xref: /dragonfly/sys/net/dummynet/ip_dummynet.c (revision fcce2b94)
1 /*
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
28  * $DragonFly: src/sys/net/dummynet/ip_dummynet.c,v 1.18 2006/06/25 11:02:39 corecode Exp $
29  */
30 
31 #if !defined(KLD_MODULE)
32 #include "opt_ipfw.h"	/* for IPFW2 definition */
33 #endif
34 
35 #define DEB(x)
36 #define DDB(x)	x
37 
38 /*
39  * This module implements IP dummynet, a bandwidth limiter/delay emulator
40  * used in conjunction with the ipfw package.
41  * Description of the data structures used is in ip_dummynet.h
42  * Here you mainly find the following blocks of code:
43  *  + variable declarations;
44  *  + heap management functions;
45  *  + scheduler and dummynet functions;
46  *  + configuration and initialization.
47  *
48  * NOTA BENE: critical sections are protected by splimp()/splx()
49  *    pairs. One would think that splnet() is enough as for most of
50  *    the netinet code, but it is not so because when used with
51  *    bridging, dummynet is invoked at splimp().
52  *
53  * Most important Changes:
54  *
55  * 011004: KLDable
56  * 010124: Fixed WF2Q behaviour
57  * 010122: Fixed spl protection.
58  * 000601: WF2Q support
59  * 000106: large rewrite, use heaps to handle very many pipes.
60  * 980513:	initial release
61  *
62  * include files marked with XXX are probably not needed
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/kernel.h>
70 #include <sys/module.h>
71 #include <sys/proc.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/time.h>
75 #include <sys/sysctl.h>
76 #include <sys/thread2.h>
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <net/ipfw/ip_fw.h>
84 #include "ip_dummynet.h"
85 #include <netinet/ip_var.h>
86 
87 #include <netinet/if_ether.h> /* for struct arpcom */
88 
89 /*
90  * We keep a private variable for the simulation time, but we could
91  * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
92  */
93 static dn_key curr_time = 0 ; /* current simulation time */
94 
95 static int dn_hash_size = 64 ;	/* default hash size */
96 
97 /* statistics on number of queue searches and search steps */
98 static int searches, search_steps ;
99 static int pipe_expire = 1 ;   /* expire queue if empty */
100 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
101 
102 static int red_lookup_depth = 256;	/* RED - default lookup table depth */
103 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
104 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
105 
106 /*
107  * Three heaps contain queues and pipes that the scheduler handles:
108  *
109  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
110  *
111  * wfq_ready_heap contains the pipes associated with WF2Q flows
112  *
113  * extract_heap contains pipes associated with delay lines.
114  *
115  */
116 
117 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
118 
119 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
120 
121 static int heap_init(struct dn_heap *h, int size) ;
122 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
123 static void heap_extract(struct dn_heap *h, void *obj);
124 
125 static void transmit_event(struct dn_pipe *pipe);
126 static void ready_event(struct dn_flow_queue *q);
127 
128 static struct dn_pipe *all_pipes = NULL ;	/* list of all pipes */
129 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
130 
131 static struct callout dn_timeout;
132 
133 #ifdef SYSCTL_NODE
134 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
135 		CTLFLAG_RW, 0, "Dummynet");
136 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
137 	    CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
138 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
139 	    CTLFLAG_RD, &curr_time, 0, "Current tick");
140 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
141 	    CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
142 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
143 	    CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
144 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
145 	    CTLFLAG_RD, &searches, 0, "Number of queue searches");
146 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
147 	    CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
148 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
149 	    CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
150 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
151 	    CTLFLAG_RW, &dn_max_ratio, 0,
152 	"Max ratio between dynamic queues and buckets");
153 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
154 	CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
155 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
156 	CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
157 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
158 	CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
159 #endif
160 
161 static int config_pipe(struct dn_pipe *p);
162 static int ip_dn_ctl(struct sockopt *sopt);
163 
164 static void rt_unref(struct rtentry *);
165 static void dummynet(void *);
166 static void dummynet_flush(void);
167 void dummynet_drain(void);
168 static ip_dn_io_t dummynet_io;
169 static void dn_rule_delete(void *);
170 
171 int if_tx_rdy(struct ifnet *ifp);
172 
173 static void
174 rt_unref(struct rtentry *rt)
175 {
176     if (rt == NULL)
177 	return ;
178     if (rt->rt_refcnt <= 0)
179 	printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt);
180     RTFREE(rt);
181 }
182 
183 /*
184  * Heap management functions.
185  *
186  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
187  * Some macros help finding parent/children so we can optimize them.
188  *
189  * heap_init() is called to expand the heap when needed.
190  * Increment size in blocks of 16 entries.
191  * XXX failure to allocate a new element is a pretty bad failure
192  * as we basically stall a whole queue forever!!
193  * Returns 1 on error, 0 on success
194  */
195 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
196 #define HEAP_LEFT(x) ( 2*(x) + 1 )
197 #define HEAP_IS_LEFT(x) ( (x) & 1 )
198 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
199 #define	HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
200 #define HEAP_INCREMENT	15
201 
202 static int
203 heap_init(struct dn_heap *h, int new_size)
204 {
205     struct dn_heap_entry *p;
206 
207     if (h->size >= new_size ) {
208 	printf("heap_init, Bogus call, have %d want %d\n",
209 		h->size, new_size);
210 	return 0 ;
211     }
212     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
213     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_WAITOK | M_ZERO);
214     if (h->size > 0) {
215 	bcopy(h->p, p, h->size * sizeof(*p) );
216 	free(h->p, M_DUMMYNET);
217     }
218     h->p = p ;
219     h->size = new_size ;
220     return 0 ;
221 }
222 
223 /*
224  * Insert element in heap. Normally, p != NULL, we insert p in
225  * a new position and bubble up. If p == NULL, then the element is
226  * already in place, and key is the position where to start the
227  * bubble-up.
228  * Returns 1 on failure (cannot allocate new heap entry)
229  *
230  * If offset > 0 the position (index, int) of the element in the heap is
231  * also stored in the element itself at the given offset in bytes.
232  */
233 #define SET_OFFSET(heap, node) \
234     if (heap->offset > 0) \
235 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
236 /*
237  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
238  */
239 #define RESET_OFFSET(heap, node) \
240     if (heap->offset > 0) \
241 	    *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
242 static int
243 heap_insert(struct dn_heap *h, dn_key key1, void *p)
244 {
245     int son = h->elements ;
246 
247     if (p == NULL)	/* data already there, set starting point */
248 	son = key1 ;
249     else {		/* insert new element at the end, possibly resize */
250 	son = h->elements ;
251 	if (son == h->size) /* need resize... */
252 	    if (heap_init(h, h->elements+1) )
253 		return 1 ; /* failure... */
254 	h->p[son].object = p ;
255 	h->p[son].key = key1 ;
256 	h->elements++ ;
257     }
258     while (son > 0) {				/* bubble up */
259 	int father = HEAP_FATHER(son) ;
260 	struct dn_heap_entry tmp  ;
261 
262 	if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
263 	    break ; /* found right position */
264 	/* son smaller than father, swap and repeat */
265 	HEAP_SWAP(h->p[son], h->p[father], tmp) ;
266 	SET_OFFSET(h, son);
267 	son = father ;
268     }
269     SET_OFFSET(h, son);
270     return 0 ;
271 }
272 
273 /*
274  * remove top element from heap, or obj if obj != NULL
275  */
276 static void
277 heap_extract(struct dn_heap *h, void *obj)
278 {
279     int child, father, max = h->elements - 1 ;
280 
281     if (max < 0) {
282 	printf("warning, extract from empty heap 0x%p\n", h);
283 	return ;
284     }
285     father = 0 ; /* default: move up smallest child */
286     if (obj != NULL) { /* extract specific element, index is at offset */
287 	if (h->offset <= 0)
288 	    panic("*** heap_extract from middle not supported on this heap!!!\n");
289 	father = *((int *)((char *)obj + h->offset)) ;
290 	if (father < 0 || father >= h->elements) {
291 	    printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
292 		father, h->elements);
293 	    panic("heap_extract");
294 	}
295     }
296     RESET_OFFSET(h, father);
297     child = HEAP_LEFT(father) ;		/* left child */
298     while (child <= max) {		/* valid entry */
299 	if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
300 	    child = child+1 ;		/* take right child, otherwise left */
301 	h->p[father] = h->p[child] ;
302 	SET_OFFSET(h, father);
303 	father = child ;
304 	child = HEAP_LEFT(child) ;   /* left child for next loop */
305     }
306     h->elements-- ;
307     if (father != max) {
308 	/*
309 	 * Fill hole with last entry and bubble up, reusing the insert code
310 	 */
311 	h->p[father] = h->p[max] ;
312 	heap_insert(h, father, NULL); /* this one cannot fail */
313     }
314 }
315 
316 #if 0
317 /*
318  * change object position and update references
319  * XXX this one is never used!
320  */
321 static void
322 heap_move(struct dn_heap *h, dn_key new_key, void *object)
323 {
324     int temp;
325     int i ;
326     int max = h->elements-1 ;
327     struct dn_heap_entry buf ;
328 
329     if (h->offset <= 0)
330 	panic("cannot move items on this heap");
331 
332     i = *((int *)((char *)object + h->offset));
333     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
334 	h->p[i].key = new_key ;
335 	for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
336 		 i = temp ) { /* bubble up */
337 	    HEAP_SWAP(h->p[i], h->p[temp], buf) ;
338 	    SET_OFFSET(h, i);
339 	}
340     } else {		/* must move down */
341 	h->p[i].key = new_key ;
342 	while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
343 	    if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
344 		temp++ ; /* select child with min key */
345 	    if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
346 		HEAP_SWAP(h->p[i], h->p[temp], buf) ;
347 		SET_OFFSET(h, i);
348 	    } else
349 		break ;
350 	    i = temp ;
351 	}
352     }
353     SET_OFFSET(h, i);
354 }
355 #endif /* heap_move, unused */
356 
357 /*
358  * heapify() will reorganize data inside an array to maintain the
359  * heap property. It is needed when we delete a bunch of entries.
360  */
361 static void
362 heapify(struct dn_heap *h)
363 {
364     int i ;
365 
366     for (i = 0 ; i < h->elements ; i++ )
367 	heap_insert(h, i , NULL) ;
368 }
369 
370 /*
371  * cleanup the heap and free data structure
372  */
373 static void
374 heap_free(struct dn_heap *h)
375 {
376     if (h->size >0 )
377 	free(h->p, M_DUMMYNET);
378     bzero(h, sizeof(*h) );
379 }
380 
381 /*
382  * --- end of heap management functions ---
383  */
384 
385 /*
386  * Scheduler functions:
387  *
388  * transmit_event() is called when the delay-line needs to enter
389  * the scheduler, either because of existing pkts getting ready,
390  * or new packets entering the queue. The event handled is the delivery
391  * time of the packet.
392  *
393  * ready_event() does something similar with fixed-rate queues, and the
394  * event handled is the finish time of the head pkt.
395  *
396  * wfq_ready_event() does something similar with WF2Q queues, and the
397  * event handled is the start time of the head pkt.
398  *
399  * In all cases, we make sure that the data structures are consistent
400  * before passing pkts out, because this might trigger recursive
401  * invocations of the procedures.
402  */
403 static void
404 transmit_event(struct dn_pipe *pipe)
405 {
406     struct dn_pkt *pkt ;
407 
408     while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
409 	/*
410 	 * first unlink, then call procedures, since ip_input() can invoke
411 	 * ip_output() and viceversa, thus causing nested calls
412 	 */
413 	pipe->head = DN_NEXT(pkt) ;
414 
415 	/*
416 	 * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
417 	 * (NOT A REAL one, just a small block of malloc'ed memory) with
418 	 *     m_type = MT_TAG, m_flags = PACKET_TAG_DUMMYNET
419 	 *     dn_m (m_next) = actual mbuf to be processed by ip_input/output
420 	 * and some other fields.
421 	 * The block IS FREED HERE because it contains parameters passed
422 	 * to the called routine.
423 	 */
424 	switch (pkt->dn_dir) {
425 	case DN_TO_IP_OUT:
426 	    ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL, NULL);
427 	    rt_unref (pkt->ro.ro_rt) ;
428 	    break ;
429 
430 	case DN_TO_IP_IN :
431 	    ip_input((struct mbuf *)pkt) ;
432 	    break ;
433 
434 	case DN_TO_ETH_DEMUX:
435 	    {
436 		struct mbuf *m = (struct mbuf *)pkt ;
437 		struct ether_header *eh;
438 
439 		if (pkt->dn_m->m_len < ETHER_HDR_LEN &&
440 		    (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
441 		    printf("dummynet: pullup fail, dropping pkt\n");
442 		    break;
443 		}
444 		/*
445 		 * same as ether_input, make eh be a pointer into the mbuf
446 		 */
447 		eh = mtod(pkt->dn_m, struct ether_header *);
448 		m_adj(pkt->dn_m, ETHER_HDR_LEN);
449 		/* which consumes the mbuf */
450 		ether_demux(NULL, eh, m);
451 	    }
452 	    break ;
453 	case DN_TO_ETH_OUT:
454 	    ether_output_frame(pkt->ifp, (struct mbuf *)pkt);
455 	    break;
456 
457 	default:
458 	    printf("dummynet: bad switch %d!\n", pkt->dn_dir);
459 	    m_freem(pkt->dn_m);
460 	    break ;
461 	}
462 	free(pkt, M_DUMMYNET);
463     }
464     /* if there are leftover packets, put into the heap for next event */
465     if ( (pkt = pipe->head) )
466          heap_insert(&extract_heap, pkt->output_time, pipe ) ;
467     /* XXX should check errors on heap_insert, by draining the
468      * whole pipe p and hoping in the future we are more successful
469      */
470 }
471 
472 /*
473  * the following macro computes how many ticks we have to wait
474  * before being able to transmit a packet. The credit is taken from
475  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
476  */
477 #define SET_TICKS(pkt, q, p)	\
478     (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
479 	    p->bandwidth ;
480 
481 /*
482  * extract pkt from queue, compute output time (could be now)
483  * and put into delay line (p_queue)
484  */
485 static void
486 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
487 	struct dn_pipe *p, int len)
488 {
489     q->head = DN_NEXT(pkt) ;
490     q->len-- ;
491     q->len_bytes -= len ;
492 
493     pkt->output_time = curr_time + p->delay ;
494 
495     if (p->head == NULL)
496 	p->head = pkt;
497     else
498 	DN_NEXT_NC(p->tail) = (struct mbuf *)pkt;
499     p->tail = pkt;
500     DN_NEXT_NC(p->tail) = NULL;
501 }
502 
503 /*
504  * ready_event() is invoked every time the queue must enter the
505  * scheduler, either because the first packet arrives, or because
506  * a previously scheduled event fired.
507  * On invokation, drain as many pkts as possible (could be 0) and then
508  * if there are leftover packets reinsert the pkt in the scheduler.
509  */
510 static void
511 ready_event(struct dn_flow_queue *q)
512 {
513     struct dn_pkt *pkt;
514     struct dn_pipe *p = q->fs->pipe ;
515     int p_was_empty ;
516 
517     if (p == NULL) {
518 	printf("ready_event- pipe is gone\n");
519 	return ;
520     }
521     p_was_empty = (p->head == NULL) ;
522 
523     /*
524      * schedule fixed-rate queues linked to this pipe:
525      * Account for the bw accumulated since last scheduling, then
526      * drain as many pkts as allowed by q->numbytes and move to
527      * the delay line (in p) computing output time.
528      * bandwidth==0 (no limit) means we can drain the whole queue,
529      * setting len_scaled = 0 does the job.
530      */
531     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
532     while ( (pkt = q->head) != NULL ) {
533 	int len = pkt->dn_m->m_pkthdr.len;
534 	int len_scaled = p->bandwidth ? len*8*hz : 0 ;
535 	if (len_scaled > q->numbytes )
536 	    break ;
537 	q->numbytes -= len_scaled ;
538 	move_pkt(pkt, q, p, len);
539     }
540     /*
541      * If we have more packets queued, schedule next ready event
542      * (can only occur when bandwidth != 0, otherwise we would have
543      * flushed the whole queue in the previous loop).
544      * To this purpose we record the current time and compute how many
545      * ticks to go for the finish time of the packet.
546      */
547     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
548 	dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
549 	q->sched_time = curr_time ;
550 	heap_insert(&ready_heap, curr_time + t, (void *)q );
551 	/* XXX should check errors on heap_insert, and drain the whole
552 	 * queue on error hoping next time we are luckier.
553 	 */
554     } else {	/* RED needs to know when the queue becomes empty */
555 	q->q_time = curr_time;
556 	q->numbytes = 0;
557     }
558     /*
559      * If the delay line was empty call transmit_event(p) now.
560      * Otherwise, the scheduler will take care of it.
561      */
562     if (p_was_empty)
563 	transmit_event(p);
564 }
565 
566 /*
567  * Called when we can transmit packets on WF2Q queues. Take pkts out of
568  * the queues at their start time, and enqueue into the delay line.
569  * Packets are drained until p->numbytes < 0. As long as
570  * len_scaled >= p->numbytes, the packet goes into the delay line
571  * with a deadline p->delay. For the last packet, if p->numbytes<0,
572  * there is an additional delay.
573  */
574 static void
575 ready_event_wfq(struct dn_pipe *p)
576 {
577     int p_was_empty = (p->head == NULL) ;
578     struct dn_heap *sch = &(p->scheduler_heap);
579     struct dn_heap *neh = &(p->not_eligible_heap) ;
580 
581     if (p->if_name[0] == 0) /* tx clock is simulated */
582 	p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
583     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
584 	if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
585 	    return ;
586 	else {
587 	    DEB(printf("pipe %d ready from %s --\n",
588 		p->pipe_nr, p->if_name);)
589 	}
590     }
591 
592     /*
593      * While we have backlogged traffic AND credit, we need to do
594      * something on the queue.
595      */
596     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
597 	if (sch->elements > 0) { /* have some eligible pkts to send out */
598 	    struct dn_flow_queue *q = sch->p[0].object ;
599 	    struct dn_pkt *pkt = q->head;
600 	    struct dn_flow_set *fs = q->fs;
601 	    u_int64_t len = pkt->dn_m->m_pkthdr.len;
602 	    int len_scaled = p->bandwidth ? len*8*hz : 0 ;
603 
604 	    heap_extract(sch, NULL); /* remove queue from heap */
605 	    p->numbytes -= len_scaled ;
606 	    move_pkt(pkt, q, p, len);
607 
608 	    p->V += (len<<MY_M) / p->sum ; /* update V */
609 	    q->S = q->F ; /* update start time */
610 	    if (q->len == 0) { /* Flow not backlogged any more */
611 		fs->backlogged-- ;
612 		heap_insert(&(p->idle_heap), q->F, q);
613 	    } else { /* still backlogged */
614 		/*
615 		 * update F and position in backlogged queue, then
616 		 * put flow in not_eligible_heap (we will fix this later).
617 		 */
618 		len = (q->head)->dn_m->m_pkthdr.len;
619 		q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
620 		if (DN_KEY_LEQ(q->S, p->V))
621 		    heap_insert(neh, q->S, q);
622 		else
623 		    heap_insert(sch, q->F, q);
624 	    }
625 	}
626 	/*
627 	 * now compute V = max(V, min(S_i)). Remember that all elements in sch
628 	 * have by definition S_i <= V so if sch is not empty, V is surely
629 	 * the max and we must not update it. Conversely, if sch is empty
630 	 * we only need to look at neh.
631 	 */
632 	if (sch->elements == 0 && neh->elements > 0)
633 	    p->V = MAX64 ( p->V, neh->p[0].key );
634 	/* move from neh to sch any packets that have become eligible */
635 	while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
636 	    struct dn_flow_queue *q = neh->p[0].object ;
637 	    heap_extract(neh, NULL);
638 	    heap_insert(sch, q->F, q);
639 	}
640 
641 	if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
642 	    p->numbytes = -1 ; /* mark not ready for I/O */
643 	    break ;
644 	}
645     }
646     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
647 	    && p->idle_heap.elements > 0) {
648 	/*
649 	 * no traffic and no events scheduled. We can get rid of idle-heap.
650 	 */
651 	int i ;
652 
653 	for (i = 0 ; i < p->idle_heap.elements ; i++) {
654 	    struct dn_flow_queue *q = p->idle_heap.p[i].object ;
655 
656 	    q->F = 0 ;
657 	    q->S = q->F + 1 ;
658 	}
659 	p->sum = 0 ;
660 	p->V = 0 ;
661 	p->idle_heap.elements = 0 ;
662     }
663     /*
664      * If we are getting clocks from dummynet (not a real interface) and
665      * If we are under credit, schedule the next ready event.
666      * Also fix the delivery time of the last packet.
667      */
668     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
669 	dn_key t=0 ; /* number of ticks i have to wait */
670 
671 	if (p->bandwidth > 0)
672 	    t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
673 	p->tail->output_time += t ;
674 	p->sched_time = curr_time ;
675 	heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
676 	/* XXX should check errors on heap_insert, and drain the whole
677 	 * queue on error hoping next time we are luckier.
678 	 */
679     }
680     /*
681      * If the delay line was empty call transmit_event(p) now.
682      * Otherwise, the scheduler will take care of it.
683      */
684     if (p_was_empty)
685 	transmit_event(p);
686 }
687 
688 /*
689  * This is called once per tick, or HZ times per second. It is used to
690  * increment the current tick counter and schedule expired events.
691  */
692 static void
693 dummynet(void * __unused unused)
694 {
695     void *p ; /* generic parameter to handler */
696     struct dn_heap *h ;
697     struct dn_heap *heaps[3];
698     int i;
699     struct dn_pipe *pe ;
700 
701     heaps[0] = &ready_heap ;		/* fixed-rate queues */
702     heaps[1] = &wfq_ready_heap ;	/* wfq queues */
703     heaps[2] = &extract_heap ;		/* delay line */
704     crit_enter(); /* see note on top, splnet() is not enough */
705     curr_time++ ;
706     for (i=0; i < 3 ; i++) {
707 	h = heaps[i];
708 	while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
709 	    DDB(if (h->p[0].key > curr_time)
710 		printf("-- dummynet: warning, heap %d is %d ticks late\n",
711 		    i, (int)(curr_time - h->p[0].key));)
712 	    p = h->p[0].object ; /* store a copy before heap_extract */
713 	    heap_extract(h, NULL); /* need to extract before processing */
714 	    if (i == 0)
715 		ready_event(p) ;
716 	    else if (i == 1) {
717 		struct dn_pipe *pipe = p;
718 		if (pipe->if_name[0] != '\0')
719 		    printf("*** bad ready_event_wfq for pipe %s\n",
720 			pipe->if_name);
721 		else
722 		    ready_event_wfq(p) ;
723 	    } else
724 		transmit_event(p);
725 	}
726     }
727     /* sweep pipes trying to expire idle flow_queues */
728     for (pe = all_pipes; pe ; pe = pe->next )
729 	if (pe->idle_heap.elements > 0 &&
730 		DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
731 	    struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
732 
733 	    heap_extract(&(pe->idle_heap), NULL);
734 	    q->S = q->F + 1 ; /* mark timestamp as invalid */
735 	    pe->sum -= q->fs->weight ;
736 	}
737     crit_exit();
738     callout_reset(&dn_timeout, 1, dummynet, NULL);
739 }
740 
741 /*
742  * called by an interface when tx_rdy occurs.
743  */
744 int
745 if_tx_rdy(struct ifnet *ifp)
746 {
747     struct dn_pipe *p;
748 
749     for (p = all_pipes; p ; p = p->next )
750 	if (p->ifp == ifp)
751 	    break ;
752     if (p == NULL) {
753 	for (p = all_pipes; p ; p = p->next )
754 	    if (!strcmp(p->if_name, ifp->if_xname) ) {
755 		p->ifp = ifp ;
756 		DEB(printf("++ tx rdy from %s (now found)\n", ifp->if_xname);)
757 		break ;
758 	    }
759     }
760     if (p != NULL) {
761 	DEB(printf("++ tx rdy from %s - qlen %d\n", ifp->if_xname,
762 		ifp->if_snd.ifq_len);)
763 	p->numbytes = 0 ; /* mark ready for I/O */
764 	ready_event_wfq(p);
765     }
766     return 0;
767 }
768 
769 /*
770  * Unconditionally expire empty queues in case of shortage.
771  * Returns the number of queues freed.
772  */
773 static int
774 expire_queues(struct dn_flow_set *fs)
775 {
776     struct dn_flow_queue *q, *prev ;
777     int i, initial_elements = fs->rq_elements ;
778 
779     if (fs->last_expired == time_second)
780 	return 0 ;
781     fs->last_expired = time_second ;
782     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
783 	for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
784 	    if (q->head != NULL || q->S != q->F+1) {
785   		prev = q ;
786   	        q = q->next ;
787   	    } else { /* entry is idle, expire it */
788 		struct dn_flow_queue *old_q = q ;
789 
790 		if (prev != NULL)
791 		    prev->next = q = q->next ;
792 		else
793 		    fs->rq[i] = q = q->next ;
794 		fs->rq_elements-- ;
795 		free(old_q, M_DUMMYNET);
796 	    }
797     return initial_elements - fs->rq_elements ;
798 }
799 
800 /*
801  * If room, create a new queue and put at head of slot i;
802  * otherwise, create or use the default queue.
803  */
804 static struct dn_flow_queue *
805 create_queue(struct dn_flow_set *fs, int i)
806 {
807     struct dn_flow_queue *q ;
808 
809     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
810 	    expire_queues(fs) == 0) {
811 	/*
812 	 * No way to get room, use or create overflow queue.
813 	 */
814 	i = fs->rq_size ;
815 	if ( fs->rq[i] != NULL )
816 	    return fs->rq[i] ;
817     }
818     q = malloc(sizeof(*q), M_DUMMYNET, M_WAITOK | M_ZERO);
819     q->fs = fs ;
820     q->hash_slot = i ;
821     q->next = fs->rq[i] ;
822     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
823     fs->rq[i] = q ;
824     fs->rq_elements++ ;
825     return q ;
826 }
827 
828 /*
829  * Given a flow_set and a pkt in last_pkt, find a matching queue
830  * after appropriate masking. The queue is moved to front
831  * so that further searches take less time.
832  */
833 static struct dn_flow_queue *
834 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
835 {
836     int i = 0 ; /* we need i and q for new allocations */
837     struct dn_flow_queue *q, *prev;
838 
839     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
840 	q = fs->rq[0] ;
841     else {
842 	/* first, do the masking */
843 	id->dst_ip &= fs->flow_mask.dst_ip ;
844 	id->src_ip &= fs->flow_mask.src_ip ;
845 	id->dst_port &= fs->flow_mask.dst_port ;
846 	id->src_port &= fs->flow_mask.src_port ;
847 	id->proto &= fs->flow_mask.proto ;
848 	id->flags = 0 ; /* we don't care about this one */
849 	/* then, hash function */
850 	i = ( (id->dst_ip) & 0xffff ) ^
851 	    ( (id->dst_ip >> 15) & 0xffff ) ^
852 	    ( (id->src_ip << 1) & 0xffff ) ^
853 	    ( (id->src_ip >> 16 ) & 0xffff ) ^
854 	    (id->dst_port << 1) ^ (id->src_port) ^
855 	    (id->proto );
856 	i = i % fs->rq_size ;
857 	/* finally, scan the current list for a match */
858 	searches++ ;
859 	for (prev=NULL, q = fs->rq[i] ; q ; ) {
860 	    search_steps++;
861 	    if (id->dst_ip == q->id.dst_ip &&
862 		    id->src_ip == q->id.src_ip &&
863 		    id->dst_port == q->id.dst_port &&
864 		    id->src_port == q->id.src_port &&
865 		    id->proto == q->id.proto &&
866 		    id->flags == q->id.flags)
867 		break ; /* found */
868 	    else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
869 		/* entry is idle and not in any heap, expire it */
870 		struct dn_flow_queue *old_q = q ;
871 
872 		if (prev != NULL)
873 		    prev->next = q = q->next ;
874 		else
875 		    fs->rq[i] = q = q->next ;
876 		fs->rq_elements-- ;
877 		free(old_q, M_DUMMYNET);
878 		continue ;
879 	    }
880 	    prev = q ;
881 	    q = q->next ;
882 	}
883 	if (q && prev != NULL) { /* found and not in front */
884 	    prev->next = q->next ;
885 	    q->next = fs->rq[i] ;
886 	    fs->rq[i] = q ;
887 	}
888     }
889     if (q == NULL) { /* no match, need to allocate a new entry */
890 	q = create_queue(fs, i);
891 	if (q != NULL)
892 	q->id = *id ;
893     }
894     return q ;
895 }
896 
897 static int
898 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
899 {
900     /*
901      * RED algorithm
902      *
903      * RED calculates the average queue size (avg) using a low-pass filter
904      * with an exponential weighted (w_q) moving average:
905      * 	avg  <-  (1-w_q) * avg + w_q * q_size
906      * where q_size is the queue length (measured in bytes or * packets).
907      *
908      * If q_size == 0, we compute the idle time for the link, and set
909      *	avg = (1 - w_q)^(idle/s)
910      * where s is the time needed for transmitting a medium-sized packet.
911      *
912      * Now, if avg < min_th the packet is enqueued.
913      * If avg > max_th the packet is dropped. Otherwise, the packet is
914      * dropped with probability P function of avg.
915      *
916      */
917 
918     int64_t p_b = 0;
919     /* queue in bytes or packets ? */
920     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
921 
922     DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
923 
924     /* average queue size estimation */
925     if (q_size != 0) {
926 	/*
927 	 * queue is not empty, avg <- avg + (q_size - avg) * w_q
928 	 */
929 	int diff = SCALE(q_size) - q->avg;
930 	int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
931 
932 	q->avg += (int) v;
933     } else {
934 	/*
935 	 * queue is empty, find for how long the queue has been
936 	 * empty and use a lookup table for computing
937 	 * (1 - * w_q)^(idle_time/s) where s is the time to send a
938 	 * (small) packet.
939 	 * XXX check wraps...
940 	 */
941 	if (q->avg) {
942 	    u_int t = (curr_time - q->q_time) / fs->lookup_step;
943 
944 	    q->avg = (t < fs->lookup_depth) ?
945 		    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
946 	}
947     }
948     DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
949 
950     /* should i drop ? */
951 
952     if (q->avg < fs->min_th) {
953 	q->count = -1;
954 	return 0; /* accept packet ; */
955     }
956     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
957 	if (fs->flags_fs & DN_IS_GENTLE_RED) {
958 	    /*
959 	     * According to Gentle-RED, if avg is greater than max_th the
960 	     * packet is dropped with a probability
961 	     *	p_b = c_3 * avg - c_4
962 	     * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
963 	     */
964 	    p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
965 	} else {
966 	    q->count = -1;
967 	    printf("- drop");
968 	    return 1 ;
969 	}
970     } else if (q->avg > fs->min_th) {
971 	/*
972 	 * we compute p_b using the linear dropping function p_b = c_1 *
973 	 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
974 	 * max_p * min_th / (max_th - min_th)
975 	 */
976 	p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
977     }
978     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
979 	p_b = (p_b * len) / fs->max_pkt_size;
980     if (++q->count == 0)
981 	q->random = random() & 0xffff;
982     else {
983 	/*
984 	 * q->count counts packets arrived since last drop, so a greater
985 	 * value of q->count means a greater packet drop probability.
986 	 */
987 	if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
988 	    q->count = 0;
989 	    DEB(printf("- red drop");)
990 	    /* after a drop we calculate a new random value */
991 	    q->random = random() & 0xffff;
992 	    return 1;    /* drop */
993 	}
994     }
995     /* end of RED algorithm */
996     return 0 ; /* accept */
997 }
998 
999 static __inline
1000 struct dn_flow_set *
1001 locate_flowset(int pipe_nr, struct ip_fw *rule)
1002 {
1003 #if IPFW2
1004     struct dn_flow_set *fs;
1005     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
1006 
1007     if (cmd->opcode == O_LOG)
1008 	cmd += F_LEN(cmd);
1009     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
1010 
1011     if (fs != NULL)
1012 	return fs;
1013 
1014     if (cmd->opcode == O_QUEUE)
1015 #else /* !IPFW2 */
1016     struct dn_flow_set *fs = NULL ;
1017 
1018     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
1019 #endif /* !IPFW2 */
1020 	for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
1021 	    ;
1022     else {
1023 	struct dn_pipe *p1;
1024 	for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
1025 	    ;
1026 	if (p1 != NULL)
1027 	    fs = &(p1->fs) ;
1028     }
1029     /* record for the future */
1030 #if IPFW2
1031     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
1032 #else
1033     if (fs != NULL)
1034 	rule->pipe_ptr = fs;
1035 #endif
1036     return fs ;
1037 }
1038 
1039 /*
1040  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1041  * depending on whether WF2Q or fixed bw is used.
1042  *
1043  * pipe_nr	pipe or queue the packet is destined for.
1044  * dir		where shall we send the packet after dummynet.
1045  * m		the mbuf with the packet
1046  * ifp		the 'ifp' parameter from the caller.
1047  *		NULL in ip_input, destination interface in ip_output
1048  * ro		route parameter (only used in ip_output, NULL otherwise)
1049  * dst		destination address, only used by ip_output
1050  * rule		matching rule, in case of multiple passes
1051  * flags	flags from the caller, only used in ip_output
1052  *
1053  */
1054 static int
1055 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1056 {
1057     struct dn_pkt *pkt;
1058     struct dn_flow_set *fs;
1059     struct dn_pipe *pipe ;
1060     u_int64_t len = m->m_pkthdr.len ;
1061     struct dn_flow_queue *q = NULL ;
1062     int is_pipe;
1063 
1064     crit_enter();
1065 #if IPFW2
1066     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1067 
1068     if (cmd->opcode == O_LOG)
1069 	cmd += F_LEN(cmd);
1070     is_pipe = (cmd->opcode == O_PIPE);
1071 #else
1072     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1073 #endif
1074 
1075     pipe_nr &= 0xffff ;
1076 
1077     /*
1078      * this is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1079      */
1080     fs = locate_flowset(pipe_nr, fwa->rule);
1081     if (fs == NULL)
1082 	goto dropit ;	/* this queue/pipe does not exist! */
1083     pipe = fs->pipe ;
1084     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1085 	for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
1086 		 pipe = pipe->next)
1087 	    ;
1088 	if (pipe != NULL)
1089 	    fs->pipe = pipe ;
1090 	else {
1091 	    printf("No pipe %d for queue %d, drop pkt\n",
1092 		fs->parent_nr, fs->fs_nr);
1093 	    goto dropit ;
1094 	}
1095     }
1096     q = find_queue(fs, &(fwa->f_id));
1097     if ( q == NULL )
1098 	goto dropit ;		/* cannot allocate queue		*/
1099     /*
1100      * update statistics, then check reasons to drop pkt
1101      */
1102     q->tot_bytes += len ;
1103     q->tot_pkts++ ;
1104     if ( fs->plr && random() < fs->plr )
1105 	goto dropit ;		/* random pkt drop			*/
1106     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1107     	if (q->len_bytes > fs->qsize)
1108 	    goto dropit ;	/* queue size overflow			*/
1109     } else {
1110 	if (q->len >= fs->qsize)
1111 	    goto dropit ;	/* queue count overflow			*/
1112     }
1113     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1114 	goto dropit ;
1115 
1116     /* XXX expensive to zero, see if we can remove it*/
1117     pkt = malloc(sizeof (*pkt), M_DUMMYNET, M_INTWAIT | M_ZERO | M_NULLOK);
1118     if (pkt == NULL)
1119 	    goto dropit;	/* cannot allocate packet header        */
1120 
1121     /* ok, i can handle the pkt now... */
1122     /* build and enqueue packet + parameters */
1123     pkt->hdr.mh_type = MT_TAG;
1124     pkt->hdr.mh_flags = PACKET_TAG_DUMMYNET;
1125     pkt->rule = fwa->rule ;
1126     DN_NEXT_NC(pkt) = NULL;
1127     pkt->dn_m = m;
1128     pkt->dn_dir = dir ;
1129 
1130     pkt->ifp = fwa->oif;
1131     if (dir == DN_TO_IP_OUT) {
1132 	/*
1133 	 * We need to copy *ro because for ICMP pkts (and maybe others)
1134 	 * the caller passed a pointer into the stack; dst might also be
1135 	 * a pointer into *ro so it needs to be updated.
1136 	 */
1137 	pkt->ro = *(fwa->ro);
1138 	if (fwa->ro->ro_rt)
1139 	    fwa->ro->ro_rt->rt_refcnt++ ;
1140 	if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1141 	    fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1142 
1143 	pkt->dn_dst = fwa->dst;
1144 	pkt->flags = fwa->flags;
1145     }
1146     if (q->head == NULL)
1147 	q->head = pkt;
1148     else
1149 	DN_NEXT_NC(q->tail) = (struct mbuf *)pkt;
1150     q->tail = pkt;
1151     q->len++;
1152     q->len_bytes += len ;
1153 
1154     if ( q->head != pkt )	/* flow was not idle, we are done */
1155 	goto done;
1156     /*
1157      * If we reach this point the flow was previously idle, so we need
1158      * to schedule it. This involves different actions for fixed-rate or
1159      * WF2Q queues.
1160      */
1161     if (is_pipe) {
1162 	/*
1163 	 * Fixed-rate queue: just insert into the ready_heap.
1164 	 */
1165 	dn_key t = 0 ;
1166 	if (pipe->bandwidth)
1167 	    t = SET_TICKS(pkt, q, pipe);
1168 	q->sched_time = curr_time ;
1169 	if (t == 0)	/* must process it now */
1170 	    ready_event( q );
1171 	else
1172 	    heap_insert(&ready_heap, curr_time + t , q );
1173     } else {
1174 	/*
1175 	 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1176 	 * set S to the virtual time V for the controlling pipe, and update
1177 	 * the sum of weights for the pipe; otherwise, remove flow from
1178 	 * idle_heap and set S to max(F,V).
1179 	 * Second, compute finish time F = S + len/weight.
1180 	 * Third, if pipe was idle, update V=max(S, V).
1181 	 * Fourth, count one more backlogged flow.
1182 	 */
1183 	if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1184 	    q->S = pipe->V ;
1185 	    pipe->sum += fs->weight ; /* add weight of new queue */
1186 	} else {
1187 	    heap_extract(&(pipe->idle_heap), q);
1188 	    q->S = MAX64(q->F, pipe->V ) ;
1189 	}
1190 	q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1191 
1192 	if (pipe->not_eligible_heap.elements == 0 &&
1193 		pipe->scheduler_heap.elements == 0)
1194 	    pipe->V = MAX64 ( q->S, pipe->V );
1195 	fs->backlogged++ ;
1196 	/*
1197 	 * Look at eligibility. A flow is not eligibile if S>V (when
1198 	 * this happens, it means that there is some other flow already
1199 	 * scheduled for the same pipe, so the scheduler_heap cannot be
1200 	 * empty). If the flow is not eligible we just store it in the
1201 	 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1202 	 * and possibly invoke ready_event_wfq() right now if there is
1203 	 * leftover credit.
1204 	 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1205 	 * and for all flows in not_eligible_heap (NEH), S_i > V .
1206 	 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1207 	 * we only need to look into NEH.
1208 	 */
1209 	if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1210 	    if (pipe->scheduler_heap.elements == 0)
1211 		printf("++ ouch! not eligible but empty scheduler!\n");
1212 	    heap_insert(&(pipe->not_eligible_heap), q->S, q);
1213 	} else {
1214 	    heap_insert(&(pipe->scheduler_heap), q->F, q);
1215 	    if (pipe->numbytes >= 0) { /* pipe is idle */
1216 		if (pipe->scheduler_heap.elements != 1)
1217 		    printf("*** OUCH! pipe should have been idle!\n");
1218 		DEB(printf("Waking up pipe %d at %d\n",
1219 			pipe->pipe_nr, (int)(q->F >> MY_M)); )
1220 		pipe->sched_time = curr_time ;
1221 		ready_event_wfq(pipe);
1222 	    }
1223 	}
1224     }
1225 done:
1226     crit_exit();
1227     return 0;
1228 
1229 dropit:
1230     crit_exit();
1231     if (q)
1232 	q->drops++ ;
1233     m_freem(m);
1234     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1235 }
1236 
1237 /*
1238  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1239  * Doing this would probably save us the initial bzero of dn_pkt
1240  */
1241 #define DN_FREE_PKT(pkt)	{		\
1242 	struct dn_pkt *n = pkt ;		\
1243 	rt_unref ( n->ro.ro_rt ) ;		\
1244 	m_freem(n->dn_m);			\
1245 	pkt = DN_NEXT(n) ;			\
1246 	free(n, M_DUMMYNET) ;	}
1247 
1248 /*
1249  * Dispose all packets and flow_queues on a flow_set.
1250  * If all=1, also remove red lookup table and other storage,
1251  * including the descriptor itself.
1252  * For the one in dn_pipe MUST also cleanup ready_heap...
1253  */
1254 static void
1255 purge_flow_set(struct dn_flow_set *fs, int all)
1256 {
1257     struct dn_pkt *pkt ;
1258     struct dn_flow_queue *q, *qn ;
1259     int i ;
1260 
1261     for (i = 0 ; i <= fs->rq_size ; i++ ) {
1262 	for (q = fs->rq[i] ; q ; q = qn ) {
1263 	    for (pkt = q->head ; pkt ; )
1264 		DN_FREE_PKT(pkt) ;
1265 	    qn = q->next ;
1266 	    free(q, M_DUMMYNET);
1267 	}
1268 	fs->rq[i] = NULL ;
1269     }
1270     fs->rq_elements = 0 ;
1271     if (all) {
1272 	/* RED - free lookup table */
1273 	if (fs->w_q_lookup)
1274 	    free(fs->w_q_lookup, M_DUMMYNET);
1275 	if (fs->rq)
1276 	    free(fs->rq, M_DUMMYNET);
1277 	/* if this fs is not part of a pipe, free it */
1278 	if (fs->pipe && fs != &(fs->pipe->fs) )
1279 	    free(fs, M_DUMMYNET);
1280     }
1281 }
1282 
1283 /*
1284  * Dispose all packets queued on a pipe (not a flow_set).
1285  * Also free all resources associated to a pipe, which is about
1286  * to be deleted.
1287  */
1288 static void
1289 purge_pipe(struct dn_pipe *pipe)
1290 {
1291     struct dn_pkt *pkt ;
1292 
1293     purge_flow_set( &(pipe->fs), 1 );
1294 
1295     for (pkt = pipe->head ; pkt ; )
1296 	DN_FREE_PKT(pkt) ;
1297 
1298     heap_free( &(pipe->scheduler_heap) );
1299     heap_free( &(pipe->not_eligible_heap) );
1300     heap_free( &(pipe->idle_heap) );
1301 }
1302 
1303 /*
1304  * Delete all pipes and heaps returning memory. Must also
1305  * remove references from all ipfw rules to all pipes.
1306  */
1307 static void
1308 dummynet_flush(void)
1309 {
1310     struct dn_pipe *curr_p, *p ;
1311     struct dn_flow_set *fs, *curr_fs;
1312 
1313     crit_enter();
1314 
1315     /* remove all references to pipes ...*/
1316     flush_pipe_ptrs(NULL);
1317     /* prevent future matches... */
1318     p = all_pipes ;
1319     all_pipes = NULL ;
1320     fs = all_flow_sets ;
1321     all_flow_sets = NULL ;
1322     /* and free heaps so we don't have unwanted events */
1323     heap_free(&ready_heap);
1324     heap_free(&wfq_ready_heap);
1325     heap_free(&extract_heap);
1326     crit_exit();
1327     /*
1328      * Now purge all queued pkts and delete all pipes
1329      */
1330     /* scan and purge all flow_sets. */
1331     for ( ; fs ; ) {
1332 	curr_fs = fs ;
1333 	fs = fs->next ;
1334 	purge_flow_set(curr_fs, 1);
1335     }
1336     for ( ; p ; ) {
1337 	purge_pipe(p);
1338 	curr_p = p ;
1339 	p = p->next ;
1340 	free(curr_p, M_DUMMYNET);
1341     }
1342 }
1343 
1344 
1345 extern struct ip_fw *ip_fw_default_rule ;
1346 static void
1347 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1348 {
1349     int i ;
1350     struct dn_flow_queue *q ;
1351     struct dn_pkt *pkt ;
1352 
1353     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1354 	for (q = fs->rq[i] ; q ; q = q->next )
1355 	    for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
1356 		if (pkt->rule == r)
1357 		    pkt->rule = ip_fw_default_rule ;
1358 }
1359 /*
1360  * when a firewall rule is deleted, scan all queues and remove the flow-id
1361  * from packets matching this rule.
1362  */
1363 void
1364 dn_rule_delete(void *r)
1365 {
1366     struct dn_pipe *p ;
1367     struct dn_pkt *pkt ;
1368     struct dn_flow_set *fs ;
1369 
1370     /*
1371      * If the rule references a queue (dn_flow_set), then scan
1372      * the flow set, otherwise scan pipes. Should do either, but doing
1373      * both does not harm.
1374      */
1375     for ( fs = all_flow_sets ; fs ; fs = fs->next )
1376 	dn_rule_delete_fs(fs, r);
1377     for ( p = all_pipes ; p ; p = p->next ) {
1378 	fs = &(p->fs) ;
1379 	dn_rule_delete_fs(fs, r);
1380 	for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
1381 	    if (pkt->rule == r)
1382 		pkt->rule = ip_fw_default_rule ;
1383     }
1384 }
1385 
1386 /*
1387  * setup RED parameters
1388  */
1389 static int
1390 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1391 {
1392     int i;
1393 
1394     x->w_q = p->w_q;
1395     x->min_th = SCALE(p->min_th);
1396     x->max_th = SCALE(p->max_th);
1397     x->max_p = p->max_p;
1398 
1399     x->c_1 = p->max_p / (p->max_th - p->min_th);
1400     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1401     if (x->flags_fs & DN_IS_GENTLE_RED) {
1402 	x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1403 	x->c_4 = (SCALE(1) - 2 * p->max_p);
1404     }
1405 
1406     /* if the lookup table already exist, free and create it again */
1407     if (x->w_q_lookup) {
1408 	free(x->w_q_lookup, M_DUMMYNET);
1409 	x->w_q_lookup = NULL ;
1410     }
1411     if (red_lookup_depth == 0) {
1412 	printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
1413 	free(x, M_DUMMYNET);
1414 	return EINVAL;
1415     }
1416     x->lookup_depth = red_lookup_depth;
1417     x->w_q_lookup = malloc(x->lookup_depth * sizeof(int),
1418 			M_DUMMYNET, M_WAITOK);
1419 
1420     /* fill the lookup table with (1 - w_q)^x */
1421     x->lookup_step = p->lookup_step ;
1422     x->lookup_weight = p->lookup_weight ;
1423     x->w_q_lookup[0] = SCALE(1) - x->w_q;
1424     for (i = 1; i < x->lookup_depth; i++)
1425 	x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1426     if (red_avg_pkt_size < 1)
1427 	red_avg_pkt_size = 512 ;
1428     x->avg_pkt_size = red_avg_pkt_size ;
1429     if (red_max_pkt_size < 1)
1430 	red_max_pkt_size = 1500 ;
1431     x->max_pkt_size = red_max_pkt_size ;
1432     return 0 ;
1433 }
1434 
1435 static int
1436 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1437 {
1438     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
1439 	int l = pfs->rq_size;
1440 
1441 	if (l == 0)
1442 	    l = dn_hash_size;
1443 	if (l < 4)
1444 	    l = 4;
1445 	else if (l > DN_MAX_HASH_SIZE)
1446 	    l = DN_MAX_HASH_SIZE;
1447 	x->rq_size = l;
1448     } else                  /* one is enough for null mask */
1449 	x->rq_size = 1;
1450     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1451 		    M_DUMMYNET, M_WAITOK | M_ZERO);
1452     x->rq_elements = 0;
1453     return 0 ;
1454 }
1455 
1456 static void
1457 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1458 {
1459     x->flags_fs = src->flags_fs;
1460     x->qsize = src->qsize;
1461     x->plr = src->plr;
1462     x->flow_mask = src->flow_mask;
1463     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1464 	if (x->qsize > 1024*1024)
1465 	    x->qsize = 1024*1024 ;
1466     } else {
1467 	if (x->qsize == 0)
1468 	    x->qsize = 50 ;
1469 	if (x->qsize > 100)
1470 	    x->qsize = 50 ;
1471     }
1472     /* configuring RED */
1473     if ( x->flags_fs & DN_IS_RED )
1474 	config_red(src, x) ;    /* XXX should check errors */
1475 }
1476 
1477 /*
1478  * setup pipe or queue parameters.
1479  */
1480 
1481 static int
1482 config_pipe(struct dn_pipe *p)
1483 {
1484     int i, s;
1485     struct dn_flow_set *pfs = &(p->fs);
1486     struct dn_flow_queue *q;
1487 
1488     /*
1489      * The config program passes parameters as follows:
1490      * bw = bits/second (0 means no limits),
1491      * delay = ms, must be translated into ticks.
1492      * qsize = slots/bytes
1493      */
1494     p->delay = ( p->delay * hz ) / 1000 ;
1495     /* We need either a pipe number or a flow_set number */
1496     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1497 	return EINVAL ;
1498     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1499 	return EINVAL ;
1500     if (p->pipe_nr != 0) { /* this is a pipe */
1501 	struct dn_pipe *x, *a, *b;
1502 	/* locate pipe */
1503 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1504 		 a = b , b = b->next) ;
1505 
1506 	if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
1507 	    x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_WAITOK | M_ZERO);
1508 	    x->pipe_nr = p->pipe_nr;
1509 	    x->fs.pipe = x ;
1510 	    /* idle_heap is the only one from which we extract from the middle.
1511 	     */
1512 	    x->idle_heap.size = x->idle_heap.elements = 0 ;
1513 	    x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
1514 	} else {
1515 	    x = b;
1516 	    crit_enter();
1517 	    /* Flush accumulated credit for all queues */
1518 	    for (i = 0; i <= x->fs.rq_size; i++)
1519 		for (q = x->fs.rq[i]; q; q = q->next)
1520 		    q->numbytes = 0;
1521 	    crit_exit();
1522 	}
1523 
1524 	crit_enter();
1525 	x->bandwidth = p->bandwidth ;
1526 	x->numbytes = 0; /* just in case... */
1527 	bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
1528 	x->ifp = NULL ; /* reset interface ptr */
1529 	x->delay = p->delay ;
1530 	set_fs_parms(&(x->fs), pfs);
1531 
1532 
1533 	if ( x->fs.rq == NULL ) { /* a new pipe */
1534 	    s = alloc_hash(&(x->fs), pfs) ;
1535 	    if (s) {
1536 		free(x, M_DUMMYNET);
1537 		return s ;
1538 	    }
1539 	    x->next = b ;
1540 	    if (a == NULL)
1541 		all_pipes = x ;
1542 	    else
1543 		a->next = x ;
1544 	}
1545 	crit_exit();
1546     } else { /* config queue */
1547 	struct dn_flow_set *x, *a, *b ;
1548 
1549 	/* locate flow_set */
1550 	for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
1551 		 a = b , b = b->next) ;
1552 
1553 	if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
1554 	    if (pfs->parent_nr == 0)	/* need link to a pipe */
1555 		return EINVAL ;
1556 	    x = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_WAITOK|M_ZERO);
1557 	    x->fs_nr = pfs->fs_nr;
1558 	    x->parent_nr = pfs->parent_nr;
1559 	    x->weight = pfs->weight ;
1560 	    if (x->weight == 0)
1561 		x->weight = 1 ;
1562 	    else if (x->weight > 100)
1563 		x->weight = 100 ;
1564 	} else {
1565 	    /* Change parent pipe not allowed; must delete and recreate */
1566 	    if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
1567 		return EINVAL ;
1568 	    x = b;
1569 	}
1570 	crit_enter();
1571 	set_fs_parms(x, pfs);
1572 
1573 	if ( x->rq == NULL ) { /* a new flow_set */
1574 	    s = alloc_hash(x, pfs) ;
1575 	    if (s) {
1576 		free(x, M_DUMMYNET);
1577 		return s ;
1578 	    }
1579 	    x->next = b;
1580 	    if (a == NULL)
1581 		all_flow_sets = x;
1582 	    else
1583 		a->next = x;
1584 	}
1585 	crit_exit();
1586     }
1587     return 0 ;
1588 }
1589 
1590 /*
1591  * Helper function to remove from a heap queues which are linked to
1592  * a flow_set about to be deleted.
1593  */
1594 static void
1595 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1596 {
1597     int i = 0, found = 0 ;
1598     for (; i < h->elements ;)
1599 	if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1600 	    h->elements-- ;
1601 	    h->p[i] = h->p[h->elements] ;
1602 	    found++ ;
1603 	} else
1604 	    i++ ;
1605     if (found)
1606 	heapify(h);
1607 }
1608 
1609 /*
1610  * helper function to remove a pipe from a heap (can be there at most once)
1611  */
1612 static void
1613 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1614 {
1615     if (h->elements > 0) {
1616 	int i = 0 ;
1617 	for (i=0; i < h->elements ; i++ ) {
1618 	    if (h->p[i].object == p) { /* found it */
1619 		h->elements-- ;
1620 		h->p[i] = h->p[h->elements] ;
1621 		heapify(h);
1622 		break ;
1623 	    }
1624 	}
1625     }
1626 }
1627 
1628 /*
1629  * drain all queues. Called in case of severe mbuf shortage.
1630  */
1631 void
1632 dummynet_drain(void)
1633 {
1634     struct dn_flow_set *fs;
1635     struct dn_pipe *p;
1636     struct dn_pkt *pkt;
1637 
1638     heap_free(&ready_heap);
1639     heap_free(&wfq_ready_heap);
1640     heap_free(&extract_heap);
1641     /* remove all references to this pipe from flow_sets */
1642     for (fs = all_flow_sets; fs; fs= fs->next )
1643 	purge_flow_set(fs, 0);
1644 
1645     for (p = all_pipes; p; p= p->next ) {
1646 	purge_flow_set(&(p->fs), 0);
1647 	for (pkt = p->head ; pkt ; )
1648 	    DN_FREE_PKT(pkt) ;
1649 	p->head = p->tail = NULL ;
1650     }
1651 }
1652 
1653 /*
1654  * Fully delete a pipe or a queue, cleaning up associated info.
1655  */
1656 static int
1657 delete_pipe(struct dn_pipe *p)
1658 {
1659     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
1660 	return EINVAL ;
1661     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
1662 	return EINVAL ;
1663     if (p->pipe_nr != 0) { /* this is an old-style pipe */
1664 	struct dn_pipe *a, *b;
1665 	struct dn_flow_set *fs;
1666 
1667 	/* locate pipe */
1668 	for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1669 		 a = b , b = b->next) ;
1670 	if (b == NULL || (b->pipe_nr != p->pipe_nr) )
1671 	    return EINVAL ; /* not found */
1672 
1673 	crit_enter();
1674 
1675 	/* unlink from list of pipes */
1676 	if (a == NULL)
1677 	    all_pipes = b->next ;
1678 	else
1679 	    a->next = b->next ;
1680 	/* remove references to this pipe from the ip_fw rules. */
1681 	flush_pipe_ptrs(&(b->fs));
1682 
1683 	/* remove all references to this pipe from flow_sets */
1684 	for (fs = all_flow_sets; fs; fs= fs->next )
1685 	    if (fs->pipe == b) {
1686 		printf("++ ref to pipe %d from fs %d\n",
1687 			p->pipe_nr, fs->fs_nr);
1688 		fs->pipe = NULL ;
1689 		purge_flow_set(fs, 0);
1690 	    }
1691 	fs_remove_from_heap(&ready_heap, &(b->fs));
1692 	purge_pipe(b);	/* remove all data associated to this pipe */
1693 	/* remove reference to here from extract_heap and wfq_ready_heap */
1694 	pipe_remove_from_heap(&extract_heap, b);
1695 	pipe_remove_from_heap(&wfq_ready_heap, b);
1696 	crit_exit();
1697 	free(b, M_DUMMYNET);
1698     } else { /* this is a WF2Q queue (dn_flow_set) */
1699 	struct dn_flow_set *a, *b;
1700 
1701 	/* locate set */
1702 	for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
1703 		 a = b , b = b->next) ;
1704 	if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
1705 	    return EINVAL ; /* not found */
1706 
1707 	crit_enter();
1708 	if (a == NULL)
1709 	    all_flow_sets = b->next ;
1710 	else
1711 	    a->next = b->next ;
1712 	/* remove references to this flow_set from the ip_fw rules. */
1713 	flush_pipe_ptrs(b);
1714 
1715 	if (b->pipe != NULL) {
1716 	    /* Update total weight on parent pipe and cleanup parent heaps */
1717 	    b->pipe->sum -= b->weight * b->backlogged ;
1718 	    fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
1719 	    fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
1720 #if 1	/* XXX should i remove from idle_heap as well ? */
1721 	    fs_remove_from_heap(&(b->pipe->idle_heap), b);
1722 #endif
1723 	}
1724 	purge_flow_set(b, 1);
1725 	crit_exit();
1726     }
1727     return 0 ;
1728 }
1729 
1730 /*
1731  * helper function used to copy data from kernel in DUMMYNET_GET
1732  */
1733 static char *
1734 dn_copy_set(struct dn_flow_set *set, char *bp)
1735 {
1736     int i, copied = 0 ;
1737     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
1738 
1739     for (i = 0 ; i <= set->rq_size ; i++)
1740 	for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
1741 	    if (q->hash_slot != i)
1742 		printf("++ at %d: wrong slot (have %d, "
1743 		    "should be %d)\n", copied, q->hash_slot, i);
1744 	    if (q->fs != set)
1745 		printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1746 			i, q->fs, set);
1747 	    copied++ ;
1748 	    bcopy(q, qp, sizeof( *q ) );
1749 	    /* cleanup pointers */
1750 	    qp->next = NULL ;
1751 	    qp->head = qp->tail = NULL ;
1752 	    qp->fs = NULL ;
1753 	}
1754     if (copied != set->rq_elements)
1755 	printf("++ wrong count, have %d should be %d\n",
1756 	    copied, set->rq_elements);
1757     return (char *)qp ;
1758 }
1759 
1760 static int
1761 dummynet_get(struct sockopt *sopt)
1762 {
1763     char *buf, *bp ; /* bp is the "copy-pointer" */
1764     size_t size ;
1765     struct dn_flow_set *set ;
1766     struct dn_pipe *p ;
1767     int error=0 ;
1768 
1769     crit_enter();
1770     /*
1771      * compute size of data structures: list of pipes and flow_sets.
1772      */
1773     for (p = all_pipes, size = 0 ; p ; p = p->next )
1774 	size += sizeof( *p ) +
1775 	    p->fs.rq_elements * sizeof(struct dn_flow_queue);
1776     for (set = all_flow_sets ; set ; set = set->next )
1777 	size += sizeof ( *set ) +
1778 	    set->rq_elements * sizeof(struct dn_flow_queue);
1779     buf = malloc(size, M_TEMP, M_WAITOK);
1780     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
1781 	struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
1782 
1783 	/*
1784 	 * copy pipe descriptor into *bp, convert delay back to ms,
1785 	 * then copy the flow_set descriptor(s) one at a time.
1786 	 * After each flow_set, copy the queue descriptor it owns.
1787 	 */
1788 	bcopy(p, bp, sizeof( *p ) );
1789 	pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
1790 	/*
1791 	 * XXX the following is a hack based on ->next being the
1792 	 * first field in dn_pipe and dn_flow_set. The correct
1793 	 * solution would be to move the dn_flow_set to the beginning
1794 	 * of struct dn_pipe.
1795 	 */
1796 	pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
1797 	/* clean pointers */
1798 	pipe_bp->head = pipe_bp->tail = NULL ;
1799 	pipe_bp->fs.next = NULL ;
1800 	pipe_bp->fs.pipe = NULL ;
1801 	pipe_bp->fs.rq = NULL ;
1802 
1803 	bp += sizeof( *p ) ;
1804 	bp = dn_copy_set( &(p->fs), bp );
1805     }
1806     for (set = all_flow_sets ; set ; set = set->next ) {
1807 	struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
1808 	bcopy(set, bp, sizeof( *set ) );
1809 	/* XXX same hack as above */
1810 	fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
1811 	fs_bp->pipe = NULL ;
1812 	fs_bp->rq = NULL ;
1813 	bp += sizeof( *set ) ;
1814 	bp = dn_copy_set( set, bp );
1815     }
1816     crit_exit();
1817     error = sooptcopyout(sopt, buf, size);
1818     free(buf, M_TEMP);
1819     return error ;
1820 }
1821 
1822 /*
1823  * Handler for the various dummynet socket options (get, flush, config, del)
1824  */
1825 static int
1826 ip_dn_ctl(struct sockopt *sopt)
1827 {
1828     int error = 0 ;
1829     struct dn_pipe *p, tmp_pipe;
1830 
1831     /* Disallow sets in really-really secure mode. */
1832     if (sopt->sopt_dir == SOPT_SET) {
1833 #if defined(__FreeBSD__) && __FreeBSD_version >= 500034
1834 	error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
1835 	if (error)
1836 	    return (error);
1837 #else
1838 	if (securelevel >= 3)
1839 	    return (EPERM);
1840 #endif
1841     }
1842 
1843     switch (sopt->sopt_name) {
1844     default :
1845 	printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
1846 	return EINVAL ;
1847 
1848     case IP_DUMMYNET_GET :
1849 	error = dummynet_get(sopt);
1850 	break ;
1851 
1852     case IP_DUMMYNET_FLUSH :
1853 	dummynet_flush() ;
1854 	break ;
1855 
1856     case IP_DUMMYNET_CONFIGURE :
1857 	p = &tmp_pipe ;
1858 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1859 	if (error)
1860 	    break ;
1861 	error = config_pipe(p);
1862 	break ;
1863 
1864     case IP_DUMMYNET_DEL :	/* remove a pipe or queue */
1865 	p = &tmp_pipe ;
1866 	error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
1867 	if (error)
1868 	    break ;
1869 
1870 	error = delete_pipe(p);
1871 	break ;
1872     }
1873     return error ;
1874 }
1875 
1876 static void
1877 ip_dn_init(void)
1878 {
1879     printf("DUMMYNET initialized (011031)\n");
1880     all_pipes = NULL ;
1881     all_flow_sets = NULL ;
1882     ready_heap.size = ready_heap.elements = 0 ;
1883     ready_heap.offset = 0 ;
1884 
1885     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
1886     wfq_ready_heap.offset = 0 ;
1887 
1888     extract_heap.size = extract_heap.elements = 0 ;
1889     extract_heap.offset = 0 ;
1890     ip_dn_ctl_ptr = ip_dn_ctl;
1891     ip_dn_io_ptr = dummynet_io;
1892     ip_dn_ruledel_ptr = dn_rule_delete;
1893     callout_init(&dn_timeout);
1894     callout_reset(&dn_timeout, 1, dummynet, NULL);
1895 }
1896 
1897 static int
1898 dummynet_modevent(module_t mod, int type, void *data)
1899 {
1900 	switch (type) {
1901 	case MOD_LOAD:
1902 		crit_enter();
1903 		if (DUMMYNET_LOADED) {
1904 		    crit_exit();
1905 		    printf("DUMMYNET already loaded\n");
1906 		    return EEXIST ;
1907 		}
1908 		ip_dn_init();
1909 		crit_exit();
1910 		break;
1911 
1912 	case MOD_UNLOAD:
1913 #if !defined(KLD_MODULE)
1914 		printf("dummynet statically compiled, cannot unload\n");
1915 		return EINVAL ;
1916 #else
1917 		crit_enter();
1918 		callout_stop(&dn_timeout);
1919 		dummynet_flush();
1920 		ip_dn_ctl_ptr = NULL;
1921 		ip_dn_io_ptr = NULL;
1922 		ip_dn_ruledel_ptr = NULL;
1923 		crit_exit();
1924 #endif
1925 		break ;
1926 	default:
1927 		break ;
1928 	}
1929 	return 0 ;
1930 }
1931 
1932 static moduledata_t dummynet_mod = {
1933 	"dummynet",
1934 	dummynet_modevent,
1935 	NULL
1936 };
1937 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
1938 MODULE_DEPEND(dummynet, ipfw, 1, 1, 1);
1939 MODULE_VERSION(dummynet, 1);
1940