xref: /dragonfly/sys/net/bridge/if_bridge.c (revision 92fc8b5c)
1 /*
2  * Copyright 2001 Wasabi Systems, Inc.
3  * All rights reserved.
4  *
5  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed for the NetBSD Project by
18  *	Wasabi Systems, Inc.
19  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*
37  * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net)
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by Jason L. Wright
51  * 4. The name of the author may not be used to endorse or promote products
52  *    derived from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
55  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
56  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
57  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
58  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
59  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
60  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
62  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
63  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64  * POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp $
67  * $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $
68  * $FreeBSD: src/sys/net/if_bridge.c,v 1.26 2005/10/13 23:05:55 thompsa Exp $
69  */
70 
71 /*
72  * Network interface bridge support.
73  *
74  * TODO:
75  *
76  *	- Currently only supports Ethernet-like interfaces (Ethernet,
77  *	  802.11, VLANs on Ethernet, etc.)  Figure out a nice way
78  *	  to bridge other types of interfaces (FDDI-FDDI, and maybe
79  *	  consider heterogenous bridges).
80  *
81  *
82  * Bridge's route information is duplicated to each CPUs:
83  *
84  *      CPU0          CPU1          CPU2          CPU3
85  * +-----------+ +-----------+ +-----------+ +-----------+
86  * |  rtnode   | |  rtnode   | |  rtnode   | |  rtnode   |
87  * |           | |           | |           | |           |
88  * | dst eaddr | | dst eaddr | | dst eaddr | | dst eaddr |
89  * +-----------+ +-----------+ +-----------+ +-----------+
90  *       |         |                     |         |
91  *       |         |                     |         |
92  *       |         |     +----------+    |         |
93  *       |         |     |  rtinfo  |    |         |
94  *       |         +---->|          |<---+         |
95  *       |               |  flags   |              |
96  *       +-------------->|  timeout |<-------------+
97  *                       |  dst_ifp |
98  *                       +----------+
99  *
100  * We choose to put timeout and dst_ifp into shared part, so updating
101  * them will be cheaper than using message forwarding.  Also there is
102  * not need to use spinlock to protect the updating: timeout and dst_ifp
103  * is not related and specific field's updating order has no importance.
104  * The cache pollution by the share part should not be heavy: in a stable
105  * setup, dst_ifp probably will be not changed in rtnode's life time,
106  * while timeout is refreshed once per second; most of the time, timeout
107  * and dst_ifp are read-only accessed.
108  *
109  *
110  * Bridge route information installation on bridge_input path:
111  *
112  *      CPU0           CPU1         CPU2          CPU3
113  *
114  *                               tcp_thread2
115  *                                    |
116  *                                alloc nmsg
117  *                    snd nmsg        |
118  *                    w/o rtinfo      |
119  *      ifnet0<-----------------------+
120  *        |                           :
121  *    lookup dst                      :
122  *   rtnode exists?(Y)free nmsg       :
123  *        |(N)                        :
124  *        |
125  *  alloc rtinfo
126  *  alloc rtnode
127  * install rtnode
128  *        |
129  *        +---------->ifnet1
130  *        : fwd nmsg    |
131  *        : w/ rtinfo   |
132  *        :             |
133  *        :             |
134  *                 alloc rtnode
135  *               (w/ nmsg's rtinfo)
136  *                install rtnode
137  *                      |
138  *                      +---------->ifnet2
139  *                      : fwd nmsg    |
140  *                      : w/ rtinfo   |
141  *                      :             |
142  *                      :         same as ifnet1
143  *                                    |
144  *                                    +---------->ifnet3
145  *                                    : fwd nmsg    |
146  *                                    : w/ rtinfo   |
147  *                                    :             |
148  *                                    :         same as ifnet1
149  *                                               free nmsg
150  *                                                  :
151  *                                                  :
152  *
153  * The netmsgs forwarded between protocol threads and ifnet threads are
154  * allocated with (M_WAITOK|M_NULLOK), so it will not fail under most
155  * cases (route information is too precious to be not installed :).
156  * Since multiple threads may try to install route information for the
157  * same dst eaddr, we look up route information in ifnet0.  However, this
158  * looking up only need to be performed on ifnet0, which is the start
159  * point of the route information installation process.
160  *
161  *
162  * Bridge route information deleting/flushing:
163  *
164  *  CPU0            CPU1             CPU2             CPU3
165  *
166  * netisr0
167  *   |
168  * find suitable rtnodes,
169  * mark their rtinfo dead
170  *   |
171  *   | domsg <------------------------------------------+
172  *   |                                                  | replymsg
173  *   |                                                  |
174  *   V     fwdmsg           fwdmsg           fwdmsg     |
175  * ifnet0 --------> ifnet1 --------> ifnet2 --------> ifnet3
176  * delete rtnodes   delete rtnodes   delete rtnodes   delete rtnodes
177  * w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo   w/ dead rtinfo
178  *                                                    free dead rtinfos
179  *
180  * All deleting/flushing operations are serialized by netisr0, so each
181  * operation only reaps the route information marked dead by itself.
182  *
183  *
184  * Bridge route information adding/deleting/flushing:
185  * Since all operation is serialized by the fixed message flow between
186  * ifnet threads, it is not possible to create corrupted per-cpu route
187  * information.
188  *
189  *
190  *
191  * Percpu member interface list iteration with blocking operation:
192  * Since one bridge could only delete one member interface at a time and
193  * the deleted member interface is not freed after netmsg_service_sync(),
194  * following way is used to make sure that even if the certain member
195  * interface is ripped from the percpu list during the blocking operation,
196  * the iteration still could keep going:
197  *
198  * TAILQ_FOREACH_MUTABLE(bif, sc->sc_iflists[mycpuid], bif_next, nbif) {
199  *     blocking operation;
200  *     blocking operation;
201  *     ...
202  *     ...
203  *     if (nbif != NULL && !nbif->bif_onlist) {
204  *         KKASSERT(bif->bif_onlist);
205  *         nbif = TAILQ_NEXT(bif, bif_next);
206  *     }
207  * }
208  *
209  * As mentioned above only one member interface could be unlinked from the
210  * percpu member interface list, so either bif or nbif may be not on the list,
211  * but _not_ both.  To keep the list iteration, we don't care about bif, but
212  * only nbif.  Since removed member interface will only be freed after we
213  * finish our work, it is safe to access any field in an unlinked bif (here
214  * bif_onlist).  If nbif is no longer on the list, then bif must be on the
215  * list, so we change nbif to the next element of bif and keep going.
216  */
217 
218 #include "opt_inet.h"
219 #include "opt_inet6.h"
220 
221 #include <sys/param.h>
222 #include <sys/mbuf.h>
223 #include <sys/malloc.h>
224 #include <sys/protosw.h>
225 #include <sys/systm.h>
226 #include <sys/time.h>
227 #include <sys/socket.h> /* for net/if.h */
228 #include <sys/sockio.h>
229 #include <sys/ctype.h>  /* string functions */
230 #include <sys/kernel.h>
231 #include <sys/random.h>
232 #include <sys/sysctl.h>
233 #include <sys/module.h>
234 #include <sys/proc.h>
235 #include <sys/priv.h>
236 #include <sys/lock.h>
237 #include <sys/thread.h>
238 #include <sys/thread2.h>
239 #include <sys/mpipe.h>
240 
241 #include <net/bpf.h>
242 #include <net/if.h>
243 #include <net/if_dl.h>
244 #include <net/if_types.h>
245 #include <net/if_var.h>
246 #include <net/pfil.h>
247 #include <net/ifq_var.h>
248 #include <net/if_clone.h>
249 
250 #include <netinet/in.h> /* for struct arpcom */
251 #include <netinet/in_systm.h>
252 #include <netinet/in_var.h>
253 #include <netinet/ip.h>
254 #include <netinet/ip_var.h>
255 #ifdef INET6
256 #include <netinet/ip6.h>
257 #include <netinet6/ip6_var.h>
258 #endif
259 #include <netinet/if_ether.h> /* for struct arpcom */
260 #include <net/bridge/if_bridgevar.h>
261 #include <net/if_llc.h>
262 #include <net/netmsg2.h>
263 
264 #include <net/route.h>
265 #include <sys/in_cksum.h>
266 
267 /*
268  * Size of the route hash table.  Must be a power of two.
269  */
270 #ifndef BRIDGE_RTHASH_SIZE
271 #define	BRIDGE_RTHASH_SIZE		1024
272 #endif
273 
274 #define	BRIDGE_RTHASH_MASK		(BRIDGE_RTHASH_SIZE - 1)
275 
276 /*
277  * Maximum number of addresses to cache.
278  */
279 #ifndef BRIDGE_RTABLE_MAX
280 #define	BRIDGE_RTABLE_MAX		100
281 #endif
282 
283 /*
284  * Spanning tree defaults.
285  */
286 #define	BSTP_DEFAULT_MAX_AGE		(20 * 256)
287 #define	BSTP_DEFAULT_HELLO_TIME		(2 * 256)
288 #define	BSTP_DEFAULT_FORWARD_DELAY	(15 * 256)
289 #define	BSTP_DEFAULT_HOLD_TIME		(1 * 256)
290 #define	BSTP_DEFAULT_BRIDGE_PRIORITY	0x8000
291 #define	BSTP_DEFAULT_PORT_PRIORITY	0x80
292 #define	BSTP_DEFAULT_PATH_COST		55
293 
294 /*
295  * Timeout (in seconds) for entries learned dynamically.
296  */
297 #ifndef BRIDGE_RTABLE_TIMEOUT
298 #define	BRIDGE_RTABLE_TIMEOUT		(20 * 60)	/* same as ARP */
299 #endif
300 
301 /*
302  * Number of seconds between walks of the route list.
303  */
304 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD
305 #define	BRIDGE_RTABLE_PRUNE_PERIOD	(5 * 60)
306 #endif
307 
308 /*
309  * List of capabilities to mask on the member interface.
310  */
311 #define	BRIDGE_IFCAPS_MASK		IFCAP_TXCSUM
312 
313 typedef int	(*bridge_ctl_t)(struct bridge_softc *, void *);
314 
315 struct netmsg_brctl {
316 	struct netmsg_base	base;
317 	bridge_ctl_t		bc_func;
318 	struct bridge_softc	*bc_sc;
319 	void			*bc_arg;
320 };
321 
322 struct netmsg_brsaddr {
323 	struct netmsg_base	base;
324 	struct bridge_softc	*br_softc;
325 	struct ifnet		*br_dst_if;
326 	struct bridge_rtinfo	*br_rtinfo;
327 	int			br_setflags;
328 	uint8_t			br_dst[ETHER_ADDR_LEN];
329 	uint8_t			br_flags;
330 };
331 
332 struct netmsg_braddbif {
333 	struct netmsg_base	base;
334 	struct bridge_softc	*br_softc;
335 	struct bridge_ifinfo	*br_bif_info;
336 	struct ifnet		*br_bif_ifp;
337 };
338 
339 struct netmsg_brdelbif {
340 	struct netmsg_base	base;
341 	struct bridge_softc	*br_softc;
342 	struct bridge_ifinfo	*br_bif_info;
343 	struct bridge_iflist_head *br_bif_list;
344 };
345 
346 struct netmsg_brsflags {
347 	struct netmsg_base	base;
348 	struct bridge_softc	*br_softc;
349 	struct bridge_ifinfo	*br_bif_info;
350 	uint32_t		br_bif_flags;
351 };
352 
353 eventhandler_tag	bridge_detach_cookie = NULL;
354 
355 extern	struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
356 extern	int (*bridge_output_p)(struct ifnet *, struct mbuf *);
357 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
358 extern  struct ifnet *(*bridge_interface_p)(void *if_bridge);
359 
360 static int	bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD;
361 
362 static int	bridge_clone_create(struct if_clone *, int, caddr_t);
363 static int	bridge_clone_destroy(struct ifnet *);
364 
365 static int	bridge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
366 static void	bridge_mutecaps(struct bridge_ifinfo *, struct ifnet *, int);
367 static void	bridge_ifdetach(void *, struct ifnet *);
368 static void	bridge_init(void *);
369 static int	bridge_from_us(struct bridge_softc *, struct ether_header *);
370 static void	bridge_stop(struct ifnet *);
371 static void	bridge_start(struct ifnet *);
372 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *);
373 static int	bridge_output(struct ifnet *, struct mbuf *);
374 static struct ifnet *bridge_interface(void *if_bridge);
375 
376 static void	bridge_forward(struct bridge_softc *, struct mbuf *m);
377 
378 static void	bridge_timer_handler(netmsg_t);
379 static void	bridge_timer(void *);
380 
381 static void	bridge_start_bcast(struct bridge_softc *, struct mbuf *);
382 static void	bridge_broadcast(struct bridge_softc *, struct ifnet *,
383 		    struct mbuf *);
384 static void	bridge_span(struct bridge_softc *, struct mbuf *);
385 
386 static int	bridge_rtupdate(struct bridge_softc *, const uint8_t *,
387 		    struct ifnet *, uint8_t);
388 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *);
389 static void	bridge_rtreap(struct bridge_softc *);
390 static void	bridge_rtreap_async(struct bridge_softc *);
391 static void	bridge_rttrim(struct bridge_softc *);
392 static int	bridge_rtage_finddead(struct bridge_softc *);
393 static void	bridge_rtage(struct bridge_softc *);
394 static void	bridge_rtflush(struct bridge_softc *, int);
395 static int	bridge_rtdaddr(struct bridge_softc *, const uint8_t *);
396 static int	bridge_rtsaddr(struct bridge_softc *, const uint8_t *,
397 		    struct ifnet *, uint8_t);
398 static void	bridge_rtmsg_sync(struct bridge_softc *sc);
399 static void	bridge_rtreap_handler(netmsg_t);
400 static void	bridge_rtinstall_handler(netmsg_t);
401 static int	bridge_rtinstall_oncpu(struct bridge_softc *, const uint8_t *,
402 		    struct ifnet *, int, uint8_t, struct bridge_rtinfo **);
403 
404 static void	bridge_rtable_init(struct bridge_softc *);
405 static void	bridge_rtable_fini(struct bridge_softc *);
406 
407 static int	bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *);
408 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *,
409 		    const uint8_t *);
410 static void	bridge_rtnode_insert(struct bridge_softc *,
411 		    struct bridge_rtnode *);
412 static void	bridge_rtnode_destroy(struct bridge_softc *,
413 		    struct bridge_rtnode *);
414 
415 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *,
416 		    const char *name);
417 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *,
418 		    struct ifnet *ifp);
419 static struct bridge_iflist *bridge_lookup_member_ifinfo(struct bridge_softc *,
420 		    struct bridge_ifinfo *);
421 static void	bridge_delete_member(struct bridge_softc *,
422 		    struct bridge_iflist *, int);
423 static void	bridge_delete_span(struct bridge_softc *,
424 		    struct bridge_iflist *);
425 
426 static int	bridge_control(struct bridge_softc *, u_long,
427 			       bridge_ctl_t, void *);
428 static int	bridge_ioctl_init(struct bridge_softc *, void *);
429 static int	bridge_ioctl_stop(struct bridge_softc *, void *);
430 static int	bridge_ioctl_add(struct bridge_softc *, void *);
431 static int	bridge_ioctl_del(struct bridge_softc *, void *);
432 static void	bridge_ioctl_fillflags(struct bridge_softc *sc,
433 				struct bridge_iflist *bif, struct ifbreq *req);
434 static int	bridge_ioctl_gifflags(struct bridge_softc *, void *);
435 static int	bridge_ioctl_sifflags(struct bridge_softc *, void *);
436 static int	bridge_ioctl_scache(struct bridge_softc *, void *);
437 static int	bridge_ioctl_gcache(struct bridge_softc *, void *);
438 static int	bridge_ioctl_gifs(struct bridge_softc *, void *);
439 static int	bridge_ioctl_rts(struct bridge_softc *, void *);
440 static int	bridge_ioctl_saddr(struct bridge_softc *, void *);
441 static int	bridge_ioctl_sto(struct bridge_softc *, void *);
442 static int	bridge_ioctl_gto(struct bridge_softc *, void *);
443 static int	bridge_ioctl_daddr(struct bridge_softc *, void *);
444 static int	bridge_ioctl_flush(struct bridge_softc *, void *);
445 static int	bridge_ioctl_gpri(struct bridge_softc *, void *);
446 static int	bridge_ioctl_spri(struct bridge_softc *, void *);
447 static int	bridge_ioctl_reinit(struct bridge_softc *, void *);
448 static int	bridge_ioctl_ght(struct bridge_softc *, void *);
449 static int	bridge_ioctl_sht(struct bridge_softc *, void *);
450 static int	bridge_ioctl_gfd(struct bridge_softc *, void *);
451 static int	bridge_ioctl_sfd(struct bridge_softc *, void *);
452 static int	bridge_ioctl_gma(struct bridge_softc *, void *);
453 static int	bridge_ioctl_sma(struct bridge_softc *, void *);
454 static int	bridge_ioctl_sifprio(struct bridge_softc *, void *);
455 static int	bridge_ioctl_sifcost(struct bridge_softc *, void *);
456 static int	bridge_ioctl_addspan(struct bridge_softc *, void *);
457 static int	bridge_ioctl_delspan(struct bridge_softc *, void *);
458 static int	bridge_ioctl_sifbondwght(struct bridge_softc *, void *);
459 static int	bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *,
460 		    int);
461 static int	bridge_ip_checkbasic(struct mbuf **mp);
462 #ifdef INET6
463 static int	bridge_ip6_checkbasic(struct mbuf **mp);
464 #endif /* INET6 */
465 static int	bridge_fragment(struct ifnet *, struct mbuf *,
466 		    struct ether_header *, int, struct llc *);
467 static void	bridge_enqueue_handler(netmsg_t);
468 static void	bridge_handoff(struct bridge_softc *, struct ifnet *,
469 		    struct mbuf *, int);
470 
471 static void	bridge_del_bif_handler(netmsg_t);
472 static void	bridge_add_bif_handler(netmsg_t);
473 static void	bridge_del_bif(struct bridge_softc *, struct bridge_ifinfo *,
474 		    struct bridge_iflist_head *);
475 static void	bridge_add_bif(struct bridge_softc *, struct bridge_ifinfo *,
476 		    struct ifnet *);
477 
478 SYSCTL_DECL(_net_link);
479 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge");
480 
481 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */
482 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */
483 static int pfil_member = 1; /* run pfil hooks on the member interface */
484 static int bridge_debug;
485 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW,
486     &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled");
487 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW,
488     &pfil_bridge, 0, "Packet filter on the bridge interface");
489 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW,
490     &pfil_member, 0, "Packet filter on the member interface");
491 SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW,
492     &bridge_debug, 0, "Bridge debug mode");
493 
494 struct bridge_control_arg {
495 	union {
496 		struct ifbreq ifbreq;
497 		struct ifbifconf ifbifconf;
498 		struct ifbareq ifbareq;
499 		struct ifbaconf ifbaconf;
500 		struct ifbrparam ifbrparam;
501 	} bca_u;
502 	int	bca_len;
503 	void	*bca_uptr;
504 	void	*bca_kptr;
505 };
506 
507 struct bridge_control {
508 	bridge_ctl_t	bc_func;
509 	int		bc_argsize;
510 	int		bc_flags;
511 };
512 
513 #define	BC_F_COPYIN		0x01	/* copy arguments in */
514 #define	BC_F_COPYOUT		0x02	/* copy arguments out */
515 #define	BC_F_SUSER		0x04	/* do super-user check */
516 
517 const struct bridge_control bridge_control_table[] = {
518 	{ bridge_ioctl_add,		sizeof(struct ifbreq),
519 	  BC_F_COPYIN|BC_F_SUSER },
520 	{ bridge_ioctl_del,		sizeof(struct ifbreq),
521 	  BC_F_COPYIN|BC_F_SUSER },
522 
523 	{ bridge_ioctl_gifflags,	sizeof(struct ifbreq),
524 	  BC_F_COPYIN|BC_F_COPYOUT },
525 	{ bridge_ioctl_sifflags,	sizeof(struct ifbreq),
526 	  BC_F_COPYIN|BC_F_SUSER },
527 
528 	{ bridge_ioctl_scache,		sizeof(struct ifbrparam),
529 	  BC_F_COPYIN|BC_F_SUSER },
530 	{ bridge_ioctl_gcache,		sizeof(struct ifbrparam),
531 	  BC_F_COPYOUT },
532 
533 	{ bridge_ioctl_gifs,		sizeof(struct ifbifconf),
534 	  BC_F_COPYIN|BC_F_COPYOUT },
535 	{ bridge_ioctl_rts,		sizeof(struct ifbaconf),
536 	  BC_F_COPYIN|BC_F_COPYOUT },
537 
538 	{ bridge_ioctl_saddr,		sizeof(struct ifbareq),
539 	  BC_F_COPYIN|BC_F_SUSER },
540 
541 	{ bridge_ioctl_sto,		sizeof(struct ifbrparam),
542 	  BC_F_COPYIN|BC_F_SUSER },
543 	{ bridge_ioctl_gto,		sizeof(struct ifbrparam),
544 	  BC_F_COPYOUT },
545 
546 	{ bridge_ioctl_daddr,		sizeof(struct ifbareq),
547 	  BC_F_COPYIN|BC_F_SUSER },
548 
549 	{ bridge_ioctl_flush,		sizeof(struct ifbreq),
550 	  BC_F_COPYIN|BC_F_SUSER },
551 
552 	{ bridge_ioctl_gpri,		sizeof(struct ifbrparam),
553 	  BC_F_COPYOUT },
554 	{ bridge_ioctl_spri,		sizeof(struct ifbrparam),
555 	  BC_F_COPYIN|BC_F_SUSER },
556 
557 	{ bridge_ioctl_ght,		sizeof(struct ifbrparam),
558 	  BC_F_COPYOUT },
559 	{ bridge_ioctl_sht,		sizeof(struct ifbrparam),
560 	  BC_F_COPYIN|BC_F_SUSER },
561 
562 	{ bridge_ioctl_gfd,		sizeof(struct ifbrparam),
563 	  BC_F_COPYOUT },
564 	{ bridge_ioctl_sfd,		sizeof(struct ifbrparam),
565 	  BC_F_COPYIN|BC_F_SUSER },
566 
567 	{ bridge_ioctl_gma,		sizeof(struct ifbrparam),
568 	  BC_F_COPYOUT },
569 	{ bridge_ioctl_sma,		sizeof(struct ifbrparam),
570 	  BC_F_COPYIN|BC_F_SUSER },
571 
572 	{ bridge_ioctl_sifprio,		sizeof(struct ifbreq),
573 	  BC_F_COPYIN|BC_F_SUSER },
574 
575 	{ bridge_ioctl_sifcost,		sizeof(struct ifbreq),
576 	  BC_F_COPYIN|BC_F_SUSER },
577 
578 	{ bridge_ioctl_addspan,		sizeof(struct ifbreq),
579 	  BC_F_COPYIN|BC_F_SUSER },
580 	{ bridge_ioctl_delspan,		sizeof(struct ifbreq),
581 	  BC_F_COPYIN|BC_F_SUSER },
582 
583 	{ bridge_ioctl_sifbondwght,	sizeof(struct ifbreq),
584 	  BC_F_COPYIN|BC_F_SUSER },
585 
586 };
587 static const int bridge_control_table_size = NELEM(bridge_control_table);
588 
589 LIST_HEAD(, bridge_softc) bridge_list;
590 
591 struct if_clone bridge_cloner = IF_CLONE_INITIALIZER("bridge",
592 				bridge_clone_create,
593 				bridge_clone_destroy, 0, IF_MAXUNIT);
594 
595 static int
596 bridge_modevent(module_t mod, int type, void *data)
597 {
598 	switch (type) {
599 	case MOD_LOAD:
600 		LIST_INIT(&bridge_list);
601 		if_clone_attach(&bridge_cloner);
602 		bridge_input_p = bridge_input;
603 		bridge_output_p = bridge_output;
604 		bridge_interface_p = bridge_interface;
605 		bridge_detach_cookie = EVENTHANDLER_REGISTER(
606 		    ifnet_detach_event, bridge_ifdetach, NULL,
607 		    EVENTHANDLER_PRI_ANY);
608 #if 0 /* notyet */
609 		bstp_linkstate_p = bstp_linkstate;
610 #endif
611 		break;
612 	case MOD_UNLOAD:
613 		if (!LIST_EMPTY(&bridge_list))
614 			return (EBUSY);
615 		EVENTHANDLER_DEREGISTER(ifnet_detach_event,
616 		    bridge_detach_cookie);
617 		if_clone_detach(&bridge_cloner);
618 		bridge_input_p = NULL;
619 		bridge_output_p = NULL;
620 		bridge_interface_p = NULL;
621 #if 0 /* notyet */
622 		bstp_linkstate_p = NULL;
623 #endif
624 		break;
625 	default:
626 		return (EOPNOTSUPP);
627 	}
628 	return (0);
629 }
630 
631 static moduledata_t bridge_mod = {
632 	"if_bridge",
633 	bridge_modevent,
634 	0
635 };
636 
637 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
638 
639 
640 /*
641  * bridge_clone_create:
642  *
643  *	Create a new bridge instance.
644  */
645 static int
646 bridge_clone_create(struct if_clone *ifc, int unit, caddr_t param __unused)
647 {
648 	struct bridge_softc *sc;
649 	struct ifnet *ifp;
650 	u_char eaddr[6];
651 	int cpu, rnd;
652 
653 	sc = kmalloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
654 	ifp = sc->sc_ifp = &sc->sc_if;
655 
656 	sc->sc_brtmax = BRIDGE_RTABLE_MAX;
657 	sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT;
658 	sc->sc_bridge_max_age = BSTP_DEFAULT_MAX_AGE;
659 	sc->sc_bridge_hello_time = BSTP_DEFAULT_HELLO_TIME;
660 	sc->sc_bridge_forward_delay = BSTP_DEFAULT_FORWARD_DELAY;
661 	sc->sc_bridge_priority = BSTP_DEFAULT_BRIDGE_PRIORITY;
662 	sc->sc_hold_time = BSTP_DEFAULT_HOLD_TIME;
663 
664 	/* Initialize our routing table. */
665 	bridge_rtable_init(sc);
666 
667 	callout_init(&sc->sc_brcallout);
668 	netmsg_init(&sc->sc_brtimemsg, NULL, &netisr_adone_rport,
669 		    MSGF_DROPABLE, bridge_timer_handler);
670 	sc->sc_brtimemsg.lmsg.u.ms_resultp = sc;
671 
672 	callout_init(&sc->sc_bstpcallout);
673 	netmsg_init(&sc->sc_bstptimemsg, NULL, &netisr_adone_rport,
674 		    MSGF_DROPABLE, bstp_tick_handler);
675 	sc->sc_bstptimemsg.lmsg.u.ms_resultp = sc;
676 
677 	/* Initialize per-cpu member iface lists */
678 	sc->sc_iflists = kmalloc(sizeof(*sc->sc_iflists) * ncpus,
679 				 M_DEVBUF, M_WAITOK);
680 	for (cpu = 0; cpu < ncpus; ++cpu)
681 		TAILQ_INIT(&sc->sc_iflists[cpu]);
682 
683 	TAILQ_INIT(&sc->sc_spanlist);
684 
685 	ifp->if_softc = sc;
686 	if_initname(ifp, ifc->ifc_name, unit);
687 	ifp->if_mtu = ETHERMTU;
688 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
689 	ifp->if_ioctl = bridge_ioctl;
690 	ifp->if_start = bridge_start;
691 	ifp->if_init = bridge_init;
692 	ifp->if_type = IFT_ETHER;
693 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
694 	ifq_set_ready(&ifp->if_snd);
695 	ifp->if_hdrlen = ETHER_HDR_LEN;
696 
697 	/*
698 	 * Generate a random ethernet address and use the private AC:DE:48
699 	 * OUI code.
700 	 */
701 	rnd = karc4random();
702 	bcopy(&rnd, &eaddr[0], 4); /* ETHER_ADDR_LEN == 6 */
703 	rnd = karc4random();
704 	bcopy(&rnd, &eaddr[2], 4); /* ETHER_ADDR_LEN == 6 */
705 
706 	eaddr[0] &= ~1;	/* clear multicast bit */
707 	eaddr[0] |= 2;	/* set the LAA bit */
708 
709 	ether_ifattach(ifp, eaddr, NULL);
710 	/* Now undo some of the damage... */
711 	ifp->if_baudrate = 0;
712 	/*ifp->if_type = IFT_BRIDGE;*/
713 
714 	crit_enter();	/* XXX MP */
715 	LIST_INSERT_HEAD(&bridge_list, sc, sc_list);
716 	crit_exit();
717 
718 	return (0);
719 }
720 
721 static void
722 bridge_delete_dispatch(netmsg_t msg)
723 {
724 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
725 	struct ifnet *bifp = sc->sc_ifp;
726 	struct bridge_iflist *bif;
727 
728 	ifnet_serialize_all(bifp);
729 
730 	while ((bif = TAILQ_FIRST(&sc->sc_iflists[mycpuid])) != NULL)
731 		bridge_delete_member(sc, bif, 0);
732 
733 	while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL)
734 		bridge_delete_span(sc, bif);
735 
736 	ifnet_deserialize_all(bifp);
737 
738 	lwkt_replymsg(&msg->lmsg, 0);
739 }
740 
741 /*
742  * bridge_clone_destroy:
743  *
744  *	Destroy a bridge instance.
745  */
746 static int
747 bridge_clone_destroy(struct ifnet *ifp)
748 {
749 	struct bridge_softc *sc = ifp->if_softc;
750 	struct netmsg_base msg;
751 
752 	ifnet_serialize_all(ifp);
753 
754 	bridge_stop(ifp);
755 	ifp->if_flags &= ~IFF_UP;
756 
757 	ifnet_deserialize_all(ifp);
758 
759 	netmsg_init(&msg, NULL, &curthread->td_msgport,
760 		    0, bridge_delete_dispatch);
761 	msg.lmsg.u.ms_resultp = sc;
762 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
763 
764 	crit_enter();	/* XXX MP */
765 	LIST_REMOVE(sc, sc_list);
766 	crit_exit();
767 
768 	ether_ifdetach(ifp);
769 
770 	/* Tear down the routing table. */
771 	bridge_rtable_fini(sc);
772 
773 	/* Free per-cpu member iface lists */
774 	kfree(sc->sc_iflists, M_DEVBUF);
775 
776 	kfree(sc, M_DEVBUF);
777 
778 	return 0;
779 }
780 
781 /*
782  * bridge_ioctl:
783  *
784  *	Handle a control request from the operator.
785  */
786 static int
787 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
788 {
789 	struct bridge_softc *sc = ifp->if_softc;
790 	struct bridge_control_arg args;
791 	struct ifdrv *ifd = (struct ifdrv *) data;
792 	const struct bridge_control *bc;
793 	int error = 0;
794 
795 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
796 
797 	switch (cmd) {
798 	case SIOCADDMULTI:
799 	case SIOCDELMULTI:
800 		break;
801 
802 	case SIOCGDRVSPEC:
803 	case SIOCSDRVSPEC:
804 		if (ifd->ifd_cmd >= bridge_control_table_size) {
805 			error = EINVAL;
806 			break;
807 		}
808 		bc = &bridge_control_table[ifd->ifd_cmd];
809 
810 		if (cmd == SIOCGDRVSPEC &&
811 		    (bc->bc_flags & BC_F_COPYOUT) == 0) {
812 			error = EINVAL;
813 			break;
814 		} else if (cmd == SIOCSDRVSPEC &&
815 			   (bc->bc_flags & BC_F_COPYOUT)) {
816 			error = EINVAL;
817 			break;
818 		}
819 
820 		if (bc->bc_flags & BC_F_SUSER) {
821 			error = priv_check_cred(cr, PRIV_ROOT, NULL_CRED_OKAY);
822 			if (error)
823 				break;
824 		}
825 
826 		if (ifd->ifd_len != bc->bc_argsize ||
827 		    ifd->ifd_len > sizeof(args.bca_u)) {
828 			error = EINVAL;
829 			break;
830 		}
831 
832 		memset(&args, 0, sizeof(args));
833 		if (bc->bc_flags & BC_F_COPYIN) {
834 			error = copyin(ifd->ifd_data, &args.bca_u,
835 				       ifd->ifd_len);
836 			if (error)
837 				break;
838 		}
839 
840 		error = bridge_control(sc, cmd, bc->bc_func, &args);
841 		if (error) {
842 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
843 			break;
844 		}
845 
846 		if (bc->bc_flags & BC_F_COPYOUT) {
847 			error = copyout(&args, ifd->ifd_data, ifd->ifd_len);
848 			if (args.bca_len != 0) {
849 				KKASSERT(args.bca_kptr != NULL);
850 				if (!error) {
851 					error = copyout(args.bca_kptr,
852 						args.bca_uptr, args.bca_len);
853 				}
854 				kfree(args.bca_kptr, M_TEMP);
855 			} else {
856 				KKASSERT(args.bca_kptr == NULL);
857 			}
858 		} else {
859 			KKASSERT(args.bca_len == 0 && args.bca_kptr == NULL);
860 		}
861 		break;
862 
863 	case SIOCSIFFLAGS:
864 		if (!(ifp->if_flags & IFF_UP) &&
865 		    (ifp->if_flags & IFF_RUNNING)) {
866 			/*
867 			 * If interface is marked down and it is running,
868 			 * then stop it.
869 			 */
870 			bridge_stop(ifp);
871 		} else if ((ifp->if_flags & IFF_UP) &&
872 		    !(ifp->if_flags & IFF_RUNNING)) {
873 			/*
874 			 * If interface is marked up and it is stopped, then
875 			 * start it.
876 			 */
877 			ifp->if_init(sc);
878 		}
879 
880 		/*
881 		 * If running and link flag state change we have to
882 		 * reinitialize as well.
883 		 */
884 		if ((ifp->if_flags & IFF_RUNNING) &&
885 		    (ifp->if_flags & (IFF_LINK0|IFF_LINK1|IFF_LINK2)) !=
886 		    sc->sc_copy_flags) {
887 			sc->sc_copy_flags = ifp->if_flags &
888 					(IFF_LINK0|IFF_LINK1|IFF_LINK2);
889 			bridge_control(sc, 0, bridge_ioctl_reinit, NULL);
890 		}
891 
892 		break;
893 
894 	case SIOCSIFMTU:
895 		/* Do not allow the MTU to be changed on the bridge */
896 		error = EINVAL;
897 		break;
898 
899 	default:
900 		error = ether_ioctl(ifp, cmd, data);
901 		break;
902 	}
903 	return (error);
904 }
905 
906 /*
907  * bridge_mutecaps:
908  *
909  *	Clear or restore unwanted capabilities on the member interface
910  */
911 static void
912 bridge_mutecaps(struct bridge_ifinfo *bif_info, struct ifnet *ifp, int mute)
913 {
914 	struct ifreq ifr;
915 	int error;
916 
917 	if (ifp->if_ioctl == NULL)
918 		return;
919 
920 	bzero(&ifr, sizeof(ifr));
921 	ifr.ifr_reqcap = ifp->if_capenable;
922 
923 	if (mute) {
924 		/* mask off and save capabilities */
925 		bif_info->bifi_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK;
926 		if (bif_info->bifi_mutecap != 0)
927 			ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK;
928 	} else {
929 		/* restore muted capabilities */
930 		ifr.ifr_reqcap |= bif_info->bifi_mutecap;
931 	}
932 
933 	if (bif_info->bifi_mutecap != 0) {
934 		ifnet_serialize_all(ifp);
935 		error = ifp->if_ioctl(ifp, SIOCSIFCAP, (caddr_t)&ifr, NULL);
936 		ifnet_deserialize_all(ifp);
937 	}
938 }
939 
940 /*
941  * bridge_lookup_member:
942  *
943  *	Lookup a bridge member interface.
944  */
945 static struct bridge_iflist *
946 bridge_lookup_member(struct bridge_softc *sc, const char *name)
947 {
948 	struct bridge_iflist *bif;
949 
950 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
951 		if (strcmp(bif->bif_ifp->if_xname, name) == 0)
952 			return (bif);
953 	}
954 	return (NULL);
955 }
956 
957 /*
958  * bridge_lookup_member_if:
959  *
960  *	Lookup a bridge member interface by ifnet*.
961  */
962 static struct bridge_iflist *
963 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp)
964 {
965 	struct bridge_iflist *bif;
966 
967 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
968 		if (bif->bif_ifp == member_ifp)
969 			return (bif);
970 	}
971 	return (NULL);
972 }
973 
974 /*
975  * bridge_lookup_member_ifinfo:
976  *
977  *	Lookup a bridge member interface by bridge_ifinfo.
978  */
979 static struct bridge_iflist *
980 bridge_lookup_member_ifinfo(struct bridge_softc *sc,
981 			    struct bridge_ifinfo *bif_info)
982 {
983 	struct bridge_iflist *bif;
984 
985 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
986 		if (bif->bif_info == bif_info)
987 			return (bif);
988 	}
989 	return (NULL);
990 }
991 
992 /*
993  * bridge_delete_member:
994  *
995  *	Delete the specified member interface.
996  */
997 static void
998 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif,
999     int gone)
1000 {
1001 	struct ifnet *ifs = bif->bif_ifp;
1002 	struct ifnet *bifp = sc->sc_ifp;
1003 	struct bridge_ifinfo *bif_info = bif->bif_info;
1004 	struct bridge_iflist_head saved_bifs;
1005 
1006 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1007 	KKASSERT(bif_info != NULL);
1008 
1009 	ifs->if_bridge = NULL;
1010 
1011 	/*
1012 	 * Release bridge interface's serializer:
1013 	 * - To avoid possible dead lock.
1014 	 * - Various sync operation will block the current thread.
1015 	 */
1016 	ifnet_deserialize_all(bifp);
1017 
1018 	if (!gone) {
1019 		switch (ifs->if_type) {
1020 		case IFT_ETHER:
1021 		case IFT_L2VLAN:
1022 			/*
1023 			 * Take the interface out of promiscuous mode.
1024 			 */
1025 			ifpromisc(ifs, 0);
1026 			bridge_mutecaps(bif_info, ifs, 0);
1027 			break;
1028 
1029 		case IFT_GIF:
1030 			break;
1031 
1032 		default:
1033 			panic("bridge_delete_member: impossible");
1034 			break;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Remove bifs from percpu linked list.
1040 	 *
1041 	 * Removed bifs are not freed immediately, instead,
1042 	 * they are saved in saved_bifs.  They will be freed
1043 	 * after we make sure that no one is accessing them,
1044 	 * i.e. after following netmsg_service_sync()
1045 	 */
1046 	TAILQ_INIT(&saved_bifs);
1047 	bridge_del_bif(sc, bif_info, &saved_bifs);
1048 
1049 	/*
1050 	 * Make sure that all protocol threads:
1051 	 * o  see 'ifs' if_bridge is changed
1052 	 * o  know that bif is removed from the percpu linked list
1053 	 */
1054 	netmsg_service_sync();
1055 
1056 	/*
1057 	 * Free the removed bifs
1058 	 */
1059 	KKASSERT(!TAILQ_EMPTY(&saved_bifs));
1060 	while ((bif = TAILQ_FIRST(&saved_bifs)) != NULL) {
1061 		TAILQ_REMOVE(&saved_bifs, bif, bif_next);
1062 		kfree(bif, M_DEVBUF);
1063 	}
1064 
1065 	/* See the comment in bridge_ioctl_stop() */
1066 	bridge_rtmsg_sync(sc);
1067 	bridge_rtdelete(sc, ifs, IFBF_FLUSHALL | IFBF_FLUSHSYNC);
1068 
1069 	ifnet_serialize_all(bifp);
1070 
1071 	if (bifp->if_flags & IFF_RUNNING)
1072 		bstp_initialization(sc);
1073 
1074 	/*
1075 	 * Free the bif_info after bstp_initialization(), so that
1076 	 * bridge_softc.sc_root_port will not reference a dangling
1077 	 * pointer.
1078 	 */
1079 	kfree(bif_info, M_DEVBUF);
1080 }
1081 
1082 /*
1083  * bridge_delete_span:
1084  *
1085  *	Delete the specified span interface.
1086  */
1087 static void
1088 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif)
1089 {
1090 	KASSERT(bif->bif_ifp->if_bridge == NULL,
1091 	    ("%s: not a span interface", __func__));
1092 
1093 	TAILQ_REMOVE(&sc->sc_iflists[mycpuid], bif, bif_next);
1094 	kfree(bif, M_DEVBUF);
1095 }
1096 
1097 static int
1098 bridge_ioctl_init(struct bridge_softc *sc, void *arg __unused)
1099 {
1100 	struct ifnet *ifp = sc->sc_ifp;
1101 
1102 	if (ifp->if_flags & IFF_RUNNING)
1103 		return 0;
1104 
1105 	callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz,
1106 	    bridge_timer, sc);
1107 
1108 	ifp->if_flags |= IFF_RUNNING;
1109 	bstp_initialization(sc);
1110 	return 0;
1111 }
1112 
1113 static int
1114 bridge_ioctl_stop(struct bridge_softc *sc, void *arg __unused)
1115 {
1116 	struct ifnet *ifp = sc->sc_ifp;
1117 	struct lwkt_msg *lmsg;
1118 
1119 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1120 		return 0;
1121 
1122 	callout_stop(&sc->sc_brcallout);
1123 
1124 	crit_enter();
1125 	lmsg = &sc->sc_brtimemsg.lmsg;
1126 	if ((lmsg->ms_flags & MSGF_DONE) == 0) {
1127 		/* Pending to be processed; drop it */
1128 		lwkt_dropmsg(lmsg);
1129 	}
1130 	crit_exit();
1131 
1132 	bstp_stop(sc);
1133 
1134 	ifp->if_flags &= ~IFF_RUNNING;
1135 
1136 	ifnet_deserialize_all(ifp);
1137 
1138 	/* Let everyone know that we are stopped */
1139 	netmsg_service_sync();
1140 
1141 	/*
1142 	 * Sync ifnetX msgports in the order we forward rtnode
1143 	 * installation message.  This is used to make sure that
1144 	 * all rtnode installation messages sent by bridge_rtupdate()
1145 	 * during above netmsg_service_sync() are flushed.
1146 	 */
1147 	bridge_rtmsg_sync(sc);
1148 	bridge_rtflush(sc, IFBF_FLUSHDYN | IFBF_FLUSHSYNC);
1149 
1150 	ifnet_serialize_all(ifp);
1151 	return 0;
1152 }
1153 
1154 static int
1155 bridge_ioctl_add(struct bridge_softc *sc, void *arg)
1156 {
1157 	struct ifbreq *req = arg;
1158 	struct bridge_iflist *bif;
1159 	struct bridge_ifinfo *bif_info;
1160 	struct ifnet *ifs, *bifp;
1161 	int error = 0;
1162 
1163 	bifp = sc->sc_ifp;
1164 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
1165 
1166 	ifs = ifunit(req->ifbr_ifsname);
1167 	if (ifs == NULL)
1168 		return (ENOENT);
1169 
1170 	/* If it's in the span list, it can't be a member. */
1171 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1172 		if (ifs == bif->bif_ifp)
1173 			return (EBUSY);
1174 
1175 	/* Allow the first Ethernet member to define the MTU */
1176 	if (ifs->if_type != IFT_GIF) {
1177 		if (TAILQ_EMPTY(&sc->sc_iflists[mycpuid])) {
1178 			bifp->if_mtu = ifs->if_mtu;
1179 		} else if (bifp->if_mtu != ifs->if_mtu) {
1180 			if_printf(bifp, "invalid MTU for %s\n", ifs->if_xname);
1181 			return (EINVAL);
1182 		}
1183 	}
1184 
1185 	if (ifs->if_bridge == sc)
1186 		return (EEXIST);
1187 
1188 	if (ifs->if_bridge != NULL)
1189 		return (EBUSY);
1190 
1191 	bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1192 	bif_info->bifi_priority = BSTP_DEFAULT_PORT_PRIORITY;
1193 	bif_info->bifi_path_cost = BSTP_DEFAULT_PATH_COST;
1194 	bif_info->bifi_ifp = ifs;
1195 	bif_info->bifi_bond_weight = 1;
1196 
1197 	/*
1198 	 * Release bridge interface's serializer:
1199 	 * - To avoid possible dead lock.
1200 	 * - Various sync operation will block the current thread.
1201 	 */
1202 	ifnet_deserialize_all(bifp);
1203 
1204 	switch (ifs->if_type) {
1205 	case IFT_ETHER:
1206 	case IFT_L2VLAN:
1207 		/*
1208 		 * Place the interface into promiscuous mode.
1209 		 */
1210 		error = ifpromisc(ifs, 1);
1211 		if (error) {
1212 			ifnet_serialize_all(bifp);
1213 			goto out;
1214 		}
1215 		bridge_mutecaps(bif_info, ifs, 1);
1216 		break;
1217 
1218 	case IFT_GIF: /* :^) */
1219 		break;
1220 
1221 	default:
1222 		error = EINVAL;
1223 		ifnet_serialize_all(bifp);
1224 		goto out;
1225 	}
1226 
1227 	/*
1228 	 * Add bifs to percpu linked lists
1229 	 */
1230 	bridge_add_bif(sc, bif_info, ifs);
1231 
1232 	ifnet_serialize_all(bifp);
1233 
1234 	if (bifp->if_flags & IFF_RUNNING)
1235 		bstp_initialization(sc);
1236 	else
1237 		bstp_stop(sc);
1238 
1239 	/*
1240 	 * Everything has been setup, so let the member interface
1241 	 * deliver packets to this bridge on its input/output path.
1242 	 */
1243 	ifs->if_bridge = sc;
1244 out:
1245 	if (error) {
1246 		if (bif_info != NULL)
1247 			kfree(bif_info, M_DEVBUF);
1248 	}
1249 	return (error);
1250 }
1251 
1252 static int
1253 bridge_ioctl_del(struct bridge_softc *sc, void *arg)
1254 {
1255 	struct ifbreq *req = arg;
1256 	struct bridge_iflist *bif;
1257 
1258 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1259 	if (bif == NULL)
1260 		return (ENOENT);
1261 
1262 	bridge_delete_member(sc, bif, 0);
1263 
1264 	return (0);
1265 }
1266 
1267 static int
1268 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg)
1269 {
1270 	struct ifbreq *req = arg;
1271 	struct bridge_iflist *bif;
1272 
1273 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1274 	if (bif == NULL)
1275 		return (ENOENT);
1276 	bridge_ioctl_fillflags(sc, bif, req);
1277 	return (0);
1278 }
1279 
1280 static void
1281 bridge_ioctl_fillflags(struct bridge_softc *sc, struct bridge_iflist *bif,
1282 		       struct ifbreq *req)
1283 {
1284 	req->ifbr_ifsflags = bif->bif_flags;
1285 	req->ifbr_state = bif->bif_state;
1286 	req->ifbr_priority = bif->bif_priority;
1287 	req->ifbr_path_cost = bif->bif_path_cost;
1288 	req->ifbr_bond_weight = bif->bif_bond_weight;
1289 	req->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1290 	if (bif->bif_flags & IFBIF_STP) {
1291 		req->ifbr_peer_root = bif->bif_peer_root;
1292 		req->ifbr_peer_bridge = bif->bif_peer_bridge;
1293 		req->ifbr_peer_cost = bif->bif_peer_cost;
1294 		req->ifbr_peer_port = bif->bif_peer_port;
1295 		if (bstp_supersedes_port_info(sc, bif)) {
1296 			req->ifbr_designated_root = bif->bif_peer_root;
1297 			req->ifbr_designated_bridge = bif->bif_peer_bridge;
1298 			req->ifbr_designated_cost = bif->bif_peer_cost;
1299 			req->ifbr_designated_port = bif->bif_peer_port;
1300 		} else {
1301 			req->ifbr_designated_root = sc->sc_bridge_id;
1302 			req->ifbr_designated_bridge = sc->sc_bridge_id;
1303 			req->ifbr_designated_cost = bif->bif_path_cost +
1304 						    bif->bif_peer_cost;
1305 			req->ifbr_designated_port = bif->bif_port_id;
1306 		}
1307 	} else {
1308 		req->ifbr_peer_root = 0;
1309 		req->ifbr_peer_bridge = 0;
1310 		req->ifbr_peer_cost = 0;
1311 		req->ifbr_peer_port = 0;
1312 		req->ifbr_designated_root = 0;
1313 		req->ifbr_designated_bridge = 0;
1314 		req->ifbr_designated_cost = 0;
1315 		req->ifbr_designated_port = 0;
1316 	}
1317 }
1318 
1319 static int
1320 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg)
1321 {
1322 	struct ifbreq *req = arg;
1323 	struct bridge_iflist *bif;
1324 	struct ifnet *bifp = sc->sc_ifp;
1325 
1326 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1327 	if (bif == NULL)
1328 		return (ENOENT);
1329 
1330 	if (req->ifbr_ifsflags & IFBIF_SPAN) {
1331 		/* SPAN is readonly */
1332 		return (EINVAL);
1333 	}
1334 
1335 	if (req->ifbr_ifsflags & IFBIF_STP) {
1336 		switch (bif->bif_ifp->if_type) {
1337 		case IFT_ETHER:
1338 			/* These can do spanning tree. */
1339 			break;
1340 
1341 		default:
1342 			/* Nothing else can. */
1343 			return (EINVAL);
1344 		}
1345 	}
1346 
1347 	bif->bif_flags = (bif->bif_flags & IFBIF_KEEPMASK) |
1348 			 (req->ifbr_ifsflags & ~IFBIF_KEEPMASK);
1349 	if (bifp->if_flags & IFF_RUNNING)
1350 		bstp_initialization(sc);
1351 
1352 	return (0);
1353 }
1354 
1355 static int
1356 bridge_ioctl_scache(struct bridge_softc *sc, void *arg)
1357 {
1358 	struct ifbrparam *param = arg;
1359 	struct ifnet *ifp = sc->sc_ifp;
1360 
1361 	sc->sc_brtmax = param->ifbrp_csize;
1362 
1363 	ifnet_deserialize_all(ifp);
1364 	bridge_rttrim(sc);
1365 	ifnet_serialize_all(ifp);
1366 
1367 	return (0);
1368 }
1369 
1370 static int
1371 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg)
1372 {
1373 	struct ifbrparam *param = arg;
1374 
1375 	param->ifbrp_csize = sc->sc_brtmax;
1376 
1377 	return (0);
1378 }
1379 
1380 static int
1381 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg)
1382 {
1383 	struct bridge_control_arg *bc_arg = arg;
1384 	struct ifbifconf *bifc = arg;
1385 	struct bridge_iflist *bif;
1386 	struct ifbreq *breq;
1387 	int count, len;
1388 
1389 	count = 0;
1390 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next)
1391 		count++;
1392 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1393 		count++;
1394 
1395 	if (bifc->ifbic_len == 0) {
1396 		bifc->ifbic_len = sizeof(*breq) * count;
1397 		return 0;
1398 	} else if (count == 0 || bifc->ifbic_len < sizeof(*breq)) {
1399 		bifc->ifbic_len = 0;
1400 		return 0;
1401 	}
1402 
1403 	len = min(bifc->ifbic_len, sizeof(*breq) * count);
1404 	KKASSERT(len >= sizeof(*breq));
1405 
1406 	breq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1407 	if (breq == NULL) {
1408 		bifc->ifbic_len = 0;
1409 		return ENOMEM;
1410 	}
1411 	bc_arg->bca_kptr = breq;
1412 
1413 	count = 0;
1414 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1415 		if (len < sizeof(*breq))
1416 			break;
1417 
1418 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1419 			sizeof(breq->ifbr_ifsname));
1420 		bridge_ioctl_fillflags(sc, bif, breq);
1421 		breq++;
1422 		count++;
1423 		len -= sizeof(*breq);
1424 	}
1425 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
1426 		if (len < sizeof(*breq))
1427 			break;
1428 
1429 		strlcpy(breq->ifbr_ifsname, bif->bif_ifp->if_xname,
1430 			sizeof(breq->ifbr_ifsname));
1431 		breq->ifbr_ifsflags = bif->bif_flags;
1432 		breq->ifbr_portno = bif->bif_ifp->if_index & 0xff;
1433 		breq++;
1434 		count++;
1435 		len -= sizeof(*breq);
1436 	}
1437 
1438 	bifc->ifbic_len = sizeof(*breq) * count;
1439 	KKASSERT(bifc->ifbic_len > 0);
1440 
1441 	bc_arg->bca_len = bifc->ifbic_len;
1442 	bc_arg->bca_uptr = bifc->ifbic_req;
1443 	return 0;
1444 }
1445 
1446 static int
1447 bridge_ioctl_rts(struct bridge_softc *sc, void *arg)
1448 {
1449 	struct bridge_control_arg *bc_arg = arg;
1450 	struct ifbaconf *bac = arg;
1451 	struct bridge_rtnode *brt;
1452 	struct ifbareq *bareq;
1453 	int count, len;
1454 
1455 	count = 0;
1456 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list)
1457 		count++;
1458 
1459 	if (bac->ifbac_len == 0) {
1460 		bac->ifbac_len = sizeof(*bareq) * count;
1461 		return 0;
1462 	} else if (count == 0 || bac->ifbac_len < sizeof(*bareq)) {
1463 		bac->ifbac_len = 0;
1464 		return 0;
1465 	}
1466 
1467 	len = min(bac->ifbac_len, sizeof(*bareq) * count);
1468 	KKASSERT(len >= sizeof(*bareq));
1469 
1470 	bareq = kmalloc(len, M_TEMP, M_WAITOK | M_NULLOK | M_ZERO);
1471 	if (bareq == NULL) {
1472 		bac->ifbac_len = 0;
1473 		return ENOMEM;
1474 	}
1475 	bc_arg->bca_kptr = bareq;
1476 
1477 	count = 0;
1478 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
1479 		struct bridge_rtinfo *bri = brt->brt_info;
1480 		unsigned long expire;
1481 
1482 		if (len < sizeof(*bareq))
1483 			break;
1484 
1485 		strlcpy(bareq->ifba_ifsname, bri->bri_ifp->if_xname,
1486 			sizeof(bareq->ifba_ifsname));
1487 		memcpy(bareq->ifba_dst, brt->brt_addr, sizeof(brt->brt_addr));
1488 		expire = bri->bri_expire;
1489 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
1490 		    time_second < expire)
1491 			bareq->ifba_expire = expire - time_second;
1492 		else
1493 			bareq->ifba_expire = 0;
1494 		bareq->ifba_flags = bri->bri_flags;
1495 		bareq++;
1496 		count++;
1497 		len -= sizeof(*bareq);
1498 	}
1499 
1500 	bac->ifbac_len = sizeof(*bareq) * count;
1501 	KKASSERT(bac->ifbac_len > 0);
1502 
1503 	bc_arg->bca_len = bac->ifbac_len;
1504 	bc_arg->bca_uptr = bac->ifbac_req;
1505 	return 0;
1506 }
1507 
1508 static int
1509 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg)
1510 {
1511 	struct ifbareq *req = arg;
1512 	struct bridge_iflist *bif;
1513 	struct ifnet *ifp = sc->sc_ifp;
1514 	int error;
1515 
1516 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1517 
1518 	bif = bridge_lookup_member(sc, req->ifba_ifsname);
1519 	if (bif == NULL)
1520 		return (ENOENT);
1521 
1522 	ifnet_deserialize_all(ifp);
1523 	error = bridge_rtsaddr(sc, req->ifba_dst, bif->bif_ifp,
1524 			       req->ifba_flags);
1525 	ifnet_serialize_all(ifp);
1526 	return (error);
1527 }
1528 
1529 static int
1530 bridge_ioctl_sto(struct bridge_softc *sc, void *arg)
1531 {
1532 	struct ifbrparam *param = arg;
1533 
1534 	sc->sc_brttimeout = param->ifbrp_ctime;
1535 
1536 	return (0);
1537 }
1538 
1539 static int
1540 bridge_ioctl_gto(struct bridge_softc *sc, void *arg)
1541 {
1542 	struct ifbrparam *param = arg;
1543 
1544 	param->ifbrp_ctime = sc->sc_brttimeout;
1545 
1546 	return (0);
1547 }
1548 
1549 static int
1550 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg)
1551 {
1552 	struct ifbareq *req = arg;
1553 	struct ifnet *ifp = sc->sc_ifp;
1554 	int error;
1555 
1556 	ifnet_deserialize_all(ifp);
1557 	error = bridge_rtdaddr(sc, req->ifba_dst);
1558 	ifnet_serialize_all(ifp);
1559 	return error;
1560 }
1561 
1562 static int
1563 bridge_ioctl_flush(struct bridge_softc *sc, void *arg)
1564 {
1565 	struct ifbreq *req = arg;
1566 	struct ifnet *ifp = sc->sc_ifp;
1567 
1568 	ifnet_deserialize_all(ifp);
1569 	bridge_rtflush(sc, req->ifbr_ifsflags | IFBF_FLUSHSYNC);
1570 	ifnet_serialize_all(ifp);
1571 
1572 	return (0);
1573 }
1574 
1575 static int
1576 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg)
1577 {
1578 	struct ifbrparam *param = arg;
1579 
1580 	param->ifbrp_prio = sc->sc_bridge_priority;
1581 
1582 	return (0);
1583 }
1584 
1585 static int
1586 bridge_ioctl_spri(struct bridge_softc *sc, void *arg)
1587 {
1588 	struct ifbrparam *param = arg;
1589 
1590 	sc->sc_bridge_priority = param->ifbrp_prio;
1591 
1592 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1593 		bstp_initialization(sc);
1594 
1595 	return (0);
1596 }
1597 
1598 static int
1599 bridge_ioctl_reinit(struct bridge_softc *sc, void *arg __unused)
1600 {
1601 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1602 		bstp_initialization(sc);
1603 	return (0);
1604 }
1605 
1606 static int
1607 bridge_ioctl_ght(struct bridge_softc *sc, void *arg)
1608 {
1609 	struct ifbrparam *param = arg;
1610 
1611 	param->ifbrp_hellotime = sc->sc_bridge_hello_time >> 8;
1612 
1613 	return (0);
1614 }
1615 
1616 static int
1617 bridge_ioctl_sht(struct bridge_softc *sc, void *arg)
1618 {
1619 	struct ifbrparam *param = arg;
1620 
1621 	if (param->ifbrp_hellotime == 0)
1622 		return (EINVAL);
1623 	sc->sc_bridge_hello_time = param->ifbrp_hellotime << 8;
1624 
1625 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1626 		bstp_initialization(sc);
1627 
1628 	return (0);
1629 }
1630 
1631 static int
1632 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg)
1633 {
1634 	struct ifbrparam *param = arg;
1635 
1636 	param->ifbrp_fwddelay = sc->sc_bridge_forward_delay >> 8;
1637 
1638 	return (0);
1639 }
1640 
1641 static int
1642 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg)
1643 {
1644 	struct ifbrparam *param = arg;
1645 
1646 	if (param->ifbrp_fwddelay == 0)
1647 		return (EINVAL);
1648 	sc->sc_bridge_forward_delay = param->ifbrp_fwddelay << 8;
1649 
1650 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1651 		bstp_initialization(sc);
1652 
1653 	return (0);
1654 }
1655 
1656 static int
1657 bridge_ioctl_gma(struct bridge_softc *sc, void *arg)
1658 {
1659 	struct ifbrparam *param = arg;
1660 
1661 	param->ifbrp_maxage = sc->sc_bridge_max_age >> 8;
1662 
1663 	return (0);
1664 }
1665 
1666 static int
1667 bridge_ioctl_sma(struct bridge_softc *sc, void *arg)
1668 {
1669 	struct ifbrparam *param = arg;
1670 
1671 	if (param->ifbrp_maxage == 0)
1672 		return (EINVAL);
1673 	sc->sc_bridge_max_age = param->ifbrp_maxage << 8;
1674 
1675 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1676 		bstp_initialization(sc);
1677 
1678 	return (0);
1679 }
1680 
1681 static int
1682 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg)
1683 {
1684 	struct ifbreq *req = arg;
1685 	struct bridge_iflist *bif;
1686 
1687 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1688 	if (bif == NULL)
1689 		return (ENOENT);
1690 
1691 	bif->bif_priority = req->ifbr_priority;
1692 
1693 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1694 		bstp_initialization(sc);
1695 
1696 	return (0);
1697 }
1698 
1699 static int
1700 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg)
1701 {
1702 	struct ifbreq *req = arg;
1703 	struct bridge_iflist *bif;
1704 
1705 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1706 	if (bif == NULL)
1707 		return (ENOENT);
1708 
1709 	bif->bif_path_cost = req->ifbr_path_cost;
1710 
1711 	if (sc->sc_ifp->if_flags & IFF_RUNNING)
1712 		bstp_initialization(sc);
1713 
1714 	return (0);
1715 }
1716 
1717 static int
1718 bridge_ioctl_sifbondwght(struct bridge_softc *sc, void *arg)
1719 {
1720 	struct ifbreq *req = arg;
1721 	struct bridge_iflist *bif;
1722 
1723 	bif = bridge_lookup_member(sc, req->ifbr_ifsname);
1724 	if (bif == NULL)
1725 		return (ENOENT);
1726 
1727 	bif->bif_bond_weight = req->ifbr_bond_weight;
1728 
1729 	/* no reinit needed */
1730 
1731 	return (0);
1732 }
1733 
1734 static int
1735 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg)
1736 {
1737 	struct ifbreq *req = arg;
1738 	struct bridge_iflist *bif;
1739 	struct ifnet *ifs;
1740 	struct bridge_ifinfo *bif_info;
1741 
1742 	ifs = ifunit(req->ifbr_ifsname);
1743 	if (ifs == NULL)
1744 		return (ENOENT);
1745 
1746 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1747 		if (ifs == bif->bif_ifp)
1748 			return (EBUSY);
1749 
1750 	if (ifs->if_bridge != NULL)
1751 		return (EBUSY);
1752 
1753 	switch (ifs->if_type) {
1754 	case IFT_ETHER:
1755 	case IFT_GIF:
1756 	case IFT_L2VLAN:
1757 		break;
1758 
1759 	default:
1760 		return (EINVAL);
1761 	}
1762 
1763 	/*
1764 	 * bif_info is needed for bif_flags
1765 	 */
1766         bif_info = kmalloc(sizeof(*bif_info), M_DEVBUF, M_WAITOK | M_ZERO);
1767         bif_info->bifi_ifp = ifs;
1768 
1769 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
1770 	bif->bif_ifp = ifs;
1771 	bif->bif_info = bif_info;
1772 	bif->bif_flags = IFBIF_SPAN;
1773 	/* NOTE: span bif does not need bridge_ifinfo */
1774 
1775 	TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next);
1776 
1777 	sc->sc_span = 1;
1778 
1779 	return (0);
1780 }
1781 
1782 static int
1783 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg)
1784 {
1785 	struct ifbreq *req = arg;
1786 	struct bridge_iflist *bif;
1787 	struct ifnet *ifs;
1788 
1789 	ifs = ifunit(req->ifbr_ifsname);
1790 	if (ifs == NULL)
1791 		return (ENOENT);
1792 
1793 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1794 		if (ifs == bif->bif_ifp)
1795 			break;
1796 
1797 	if (bif == NULL)
1798 		return (ENOENT);
1799 
1800 	bridge_delete_span(sc, bif);
1801 
1802 	if (TAILQ_EMPTY(&sc->sc_spanlist))
1803 		sc->sc_span = 0;
1804 
1805 	return (0);
1806 }
1807 
1808 static void
1809 bridge_ifdetach_dispatch(netmsg_t msg)
1810 {
1811 	struct ifnet *ifp, *bifp;
1812 	struct bridge_softc *sc;
1813 	struct bridge_iflist *bif;
1814 
1815 	ifp = msg->lmsg.u.ms_resultp;
1816 	sc = ifp->if_bridge;
1817 
1818 	/* Check if the interface is a bridge member */
1819 	if (sc != NULL) {
1820 		bifp = sc->sc_ifp;
1821 
1822 		ifnet_serialize_all(bifp);
1823 
1824 		bif = bridge_lookup_member_if(sc, ifp);
1825 		if (bif != NULL) {
1826 			bridge_delete_member(sc, bif, 1);
1827 		} else {
1828 			/* XXX Why bif will be NULL? */
1829 		}
1830 
1831 		ifnet_deserialize_all(bifp);
1832 		goto reply;
1833 	}
1834 
1835 	crit_enter();	/* XXX MP */
1836 
1837 	/* Check if the interface is a span port */
1838 	LIST_FOREACH(sc, &bridge_list, sc_list) {
1839 		bifp = sc->sc_ifp;
1840 
1841 		ifnet_serialize_all(bifp);
1842 
1843 		TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next)
1844 			if (ifp == bif->bif_ifp) {
1845 				bridge_delete_span(sc, bif);
1846 				break;
1847 			}
1848 
1849 		ifnet_deserialize_all(bifp);
1850 	}
1851 
1852 	crit_exit();
1853 
1854 reply:
1855 	lwkt_replymsg(&msg->lmsg, 0);
1856 }
1857 
1858 /*
1859  * bridge_ifdetach:
1860  *
1861  *	Detach an interface from a bridge.  Called when a member
1862  *	interface is detaching.
1863  */
1864 static void
1865 bridge_ifdetach(void *arg __unused, struct ifnet *ifp)
1866 {
1867 	struct netmsg_base msg;
1868 
1869 	netmsg_init(&msg, NULL, &curthread->td_msgport,
1870 		    0, bridge_ifdetach_dispatch);
1871 	msg.lmsg.u.ms_resultp = ifp;
1872 
1873 	lwkt_domsg(BRIDGE_CFGPORT, &msg.lmsg, 0);
1874 }
1875 
1876 /*
1877  * bridge_init:
1878  *
1879  *	Initialize a bridge interface.
1880  */
1881 static void
1882 bridge_init(void *xsc)
1883 {
1884 	bridge_control(xsc, SIOCSIFFLAGS, bridge_ioctl_init, NULL);
1885 }
1886 
1887 /*
1888  * bridge_stop:
1889  *
1890  *	Stop the bridge interface.
1891  */
1892 static void
1893 bridge_stop(struct ifnet *ifp)
1894 {
1895 	bridge_control(ifp->if_softc, SIOCSIFFLAGS, bridge_ioctl_stop, NULL);
1896 }
1897 
1898 /*
1899  * Returns TRUE if the packet is being sent 'from us'... from our bridge
1900  * interface or from any member of our bridge interface.  This is used
1901  * later on to force the MAC to be the MAC of our bridge interface.
1902  */
1903 static int
1904 bridge_from_us(struct bridge_softc *sc, struct ether_header *eh)
1905 {
1906 	struct bridge_iflist *bif;
1907 
1908 	if (memcmp(eh->ether_shost, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN) == 0)
1909 		return (1);
1910 
1911 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
1912 		if (memcmp(eh->ether_shost, IF_LLADDR(bif->bif_ifp),
1913 			   ETHER_ADDR_LEN) == 0) {
1914 			return (1);
1915 		}
1916 	}
1917 	return (0);
1918 }
1919 
1920 /*
1921  * bridge_enqueue:
1922  *
1923  *	Enqueue a packet on a bridge member interface.
1924  *
1925  */
1926 void
1927 bridge_enqueue(struct ifnet *dst_ifp, struct mbuf *m)
1928 {
1929 	struct netmsg_packet *nmp;
1930 
1931 	mbuftrackid(m, 64);
1932 
1933 	nmp = &m->m_hdr.mh_netmsg;
1934 	netmsg_init(&nmp->base, NULL, &netisr_apanic_rport,
1935 		    0, bridge_enqueue_handler);
1936 	nmp->nm_packet = m;
1937 	nmp->base.lmsg.u.ms_resultp = dst_ifp;
1938 
1939 	lwkt_sendmsg(ifnet_portfn(mycpu->gd_cpuid), &nmp->base.lmsg);
1940 }
1941 
1942 /*
1943  * After looking up dst_if in our forwarding table we still have to
1944  * deal with channel bonding.  Find the best interface in the bonding set.
1945  */
1946 static struct ifnet *
1947 bridge_select_unicast(struct bridge_softc *sc, struct ifnet *dst_if,
1948 		      int from_blocking, struct mbuf *m)
1949 {
1950 	struct bridge_iflist *bif, *nbif;
1951 	struct ifnet *alt_if;
1952 	int alt_priority;
1953 	int priority;
1954 
1955 	/*
1956 	 * Unicast, kinda replicates the output side of bridge_output().
1957 	 *
1958 	 * Even though this is a uni-cast packet we may have to select
1959 	 * an interface from a bonding set.
1960 	 */
1961 	bif = bridge_lookup_member_if(sc, dst_if);
1962 	if (bif == NULL) {
1963 		/* Not a member of the bridge (anymore?) */
1964 		return NULL;
1965 	}
1966 
1967 	/*
1968 	 * If STP is enabled on the target we are an equal opportunity
1969 	 * employer and do not necessarily output to dst_if.  Instead
1970 	 * scan available links with the same MAC as the current dst_if
1971 	 * and choose the best one.
1972 	 *
1973 	 * We also need to do this because arp entries tag onto a particular
1974 	 * interface and if it happens to be dead then the packets will
1975 	 * go into a bit bucket.
1976 	 *
1977 	 * If LINK2 is set the matching links are bonded and we-round robin.
1978 	 * (the MAC address must be the same for the participating links).
1979 	 * In this case links in a STP FORWARDING or BONDED state are
1980 	 * allowed for unicast packets.
1981 	 */
1982 	if (bif->bif_flags & IFBIF_STP) {
1983 		alt_if = NULL;
1984 		alt_priority = 0;
1985 		priority = 0;
1986 
1987 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
1988 				     bif_next, nbif) {
1989 			/*
1990 			 * dst_if may imply a bonding set so we must compare
1991 			 * MAC addresses.
1992 			 */
1993 			if (memcmp(IF_LLADDR(bif->bif_ifp),
1994 				   IF_LLADDR(dst_if),
1995 				   ETHER_ADDR_LEN) != 0) {
1996 				continue;
1997 			}
1998 
1999 			if ((bif->bif_ifp->if_flags & IFF_RUNNING) == 0)
2000 				continue;
2001 
2002 			/*
2003 			 * NOTE: We allow tranmissions through a BLOCKING
2004 			 *	 or LEARNING interface only as a last resort.
2005 			 *	 We DISALLOW both cases if the receiving
2006 			 *
2007 			 * NOTE: If we send a packet through a learning
2008 			 *	 interface the receiving end (if also in
2009 			 *	 LEARNING) will throw it away, so this is
2010 			 *	 the ultimate last resort.
2011 			 */
2012 			switch(bif->bif_state) {
2013 			case BSTP_IFSTATE_BLOCKING:
2014 				if (from_blocking == 0 &&
2015 				    bif->bif_priority + 256 > alt_priority) {
2016 					alt_priority = bif->bif_priority + 256;
2017 					alt_if = bif->bif_ifp;
2018 				}
2019 				continue;
2020 			case BSTP_IFSTATE_LEARNING:
2021 				if (from_blocking == 0 &&
2022 				    bif->bif_priority > alt_priority) {
2023 					alt_priority = bif->bif_priority;
2024 					alt_if = bif->bif_ifp;
2025 				}
2026 				continue;
2027 			case BSTP_IFSTATE_L1BLOCKING:
2028 			case BSTP_IFSTATE_LISTENING:
2029 			case BSTP_IFSTATE_DISABLED:
2030 				continue;
2031 			default:
2032 				/* FORWARDING, BONDED */
2033 				break;
2034 			}
2035 
2036 			/*
2037 			 * XXX we need to use the toepliz hash or
2038 			 *     something like that instead of
2039 			 *     round-robining.
2040 			 */
2041 			if (sc->sc_ifp->if_flags & IFF_LINK2) {
2042 				dst_if = bif->bif_ifp;
2043 				if (++bif->bif_bond_count >=
2044 				    bif->bif_bond_weight) {
2045 					bif->bif_bond_count = 0;
2046 					TAILQ_REMOVE(&sc->sc_iflists[mycpuid],
2047 						     bif, bif_next);
2048 					TAILQ_INSERT_TAIL(
2049 						     &sc->sc_iflists[mycpuid],
2050 						     bif, bif_next);
2051 				}
2052 				priority = 1;
2053 				break;
2054 			}
2055 
2056 			/*
2057 			 * Select best interface in the FORWARDING or
2058 			 * BONDED set.  Well, there shouldn't be any
2059 			 * in a BONDED state if LINK2 is not set (they
2060 			 * will all be in a BLOCKING) state, but there
2061 			 * could be a transitory condition here.
2062 			 */
2063 			if (bif->bif_priority > priority) {
2064 				priority = bif->bif_priority;
2065 				dst_if = bif->bif_ifp;
2066 			}
2067 		}
2068 
2069 		/*
2070 		 * If no suitable interfaces were found but a suitable
2071 		 * alternative interface was found, use the alternative
2072 		 * interface.
2073 		 */
2074 		if (priority == 0 && alt_if)
2075 			dst_if = alt_if;
2076 	}
2077 
2078 	/*
2079 	 * At this point, we're dealing with a unicast frame
2080 	 * going to a different interface.
2081 	 */
2082 	if ((dst_if->if_flags & IFF_RUNNING) == 0)
2083 		dst_if = NULL;
2084 	return (dst_if);
2085 }
2086 
2087 
2088 /*
2089  * bridge_output:
2090  *
2091  *	Send output from a bridge member interface.  This
2092  *	performs the bridging function for locally originated
2093  *	packets.
2094  *
2095  *	The mbuf has the Ethernet header already attached.  We must
2096  *	enqueue or free the mbuf before returning.
2097  */
2098 static int
2099 bridge_output(struct ifnet *ifp, struct mbuf *m)
2100 {
2101 	struct bridge_softc *sc = ifp->if_bridge;
2102 	struct bridge_iflist *bif, *nbif;
2103 	struct ether_header *eh;
2104 	struct ifnet *dst_if, *alt_if, *bifp;
2105 	int from_us;
2106 	int alt_priority;
2107 
2108 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2109 	mbuftrackid(m, 65);
2110 
2111 	/*
2112 	 * Make sure that we are still a member of a bridge interface.
2113 	 */
2114 	if (sc == NULL) {
2115 		m_freem(m);
2116 		return (0);
2117 	}
2118 	bifp = sc->sc_ifp;
2119 
2120 	/*
2121 	 * Acquire header
2122 	 */
2123 	if (m->m_len < ETHER_HDR_LEN) {
2124 		m = m_pullup(m, ETHER_HDR_LEN);
2125 		if (m == NULL) {
2126 			bifp->if_oerrors++;
2127 			return (0);
2128 		}
2129 	}
2130 	eh = mtod(m, struct ether_header *);
2131 	from_us = bridge_from_us(sc, eh);
2132 
2133 	/*
2134 	 * If bridge is down, but the original output interface is up,
2135 	 * go ahead and send out that interface.  Otherwise, the packet
2136 	 * is dropped below.
2137 	 */
2138 	if ((bifp->if_flags & IFF_RUNNING) == 0) {
2139 		dst_if = ifp;
2140 		goto sendunicast;
2141 	}
2142 
2143 	/*
2144 	 * If the packet is a multicast, or we don't know a better way to
2145 	 * get there, send to all interfaces.
2146 	 */
2147 	if (ETHER_IS_MULTICAST(eh->ether_dhost))
2148 		dst_if = NULL;
2149 	else
2150 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2151 
2152 	if (dst_if == NULL) {
2153 		struct mbuf *mc;
2154 		int used = 0;
2155 		int found = 0;
2156 
2157 		if (sc->sc_span)
2158 			bridge_span(sc, m);
2159 
2160 		alt_if = NULL;
2161 		alt_priority = 0;
2162 		TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid],
2163 				     bif_next, nbif) {
2164 			dst_if = bif->bif_ifp;
2165 
2166 			if ((dst_if->if_flags & IFF_RUNNING) == 0)
2167 				continue;
2168 
2169 			/*
2170 			 * If this is not the original output interface,
2171 			 * and the interface is participating in spanning
2172 			 * tree, make sure the port is in a state that
2173 			 * allows forwarding.
2174 			 *
2175 			 * We keep track of a possible backup IF if we are
2176 			 * unable to find any interfaces to forward through.
2177 			 *
2178 			 * NOTE: Currently round-robining is not implemented
2179 			 *	 across bonded interface groups (needs an
2180 			 *	 algorithm to track each group somehow).
2181 			 *
2182 			 *	 Similarly we track only one alternative
2183 			 *	 interface if no suitable interfaces are
2184 			 *	 found.
2185 			 */
2186 			if (dst_if != ifp &&
2187 			    (bif->bif_flags & IFBIF_STP) != 0) {
2188 				switch (bif->bif_state) {
2189 				case BSTP_IFSTATE_BONDED:
2190 					if (bif->bif_priority + 512 >
2191 					    alt_priority) {
2192 						alt_priority =
2193 						    bif->bif_priority + 512;
2194 						alt_if = bif->bif_ifp;
2195 					}
2196 					continue;
2197 				case BSTP_IFSTATE_BLOCKING:
2198 					if (bif->bif_priority + 256 >
2199 					    alt_priority) {
2200 						alt_priority =
2201 						    bif->bif_priority + 256;
2202 						alt_if = bif->bif_ifp;
2203 					}
2204 					continue;
2205 				case BSTP_IFSTATE_LEARNING:
2206 					if (bif->bif_priority > alt_priority) {
2207 						alt_priority =
2208 						    bif->bif_priority;
2209 						alt_if = bif->bif_ifp;
2210 					}
2211 					continue;
2212 				case BSTP_IFSTATE_L1BLOCKING:
2213 				case BSTP_IFSTATE_LISTENING:
2214 				case BSTP_IFSTATE_DISABLED:
2215 					continue;
2216 				default:
2217 					/* FORWARDING */
2218 					break;
2219 				}
2220 			}
2221 
2222 			KKASSERT(used == 0);
2223 			if (TAILQ_NEXT(bif, bif_next) == NULL) {
2224 				used = 1;
2225 				mc = m;
2226 			} else {
2227 				mc = m_copypacket(m, MB_DONTWAIT);
2228 				if (mc == NULL) {
2229 					bifp->if_oerrors++;
2230 					continue;
2231 				}
2232 			}
2233 
2234 			/*
2235 			 * If the packet is 'from' us override ether_shost.
2236 			 */
2237 			bridge_handoff(sc, dst_if, mc, from_us);
2238 			found = 1;
2239 
2240 			if (nbif != NULL && !nbif->bif_onlist) {
2241 				KKASSERT(bif->bif_onlist);
2242 				nbif = TAILQ_NEXT(bif, bif_next);
2243 			}
2244 		}
2245 
2246 		/*
2247 		 * If we couldn't find anything use the backup interface
2248 		 * if we have one.
2249 		 */
2250 		if (found == 0 && alt_if) {
2251 			KKASSERT(used == 0);
2252 			mc = m;
2253 			used = 1;
2254 			bridge_handoff(sc, alt_if, mc, from_us);
2255 		}
2256 
2257 		if (used == 0)
2258 			m_freem(m);
2259 		return (0);
2260 	}
2261 
2262 	/*
2263 	 * Unicast
2264 	 */
2265 sendunicast:
2266 	dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2267 
2268 	if (sc->sc_span)
2269 		bridge_span(sc, m);
2270 	if (dst_if == NULL)
2271 		m_freem(m);
2272 	else
2273 		bridge_handoff(sc, dst_if, m, from_us);
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Returns the bridge interface associated with an ifc.
2279  * Pass ifp->if_bridge (must not be NULL).  Used by the ARP
2280  * code to supply the bridge for the is-at info, making
2281  * the bridge responsible for matching local addresses.
2282  *
2283  * Without this the ARP code will supply bridge member interfaces
2284  * for the is-at which makes it difficult the bridge to fail-over
2285  * interfaces (amoung other things).
2286  */
2287 static struct ifnet *
2288 bridge_interface(void *if_bridge)
2289 {
2290 	struct bridge_softc *sc = if_bridge;
2291 	return (sc->sc_ifp);
2292 }
2293 
2294 /*
2295  * bridge_start:
2296  *
2297  *	Start output on a bridge.
2298  */
2299 static void
2300 bridge_start(struct ifnet *ifp)
2301 {
2302 	struct bridge_softc *sc = ifp->if_softc;
2303 
2304 	ASSERT_IFNET_SERIALIZED_TX(ifp);
2305 
2306 	ifp->if_flags |= IFF_OACTIVE;
2307 	for (;;) {
2308 		struct ifnet *dst_if = NULL;
2309 		struct ether_header *eh;
2310 		struct mbuf *m;
2311 
2312 		m = ifq_dequeue(&ifp->if_snd, NULL);
2313 		if (m == NULL)
2314 			break;
2315 		mbuftrackid(m, 75);
2316 
2317 		if (m->m_len < sizeof(*eh)) {
2318 			m = m_pullup(m, sizeof(*eh));
2319 			if (m == NULL) {
2320 				ifp->if_oerrors++;
2321 				continue;
2322 			}
2323 		}
2324 		eh = mtod(m, struct ether_header *);
2325 
2326 		BPF_MTAP(ifp, m);
2327 		ifp->if_opackets++;
2328 
2329 		if ((m->m_flags & (M_BCAST|M_MCAST)) == 0)
2330 			dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2331 
2332 		/*
2333 		 * Multicast or broadcast
2334 		 */
2335 		if (dst_if == NULL) {
2336 			bridge_start_bcast(sc, m);
2337 			continue;
2338 		}
2339 
2340 		/*
2341 		 * Unicast
2342 		 */
2343 		dst_if = bridge_select_unicast(sc, dst_if, 0, m);
2344 
2345 		if (dst_if == NULL)
2346 			m_freem(m);
2347 		else
2348 			bridge_enqueue(dst_if, m);
2349 	}
2350 	ifp->if_flags &= ~IFF_OACTIVE;
2351 }
2352 
2353 /*
2354  * bridge_forward:
2355  *
2356  *	Forward packets received on a bridge interface via the input
2357  *	path.
2358  *
2359  *	This implements the forwarding function of the bridge.
2360  */
2361 static void
2362 bridge_forward(struct bridge_softc *sc, struct mbuf *m)
2363 {
2364 	struct bridge_iflist *bif;
2365 	struct ifnet *src_if, *dst_if, *ifp;
2366 	struct ether_header *eh;
2367 	int from_blocking;
2368 
2369 	mbuftrackid(m, 66);
2370 	src_if = m->m_pkthdr.rcvif;
2371 	ifp = sc->sc_ifp;
2372 
2373 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2374 
2375 	ifp->if_ipackets++;
2376 	ifp->if_ibytes += m->m_pkthdr.len;
2377 
2378 	/*
2379 	 * Look up the bridge_iflist.
2380 	 */
2381 	bif = bridge_lookup_member_if(sc, src_if);
2382 	if (bif == NULL) {
2383 		/* Interface is not a bridge member (anymore?) */
2384 		m_freem(m);
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * In spanning tree mode receiving a packet from an interface
2390 	 * in a BLOCKING state is allowed, it could be a member of last
2391 	 * resort from the sender's point of view, but forwarding it is
2392 	 * not allowed.
2393 	 *
2394 	 * The sender's spanning tree will eventually sync up and the
2395 	 * sender will go into a BLOCKING state too (but this still may be
2396 	 * an interface of last resort during state changes).
2397 	 */
2398 	if (bif->bif_flags & IFBIF_STP) {
2399 		switch (bif->bif_state) {
2400 		case BSTP_IFSTATE_L1BLOCKING:
2401 		case BSTP_IFSTATE_LISTENING:
2402 		case BSTP_IFSTATE_DISABLED:
2403 			m_freem(m);
2404 			return;
2405 		default:
2406 			/* learning, blocking, bonded, forwarding */
2407 			break;
2408 		}
2409 	}
2410 	from_blocking = (bif->bif_state == BSTP_IFSTATE_BLOCKING);
2411 
2412 	eh = mtod(m, struct ether_header *);
2413 
2414 	/*
2415 	 * If the interface is learning, and the source
2416 	 * address is valid and not multicast, record
2417 	 * the address.
2418 	 */
2419 	if ((bif->bif_flags & IFBIF_LEARNING) != 0 &&
2420 	    from_blocking == 0 &&
2421 	    ETHER_IS_MULTICAST(eh->ether_shost) == 0 &&
2422 	    (eh->ether_shost[0] == 0 &&
2423 	     eh->ether_shost[1] == 0 &&
2424 	     eh->ether_shost[2] == 0 &&
2425 	     eh->ether_shost[3] == 0 &&
2426 	     eh->ether_shost[4] == 0 &&
2427 	     eh->ether_shost[5] == 0) == 0) {
2428 		bridge_rtupdate(sc, eh->ether_shost, src_if, IFBAF_DYNAMIC);
2429 	}
2430 
2431 	/*
2432 	 * Don't forward from an interface in the listening or learning
2433 	 * state.  That is, in the learning state we learn information
2434 	 * but we throw away the packets.
2435 	 *
2436 	 * We let through packets on interfaces in the blocking state.
2437 	 * The blocking state is applicable to the send side, not the
2438 	 * receive side.
2439 	 */
2440 	if ((bif->bif_flags & IFBIF_STP) != 0 &&
2441 	    (bif->bif_state == BSTP_IFSTATE_LISTENING ||
2442 	     bif->bif_state == BSTP_IFSTATE_LEARNING)) {
2443 		m_freem(m);
2444 		return;
2445 	}
2446 
2447 	/*
2448 	 * At this point, the port either doesn't participate
2449 	 * in spanning tree or it is in the forwarding state.
2450 	 */
2451 
2452 	/*
2453 	 * If the packet is unicast, destined for someone on
2454 	 * "this" side of the bridge, drop it.
2455 	 *
2456 	 * src_if implies the entire bonding set so we have to compare MAC
2457 	 * addresses and not just if pointers.
2458 	 */
2459 	if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) {
2460 		dst_if = bridge_rtlookup(sc, eh->ether_dhost);
2461 		if (dst_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
2462 				     ETHER_ADDR_LEN) == 0) {
2463 			m_freem(m);
2464 			return;
2465 		}
2466 	} else {
2467 		/* ...forward it to all interfaces. */
2468 		ifp->if_imcasts++;
2469 		dst_if = NULL;
2470 	}
2471 
2472 	/*
2473 	 * Brodcast if we do not have forwarding information.  However, if
2474 	 * we received the packet on a blocking interface we do not do this
2475 	 * (unless you really want to blow up your network).
2476 	 */
2477 	if (dst_if == NULL) {
2478 		if (from_blocking)
2479 			m_freem(m);
2480 		else
2481 			bridge_broadcast(sc, src_if, m);
2482 		return;
2483 	}
2484 
2485 	dst_if = bridge_select_unicast(sc, dst_if, from_blocking, m);
2486 
2487 	if (dst_if == NULL) {
2488 		m_freem(m);
2489 		return;
2490 	}
2491 
2492 	if (inet_pfil_hook.ph_hashooks > 0
2493 #ifdef INET6
2494 	    || inet6_pfil_hook.ph_hashooks > 0
2495 #endif
2496 	    ) {
2497 		if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0)
2498 			return;
2499 		if (m == NULL)
2500 			return;
2501 
2502 		if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0)
2503 			return;
2504 		if (m == NULL)
2505 			return;
2506 	}
2507 	bridge_handoff(sc, dst_if, m, 0);
2508 }
2509 
2510 /*
2511  * bridge_input:
2512  *
2513  *	Receive input from a member interface.  Queue the packet for
2514  *	bridging if it is not for us.
2515  */
2516 static struct mbuf *
2517 bridge_input(struct ifnet *ifp, struct mbuf *m)
2518 {
2519 	struct bridge_softc *sc = ifp->if_bridge;
2520 	struct bridge_iflist *bif;
2521 	struct ifnet *bifp, *new_ifp;
2522 	struct ether_header *eh;
2523 	struct mbuf *mc, *mc2;
2524 	int from_blocking;
2525 
2526 	ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
2527 	mbuftrackid(m, 67);
2528 
2529 	/*
2530 	 * Make sure that we are still a member of a bridge interface.
2531 	 */
2532 	if (sc == NULL)
2533 		return m;
2534 
2535 	new_ifp = NULL;
2536 	bifp = sc->sc_ifp;
2537 
2538 	if ((bifp->if_flags & IFF_RUNNING) == 0)
2539 		goto out;
2540 
2541 	/*
2542 	 * Implement support for bridge monitoring.  If this flag has been
2543 	 * set on this interface, discard the packet once we push it through
2544 	 * the bpf(4) machinery, but before we do, increment various counters
2545 	 * associated with this bridge.
2546 	 */
2547 	if (bifp->if_flags & IFF_MONITOR) {
2548 	 	/* Change input interface to this bridge */
2549 		m->m_pkthdr.rcvif = bifp;
2550 
2551 		BPF_MTAP(bifp, m);
2552 
2553 		/* Update bridge's ifnet statistics */
2554 		bifp->if_ipackets++;
2555 		bifp->if_ibytes += m->m_pkthdr.len;
2556 		if (m->m_flags & (M_MCAST | M_BCAST))
2557 			bifp->if_imcasts++;
2558 
2559 		m_freem(m);
2560 		m = NULL;
2561 		goto out;
2562 	}
2563 
2564 	/*
2565 	 * Handle the ether_header
2566 	 *
2567 	 * In all cases if the packet is destined for us via our MAC
2568 	 * we must clear BRIDGE_MBUF_TAGGED to ensure that we don't
2569 	 * repeat the source MAC out the same interface.
2570 	 *
2571 	 * This first test against our bridge MAC is the fast-path.
2572 	 *
2573 	 * NOTE!  The bridge interface can serve as an endpoint for
2574 	 *	  communication but normally there are no IPs associated
2575 	 *	  with it so you cannot route through it.  Instead what
2576 	 *	  you do is point your default route *THROUGH* the bridge
2577 	 *	  to the actual default router for one of the bridged spaces.
2578 	 *
2579 	 *	  Another possibility is to put all your IP specifications
2580 	 *	  on the bridge instead of on the individual interfaces.  If
2581 	 *	  you do this it should be possible to use the bridge as an
2582 	 *	  end point and route (rather than switch) through it using
2583 	 *	  the default route or ipfw forwarding rules.
2584 	 */
2585 
2586 	/*
2587 	 * Acquire header
2588 	 */
2589 	if (m->m_len < ETHER_HDR_LEN) {
2590 		m = m_pullup(m, ETHER_HDR_LEN);
2591 		if (m == NULL)
2592 			goto out;
2593 	}
2594 	eh = mtod(m, struct ether_header *);
2595 	m->m_pkthdr.fw_flags |= BRIDGE_MBUF_TAGGED;
2596 	bcopy(eh, &m->m_pkthdr.br.ether, sizeof(*eh));
2597 
2598 	if ((bridge_debug & 1) &&
2599 	    (ntohs(eh->ether_type) == ETHERTYPE_ARP ||
2600 	    ntohs(eh->ether_type) == ETHERTYPE_REVARP)) {
2601 		kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
2602 			"%02x:%02x:%02x:%02x:%02x:%02x type %04x "
2603 			"lla %02x:%02x:%02x:%02x:%02x:%02x\n",
2604 			eh->ether_dhost[0],
2605 			eh->ether_dhost[1],
2606 			eh->ether_dhost[2],
2607 			eh->ether_dhost[3],
2608 			eh->ether_dhost[4],
2609 			eh->ether_dhost[5],
2610 			eh->ether_shost[0],
2611 			eh->ether_shost[1],
2612 			eh->ether_shost[2],
2613 			eh->ether_shost[3],
2614 			eh->ether_shost[4],
2615 			eh->ether_shost[5],
2616 			eh->ether_type,
2617 			((u_char *)IF_LLADDR(bifp))[0],
2618 			((u_char *)IF_LLADDR(bifp))[1],
2619 			((u_char *)IF_LLADDR(bifp))[2],
2620 			((u_char *)IF_LLADDR(bifp))[3],
2621 			((u_char *)IF_LLADDR(bifp))[4],
2622 			((u_char *)IF_LLADDR(bifp))[5]
2623 		);
2624 	}
2625 
2626 	if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) {
2627 		/*
2628 		 * If the packet is for us, set the packets source as the
2629 		 * bridge, and return the packet back to ifnet.if_input for
2630 		 * local processing.
2631 		 */
2632 		m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2633 		KASSERT(bifp->if_bridge == NULL,
2634 			("loop created in bridge_input"));
2635 		if (pfil_member != 0) {
2636 			if (inet_pfil_hook.ph_hashooks > 0
2637 #ifdef INET6
2638 			    || inet6_pfil_hook.ph_hashooks > 0
2639 #endif
2640 			) {
2641 				if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0)
2642 					goto out;
2643 				if (m == NULL)
2644 					goto out;
2645 			}
2646 		}
2647 		new_ifp = bifp;
2648 		goto out;
2649 	}
2650 
2651 	/*
2652 	 * Tap all packets arriving on the bridge, no matter if
2653 	 * they are local destinations or not.  In is in.
2654 	 */
2655 	BPF_MTAP(bifp, m);
2656 
2657 	bif = bridge_lookup_member_if(sc, ifp);
2658 	if (bif == NULL)
2659 		goto out;
2660 
2661 	if (sc->sc_span)
2662 		bridge_span(sc, m);
2663 
2664 	if (m->m_flags & (M_BCAST | M_MCAST)) {
2665 		/*
2666 		 * Tap off 802.1D packets; they do not get forwarded.
2667 		 */
2668 		if (memcmp(eh->ether_dhost, bstp_etheraddr,
2669 			    ETHER_ADDR_LEN) == 0) {
2670 			ifnet_serialize_all(bifp);
2671 			bstp_input(sc, bif, m);
2672 			ifnet_deserialize_all(bifp);
2673 
2674 			/* m is freed by bstp_input */
2675 			m = NULL;
2676 			goto out;
2677 		}
2678 
2679 		/*
2680 		 * Other than 802.11d packets, ignore packets if the
2681 		 * interface is not in a good state.
2682 		 *
2683 		 * NOTE: Broadcast/mcast packets received on a blocking or
2684 		 *	 learning interface are allowed for local processing.
2685 		 *
2686 		 *	 The sending side of a blocked port will stop
2687 		 *	 transmitting when a better alternative is found.
2688 		 *	 However, later on we will disallow the forwarding
2689 		 *	 of bcast/mcsat packets over a blocking interface.
2690 		 */
2691 		if (bif->bif_flags & IFBIF_STP) {
2692 			switch (bif->bif_state) {
2693 			case BSTP_IFSTATE_L1BLOCKING:
2694 			case BSTP_IFSTATE_LISTENING:
2695 			case BSTP_IFSTATE_DISABLED:
2696 				goto out;
2697 			default:
2698 				/* blocking, learning, bonded, forwarding */
2699 				break;
2700 			}
2701 		}
2702 
2703 		/*
2704 		 * Make a deep copy of the packet and enqueue the copy
2705 		 * for bridge processing; return the original packet for
2706 		 * local processing.
2707 		 */
2708 		mc = m_dup(m, MB_DONTWAIT);
2709 		if (mc == NULL)
2710 			goto out;
2711 
2712 		/*
2713 		 * It's just too dangerous to allow bcast/mcast over a
2714 		 * blocked interface, eventually the network will sort
2715 		 * itself out and a better path will be found.
2716 		 */
2717 		if ((bif->bif_flags & IFBIF_STP) == 0 ||
2718 		    bif->bif_state != BSTP_IFSTATE_BLOCKING) {
2719 			bridge_forward(sc, mc);
2720 		}
2721 
2722 		/*
2723 		 * Reinject the mbuf as arriving on the bridge so we have a
2724 		 * chance at claiming multicast packets. We can not loop back
2725 		 * here from ether_input as a bridge is never a member of a
2726 		 * bridge.
2727 		 */
2728 		KASSERT(bifp->if_bridge == NULL,
2729 			("loop created in bridge_input"));
2730 		mc2 = m_dup(m, MB_DONTWAIT);
2731 #ifdef notyet
2732 		if (mc2 != NULL) {
2733 			/* Keep the layer3 header aligned */
2734 			int i = min(mc2->m_pkthdr.len, max_protohdr);
2735 			mc2 = m_copyup(mc2, i, ETHER_ALIGN);
2736 		}
2737 #endif
2738 		if (mc2 != NULL) {
2739 			/*
2740 			 * Don't tap to bpf(4) again; we have already done
2741 			 * the tapping.
2742 			 *
2743 			 * Leave m_pkthdr.rcvif alone, so ARP replies are
2744 			 * processed as coming in on the correct interface.
2745 			 *
2746 			 * Clear the bridge flag for local processing in
2747 			 * case the packet gets routed.
2748 			 */
2749 			mc2->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2750 			ether_reinput_oncpu(bifp, mc2, 0);
2751 		}
2752 
2753 		/* Return the original packet for local processing. */
2754 		goto out;
2755 	}
2756 
2757 	/*
2758 	 * Input of a unicast packet.  We have to allow unicast packets
2759 	 * input from links in the BLOCKING state as this might be an
2760 	 * interface of last resort.
2761 	 *
2762 	 * NOTE: We explicitly ignore normal packets received on a link
2763 	 *	 in the BLOCKING state.  The point of being in that state
2764 	 *	 is to avoid getting duplicate packets.
2765 	 *
2766 	 *	 HOWEVER, if LINK2 is set the normal spanning tree code
2767 	 *	 will mark an interface BLOCKING to avoid multi-cast/broadcast
2768 	 *	 loops.  Unicast packets CAN still loop if we allow the
2769 	 *	 case (hence we only do it in LINK2), but it isn't quite as
2770 	 *	 bad as a broadcast packet looping.
2771 	 */
2772 	from_blocking = 0;
2773 	if (bif->bif_flags & IFBIF_STP) {
2774 		switch (bif->bif_state) {
2775 		case BSTP_IFSTATE_L1BLOCKING:
2776 		case BSTP_IFSTATE_LISTENING:
2777 		case BSTP_IFSTATE_DISABLED:
2778 			goto out;
2779 		case BSTP_IFSTATE_BLOCKING:
2780 			from_blocking = 1;
2781 			/* fall through */
2782 		default:
2783 			/* blocking, bonded, forwarding, learning */
2784 			break;
2785 		}
2786 	}
2787 
2788 	/*
2789 	 * Unicast.  Make sure it's not for us.
2790 	 *
2791 	 * This loop is MPSAFE; the only blocking operation (bridge_rtupdate)
2792 	 * is followed by breaking out of the loop.
2793 	 */
2794 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2795 		if (bif->bif_ifp->if_type != IFT_ETHER)
2796 			continue;
2797 
2798 		/*
2799 		 * It is destined for an interface linked to the bridge.
2800 		 * We want the bridge itself to take care of link level
2801 		 * forwarding to member interfaces so reinput on the bridge.
2802 		 * i.e. if you ping an IP on a target interface associated
2803 		 * with the bridge, the arp is-at response should indicate
2804 		 * the bridge MAC.
2805 		 *
2806 		 * Only update our addr list when learning if the port
2807 		 * is not in a blocking state.  If it is we still allow
2808 		 * the packet but we do not try to learn from it.
2809 		 */
2810 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_dhost,
2811 			   ETHER_ADDR_LEN) == 0) {
2812 			if (bif->bif_ifp != ifp) {
2813 				/* XXX loop prevention */
2814 				m->m_flags |= M_ETHER_BRIDGED;
2815 			}
2816 			if ((bif->bif_flags & IFBIF_LEARNING) &&
2817 			    bif->bif_state != BSTP_IFSTATE_BLOCKING) {
2818 				bridge_rtupdate(sc, eh->ether_shost,
2819 						ifp, IFBAF_DYNAMIC);
2820 			}
2821 			new_ifp = bifp; /* not bif->bif_ifp */
2822 			m->m_pkthdr.fw_flags &= ~BRIDGE_MBUF_TAGGED;
2823 			goto out;
2824 		}
2825 
2826 		/*
2827 		 * Ignore received packets that were sent by us.
2828 		 */
2829 		if (memcmp(IF_LLADDR(bif->bif_ifp), eh->ether_shost,
2830 			   ETHER_ADDR_LEN) == 0) {
2831 			m_freem(m);
2832 			m = NULL;
2833 			goto out;
2834 		}
2835 	}
2836 
2837 	/*
2838 	 * It isn't for us.
2839 	 *
2840 	 * Perform the bridge forwarding function, but disallow bridging
2841 	 * to interfaces in the blocking state if the packet came in on
2842 	 * an interface in the blocking state.
2843 	 */
2844 	bridge_forward(sc, m);
2845 	m = NULL;
2846 
2847 	/*
2848 	 * ether_reinput_oncpu() will reprocess rcvif as
2849 	 * coming from new_ifp (since we do not specify
2850 	 * REINPUT_KEEPRCVIF).
2851 	 */
2852 out:
2853 	if (new_ifp != NULL) {
2854 		/*
2855 		 * Clear the bridge flag for local processing in
2856 		 * case the packet gets routed.
2857 		 */
2858 		ether_reinput_oncpu(new_ifp, m, REINPUT_RUNBPF);
2859 		m = NULL;
2860 	}
2861 	return (m);
2862 }
2863 
2864 /*
2865  * bridge_start_bcast:
2866  *
2867  *	Broadcast the packet sent from bridge to all member
2868  *	interfaces.
2869  *	This is a simplified version of bridge_broadcast(), however,
2870  *	this function expects caller to hold bridge's serializer.
2871  */
2872 static void
2873 bridge_start_bcast(struct bridge_softc *sc, struct mbuf *m)
2874 {
2875 	struct bridge_iflist *bif;
2876 	struct mbuf *mc;
2877 	struct ifnet *dst_if, *alt_if, *bifp;
2878 	int used = 0;
2879 	int found = 0;
2880 	int alt_priority;
2881 
2882 	mbuftrackid(m, 68);
2883 	bifp = sc->sc_ifp;
2884 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
2885 
2886 	/*
2887 	 * Following loop is MPSAFE; nothing is blocking
2888 	 * in the loop body.
2889 	 *
2890 	 * NOTE: We transmit through an member in the BLOCKING state only
2891 	 *	 as a last resort.
2892 	 */
2893 	alt_if = NULL;
2894 	alt_priority = 0;
2895 
2896 	TAILQ_FOREACH(bif, &sc->sc_iflists[mycpuid], bif_next) {
2897 		dst_if = bif->bif_ifp;
2898 
2899 		if (bif->bif_flags & IFBIF_STP) {
2900 			switch (bif->bif_state) {
2901 			case BSTP_IFSTATE_BLOCKING:
2902 				if (bif->bif_priority > alt_priority) {
2903 					alt_priority = bif->bif_priority;
2904 					alt_if = bif->bif_ifp;
2905 				}
2906 				/* fall through */
2907 			case BSTP_IFSTATE_L1BLOCKING:
2908 			case BSTP_IFSTATE_DISABLED:
2909 				continue;
2910 			default:
2911 				/* listening, learning, bonded, forwarding */
2912 				break;
2913 			}
2914 		}
2915 
2916 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
2917 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0)
2918 			continue;
2919 
2920 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
2921 			continue;
2922 
2923 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
2924 			mc = m;
2925 			used = 1;
2926 		} else {
2927 			mc = m_copypacket(m, MB_DONTWAIT);
2928 			if (mc == NULL) {
2929 				bifp->if_oerrors++;
2930 				continue;
2931 			}
2932 		}
2933 		found = 1;
2934 		bridge_enqueue(dst_if, mc);
2935 	}
2936 
2937 	if (found == 0 && alt_if) {
2938 		KKASSERT(used == 0);
2939 		mc = m;
2940 		used = 1;
2941 		bridge_enqueue(alt_if, mc);
2942 	}
2943 
2944 	if (used == 0)
2945 		m_freem(m);
2946 }
2947 
2948 /*
2949  * bridge_broadcast:
2950  *
2951  *	Send a frame to all interfaces that are members of
2952  *	the bridge, except for the one on which the packet
2953  *	arrived.
2954  */
2955 static void
2956 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if,
2957 		 struct mbuf *m)
2958 {
2959 	struct bridge_iflist *bif, *nbif;
2960 	struct ether_header *eh;
2961 	struct mbuf *mc;
2962 	struct ifnet *dst_if, *alt_if, *bifp;
2963 	int used;
2964 	int found;
2965 	int alt_priority;
2966 	int from_us;
2967 
2968 	mbuftrackid(m, 69);
2969 	bifp = sc->sc_ifp;
2970 	ASSERT_IFNET_NOT_SERIALIZED_ALL(bifp);
2971 
2972 	eh = mtod(m, struct ether_header *);
2973 	from_us = bridge_from_us(sc, eh);
2974 
2975 	if (inet_pfil_hook.ph_hashooks > 0
2976 #ifdef INET6
2977 	    || inet6_pfil_hook.ph_hashooks > 0
2978 #endif
2979 	    ) {
2980 		if (bridge_pfil(&m, bifp, src_if, PFIL_IN) != 0)
2981 			return;
2982 		if (m == NULL)
2983 			return;
2984 
2985 		/* Filter on the bridge interface before broadcasting */
2986 		if (bridge_pfil(&m, bifp, NULL, PFIL_OUT) != 0)
2987 			return;
2988 		if (m == NULL)
2989 			return;
2990 	}
2991 
2992 	alt_if = 0;
2993 	alt_priority = 0;
2994 	found = 0;
2995 	used = 0;
2996 
2997 	TAILQ_FOREACH_MUTABLE(bif, &sc->sc_iflists[mycpuid], bif_next, nbif) {
2998 		dst_if = bif->bif_ifp;
2999 
3000 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3001 			continue;
3002 
3003 		/*
3004 		 * Don't bounce the packet out the same interface it came
3005 		 * in on.  We have to test MAC addresses because a packet
3006 		 * can come in a bonded interface and we don't want it to
3007 		 * be echod out the forwarding interface for the same bonding
3008 		 * set.
3009 		 */
3010 		if (src_if && memcmp(IF_LLADDR(src_if), IF_LLADDR(dst_if),
3011 				     ETHER_ADDR_LEN) == 0) {
3012 			continue;
3013 		}
3014 
3015 		/*
3016 		 * Generally speaking we only broadcast through forwarding
3017 		 * interfaces.  If no interfaces are available we select
3018 		 * a BONDED, BLOCKING, or LEARNING interface to forward
3019 		 * through.
3020 		 */
3021 		if (bif->bif_flags & IFBIF_STP) {
3022 			switch (bif->bif_state) {
3023 			case BSTP_IFSTATE_BONDED:
3024 				if (bif->bif_priority + 512 > alt_priority) {
3025 					alt_priority = bif->bif_priority + 512;
3026 					alt_if = bif->bif_ifp;
3027 				}
3028 				continue;
3029 			case BSTP_IFSTATE_BLOCKING:
3030 				if (bif->bif_priority + 256 > alt_priority) {
3031 					alt_priority = bif->bif_priority + 256;
3032 					alt_if = bif->bif_ifp;
3033 				}
3034 				continue;
3035 			case BSTP_IFSTATE_LEARNING:
3036 				if (bif->bif_priority > alt_priority) {
3037 					alt_priority = bif->bif_priority;
3038 					alt_if = bif->bif_ifp;
3039 				}
3040 				continue;
3041 			case BSTP_IFSTATE_L1BLOCKING:
3042 			case BSTP_IFSTATE_DISABLED:
3043 			case BSTP_IFSTATE_LISTENING:
3044 				continue;
3045 			default:
3046 				/* forwarding */
3047 				break;
3048 			}
3049 		}
3050 
3051 		if ((bif->bif_flags & IFBIF_DISCOVER) == 0 &&
3052 		    (m->m_flags & (M_BCAST|M_MCAST)) == 0) {
3053 			continue;
3054 		}
3055 
3056 		if (TAILQ_NEXT(bif, bif_next) == NULL) {
3057 			mc = m;
3058 			used = 1;
3059 		} else {
3060 			mc = m_copypacket(m, MB_DONTWAIT);
3061 			if (mc == NULL) {
3062 				sc->sc_ifp->if_oerrors++;
3063 				continue;
3064 			}
3065 		}
3066 		found = 1;
3067 
3068 		/*
3069 		 * Filter on the output interface.  Pass a NULL bridge
3070 		 * interface pointer so we do not redundantly filter on
3071 		 * the bridge for each interface we broadcast on.
3072 		 */
3073 		if (inet_pfil_hook.ph_hashooks > 0
3074 #ifdef INET6
3075 		    || inet6_pfil_hook.ph_hashooks > 0
3076 #endif
3077 		    ) {
3078 			if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0)
3079 				continue;
3080 			if (mc == NULL)
3081 				continue;
3082 		}
3083 		bridge_handoff(sc, dst_if, mc, from_us);
3084 
3085 		if (nbif != NULL && !nbif->bif_onlist) {
3086 			KKASSERT(bif->bif_onlist);
3087 			nbif = TAILQ_NEXT(bif, bif_next);
3088 		}
3089 	}
3090 
3091 	if (found == 0 && alt_if) {
3092 		KKASSERT(used == 0);
3093 		mc = m;
3094 		used = 1;
3095 		bridge_enqueue(alt_if, mc);
3096 	}
3097 
3098 	if (used == 0)
3099 		m_freem(m);
3100 }
3101 
3102 /*
3103  * bridge_span:
3104  *
3105  *	Duplicate a packet out one or more interfaces that are in span mode,
3106  *	the original mbuf is unmodified.
3107  */
3108 static void
3109 bridge_span(struct bridge_softc *sc, struct mbuf *m)
3110 {
3111 	struct bridge_iflist *bif;
3112 	struct ifnet *dst_if, *bifp;
3113 	struct mbuf *mc;
3114 
3115 	mbuftrackid(m, 70);
3116 	bifp = sc->sc_ifp;
3117 	ifnet_serialize_all(bifp);
3118 
3119 	TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) {
3120 		dst_if = bif->bif_ifp;
3121 
3122 		if ((dst_if->if_flags & IFF_RUNNING) == 0)
3123 			continue;
3124 
3125 		mc = m_copypacket(m, MB_DONTWAIT);
3126 		if (mc == NULL) {
3127 			sc->sc_ifp->if_oerrors++;
3128 			continue;
3129 		}
3130 		bridge_enqueue(dst_if, mc);
3131 	}
3132 
3133 	ifnet_deserialize_all(bifp);
3134 }
3135 
3136 static void
3137 bridge_rtmsg_sync_handler(netmsg_t msg)
3138 {
3139 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3140 }
3141 
3142 static void
3143 bridge_rtmsg_sync(struct bridge_softc *sc)
3144 {
3145 	struct netmsg_base msg;
3146 
3147 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3148 
3149 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3150 		    0, bridge_rtmsg_sync_handler);
3151 	ifnet_domsg(&msg.lmsg, 0);
3152 }
3153 
3154 static __inline void
3155 bridge_rtinfo_update(struct bridge_rtinfo *bri, struct ifnet *dst_if,
3156 		     int setflags, uint8_t flags, uint32_t timeo)
3157 {
3158 	if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3159 	    bri->bri_ifp != dst_if)
3160 		bri->bri_ifp = dst_if;
3161 	if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3162 	    bri->bri_expire != time_second + timeo)
3163 		bri->bri_expire = time_second + timeo;
3164 	if (setflags)
3165 		bri->bri_flags = flags;
3166 }
3167 
3168 static int
3169 bridge_rtinstall_oncpu(struct bridge_softc *sc, const uint8_t *dst,
3170 		       struct ifnet *dst_if, int setflags, uint8_t flags,
3171 		       struct bridge_rtinfo **bri0)
3172 {
3173 	struct bridge_rtnode *brt;
3174 	struct bridge_rtinfo *bri;
3175 
3176 	if (mycpuid == 0) {
3177 		brt = bridge_rtnode_lookup(sc, dst);
3178 		if (brt != NULL) {
3179 			/*
3180 			 * rtnode for 'dst' already exists.  We inform the
3181 			 * caller about this by leaving bri0 as NULL.  The
3182 			 * caller will terminate the intallation upon getting
3183 			 * NULL bri0.  However, we still need to update the
3184 			 * rtinfo.
3185 			 */
3186 			KKASSERT(*bri0 == NULL);
3187 
3188 			/* Update rtinfo */
3189 			bridge_rtinfo_update(brt->brt_info, dst_if, setflags,
3190 					     flags, sc->sc_brttimeout);
3191 			return 0;
3192 		}
3193 
3194 		/*
3195 		 * We only need to check brtcnt on CPU0, since if limit
3196 		 * is to be exceeded, ENOSPC is returned.  Caller knows
3197 		 * this and will terminate the installation.
3198 		 */
3199 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3200 			return ENOSPC;
3201 
3202 		KKASSERT(*bri0 == NULL);
3203 		bri = kmalloc(sizeof(struct bridge_rtinfo), M_DEVBUF,
3204 				  M_WAITOK | M_ZERO);
3205 		*bri0 = bri;
3206 
3207 		/* Setup rtinfo */
3208 		bri->bri_flags = IFBAF_DYNAMIC;
3209 		bridge_rtinfo_update(bri, dst_if, setflags, flags,
3210 				     sc->sc_brttimeout);
3211 	} else {
3212 		bri = *bri0;
3213 		KKASSERT(bri != NULL);
3214 	}
3215 
3216 	brt = kmalloc(sizeof(struct bridge_rtnode), M_DEVBUF,
3217 		      M_WAITOK | M_ZERO);
3218 	memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN);
3219 	brt->brt_info = bri;
3220 
3221 	bridge_rtnode_insert(sc, brt);
3222 	return 0;
3223 }
3224 
3225 static void
3226 bridge_rtinstall_handler(netmsg_t msg)
3227 {
3228 	struct netmsg_brsaddr *brmsg = (struct netmsg_brsaddr *)msg;
3229 	int error;
3230 
3231 	error = bridge_rtinstall_oncpu(brmsg->br_softc,
3232 				       brmsg->br_dst, brmsg->br_dst_if,
3233 				       brmsg->br_setflags, brmsg->br_flags,
3234 				       &brmsg->br_rtinfo);
3235 	if (error) {
3236 		KKASSERT(mycpuid == 0 && brmsg->br_rtinfo == NULL);
3237 		lwkt_replymsg(&brmsg->base.lmsg, error);
3238 		return;
3239 	} else if (brmsg->br_rtinfo == NULL) {
3240 		/* rtnode already exists for 'dst' */
3241 		KKASSERT(mycpuid == 0);
3242 		lwkt_replymsg(&brmsg->base.lmsg, 0);
3243 		return;
3244 	}
3245 	ifnet_forwardmsg(&brmsg->base.lmsg, mycpuid + 1);
3246 }
3247 
3248 /*
3249  * bridge_rtupdate:
3250  *
3251  *	Add/Update a bridge routing entry.
3252  */
3253 static int
3254 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst,
3255 		struct ifnet *dst_if, uint8_t flags)
3256 {
3257 	struct bridge_rtnode *brt;
3258 
3259 	/*
3260 	 * A route for this destination might already exist.  If so,
3261 	 * update it, otherwise create a new one.
3262 	 */
3263 	if ((brt = bridge_rtnode_lookup(sc, dst)) == NULL) {
3264 		struct netmsg_brsaddr *brmsg;
3265 
3266 		if (sc->sc_brtcnt >= sc->sc_brtmax)
3267 			return ENOSPC;
3268 
3269 		brmsg = kmalloc(sizeof(*brmsg), M_LWKTMSG, M_WAITOK | M_NULLOK);
3270 		if (brmsg == NULL)
3271 			return ENOMEM;
3272 
3273 		netmsg_init(&brmsg->base, NULL, &netisr_afree_rport,
3274 			    0, bridge_rtinstall_handler);
3275 		memcpy(brmsg->br_dst, dst, ETHER_ADDR_LEN);
3276 		brmsg->br_dst_if = dst_if;
3277 		brmsg->br_flags = flags;
3278 		brmsg->br_setflags = 0;
3279 		brmsg->br_softc = sc;
3280 		brmsg->br_rtinfo = NULL;
3281 
3282 		ifnet_sendmsg(&brmsg->base.lmsg, 0);
3283 		return 0;
3284 	}
3285 	bridge_rtinfo_update(brt->brt_info, dst_if, 0, flags,
3286 			     sc->sc_brttimeout);
3287 	return 0;
3288 }
3289 
3290 static int
3291 bridge_rtsaddr(struct bridge_softc *sc, const uint8_t *dst,
3292 	       struct ifnet *dst_if, uint8_t flags)
3293 {
3294 	struct netmsg_brsaddr brmsg;
3295 
3296 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3297 
3298 	netmsg_init(&brmsg.base, NULL, &curthread->td_msgport,
3299 		    0, bridge_rtinstall_handler);
3300 	memcpy(brmsg.br_dst, dst, ETHER_ADDR_LEN);
3301 	brmsg.br_dst_if = dst_if;
3302 	brmsg.br_flags = flags;
3303 	brmsg.br_setflags = 1;
3304 	brmsg.br_softc = sc;
3305 	brmsg.br_rtinfo = NULL;
3306 
3307 	return ifnet_domsg(&brmsg.base.lmsg, 0);
3308 }
3309 
3310 /*
3311  * bridge_rtlookup:
3312  *
3313  *	Lookup the destination interface for an address.
3314  */
3315 static struct ifnet *
3316 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr)
3317 {
3318 	struct bridge_rtnode *brt;
3319 
3320 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3321 		return NULL;
3322 	return brt->brt_info->bri_ifp;
3323 }
3324 
3325 static void
3326 bridge_rtreap_handler(netmsg_t msg)
3327 {
3328 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3329 	struct bridge_rtnode *brt, *nbrt;
3330 
3331 	LIST_FOREACH_MUTABLE(brt, &sc->sc_rtlists[mycpuid], brt_list, nbrt) {
3332 		if (brt->brt_info->bri_dead)
3333 			bridge_rtnode_destroy(sc, brt);
3334 	}
3335 	ifnet_forwardmsg(&msg->lmsg, mycpuid + 1);
3336 }
3337 
3338 static void
3339 bridge_rtreap(struct bridge_softc *sc)
3340 {
3341 	struct netmsg_base msg;
3342 
3343 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3344 
3345 	netmsg_init(&msg, NULL, &curthread->td_msgport,
3346 		    0, bridge_rtreap_handler);
3347 	msg.lmsg.u.ms_resultp = sc;
3348 
3349 	ifnet_domsg(&msg.lmsg, 0);
3350 }
3351 
3352 static void
3353 bridge_rtreap_async(struct bridge_softc *sc)
3354 {
3355 	struct netmsg_base *msg;
3356 
3357 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK);
3358 
3359 	netmsg_init(msg, NULL, &netisr_afree_rport,
3360 		    0, bridge_rtreap_handler);
3361 	msg->lmsg.u.ms_resultp = sc;
3362 
3363 	ifnet_sendmsg(&msg->lmsg, 0);
3364 }
3365 
3366 /*
3367  * bridge_rttrim:
3368  *
3369  *	Trim the routine table so that we have a number
3370  *	of routing entries less than or equal to the
3371  *	maximum number.
3372  */
3373 static void
3374 bridge_rttrim(struct bridge_softc *sc)
3375 {
3376 	struct bridge_rtnode *brt;
3377 	int dead;
3378 
3379 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3380 
3381 	/* Make sure we actually need to do this. */
3382 	if (sc->sc_brtcnt <= sc->sc_brtmax)
3383 		return;
3384 
3385 	/*
3386 	 * Find out how many rtnodes are dead
3387 	 */
3388 	dead = bridge_rtage_finddead(sc);
3389 	KKASSERT(dead <= sc->sc_brtcnt);
3390 
3391 	if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3392 		/* Enough dead rtnodes are found */
3393 		bridge_rtreap(sc);
3394 		return;
3395 	}
3396 
3397 	/*
3398 	 * Kill some dynamic rtnodes to meet the brtmax
3399 	 */
3400 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3401 		struct bridge_rtinfo *bri = brt->brt_info;
3402 
3403 		if (bri->bri_dead) {
3404 			/*
3405 			 * We have counted this rtnode in
3406 			 * bridge_rtage_finddead()
3407 			 */
3408 			continue;
3409 		}
3410 
3411 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3412 			bri->bri_dead = 1;
3413 			++dead;
3414 			KKASSERT(dead <= sc->sc_brtcnt);
3415 
3416 			if (sc->sc_brtcnt - dead <= sc->sc_brtmax) {
3417 				/* Enough rtnodes are collected */
3418 				break;
3419 			}
3420 		}
3421 	}
3422 	if (dead)
3423 		bridge_rtreap(sc);
3424 }
3425 
3426 /*
3427  * bridge_timer:
3428  *
3429  *	Aging timer for the bridge.
3430  */
3431 static void
3432 bridge_timer(void *arg)
3433 {
3434 	struct bridge_softc *sc = arg;
3435 	struct netmsg_base *msg;
3436 
3437 	KKASSERT(mycpuid == BRIDGE_CFGCPU);
3438 
3439 	crit_enter();
3440 
3441 	if (callout_pending(&sc->sc_brcallout) ||
3442 	    !callout_active(&sc->sc_brcallout)) {
3443 		crit_exit();
3444 		return;
3445 	}
3446 	callout_deactivate(&sc->sc_brcallout);
3447 
3448 	msg = &sc->sc_brtimemsg;
3449 	KKASSERT(msg->lmsg.ms_flags & MSGF_DONE);
3450 	lwkt_sendmsg(BRIDGE_CFGPORT, &msg->lmsg);
3451 
3452 	crit_exit();
3453 }
3454 
3455 static void
3456 bridge_timer_handler(netmsg_t msg)
3457 {
3458 	struct bridge_softc *sc = msg->lmsg.u.ms_resultp;
3459 
3460 	KKASSERT(&curthread->td_msgport == BRIDGE_CFGPORT);
3461 
3462 	crit_enter();
3463 	/* Reply ASAP */
3464 	lwkt_replymsg(&msg->lmsg, 0);
3465 	crit_exit();
3466 
3467 	bridge_rtage(sc);
3468 	if (sc->sc_ifp->if_flags & IFF_RUNNING) {
3469 		callout_reset(&sc->sc_brcallout,
3470 		    bridge_rtable_prune_period * hz, bridge_timer, sc);
3471 	}
3472 }
3473 
3474 static int
3475 bridge_rtage_finddead(struct bridge_softc *sc)
3476 {
3477 	struct bridge_rtnode *brt;
3478 	int dead = 0;
3479 
3480 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3481 		struct bridge_rtinfo *bri = brt->brt_info;
3482 
3483 		if ((bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC &&
3484 		    time_second >= bri->bri_expire) {
3485 			bri->bri_dead = 1;
3486 			++dead;
3487 			KKASSERT(dead <= sc->sc_brtcnt);
3488 		}
3489 	}
3490 	return dead;
3491 }
3492 
3493 /*
3494  * bridge_rtage:
3495  *
3496  *	Perform an aging cycle.
3497  */
3498 static void
3499 bridge_rtage(struct bridge_softc *sc)
3500 {
3501 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3502 
3503 	if (bridge_rtage_finddead(sc))
3504 		bridge_rtreap(sc);
3505 }
3506 
3507 /*
3508  * bridge_rtflush:
3509  *
3510  *	Remove all dynamic addresses from the bridge.
3511  */
3512 static void
3513 bridge_rtflush(struct bridge_softc *sc, int bf)
3514 {
3515 	struct bridge_rtnode *brt;
3516 	int reap;
3517 
3518 	reap = 0;
3519 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3520 		struct bridge_rtinfo *bri = brt->brt_info;
3521 
3522 		if ((bf & IFBF_FLUSHALL) ||
3523 		    (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) {
3524 			bri->bri_dead = 1;
3525 			reap = 1;
3526 		}
3527 	}
3528 	if (reap) {
3529 		if (bf & IFBF_FLUSHSYNC)
3530 			bridge_rtreap(sc);
3531 		else
3532 			bridge_rtreap_async(sc);
3533 	}
3534 }
3535 
3536 /*
3537  * bridge_rtdaddr:
3538  *
3539  *	Remove an address from the table.
3540  */
3541 static int
3542 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr)
3543 {
3544 	struct bridge_rtnode *brt;
3545 
3546 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
3547 
3548 	if ((brt = bridge_rtnode_lookup(sc, addr)) == NULL)
3549 		return (ENOENT);
3550 
3551 	/* TODO: add a cheaper delete operation */
3552 	brt->brt_info->bri_dead = 1;
3553 	bridge_rtreap(sc);
3554 	return (0);
3555 }
3556 
3557 /*
3558  * bridge_rtdelete:
3559  *
3560  *	Delete routes to a speicifc member interface.
3561  */
3562 void
3563 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int bf)
3564 {
3565 	struct bridge_rtnode *brt;
3566 	int reap;
3567 
3568 	reap = 0;
3569 	LIST_FOREACH(brt, &sc->sc_rtlists[mycpuid], brt_list) {
3570 		struct bridge_rtinfo *bri = brt->brt_info;
3571 
3572 		if (bri->bri_ifp == ifp &&
3573 		    ((bf & IFBF_FLUSHALL) ||
3574 		     (bri->bri_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) {
3575 			bri->bri_dead = 1;
3576 			reap = 1;
3577 		}
3578 	}
3579 	if (reap) {
3580 		if (bf & IFBF_FLUSHSYNC)
3581 			bridge_rtreap(sc);
3582 		else
3583 			bridge_rtreap_async(sc);
3584 	}
3585 }
3586 
3587 /*
3588  * bridge_rtable_init:
3589  *
3590  *	Initialize the route table for this bridge.
3591  */
3592 static void
3593 bridge_rtable_init(struct bridge_softc *sc)
3594 {
3595 	int cpu;
3596 
3597 	/*
3598 	 * Initialize per-cpu hash tables
3599 	 */
3600 	sc->sc_rthashs = kmalloc(sizeof(*sc->sc_rthashs) * ncpus,
3601 				 M_DEVBUF, M_WAITOK);
3602 	for (cpu = 0; cpu < ncpus; ++cpu) {
3603 		int i;
3604 
3605 		sc->sc_rthashs[cpu] =
3606 		kmalloc(sizeof(struct bridge_rtnode_head) * BRIDGE_RTHASH_SIZE,
3607 			M_DEVBUF, M_WAITOK);
3608 
3609 		for (i = 0; i < BRIDGE_RTHASH_SIZE; i++)
3610 			LIST_INIT(&sc->sc_rthashs[cpu][i]);
3611 	}
3612 	sc->sc_rthash_key = karc4random();
3613 
3614 	/*
3615 	 * Initialize per-cpu lists
3616 	 */
3617 	sc->sc_rtlists = kmalloc(sizeof(struct bridge_rtnode_head) * ncpus,
3618 				 M_DEVBUF, M_WAITOK);
3619 	for (cpu = 0; cpu < ncpus; ++cpu)
3620 		LIST_INIT(&sc->sc_rtlists[cpu]);
3621 }
3622 
3623 /*
3624  * bridge_rtable_fini:
3625  *
3626  *	Deconstruct the route table for this bridge.
3627  */
3628 static void
3629 bridge_rtable_fini(struct bridge_softc *sc)
3630 {
3631 	int cpu;
3632 
3633 	/*
3634 	 * Free per-cpu hash tables
3635 	 */
3636 	for (cpu = 0; cpu < ncpus; ++cpu)
3637 		kfree(sc->sc_rthashs[cpu], M_DEVBUF);
3638 	kfree(sc->sc_rthashs, M_DEVBUF);
3639 
3640 	/*
3641 	 * Free per-cpu lists
3642 	 */
3643 	kfree(sc->sc_rtlists, M_DEVBUF);
3644 }
3645 
3646 /*
3647  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
3648  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
3649  */
3650 #define	mix(a, b, c)							\
3651 do {									\
3652 	a -= b; a -= c; a ^= (c >> 13);					\
3653 	b -= c; b -= a; b ^= (a << 8);					\
3654 	c -= a; c -= b; c ^= (b >> 13);					\
3655 	a -= b; a -= c; a ^= (c >> 12);					\
3656 	b -= c; b -= a; b ^= (a << 16);					\
3657 	c -= a; c -= b; c ^= (b >> 5);					\
3658 	a -= b; a -= c; a ^= (c >> 3);					\
3659 	b -= c; b -= a; b ^= (a << 10);					\
3660 	c -= a; c -= b; c ^= (b >> 15);					\
3661 } while (/*CONSTCOND*/0)
3662 
3663 static __inline uint32_t
3664 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr)
3665 {
3666 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key;
3667 
3668 	b += addr[5] << 8;
3669 	b += addr[4];
3670 	a += addr[3] << 24;
3671 	a += addr[2] << 16;
3672 	a += addr[1] << 8;
3673 	a += addr[0];
3674 
3675 	mix(a, b, c);
3676 
3677 	return (c & BRIDGE_RTHASH_MASK);
3678 }
3679 
3680 #undef mix
3681 
3682 static int
3683 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b)
3684 {
3685 	int i, d;
3686 
3687 	for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) {
3688 		d = ((int)a[i]) - ((int)b[i]);
3689 	}
3690 
3691 	return (d);
3692 }
3693 
3694 /*
3695  * bridge_rtnode_lookup:
3696  *
3697  *	Look up a bridge route node for the specified destination.
3698  */
3699 static struct bridge_rtnode *
3700 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr)
3701 {
3702 	struct bridge_rtnode *brt;
3703 	uint32_t hash;
3704 	int dir;
3705 
3706 	hash = bridge_rthash(sc, addr);
3707 	LIST_FOREACH(brt, &sc->sc_rthashs[mycpuid][hash], brt_hash) {
3708 		dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr);
3709 		if (dir == 0)
3710 			return (brt);
3711 		if (dir > 0)
3712 			return (NULL);
3713 	}
3714 
3715 	return (NULL);
3716 }
3717 
3718 /*
3719  * bridge_rtnode_insert:
3720  *
3721  *	Insert the specified bridge node into the route table.
3722  *	Caller has to make sure that rtnode does not exist.
3723  */
3724 static void
3725 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt)
3726 {
3727 	struct bridge_rtnode *lbrt;
3728 	uint32_t hash;
3729 	int dir;
3730 
3731 	hash = bridge_rthash(sc, brt->brt_addr);
3732 
3733 	lbrt = LIST_FIRST(&sc->sc_rthashs[mycpuid][hash]);
3734 	if (lbrt == NULL) {
3735 		LIST_INSERT_HEAD(&sc->sc_rthashs[mycpuid][hash],
3736 				  brt, brt_hash);
3737 		goto out;
3738 	}
3739 
3740 	do {
3741 		dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr);
3742 		KASSERT(dir != 0, ("rtnode already exist\n"));
3743 
3744 		if (dir > 0) {
3745 			LIST_INSERT_BEFORE(lbrt, brt, brt_hash);
3746 			goto out;
3747 		}
3748 		if (LIST_NEXT(lbrt, brt_hash) == NULL) {
3749 			LIST_INSERT_AFTER(lbrt, brt, brt_hash);
3750 			goto out;
3751 		}
3752 		lbrt = LIST_NEXT(lbrt, brt_hash);
3753 	} while (lbrt != NULL);
3754 
3755 	panic("no suitable position found for rtnode\n");
3756 out:
3757 	LIST_INSERT_HEAD(&sc->sc_rtlists[mycpuid], brt, brt_list);
3758 	if (mycpuid == 0) {
3759 		/*
3760 		 * Update the brtcnt.
3761 		 * We only need to do it once and we do it on CPU0.
3762 		 */
3763 		sc->sc_brtcnt++;
3764 	}
3765 }
3766 
3767 /*
3768  * bridge_rtnode_destroy:
3769  *
3770  *	Destroy a bridge rtnode.
3771  */
3772 static void
3773 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt)
3774 {
3775 	LIST_REMOVE(brt, brt_hash);
3776 	LIST_REMOVE(brt, brt_list);
3777 
3778 	if (mycpuid + 1 == ncpus) {
3779 		/* Free rtinfo associated with rtnode on the last cpu */
3780 		kfree(brt->brt_info, M_DEVBUF);
3781 	}
3782 	kfree(brt, M_DEVBUF);
3783 
3784 	if (mycpuid == 0) {
3785 		/* Update brtcnt only on CPU0 */
3786 		sc->sc_brtcnt--;
3787 	}
3788 }
3789 
3790 static __inline int
3791 bridge_post_pfil(struct mbuf *m)
3792 {
3793 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED)
3794 		return EOPNOTSUPP;
3795 
3796 	/* Not yet */
3797 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED)
3798 		return EOPNOTSUPP;
3799 
3800 	return 0;
3801 }
3802 
3803 /*
3804  * Send bridge packets through pfil if they are one of the types pfil can deal
3805  * with, or if they are ARP or REVARP.  (pfil will pass ARP and REVARP without
3806  * question.) If *bifp or *ifp are NULL then packet filtering is skipped for
3807  * that interface.
3808  */
3809 static int
3810 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir)
3811 {
3812 	int snap, error, i, hlen;
3813 	struct ether_header *eh1, eh2;
3814 	struct ip *ip;
3815 	struct llc llc1;
3816 	u_int16_t ether_type;
3817 
3818 	snap = 0;
3819 	error = -1;	/* Default error if not error == 0 */
3820 
3821 	if (pfil_bridge == 0 && pfil_member == 0)
3822 		return (0); /* filtering is disabled */
3823 
3824 	i = min((*mp)->m_pkthdr.len, max_protohdr);
3825 	if ((*mp)->m_len < i) {
3826 		*mp = m_pullup(*mp, i);
3827 		if (*mp == NULL) {
3828 			kprintf("%s: m_pullup failed\n", __func__);
3829 			return (-1);
3830 		}
3831 	}
3832 
3833 	eh1 = mtod(*mp, struct ether_header *);
3834 	ether_type = ntohs(eh1->ether_type);
3835 
3836 	/*
3837 	 * Check for SNAP/LLC.
3838 	 */
3839 	if (ether_type < ETHERMTU) {
3840 		struct llc *llc2 = (struct llc *)(eh1 + 1);
3841 
3842 		if ((*mp)->m_len >= ETHER_HDR_LEN + 8 &&
3843 		    llc2->llc_dsap == LLC_SNAP_LSAP &&
3844 		    llc2->llc_ssap == LLC_SNAP_LSAP &&
3845 		    llc2->llc_control == LLC_UI) {
3846 			ether_type = htons(llc2->llc_un.type_snap.ether_type);
3847 			snap = 1;
3848 		}
3849 	}
3850 
3851 	/*
3852 	 * If we're trying to filter bridge traffic, don't look at anything
3853 	 * other than IP and ARP traffic.  If the filter doesn't understand
3854 	 * IPv6, don't allow IPv6 through the bridge either.  This is lame
3855 	 * since if we really wanted, say, an AppleTalk filter, we are hosed,
3856 	 * but of course we don't have an AppleTalk filter to begin with.
3857 	 * (Note that since pfil doesn't understand ARP it will pass *ALL*
3858 	 * ARP traffic.)
3859 	 */
3860 	switch (ether_type) {
3861 	case ETHERTYPE_ARP:
3862 	case ETHERTYPE_REVARP:
3863 		return (0); /* Automatically pass */
3864 
3865 	case ETHERTYPE_IP:
3866 #ifdef INET6
3867 	case ETHERTYPE_IPV6:
3868 #endif /* INET6 */
3869 		break;
3870 
3871 	default:
3872 		/*
3873 		 * Check to see if the user wants to pass non-ip
3874 		 * packets, these will not be checked by pfil(9)
3875 		 * and passed unconditionally so the default is to drop.
3876 		 */
3877 		if (pfil_onlyip)
3878 			goto bad;
3879 	}
3880 
3881 	/* Strip off the Ethernet header and keep a copy. */
3882 	m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2);
3883 	m_adj(*mp, ETHER_HDR_LEN);
3884 
3885 	/* Strip off snap header, if present */
3886 	if (snap) {
3887 		m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1);
3888 		m_adj(*mp, sizeof(struct llc));
3889 	}
3890 
3891 	/*
3892 	 * Check the IP header for alignment and errors
3893 	 */
3894 	if (dir == PFIL_IN) {
3895 		switch (ether_type) {
3896 		case ETHERTYPE_IP:
3897 			error = bridge_ip_checkbasic(mp);
3898 			break;
3899 #ifdef INET6
3900 		case ETHERTYPE_IPV6:
3901 			error = bridge_ip6_checkbasic(mp);
3902 			break;
3903 #endif /* INET6 */
3904 		default:
3905 			error = 0;
3906 		}
3907 		if (error)
3908 			goto bad;
3909 	}
3910 
3911 	error = 0;
3912 
3913 	/*
3914 	 * Run the packet through pfil
3915 	 */
3916 	switch (ether_type) {
3917 	case ETHERTYPE_IP:
3918 		/*
3919 		 * before calling the firewall, swap fields the same as
3920 		 * IP does. here we assume the header is contiguous
3921 		 */
3922 		ip = mtod(*mp, struct ip *);
3923 
3924 		ip->ip_len = ntohs(ip->ip_len);
3925 		ip->ip_off = ntohs(ip->ip_off);
3926 
3927 		/*
3928 		 * Run pfil on the member interface and the bridge, both can
3929 		 * be skipped by clearing pfil_member or pfil_bridge.
3930 		 *
3931 		 * Keep the order:
3932 		 *   in_if -> bridge_if -> out_if
3933 		 */
3934 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) {
3935 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3936 			if (*mp == NULL || error != 0) /* filter may consume */
3937 				break;
3938 			error = bridge_post_pfil(*mp);
3939 			if (error)
3940 				break;
3941 		}
3942 
3943 		if (pfil_member && ifp != NULL) {
3944 			error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir);
3945 			if (*mp == NULL || error != 0) /* filter may consume */
3946 				break;
3947 			error = bridge_post_pfil(*mp);
3948 			if (error)
3949 				break;
3950 		}
3951 
3952 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL) {
3953 			error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir);
3954 			if (*mp == NULL || error != 0) /* filter may consume */
3955 				break;
3956 			error = bridge_post_pfil(*mp);
3957 			if (error)
3958 				break;
3959 		}
3960 
3961 		/* check if we need to fragment the packet */
3962 		if (pfil_member && ifp != NULL && dir == PFIL_OUT) {
3963 			i = (*mp)->m_pkthdr.len;
3964 			if (i > ifp->if_mtu) {
3965 				error = bridge_fragment(ifp, *mp, &eh2, snap,
3966 					    &llc1);
3967 				return (error);
3968 			}
3969 		}
3970 
3971 		/* Recalculate the ip checksum and restore byte ordering */
3972 		ip = mtod(*mp, struct ip *);
3973 		hlen = ip->ip_hl << 2;
3974 		if (hlen < sizeof(struct ip))
3975 			goto bad;
3976 		if (hlen > (*mp)->m_len) {
3977 			if ((*mp = m_pullup(*mp, hlen)) == 0)
3978 				goto bad;
3979 			ip = mtod(*mp, struct ip *);
3980 			if (ip == NULL)
3981 				goto bad;
3982 		}
3983 		ip->ip_len = htons(ip->ip_len);
3984 		ip->ip_off = htons(ip->ip_off);
3985 		ip->ip_sum = 0;
3986 		if (hlen == sizeof(struct ip))
3987 			ip->ip_sum = in_cksum_hdr(ip);
3988 		else
3989 			ip->ip_sum = in_cksum(*mp, hlen);
3990 
3991 		break;
3992 #ifdef INET6
3993 	case ETHERTYPE_IPV6:
3994 		if (pfil_bridge && dir == PFIL_OUT && bifp != NULL)
3995 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
3996 					dir);
3997 
3998 		if (*mp == NULL || error != 0) /* filter may consume */
3999 			break;
4000 
4001 		if (pfil_member && ifp != NULL)
4002 			error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp,
4003 					dir);
4004 
4005 		if (*mp == NULL || error != 0) /* filter may consume */
4006 			break;
4007 
4008 		if (pfil_bridge && dir == PFIL_IN && bifp != NULL)
4009 			error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp,
4010 					dir);
4011 		break;
4012 #endif
4013 	default:
4014 		error = 0;
4015 		break;
4016 	}
4017 
4018 	if (*mp == NULL)
4019 		return (error);
4020 	if (error != 0)
4021 		goto bad;
4022 
4023 	error = -1;
4024 
4025 	/*
4026 	 * Finally, put everything back the way it was and return
4027 	 */
4028 	if (snap) {
4029 		M_PREPEND(*mp, sizeof(struct llc), MB_DONTWAIT);
4030 		if (*mp == NULL)
4031 			return (error);
4032 		bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc));
4033 	}
4034 
4035 	M_PREPEND(*mp, ETHER_HDR_LEN, MB_DONTWAIT);
4036 	if (*mp == NULL)
4037 		return (error);
4038 	bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN);
4039 
4040 	return (0);
4041 
4042 bad:
4043 	m_freem(*mp);
4044 	*mp = NULL;
4045 	return (error);
4046 }
4047 
4048 /*
4049  * Perform basic checks on header size since
4050  * pfil assumes ip_input has already processed
4051  * it for it.  Cut-and-pasted from ip_input.c.
4052  * Given how simple the IPv6 version is,
4053  * does the IPv4 version really need to be
4054  * this complicated?
4055  *
4056  * XXX Should we update ipstat here, or not?
4057  * XXX Right now we update ipstat but not
4058  * XXX csum_counter.
4059  */
4060 static int
4061 bridge_ip_checkbasic(struct mbuf **mp)
4062 {
4063 	struct mbuf *m = *mp;
4064 	struct ip *ip;
4065 	int len, hlen;
4066 	u_short sum;
4067 
4068 	if (*mp == NULL)
4069 		return (-1);
4070 #if 0 /* notyet */
4071 	if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4072 		if ((m = m_copyup(m, sizeof(struct ip),
4073 			(max_linkhdr + 3) & ~3)) == NULL) {
4074 			/* XXXJRT new stat, please */
4075 			ipstat.ips_toosmall++;
4076 			goto bad;
4077 		}
4078 	} else
4079 #endif
4080 #ifndef __predict_false
4081 #define __predict_false(x) x
4082 #endif
4083 	 if (__predict_false(m->m_len < sizeof (struct ip))) {
4084 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
4085 			ipstat.ips_toosmall++;
4086 			goto bad;
4087 		}
4088 	}
4089 	ip = mtod(m, struct ip *);
4090 	if (ip == NULL) goto bad;
4091 
4092 	if (ip->ip_v != IPVERSION) {
4093 		ipstat.ips_badvers++;
4094 		goto bad;
4095 	}
4096 	hlen = ip->ip_hl << 2;
4097 	if (hlen < sizeof(struct ip)) { /* minimum header length */
4098 		ipstat.ips_badhlen++;
4099 		goto bad;
4100 	}
4101 	if (hlen > m->m_len) {
4102 		if ((m = m_pullup(m, hlen)) == 0) {
4103 			ipstat.ips_badhlen++;
4104 			goto bad;
4105 		}
4106 		ip = mtod(m, struct ip *);
4107 		if (ip == NULL) goto bad;
4108 	}
4109 
4110 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
4111 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
4112 	} else {
4113 		if (hlen == sizeof(struct ip)) {
4114 			sum = in_cksum_hdr(ip);
4115 		} else {
4116 			sum = in_cksum(m, hlen);
4117 		}
4118 	}
4119 	if (sum) {
4120 		ipstat.ips_badsum++;
4121 		goto bad;
4122 	}
4123 
4124 	/* Retrieve the packet length. */
4125 	len = ntohs(ip->ip_len);
4126 
4127 	/*
4128 	 * Check for additional length bogosity
4129 	 */
4130 	if (len < hlen) {
4131 		ipstat.ips_badlen++;
4132 		goto bad;
4133 	}
4134 
4135 	/*
4136 	 * Check that the amount of data in the buffers
4137 	 * is as at least much as the IP header would have us expect.
4138 	 * Drop packet if shorter than we expect.
4139 	 */
4140 	if (m->m_pkthdr.len < len) {
4141 		ipstat.ips_tooshort++;
4142 		goto bad;
4143 	}
4144 
4145 	/* Checks out, proceed */
4146 	*mp = m;
4147 	return (0);
4148 
4149 bad:
4150 	*mp = m;
4151 	return (-1);
4152 }
4153 
4154 #ifdef INET6
4155 /*
4156  * Same as above, but for IPv6.
4157  * Cut-and-pasted from ip6_input.c.
4158  * XXX Should we update ip6stat, or not?
4159  */
4160 static int
4161 bridge_ip6_checkbasic(struct mbuf **mp)
4162 {
4163 	struct mbuf *m = *mp;
4164 	struct ip6_hdr *ip6;
4165 
4166 	/*
4167 	 * If the IPv6 header is not aligned, slurp it up into a new
4168 	 * mbuf with space for link headers, in the event we forward
4169 	 * it.  Otherwise, if it is aligned, make sure the entire base
4170 	 * IPv6 header is in the first mbuf of the chain.
4171 	 */
4172 #if 0 /* notyet */
4173 	if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) {
4174 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4175 		if ((m = m_copyup(m, sizeof(struct ip6_hdr),
4176 			    (max_linkhdr + 3) & ~3)) == NULL) {
4177 			/* XXXJRT new stat, please */
4178 			ip6stat.ip6s_toosmall++;
4179 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4180 			goto bad;
4181 		}
4182 	} else
4183 #endif
4184 	if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) {
4185 		struct ifnet *inifp = m->m_pkthdr.rcvif;
4186 		if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
4187 			ip6stat.ip6s_toosmall++;
4188 			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
4189 			goto bad;
4190 		}
4191 	}
4192 
4193 	ip6 = mtod(m, struct ip6_hdr *);
4194 
4195 	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
4196 		ip6stat.ip6s_badvers++;
4197 		in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr);
4198 		goto bad;
4199 	}
4200 
4201 	/* Checks out, proceed */
4202 	*mp = m;
4203 	return (0);
4204 
4205 bad:
4206 	*mp = m;
4207 	return (-1);
4208 }
4209 #endif /* INET6 */
4210 
4211 /*
4212  * bridge_fragment:
4213  *
4214  *	Return a fragmented mbuf chain.
4215  */
4216 static int
4217 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh,
4218     int snap, struct llc *llc)
4219 {
4220 	struct mbuf *m0;
4221 	struct ip *ip;
4222 	int error = -1;
4223 
4224 	if (m->m_len < sizeof(struct ip) &&
4225 	    (m = m_pullup(m, sizeof(struct ip))) == NULL)
4226 		goto out;
4227 	ip = mtod(m, struct ip *);
4228 
4229 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist,
4230 		    CSUM_DELAY_IP);
4231 	if (error)
4232 		goto out;
4233 
4234 	/* walk the chain and re-add the Ethernet header */
4235 	for (m0 = m; m0; m0 = m0->m_nextpkt) {
4236 		if (error == 0) {
4237 			if (snap) {
4238 				M_PREPEND(m0, sizeof(struct llc), MB_DONTWAIT);
4239 				if (m0 == NULL) {
4240 					error = ENOBUFS;
4241 					continue;
4242 				}
4243 				bcopy(llc, mtod(m0, caddr_t),
4244 				    sizeof(struct llc));
4245 			}
4246 			M_PREPEND(m0, ETHER_HDR_LEN, MB_DONTWAIT);
4247 			if (m0 == NULL) {
4248 				error = ENOBUFS;
4249 				continue;
4250 			}
4251 			bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN);
4252 		} else
4253 			m_freem(m);
4254 	}
4255 
4256 	if (error == 0)
4257 		ipstat.ips_fragmented++;
4258 
4259 	return (error);
4260 
4261 out:
4262 	if (m != NULL)
4263 		m_freem(m);
4264 	return (error);
4265 }
4266 
4267 static void
4268 bridge_enqueue_handler(netmsg_t msg)
4269 {
4270 	struct netmsg_packet *nmp;
4271 	struct ifnet *dst_ifp;
4272 	struct mbuf *m;
4273 
4274 	nmp = &msg->packet;
4275 	m = nmp->nm_packet;
4276 	dst_ifp = nmp->base.lmsg.u.ms_resultp;
4277 	mbuftrackid(m, 71);
4278 
4279 	bridge_handoff(dst_ifp->if_bridge, dst_ifp, m, 1);
4280 }
4281 
4282 static void
4283 bridge_handoff(struct bridge_softc *sc, struct ifnet *dst_ifp,
4284 	       struct mbuf *m, int from_us)
4285 {
4286 	struct mbuf *m0;
4287 	struct ifnet *bifp;
4288 
4289 	bifp = sc->sc_ifp;
4290 	mbuftrackid(m, 72);
4291 
4292 	/* We may be sending a fragment so traverse the mbuf */
4293 	for (; m; m = m0) {
4294 		struct altq_pktattr pktattr;
4295 
4296 		m0 = m->m_nextpkt;
4297 		m->m_nextpkt = NULL;
4298 
4299 		/*
4300 		 * If being sent from our host override ether_shost
4301 		 * with the bridge MAC.  This is mandatory for ARP
4302 		 * so things don't get confused.  In particular we
4303 		 * don't want ARPs to get associated with link interfaces
4304 		 * under the bridge which might or might not stay valid.
4305 		 *
4306 		 * Also override ether_shost when relaying a packet out
4307 		 * the same interface it came in on, due to multi-homed
4308 		 * addresses & default routes, otherwise switches will
4309 		 * get very confused.
4310 		 *
4311 		 * Otherwise if we are in transparent mode.
4312 		 */
4313 		if (from_us || m->m_pkthdr.rcvif == dst_ifp) {
4314 			m_copyback(m,
4315 				   offsetof(struct ether_header, ether_shost),
4316 				   ETHER_ADDR_LEN, IF_LLADDR(sc->sc_ifp));
4317 		} else if ((bifp->if_flags & IFF_LINK0) &&
4318 			   (m->m_pkthdr.fw_flags & BRIDGE_MBUF_TAGGED)) {
4319 			m_copyback(m,
4320 				   offsetof(struct ether_header, ether_shost),
4321 				   ETHER_ADDR_LEN,
4322 				   m->m_pkthdr.br.ether.ether_shost);
4323 		} /* else retain shost */
4324 
4325 		if (ifq_is_enabled(&dst_ifp->if_snd))
4326 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
4327 
4328 		ifq_dispatch(dst_ifp, m, &pktattr);
4329 	}
4330 }
4331 
4332 static void
4333 bridge_control_dispatch(netmsg_t msg)
4334 {
4335 	struct netmsg_brctl *bc_msg = (struct netmsg_brctl *)msg;
4336 	struct ifnet *bifp = bc_msg->bc_sc->sc_ifp;
4337 	int error;
4338 
4339 	ifnet_serialize_all(bifp);
4340 	error = bc_msg->bc_func(bc_msg->bc_sc, bc_msg->bc_arg);
4341 	ifnet_deserialize_all(bifp);
4342 
4343 	lwkt_replymsg(&bc_msg->base.lmsg, error);
4344 }
4345 
4346 static int
4347 bridge_control(struct bridge_softc *sc, u_long cmd,
4348 	       bridge_ctl_t bc_func, void *bc_arg)
4349 {
4350 	struct ifnet *bifp = sc->sc_ifp;
4351 	struct netmsg_brctl bc_msg;
4352 	int error;
4353 
4354 	ASSERT_IFNET_SERIALIZED_ALL(bifp);
4355 
4356 	bzero(&bc_msg, sizeof(bc_msg));
4357 
4358 	netmsg_init(&bc_msg.base, NULL, &curthread->td_msgport,
4359 		    0, bridge_control_dispatch);
4360 	bc_msg.bc_func = bc_func;
4361 	bc_msg.bc_sc = sc;
4362 	bc_msg.bc_arg = bc_arg;
4363 
4364 	ifnet_deserialize_all(bifp);
4365 	error = lwkt_domsg(BRIDGE_CFGPORT, &bc_msg.base.lmsg, 0);
4366 	ifnet_serialize_all(bifp);
4367 	return error;
4368 }
4369 
4370 static void
4371 bridge_add_bif_handler(netmsg_t msg)
4372 {
4373 	struct netmsg_braddbif *amsg = (struct netmsg_braddbif *)msg;
4374 	struct bridge_softc *sc;
4375 	struct bridge_iflist *bif;
4376 
4377 	sc = amsg->br_softc;
4378 
4379 	bif = kmalloc(sizeof(*bif), M_DEVBUF, M_WAITOK | M_ZERO);
4380 	bif->bif_ifp = amsg->br_bif_ifp;
4381 	bif->bif_onlist = 1;
4382 	bif->bif_info = amsg->br_bif_info;
4383 
4384 	/*
4385 	 * runs through bif_info
4386 	 */
4387 	bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER;
4388 
4389 	TAILQ_INSERT_HEAD(&sc->sc_iflists[mycpuid], bif, bif_next);
4390 
4391 	ifnet_forwardmsg(&amsg->base.lmsg, mycpuid + 1);
4392 }
4393 
4394 static void
4395 bridge_add_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4396 	       struct ifnet *ifp)
4397 {
4398 	struct netmsg_braddbif amsg;
4399 
4400 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4401 
4402 	netmsg_init(&amsg.base, NULL, &curthread->td_msgport,
4403 		    0, bridge_add_bif_handler);
4404 	amsg.br_softc = sc;
4405 	amsg.br_bif_info = bif_info;
4406 	amsg.br_bif_ifp = ifp;
4407 
4408 	ifnet_domsg(&amsg.base.lmsg, 0);
4409 }
4410 
4411 static void
4412 bridge_del_bif_handler(netmsg_t msg)
4413 {
4414 	struct netmsg_brdelbif *dmsg = (struct netmsg_brdelbif *)msg;
4415 	struct bridge_softc *sc;
4416 	struct bridge_iflist *bif;
4417 
4418 	sc = dmsg->br_softc;
4419 
4420 	/*
4421 	 * Locate the bif associated with the br_bif_info
4422 	 * on the current CPU
4423 	 */
4424 	bif = bridge_lookup_member_ifinfo(sc, dmsg->br_bif_info);
4425 	KKASSERT(bif != NULL && bif->bif_onlist);
4426 
4427 	/* Remove the bif from the current CPU's iflist */
4428 	bif->bif_onlist = 0;
4429 	TAILQ_REMOVE(dmsg->br_bif_list, bif, bif_next);
4430 
4431 	/* Save the removed bif for later freeing */
4432 	TAILQ_INSERT_HEAD(dmsg->br_bif_list, bif, bif_next);
4433 
4434 	ifnet_forwardmsg(&dmsg->base.lmsg, mycpuid + 1);
4435 }
4436 
4437 static void
4438 bridge_del_bif(struct bridge_softc *sc, struct bridge_ifinfo *bif_info,
4439 	       struct bridge_iflist_head *saved_bifs)
4440 {
4441 	struct netmsg_brdelbif dmsg;
4442 
4443 	ASSERT_IFNET_NOT_SERIALIZED_ALL(sc->sc_ifp);
4444 
4445 	netmsg_init(&dmsg.base, NULL, &curthread->td_msgport,
4446 		    0, bridge_del_bif_handler);
4447 	dmsg.br_softc = sc;
4448 	dmsg.br_bif_info = bif_info;
4449 	dmsg.br_bif_list = saved_bifs;
4450 
4451 	ifnet_domsg(&dmsg.base.lmsg, 0);
4452 }
4453