
4299 		 * Also override ether_shost when relaying a packet out
4300 		 * the same interface it came in on, due to multi-homed
4301 		 * addresses & default routes, otherwise switches will
4302 		 * get very confused.
4303 		 *
4304 		 * Otherwise if we are in transparent mode.
4305 		 */
4306 		if (from_us || m->m_pkthdr.rcvif == dst_ifp) {
4307 			m_copyback(m,
4308 				   offsetof(struct ether_header, ether_shost),
4309 				   ETHER_ADDR_LEN, IF_LLADDR(sc->sc_ifp));
4310 		} else if ((bifp->if_flags & IFF_LINK0) &&
4311 			   (m->m_pkthdr.fw_flags & BRIDGE_MBUF_TAGGED)) {
4312 			m_copyback(m,
4313 				   offsetof(struct ether_header, ether_shost),
4314 				   ETHER_ADDR_LEN,
4315 				   m->m_pkthdr.br.ether.ether_shost);
4316 		} /* else retain shost */
4317 
4318 		if (ifq_is_enabled(&dst_ifp->if_snd))
4319 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
4320 
4321 		ifq_dispatch(dst_ifp, m, &pktattr);
4322 	}
4323 }
4324 
4325 static void
4326 bridge_control_dispatch(netmsg_t msg)
4327 {
4328 	struct netmsg_brctl *bc_msg = (struct netmsg_brctl *)msg;
4329 	struct ifnet *bifp = bc_msg->bc_sc->sc_ifp;
4330 	int error;
4331 
4332 	ifnet_serialize_all(bifp);
4333 	error = bc_msg->bc_func(bc_msg->bc_sc, bc_msg->bc_arg);
4334 	ifnet_deserialize_all(bifp);
4335 
4336 	lwkt_replymsg(&bc_msg->base.lmsg, error);
4337 }
4338 
4339 static int
4340 bridge_control(struct bridge_softc *sc, u_long cmd,
4341 	       bridge_ctl_t bc_func, void *bc_arg)
4342 {
4343 	struct ifnet *bifp = sc->sc_ifp;
4344 	struct netmsg_brctl bc_msg;
4345 	int error;
4346 
4347 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
4348 
4349 	bzero(&bc_msg, sizeof(bc_msg));
4350 
4351 	netmsg_init(&bc_msg.base, NULL, &curthread->td_msgport,
4352 		    0, bridge_control_dispatch);
4353 	bc_msg.bc_func = bc_func;
4354 	bc_msg.bc_sc = sc;
4355 	bc_msg.bc_arg = bc_arg;
4356 
4357 	ifnet_deserialize_all(bifp);
4358 	error = lwkt_domsg(BRIDGE_CFGPORT, &bc_msg.base.lmsg, 0);
4359 	ifnet_serialize_all(bifp);
4360 	return error;
4361 }
4362 
4363 static void
4364 bridge_add_bif_handler(netmsg_t msg)
4365 {
4366 	struct netmsg_braddbif *amsg = (struct netmsg_braddbif *)msg;
4367 	struct bridge_softc *sc;
4368 	struct bridge_iflist *bif;
4369 
4370 	sc = amsg->br_softc;
4371 
4372 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
4373 	bif->bif_ifp = amsg->br_bif_ifp;
4374 	bif->bif_onlist = 1;
4375 	bif->bif_info = amsg->br_bif_info;
4376 
4377 	/*
4378 	 * runs through bif_info
4379 	 */
4380 	bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER;
4381 
4382 	TAILQ_INSERT_HEAD(&sc->sc_iflists[mycpuid], bif, bif_next);
4383 
4384 	ifnet_forwardmsg(&amsg->base.lmsg, mycpuid + 1);
4385 }
4386 
4387 static void
4388 bridge_add_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4389 	       struct ifnet *ifp)
4390 {
4391 	struct netmsg_braddbif amsg;
4392 
4393 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4394 
4395 	netmsg_init(&amsg.base, NULL, &curthread->td_msgport,
4396 		    0, bridge_add_bif_handler);
4397 	amsg.br_softc = sc;
4398 	amsg.br_bif_info = bif_info;
4399 	amsg.br_bif_ifp = ifp;
4400 
4401 	ifnet_domsg(&amsg.base.lmsg, 0);
4402 }
4403 
4404 static void
4405 bridge_del_bif_handler(netmsg_t msg)
4406 {
4407 	struct netmsg_brdelbif *dmsg = (struct netmsg_brdelbif *)msg;
4408 	struct bridge_softc *sc;
4409 	struct bridge_iflist *bif;
4410 
4411 	sc = dmsg->br_softc;
4412 
4413 	/*
4414 	 * Locate the bif associated with the br_bif_info
4415 	 * on the current CPU
4416 	 */
4417 	bif = bridge_lookup_member_ifinfo(sc, dmsg->br_bif_info);
4418 	KKASSERT(bif != NULL && bif->bif_onlist);
4419 
4420 	/* Remove the bif from the current CPU's iflist */
4421 	bif->bif_onlist = 0;
4422 	TAILQ_REMOVE(dmsg->br_bif_list, bif, bif_next);
4423 
4424 	/* Save the removed bif for later freeing */
4425 	TAILQ_INSERT_HEAD(dmsg->br_bif_list, bif, bif_next);
4426 
4427 	ifnet_forwardmsg(&dmsg->base.lmsg, mycpuid + 1);
4428 }
4429 
4430 static void
4431 bridge_del_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4432 	       struct bridge_iflist_head *saved_bifs)
4433 {
4434 	struct netmsg_brdelbif dmsg;
4435 
4436 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4437 
4438 	netmsg_init(&dmsg.base, NULL, &curthread->td_msgport,
4439 		    0, bridge_del_bif_handler);
4440 	dmsg.br_softc = sc;
4441 	dmsg.br_bif_info = bif_info;
4442 	dmsg.br_bif_list = saved_bifs;
4443 
4444 	ifnet_domsg(&dmsg.base.lmsg, 0);
4445 }
4446