xref: /dragonfly/sys/net/if.c (revision 0dace59e)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 /* Helper functions */
118 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
119 
120 #ifdef INET6
121 /*
122  * XXX: declare here to avoid to include many inet6 related files..
123  * should be more generalized?
124  */
125 extern void	nd6_setmtu(struct ifnet *);
126 #endif
127 
128 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
129 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
130 
131 static int ifsq_stage_cntmax = 4;
132 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
133 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
134     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
135 
136 static int if_stats_compat = 0;
137 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
138     &if_stats_compat, 0, "Compat the old ifnet stats");
139 
140 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
141 /* Must be after netisr_init */
142 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
143 
144 static  if_com_alloc_t *if_com_alloc[256];
145 static  if_com_free_t *if_com_free[256];
146 
147 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
148 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
149 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
150 
151 int			ifqmaxlen = IFQ_MAXLEN;
152 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
153 
154 struct callout		if_slowtimo_timer;
155 
156 int			if_index = 0;
157 struct ifnet		**ifindex2ifnet = NULL;
158 static struct thread	ifnet_threads[MAXCPU];
159 
160 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
161 
162 #ifdef notyet
163 #define IFQ_KTR_STRING		"ifq=%p"
164 #define IFQ_KTR_ARGS	struct ifaltq *ifq
165 #ifndef KTR_IFQ
166 #define KTR_IFQ			KTR_ALL
167 #endif
168 KTR_INFO_MASTER(ifq);
169 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
170 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
172 
173 #define IF_START_KTR_STRING	"ifp=%p"
174 #define IF_START_KTR_ARGS	struct ifnet *ifp
175 #ifndef KTR_IF_START
176 #define KTR_IF_START		KTR_ALL
177 #endif
178 KTR_INFO_MASTER(if_start);
179 KTR_INFO(KTR_IF_START, if_start, run, 0,
180 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
181 KTR_INFO(KTR_IF_START, if_start, sched, 1,
182 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
183 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
184 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
185 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
186 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
187 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
189 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
190 #endif
191 
192 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
193 
194 /*
195  * Network interface utility routines.
196  *
197  * Routines with ifa_ifwith* names take sockaddr *'s as
198  * parameters.
199  */
200 /* ARGSUSED*/
201 void
202 ifinit(void *dummy)
203 {
204 	struct ifnet *ifp;
205 
206 	callout_init(&if_slowtimo_timer);
207 
208 	crit_enter();
209 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
210 		if (ifp->if_snd.altq_maxlen == 0) {
211 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
212 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
213 		}
214 	}
215 	crit_exit();
216 
217 	if_slowtimo(0);
218 }
219 
220 static void
221 ifsq_ifstart_ipifunc(void *arg)
222 {
223 	struct ifaltq_subque *ifsq = arg;
224 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
225 
226 	crit_enter();
227 	if (lmsg->ms_flags & MSGF_DONE)
228 		lwkt_sendmsg(netisr_cpuport(mycpuid), lmsg);
229 	crit_exit();
230 }
231 
232 static __inline void
233 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
234 {
235 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
236 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
237 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
238 	stage->stg_cnt = 0;
239 	stage->stg_len = 0;
240 }
241 
242 static __inline void
243 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
244 {
245 	KKASSERT((stage->stg_flags &
246 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
247 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
248 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
249 }
250 
251 /*
252  * Schedule ifnet.if_start on the subqueue owner CPU
253  */
254 static void
255 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
256 {
257 	int cpu;
258 
259 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
260 	    ifsq_stage_cntmax > 0) {
261 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
262 
263 		stage->stg_cnt = 0;
264 		stage->stg_len = 0;
265 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
266 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
267 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
268 		return;
269 	}
270 
271 	cpu = ifsq_get_cpuid(ifsq);
272 	if (cpu != mycpuid)
273 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
274 	else
275 		ifsq_ifstart_ipifunc(ifsq);
276 }
277 
278 /*
279  * NOTE:
280  * This function will release ifnet.if_start subqueue interlock,
281  * if ifnet.if_start for the subqueue does not need to be scheduled
282  */
283 static __inline int
284 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
285 {
286 	if (!running || ifsq_is_empty(ifsq)
287 #ifdef ALTQ
288 	    || ifsq->ifsq_altq->altq_tbr != NULL
289 #endif
290 	) {
291 		ALTQ_SQ_LOCK(ifsq);
292 		/*
293 		 * ifnet.if_start subqueue interlock is released, if:
294 		 * 1) Hardware can not take any packets, due to
295 		 *    o  interface is marked down
296 		 *    o  hardware queue is full (ifsq_is_oactive)
297 		 *    Under the second situation, hardware interrupt
298 		 *    or polling(4) will call/schedule ifnet.if_start
299 		 *    on the subqueue when hardware queue is ready
300 		 * 2) There is no packet in the subqueue.
301 		 *    Further ifq_dispatch or ifq_handoff will call/
302 		 *    schedule ifnet.if_start on the subqueue.
303 		 * 3) TBR is used and it does not allow further
304 		 *    dequeueing.
305 		 *    TBR callout will call ifnet.if_start on the
306 		 *    subqueue.
307 		 */
308 		if (!running || !ifsq_data_ready(ifsq)) {
309 			ifsq_clr_started(ifsq);
310 			ALTQ_SQ_UNLOCK(ifsq);
311 			return 0;
312 		}
313 		ALTQ_SQ_UNLOCK(ifsq);
314 	}
315 	return 1;
316 }
317 
318 static void
319 ifsq_ifstart_dispatch(netmsg_t msg)
320 {
321 	struct lwkt_msg *lmsg = &msg->base.lmsg;
322 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
323 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
324 	int running = 0, need_sched;
325 
326 	crit_enter();
327 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
328 	crit_exit();
329 
330 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
331 		/*
332 		 * We need to chase the subqueue owner CPU change.
333 		 */
334 		ifsq_ifstart_schedule(ifsq, 1);
335 		return;
336 	}
337 
338 	ifsq_serialize_hw(ifsq);
339 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
340 		ifp->if_start(ifp, ifsq);
341 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
342 			running = 1;
343 	}
344 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
345 	ifsq_deserialize_hw(ifsq);
346 
347 	if (need_sched) {
348 		/*
349 		 * More data need to be transmitted, ifnet.if_start is
350 		 * scheduled on the subqueue owner CPU, and we keep going.
351 		 * NOTE: ifnet.if_start subqueue interlock is not released.
352 		 */
353 		ifsq_ifstart_schedule(ifsq, 0);
354 	}
355 }
356 
357 /* Device driver ifnet.if_start helper function */
358 void
359 ifsq_devstart(struct ifaltq_subque *ifsq)
360 {
361 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
362 	int running = 0;
363 
364 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
365 
366 	ALTQ_SQ_LOCK(ifsq);
367 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
368 		ALTQ_SQ_UNLOCK(ifsq);
369 		return;
370 	}
371 	ifsq_set_started(ifsq);
372 	ALTQ_SQ_UNLOCK(ifsq);
373 
374 	ifp->if_start(ifp, ifsq);
375 
376 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
377 		running = 1;
378 
379 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
380 		/*
381 		 * More data need to be transmitted, ifnet.if_start is
382 		 * scheduled on ifnet's CPU, and we keep going.
383 		 * NOTE: ifnet.if_start interlock is not released.
384 		 */
385 		ifsq_ifstart_schedule(ifsq, 0);
386 	}
387 }
388 
389 void
390 if_devstart(struct ifnet *ifp)
391 {
392 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
393 }
394 
395 /* Device driver ifnet.if_start schedule helper function */
396 void
397 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
398 {
399 	ifsq_ifstart_schedule(ifsq, 1);
400 }
401 
402 void
403 if_devstart_sched(struct ifnet *ifp)
404 {
405 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
406 }
407 
408 static void
409 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
410 {
411 	lwkt_serialize_enter(ifp->if_serializer);
412 }
413 
414 static void
415 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
416 {
417 	lwkt_serialize_exit(ifp->if_serializer);
418 }
419 
420 static int
421 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
422 {
423 	return lwkt_serialize_try(ifp->if_serializer);
424 }
425 
426 #ifdef INVARIANTS
427 static void
428 if_default_serialize_assert(struct ifnet *ifp,
429 			    enum ifnet_serialize slz __unused,
430 			    boolean_t serialized)
431 {
432 	if (serialized)
433 		ASSERT_SERIALIZED(ifp->if_serializer);
434 	else
435 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
436 }
437 #endif
438 
439 /*
440  * Attach an interface to the list of "active" interfaces.
441  *
442  * The serializer is optional.
443  */
444 void
445 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
446 {
447 	unsigned socksize, ifasize;
448 	int namelen, masklen;
449 	struct sockaddr_dl *sdl;
450 	struct ifaddr *ifa;
451 	struct ifaltq *ifq;
452 	int i, q;
453 
454 	static int if_indexlim = 8;
455 
456 	if (ifp->if_serialize != NULL) {
457 		KASSERT(ifp->if_deserialize != NULL &&
458 			ifp->if_tryserialize != NULL &&
459 			ifp->if_serialize_assert != NULL,
460 			("serialize functions are partially setup"));
461 
462 		/*
463 		 * If the device supplies serialize functions,
464 		 * then clear if_serializer to catch any invalid
465 		 * usage of this field.
466 		 */
467 		KASSERT(serializer == NULL,
468 			("both serialize functions and default serializer "
469 			 "are supplied"));
470 		ifp->if_serializer = NULL;
471 	} else {
472 		KASSERT(ifp->if_deserialize == NULL &&
473 			ifp->if_tryserialize == NULL &&
474 			ifp->if_serialize_assert == NULL,
475 			("serialize functions are partially setup"));
476 		ifp->if_serialize = if_default_serialize;
477 		ifp->if_deserialize = if_default_deserialize;
478 		ifp->if_tryserialize = if_default_tryserialize;
479 #ifdef INVARIANTS
480 		ifp->if_serialize_assert = if_default_serialize_assert;
481 #endif
482 
483 		/*
484 		 * The serializer can be passed in from the device,
485 		 * allowing the same serializer to be used for both
486 		 * the interrupt interlock and the device queue.
487 		 * If not specified, the netif structure will use an
488 		 * embedded serializer.
489 		 */
490 		if (serializer == NULL) {
491 			serializer = &ifp->if_default_serializer;
492 			lwkt_serialize_init(serializer);
493 		}
494 		ifp->if_serializer = serializer;
495 	}
496 
497 	mtx_init(&ifp->if_ioctl_mtx);
498 	mtx_lock(&ifp->if_ioctl_mtx);
499 
500 	lwkt_gettoken(&ifnet_token);	/* protect if_index and ifnet tailq */
501 	ifp->if_index = ++if_index;
502 
503 	/*
504 	 * XXX -
505 	 * The old code would work if the interface passed a pre-existing
506 	 * chain of ifaddrs to this code.  We don't trust our callers to
507 	 * properly initialize the tailq, however, so we no longer allow
508 	 * this unlikely case.
509 	 */
510 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
511 				    M_IFADDR, M_WAITOK | M_ZERO);
512 	for (i = 0; i < ncpus; ++i)
513 		TAILQ_INIT(&ifp->if_addrheads[i]);
514 
515 	TAILQ_INIT(&ifp->if_prefixhead);
516 	TAILQ_INIT(&ifp->if_multiaddrs);
517 	TAILQ_INIT(&ifp->if_groups);
518 	getmicrotime(&ifp->if_lastchange);
519 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
520 		unsigned int n;
521 		struct ifnet **q;
522 
523 		if_indexlim <<= 1;
524 
525 		/* grow ifindex2ifnet */
526 		n = if_indexlim * sizeof(*q);
527 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
528 		if (ifindex2ifnet) {
529 			bcopy(ifindex2ifnet, q, n/2);
530 			kfree(ifindex2ifnet, M_IFADDR);
531 		}
532 		ifindex2ifnet = q;
533 	}
534 
535 	ifindex2ifnet[if_index] = ifp;
536 
537 	/*
538 	 * create a Link Level name for this device
539 	 */
540 	namelen = strlen(ifp->if_xname);
541 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
542 	socksize = masklen + ifp->if_addrlen;
543 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
544 	if (socksize < sizeof(*sdl))
545 		socksize = sizeof(*sdl);
546 	socksize = ROUNDUP(socksize);
547 #undef ROUNDUP
548 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
549 	ifa = ifa_create(ifasize, M_WAITOK);
550 	sdl = (struct sockaddr_dl *)(ifa + 1);
551 	sdl->sdl_len = socksize;
552 	sdl->sdl_family = AF_LINK;
553 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
554 	sdl->sdl_nlen = namelen;
555 	sdl->sdl_index = ifp->if_index;
556 	sdl->sdl_type = ifp->if_type;
557 	ifp->if_lladdr = ifa;
558 	ifa->ifa_ifp = ifp;
559 	ifa->ifa_rtrequest = link_rtrequest;
560 	ifa->ifa_addr = (struct sockaddr *)sdl;
561 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
562 	ifa->ifa_netmask = (struct sockaddr *)sdl;
563 	sdl->sdl_len = masklen;
564 	while (namelen != 0)
565 		sdl->sdl_data[--namelen] = 0xff;
566 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
567 
568 	ifp->if_data_pcpu = kmalloc_cachealign(
569 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
570 
571 	if (ifp->if_mapsubq == NULL)
572 		ifp->if_mapsubq = ifq_mapsubq_default;
573 
574 	ifq = &ifp->if_snd;
575 	ifq->altq_type = 0;
576 	ifq->altq_disc = NULL;
577 	ifq->altq_flags &= ALTQF_CANTCHANGE;
578 	ifq->altq_tbr = NULL;
579 	ifq->altq_ifp = ifp;
580 
581 	if (ifq->altq_subq_cnt <= 0)
582 		ifq->altq_subq_cnt = 1;
583 	ifq->altq_subq = kmalloc_cachealign(
584 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
585 	    M_DEVBUF, M_WAITOK | M_ZERO);
586 
587 	if (ifq->altq_maxlen == 0) {
588 		if_printf(ifp, "driver didn't set altq_maxlen\n");
589 		ifq_set_maxlen(ifq, ifqmaxlen);
590 	}
591 
592 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
593 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
594 
595 		ALTQ_SQ_LOCK_INIT(ifsq);
596 		ifsq->ifsq_index = q;
597 
598 		ifsq->ifsq_altq = ifq;
599 		ifsq->ifsq_ifp = ifp;
600 
601 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
602 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
603 		ifsq->ifsq_prepended = NULL;
604 		ifsq->ifsq_started = 0;
605 		ifsq->ifsq_hw_oactive = 0;
606 		ifsq_set_cpuid(ifsq, 0);
607 		if (ifp->if_serializer != NULL)
608 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
609 
610 		ifsq->ifsq_stage =
611 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
612 		    M_DEVBUF, M_WAITOK | M_ZERO);
613 		for (i = 0; i < ncpus; ++i)
614 			ifsq->ifsq_stage[i].stg_subq = ifsq;
615 
616 		ifsq->ifsq_ifstart_nmsg =
617 		    kmalloc(ncpus * sizeof(struct netmsg_base),
618 		    M_LWKTMSG, M_WAITOK);
619 		for (i = 0; i < ncpus; ++i) {
620 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
621 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
622 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
623 		}
624 	}
625 	ifq_set_classic(ifq);
626 
627 	if (!SLIST_EMPTY(&domains))
628 		if_attachdomain1(ifp);
629 
630 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
631 	lwkt_reltoken(&ifnet_token);
632 
633 	/* Announce the interface. */
634 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
635 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
636 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
637 
638 	mtx_unlock(&ifp->if_ioctl_mtx);
639 }
640 
641 static void
642 if_attachdomain(void *dummy)
643 {
644 	struct ifnet *ifp;
645 
646 	crit_enter();
647 	TAILQ_FOREACH(ifp, &ifnet, if_list)
648 		if_attachdomain1(ifp);
649 	crit_exit();
650 }
651 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
652 	if_attachdomain, NULL);
653 
654 static void
655 if_attachdomain1(struct ifnet *ifp)
656 {
657 	struct domain *dp;
658 
659 	crit_enter();
660 
661 	/* address family dependent data region */
662 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
663 	SLIST_FOREACH(dp, &domains, dom_next)
664 		if (dp->dom_ifattach)
665 			ifp->if_afdata[dp->dom_family] =
666 				(*dp->dom_ifattach)(ifp);
667 	crit_exit();
668 }
669 
670 /*
671  * Purge all addresses whose type is _not_ AF_LINK
672  */
673 void
674 if_purgeaddrs_nolink(struct ifnet *ifp)
675 {
676 	struct ifaddr_container *ifac, *next;
677 
678 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
679 			      ifa_link, next) {
680 		struct ifaddr *ifa = ifac->ifa;
681 
682 		/* Leave link ifaddr as it is */
683 		if (ifa->ifa_addr->sa_family == AF_LINK)
684 			continue;
685 #ifdef INET
686 		/* XXX: Ugly!! ad hoc just for INET */
687 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
688 			struct ifaliasreq ifr;
689 #ifdef IFADDR_DEBUG_VERBOSE
690 			int i;
691 
692 			kprintf("purge in4 addr %p: ", ifa);
693 			for (i = 0; i < ncpus; ++i)
694 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
695 			kprintf("\n");
696 #endif
697 
698 			bzero(&ifr, sizeof ifr);
699 			ifr.ifra_addr = *ifa->ifa_addr;
700 			if (ifa->ifa_dstaddr)
701 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
702 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
703 				       NULL) == 0)
704 				continue;
705 		}
706 #endif /* INET */
707 #ifdef INET6
708 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
709 #ifdef IFADDR_DEBUG_VERBOSE
710 			int i;
711 
712 			kprintf("purge in6 addr %p: ", ifa);
713 			for (i = 0; i < ncpus; ++i)
714 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
715 			kprintf("\n");
716 #endif
717 
718 			in6_purgeaddr(ifa);
719 			/* ifp_addrhead is already updated */
720 			continue;
721 		}
722 #endif /* INET6 */
723 		ifa_ifunlink(ifa, ifp);
724 		ifa_destroy(ifa);
725 	}
726 }
727 
728 static void
729 ifq_stage_detach_handler(netmsg_t nmsg)
730 {
731 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
732 	int q;
733 
734 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
735 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
736 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
737 
738 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
739 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
740 	}
741 	lwkt_replymsg(&nmsg->lmsg, 0);
742 }
743 
744 static void
745 ifq_stage_detach(struct ifaltq *ifq)
746 {
747 	struct netmsg_base base;
748 	int cpu;
749 
750 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
751 	    ifq_stage_detach_handler);
752 	base.lmsg.u.ms_resultp = ifq;
753 
754 	for (cpu = 0; cpu < ncpus; ++cpu)
755 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
756 }
757 
758 struct netmsg_if_rtdel {
759 	struct netmsg_base	base;
760 	struct ifnet		*ifp;
761 };
762 
763 static void
764 if_rtdel_dispatch(netmsg_t msg)
765 {
766 	struct netmsg_if_rtdel *rmsg = (void *)msg;
767 	int i, nextcpu, cpu;
768 
769 	cpu = mycpuid;
770 	for (i = 1; i <= AF_MAX; i++) {
771 		struct radix_node_head	*rnh;
772 
773 		if ((rnh = rt_tables[cpu][i]) == NULL)
774 			continue;
775 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
776 	}
777 
778 	nextcpu = cpu + 1;
779 	if (nextcpu < ncpus)
780 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
781 	else
782 		lwkt_replymsg(&rmsg->base.lmsg, 0);
783 }
784 
785 /*
786  * Detach an interface, removing it from the
787  * list of "active" interfaces.
788  */
789 void
790 if_detach(struct ifnet *ifp)
791 {
792 	struct netmsg_if_rtdel msg;
793 	struct domain *dp;
794 	int q;
795 
796 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
797 
798 	/*
799 	 * Remove routes and flush queues.
800 	 */
801 	crit_enter();
802 #ifdef IFPOLL_ENABLE
803 	if (ifp->if_flags & IFF_NPOLLING)
804 		ifpoll_deregister(ifp);
805 #endif
806 	if_down(ifp);
807 
808 #ifdef ALTQ
809 	if (ifq_is_enabled(&ifp->if_snd))
810 		altq_disable(&ifp->if_snd);
811 	if (ifq_is_attached(&ifp->if_snd))
812 		altq_detach(&ifp->if_snd);
813 #endif
814 
815 	/*
816 	 * Clean up all addresses.
817 	 */
818 	ifp->if_lladdr = NULL;
819 
820 	if_purgeaddrs_nolink(ifp);
821 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
822 		struct ifaddr *ifa;
823 
824 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
825 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
826 			("non-link ifaddr is left on if_addrheads"));
827 
828 		ifa_ifunlink(ifa, ifp);
829 		ifa_destroy(ifa);
830 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
831 			("there are still ifaddrs left on if_addrheads"));
832 	}
833 
834 #ifdef INET
835 	/*
836 	 * Remove all IPv4 kernel structures related to ifp.
837 	 */
838 	in_ifdetach(ifp);
839 #endif
840 
841 #ifdef INET6
842 	/*
843 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
844 	 * before removing routing entries below, since IPv6 interface direct
845 	 * routes are expected to be removed by the IPv6-specific kernel API.
846 	 * Otherwise, the kernel will detect some inconsistency and bark it.
847 	 */
848 	in6_ifdetach(ifp);
849 #endif
850 
851 	/*
852 	 * Delete all remaining routes using this interface
853 	 */
854 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
855 	    if_rtdel_dispatch);
856 	msg.ifp = ifp;
857 	rt_domsg_global(&msg.base);
858 
859 	/* Announce that the interface is gone. */
860 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
861 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
862 
863 	SLIST_FOREACH(dp, &domains, dom_next)
864 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
865 			(*dp->dom_ifdetach)(ifp,
866 				ifp->if_afdata[dp->dom_family]);
867 
868 	/*
869 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
870 	 */
871 	lwkt_gettoken(&ifnet_token);
872 	ifindex2ifnet[ifp->if_index] = NULL;
873 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
874 		if_index--;
875 	TAILQ_REMOVE(&ifnet, ifp, if_link);
876 	lwkt_reltoken(&ifnet_token);
877 
878 	kfree(ifp->if_addrheads, M_IFADDR);
879 
880 	lwkt_synchronize_ipiqs("if_detach");
881 	ifq_stage_detach(&ifp->if_snd);
882 
883 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
884 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
885 
886 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
887 		kfree(ifsq->ifsq_stage, M_DEVBUF);
888 	}
889 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
890 
891 	kfree(ifp->if_data_pcpu, M_DEVBUF);
892 
893 	crit_exit();
894 }
895 
896 /*
897  * Create interface group without members
898  */
899 struct ifg_group *
900 if_creategroup(const char *groupname)
901 {
902         struct ifg_group        *ifg = NULL;
903 
904         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
905             M_TEMP, M_NOWAIT)) == NULL)
906                 return (NULL);
907 
908         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
909         ifg->ifg_refcnt = 0;
910         ifg->ifg_carp_demoted = 0;
911         TAILQ_INIT(&ifg->ifg_members);
912 #if NPF > 0
913         pfi_attach_ifgroup(ifg);
914 #endif
915         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
916 
917         return (ifg);
918 }
919 
920 /*
921  * Add a group to an interface
922  */
923 int
924 if_addgroup(struct ifnet *ifp, const char *groupname)
925 {
926 	struct ifg_list		*ifgl;
927 	struct ifg_group	*ifg = NULL;
928 	struct ifg_member	*ifgm;
929 
930 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
931 	    groupname[strlen(groupname) - 1] <= '9')
932 		return (EINVAL);
933 
934 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
935 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
936 			return (EEXIST);
937 
938 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
939 		return (ENOMEM);
940 
941 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
942 		kfree(ifgl, M_TEMP);
943 		return (ENOMEM);
944 	}
945 
946 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
947 		if (!strcmp(ifg->ifg_group, groupname))
948 			break;
949 
950 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
951 		kfree(ifgl, M_TEMP);
952 		kfree(ifgm, M_TEMP);
953 		return (ENOMEM);
954 	}
955 
956 	ifg->ifg_refcnt++;
957 	ifgl->ifgl_group = ifg;
958 	ifgm->ifgm_ifp = ifp;
959 
960 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
961 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
962 
963 #if NPF > 0
964 	pfi_group_change(groupname);
965 #endif
966 
967 	return (0);
968 }
969 
970 /*
971  * Remove a group from an interface
972  */
973 int
974 if_delgroup(struct ifnet *ifp, const char *groupname)
975 {
976 	struct ifg_list		*ifgl;
977 	struct ifg_member	*ifgm;
978 
979 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
980 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
981 			break;
982 	if (ifgl == NULL)
983 		return (ENOENT);
984 
985 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
986 
987 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
988 		if (ifgm->ifgm_ifp == ifp)
989 			break;
990 
991 	if (ifgm != NULL) {
992 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
993 		kfree(ifgm, M_TEMP);
994 	}
995 
996 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
997 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
998 #if NPF > 0
999 		pfi_detach_ifgroup(ifgl->ifgl_group);
1000 #endif
1001 		kfree(ifgl->ifgl_group, M_TEMP);
1002 	}
1003 
1004 	kfree(ifgl, M_TEMP);
1005 
1006 #if NPF > 0
1007 	pfi_group_change(groupname);
1008 #endif
1009 
1010 	return (0);
1011 }
1012 
1013 /*
1014  * Stores all groups from an interface in memory pointed
1015  * to by data
1016  */
1017 int
1018 if_getgroup(caddr_t data, struct ifnet *ifp)
1019 {
1020 	int			 len, error;
1021 	struct ifg_list		*ifgl;
1022 	struct ifg_req		 ifgrq, *ifgp;
1023 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1024 
1025 	if (ifgr->ifgr_len == 0) {
1026 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1027 			ifgr->ifgr_len += sizeof(struct ifg_req);
1028 		return (0);
1029 	}
1030 
1031 	len = ifgr->ifgr_len;
1032 	ifgp = ifgr->ifgr_groups;
1033 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1034 		if (len < sizeof(ifgrq))
1035 			return (EINVAL);
1036 		bzero(&ifgrq, sizeof ifgrq);
1037 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1038 		    sizeof(ifgrq.ifgrq_group));
1039 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1040 		    sizeof(struct ifg_req))))
1041 			return (error);
1042 		len -= sizeof(ifgrq);
1043 		ifgp++;
1044 	}
1045 
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Stores all members of a group in memory pointed to by data
1051  */
1052 int
1053 if_getgroupmembers(caddr_t data)
1054 {
1055 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1056 	struct ifg_group	*ifg;
1057 	struct ifg_member	*ifgm;
1058 	struct ifg_req		 ifgrq, *ifgp;
1059 	int			 len, error;
1060 
1061 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1062 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1063 			break;
1064 	if (ifg == NULL)
1065 		return (ENOENT);
1066 
1067 	if (ifgr->ifgr_len == 0) {
1068 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1069 			ifgr->ifgr_len += sizeof(ifgrq);
1070 		return (0);
1071 	}
1072 
1073 	len = ifgr->ifgr_len;
1074 	ifgp = ifgr->ifgr_groups;
1075 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1076 		if (len < sizeof(ifgrq))
1077 			return (EINVAL);
1078 		bzero(&ifgrq, sizeof ifgrq);
1079 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1080 		    sizeof(ifgrq.ifgrq_member));
1081 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1082 		    sizeof(struct ifg_req))))
1083 			return (error);
1084 		len -= sizeof(ifgrq);
1085 		ifgp++;
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Delete Routes for a Network Interface
1093  *
1094  * Called for each routing entry via the rnh->rnh_walktree() call above
1095  * to delete all route entries referencing a detaching network interface.
1096  *
1097  * Arguments:
1098  *	rn	pointer to node in the routing table
1099  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1100  *
1101  * Returns:
1102  *	0	successful
1103  *	errno	failed - reason indicated
1104  *
1105  */
1106 static int
1107 if_rtdel(struct radix_node *rn, void *arg)
1108 {
1109 	struct rtentry	*rt = (struct rtentry *)rn;
1110 	struct ifnet	*ifp = arg;
1111 	int		err;
1112 
1113 	if (rt->rt_ifp == ifp) {
1114 
1115 		/*
1116 		 * Protect (sorta) against walktree recursion problems
1117 		 * with cloned routes
1118 		 */
1119 		if (!(rt->rt_flags & RTF_UP))
1120 			return (0);
1121 
1122 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1123 				rt_mask(rt), rt->rt_flags,
1124 				NULL);
1125 		if (err) {
1126 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1127 		}
1128 	}
1129 
1130 	return (0);
1131 }
1132 
1133 /*
1134  * Locate an interface based on a complete address.
1135  */
1136 struct ifaddr *
1137 ifa_ifwithaddr(struct sockaddr *addr)
1138 {
1139 	struct ifnet *ifp;
1140 
1141 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1142 		struct ifaddr_container *ifac;
1143 
1144 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1145 			struct ifaddr *ifa = ifac->ifa;
1146 
1147 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1148 				continue;
1149 			if (sa_equal(addr, ifa->ifa_addr))
1150 				return (ifa);
1151 			if ((ifp->if_flags & IFF_BROADCAST) &&
1152 			    ifa->ifa_broadaddr &&
1153 			    /* IPv6 doesn't have broadcast */
1154 			    ifa->ifa_broadaddr->sa_len != 0 &&
1155 			    sa_equal(ifa->ifa_broadaddr, addr))
1156 				return (ifa);
1157 		}
1158 	}
1159 	return (NULL);
1160 }
1161 /*
1162  * Locate the point to point interface with a given destination address.
1163  */
1164 struct ifaddr *
1165 ifa_ifwithdstaddr(struct sockaddr *addr)
1166 {
1167 	struct ifnet *ifp;
1168 
1169 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1170 		struct ifaddr_container *ifac;
1171 
1172 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1173 			continue;
1174 
1175 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1176 			struct ifaddr *ifa = ifac->ifa;
1177 
1178 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1179 				continue;
1180 			if (ifa->ifa_dstaddr &&
1181 			    sa_equal(addr, ifa->ifa_dstaddr))
1182 				return (ifa);
1183 		}
1184 	}
1185 	return (NULL);
1186 }
1187 
1188 /*
1189  * Find an interface on a specific network.  If many, choice
1190  * is most specific found.
1191  */
1192 struct ifaddr *
1193 ifa_ifwithnet(struct sockaddr *addr)
1194 {
1195 	struct ifnet *ifp;
1196 	struct ifaddr *ifa_maybe = NULL;
1197 	u_int af = addr->sa_family;
1198 	char *addr_data = addr->sa_data, *cplim;
1199 
1200 	/*
1201 	 * AF_LINK addresses can be looked up directly by their index number,
1202 	 * so do that if we can.
1203 	 */
1204 	if (af == AF_LINK) {
1205 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1206 
1207 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1208 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1209 	}
1210 
1211 	/*
1212 	 * Scan though each interface, looking for ones that have
1213 	 * addresses in this address family.
1214 	 */
1215 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1216 		struct ifaddr_container *ifac;
1217 
1218 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1219 			struct ifaddr *ifa = ifac->ifa;
1220 			char *cp, *cp2, *cp3;
1221 
1222 			if (ifa->ifa_addr->sa_family != af)
1223 next:				continue;
1224 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1225 				/*
1226 				 * This is a bit broken as it doesn't
1227 				 * take into account that the remote end may
1228 				 * be a single node in the network we are
1229 				 * looking for.
1230 				 * The trouble is that we don't know the
1231 				 * netmask for the remote end.
1232 				 */
1233 				if (ifa->ifa_dstaddr != NULL &&
1234 				    sa_equal(addr, ifa->ifa_dstaddr))
1235 					return (ifa);
1236 			} else {
1237 				/*
1238 				 * if we have a special address handler,
1239 				 * then use it instead of the generic one.
1240 				 */
1241 				if (ifa->ifa_claim_addr) {
1242 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1243 						return (ifa);
1244 					} else {
1245 						continue;
1246 					}
1247 				}
1248 
1249 				/*
1250 				 * Scan all the bits in the ifa's address.
1251 				 * If a bit dissagrees with what we are
1252 				 * looking for, mask it with the netmask
1253 				 * to see if it really matters.
1254 				 * (A byte at a time)
1255 				 */
1256 				if (ifa->ifa_netmask == 0)
1257 					continue;
1258 				cp = addr_data;
1259 				cp2 = ifa->ifa_addr->sa_data;
1260 				cp3 = ifa->ifa_netmask->sa_data;
1261 				cplim = ifa->ifa_netmask->sa_len +
1262 					(char *)ifa->ifa_netmask;
1263 				while (cp3 < cplim)
1264 					if ((*cp++ ^ *cp2++) & *cp3++)
1265 						goto next; /* next address! */
1266 				/*
1267 				 * If the netmask of what we just found
1268 				 * is more specific than what we had before
1269 				 * (if we had one) then remember the new one
1270 				 * before continuing to search
1271 				 * for an even better one.
1272 				 */
1273 				if (ifa_maybe == NULL ||
1274 				    rn_refines((char *)ifa->ifa_netmask,
1275 					       (char *)ifa_maybe->ifa_netmask))
1276 					ifa_maybe = ifa;
1277 			}
1278 		}
1279 	}
1280 	return (ifa_maybe);
1281 }
1282 
1283 /*
1284  * Find an interface address specific to an interface best matching
1285  * a given address.
1286  */
1287 struct ifaddr *
1288 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1289 {
1290 	struct ifaddr_container *ifac;
1291 	char *cp, *cp2, *cp3;
1292 	char *cplim;
1293 	struct ifaddr *ifa_maybe = NULL;
1294 	u_int af = addr->sa_family;
1295 
1296 	if (af >= AF_MAX)
1297 		return (0);
1298 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1299 		struct ifaddr *ifa = ifac->ifa;
1300 
1301 		if (ifa->ifa_addr->sa_family != af)
1302 			continue;
1303 		if (ifa_maybe == NULL)
1304 			ifa_maybe = ifa;
1305 		if (ifa->ifa_netmask == NULL) {
1306 			if (sa_equal(addr, ifa->ifa_addr) ||
1307 			    (ifa->ifa_dstaddr != NULL &&
1308 			     sa_equal(addr, ifa->ifa_dstaddr)))
1309 				return (ifa);
1310 			continue;
1311 		}
1312 		if (ifp->if_flags & IFF_POINTOPOINT) {
1313 			if (sa_equal(addr, ifa->ifa_dstaddr))
1314 				return (ifa);
1315 		} else {
1316 			cp = addr->sa_data;
1317 			cp2 = ifa->ifa_addr->sa_data;
1318 			cp3 = ifa->ifa_netmask->sa_data;
1319 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1320 			for (; cp3 < cplim; cp3++)
1321 				if ((*cp++ ^ *cp2++) & *cp3)
1322 					break;
1323 			if (cp3 == cplim)
1324 				return (ifa);
1325 		}
1326 	}
1327 	return (ifa_maybe);
1328 }
1329 
1330 /*
1331  * Default action when installing a route with a Link Level gateway.
1332  * Lookup an appropriate real ifa to point to.
1333  * This should be moved to /sys/net/link.c eventually.
1334  */
1335 static void
1336 link_rtrequest(int cmd, struct rtentry *rt)
1337 {
1338 	struct ifaddr *ifa;
1339 	struct sockaddr *dst;
1340 	struct ifnet *ifp;
1341 
1342 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1343 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1344 		return;
1345 	ifa = ifaof_ifpforaddr(dst, ifp);
1346 	if (ifa != NULL) {
1347 		IFAFREE(rt->rt_ifa);
1348 		IFAREF(ifa);
1349 		rt->rt_ifa = ifa;
1350 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1351 			ifa->ifa_rtrequest(cmd, rt);
1352 	}
1353 }
1354 
1355 /*
1356  * Mark an interface down and notify protocols of
1357  * the transition.
1358  * NOTE: must be called at splnet or eqivalent.
1359  */
1360 void
1361 if_unroute(struct ifnet *ifp, int flag, int fam)
1362 {
1363 	struct ifaddr_container *ifac;
1364 
1365 	ifp->if_flags &= ~flag;
1366 	getmicrotime(&ifp->if_lastchange);
1367 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1368 		struct ifaddr *ifa = ifac->ifa;
1369 
1370 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1371 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1372 	}
1373 	ifq_purge_all(&ifp->if_snd);
1374 	rt_ifmsg(ifp);
1375 }
1376 
1377 /*
1378  * Mark an interface up and notify protocols of
1379  * the transition.
1380  * NOTE: must be called at splnet or eqivalent.
1381  */
1382 void
1383 if_route(struct ifnet *ifp, int flag, int fam)
1384 {
1385 	struct ifaddr_container *ifac;
1386 
1387 	ifq_purge_all(&ifp->if_snd);
1388 	ifp->if_flags |= flag;
1389 	getmicrotime(&ifp->if_lastchange);
1390 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1391 		struct ifaddr *ifa = ifac->ifa;
1392 
1393 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1394 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1395 	}
1396 	rt_ifmsg(ifp);
1397 #ifdef INET6
1398 	in6_if_up(ifp);
1399 #endif
1400 }
1401 
1402 /*
1403  * Mark an interface down and notify protocols of the transition.  An
1404  * interface going down is also considered to be a synchronizing event.
1405  * We must ensure that all packet processing related to the interface
1406  * has completed before we return so e.g. the caller can free the ifnet
1407  * structure that the mbufs may be referencing.
1408  *
1409  * NOTE: must be called at splnet or eqivalent.
1410  */
1411 void
1412 if_down(struct ifnet *ifp)
1413 {
1414 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1415 	netmsg_service_sync();
1416 }
1417 
1418 /*
1419  * Mark an interface up and notify protocols of
1420  * the transition.
1421  * NOTE: must be called at splnet or eqivalent.
1422  */
1423 void
1424 if_up(struct ifnet *ifp)
1425 {
1426 	if_route(ifp, IFF_UP, AF_UNSPEC);
1427 }
1428 
1429 /*
1430  * Process a link state change.
1431  * NOTE: must be called at splsoftnet or equivalent.
1432  */
1433 void
1434 if_link_state_change(struct ifnet *ifp)
1435 {
1436 	int link_state = ifp->if_link_state;
1437 
1438 	rt_ifmsg(ifp);
1439 	devctl_notify("IFNET", ifp->if_xname,
1440 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1441 }
1442 
1443 /*
1444  * Handle interface watchdog timer routines.  Called
1445  * from softclock, we decrement timers (if set) and
1446  * call the appropriate interface routine on expiration.
1447  */
1448 static void
1449 if_slowtimo(void *arg)
1450 {
1451 	struct ifnet *ifp;
1452 
1453 	crit_enter();
1454 
1455 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1456 		if (if_stats_compat) {
1457 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1458 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1459 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1460 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1461 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1462 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1463 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1464 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1465 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1466 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1467 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1468 		}
1469 
1470 		if (ifp->if_timer == 0 || --ifp->if_timer)
1471 			continue;
1472 		if (ifp->if_watchdog) {
1473 			if (ifnet_tryserialize_all(ifp)) {
1474 				(*ifp->if_watchdog)(ifp);
1475 				ifnet_deserialize_all(ifp);
1476 			} else {
1477 				/* try again next timeout */
1478 				++ifp->if_timer;
1479 			}
1480 		}
1481 	}
1482 
1483 	crit_exit();
1484 
1485 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1486 }
1487 
1488 /*
1489  * Map interface name to
1490  * interface structure pointer.
1491  */
1492 struct ifnet *
1493 ifunit(const char *name)
1494 {
1495 	struct ifnet *ifp;
1496 
1497 	/*
1498 	 * Search all the interfaces for this name/number
1499 	 */
1500 
1501 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1502 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1503 			break;
1504 	}
1505 	return (ifp);
1506 }
1507 
1508 
1509 /*
1510  * Map interface name in a sockaddr_dl to
1511  * interface structure pointer.
1512  */
1513 struct ifnet *
1514 if_withname(struct sockaddr *sa)
1515 {
1516 	char ifname[IFNAMSIZ+1];
1517 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1518 
1519 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1520 	     (sdl->sdl_nlen > IFNAMSIZ) )
1521 		return NULL;
1522 
1523 	/*
1524 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1525 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1526 	 * and there might not be room to put the trailing null anyway, so we
1527 	 * make a local copy that we know we can null terminate safely.
1528 	 */
1529 
1530 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1531 	ifname[sdl->sdl_nlen] = '\0';
1532 	return ifunit(ifname);
1533 }
1534 
1535 
1536 /*
1537  * Interface ioctls.
1538  */
1539 int
1540 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1541 {
1542 	struct ifnet *ifp;
1543 	struct ifreq *ifr;
1544 	struct ifstat *ifs;
1545 	int error;
1546 	short oif_flags;
1547 	int new_flags;
1548 #ifdef COMPAT_43
1549 	int ocmd;
1550 #endif
1551 	size_t namelen, onamelen;
1552 	char new_name[IFNAMSIZ];
1553 	struct ifaddr *ifa;
1554 	struct sockaddr_dl *sdl;
1555 
1556 	switch (cmd) {
1557 	case SIOCGIFCONF:
1558 	case OSIOCGIFCONF:
1559 		return (ifconf(cmd, data, cred));
1560 	default:
1561 		break;
1562 	}
1563 
1564 	ifr = (struct ifreq *)data;
1565 
1566 	switch (cmd) {
1567 	case SIOCIFCREATE:
1568 	case SIOCIFCREATE2:
1569 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1570 			return (error);
1571 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1572 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1573 	case SIOCIFDESTROY:
1574 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1575 			return (error);
1576 		return (if_clone_destroy(ifr->ifr_name));
1577 	case SIOCIFGCLONERS:
1578 		return (if_clone_list((struct if_clonereq *)data));
1579 	default:
1580 		break;
1581 	}
1582 
1583 	/*
1584 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1585 	 * lock to serialize the ifconfig ioctl operation.
1586 	 */
1587 	ifp = ifunit(ifr->ifr_name);
1588 	if (ifp == NULL)
1589 		return (ENXIO);
1590 	error = 0;
1591 	mtx_lock(&ifp->if_ioctl_mtx);
1592 
1593 	switch (cmd) {
1594 	case SIOCGIFINDEX:
1595 		ifr->ifr_index = ifp->if_index;
1596 		break;
1597 
1598 	case SIOCGIFFLAGS:
1599 		ifr->ifr_flags = ifp->if_flags;
1600 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1601 		break;
1602 
1603 	case SIOCGIFCAP:
1604 		ifr->ifr_reqcap = ifp->if_capabilities;
1605 		ifr->ifr_curcap = ifp->if_capenable;
1606 		break;
1607 
1608 	case SIOCGIFMETRIC:
1609 		ifr->ifr_metric = ifp->if_metric;
1610 		break;
1611 
1612 	case SIOCGIFMTU:
1613 		ifr->ifr_mtu = ifp->if_mtu;
1614 		break;
1615 
1616 	case SIOCGIFTSOLEN:
1617 		ifr->ifr_tsolen = ifp->if_tsolen;
1618 		break;
1619 
1620 	case SIOCGIFDATA:
1621 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1622 				sizeof(ifp->if_data));
1623 		break;
1624 
1625 	case SIOCGIFPHYS:
1626 		ifr->ifr_phys = ifp->if_physical;
1627 		break;
1628 
1629 	case SIOCGIFPOLLCPU:
1630 		ifr->ifr_pollcpu = -1;
1631 		break;
1632 
1633 	case SIOCSIFPOLLCPU:
1634 		break;
1635 
1636 	case SIOCSIFFLAGS:
1637 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1638 		if (error)
1639 			break;
1640 		new_flags = (ifr->ifr_flags & 0xffff) |
1641 		    (ifr->ifr_flagshigh << 16);
1642 		if (ifp->if_flags & IFF_SMART) {
1643 			/* Smart drivers twiddle their own routes */
1644 		} else if (ifp->if_flags & IFF_UP &&
1645 		    (new_flags & IFF_UP) == 0) {
1646 			crit_enter();
1647 			if_down(ifp);
1648 			crit_exit();
1649 		} else if (new_flags & IFF_UP &&
1650 		    (ifp->if_flags & IFF_UP) == 0) {
1651 			crit_enter();
1652 			if_up(ifp);
1653 			crit_exit();
1654 		}
1655 
1656 #ifdef IFPOLL_ENABLE
1657 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1658 			if (new_flags & IFF_NPOLLING)
1659 				ifpoll_register(ifp);
1660 			else
1661 				ifpoll_deregister(ifp);
1662 		}
1663 #endif
1664 
1665 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1666 			(new_flags &~ IFF_CANTCHANGE);
1667 		if (new_flags & IFF_PPROMISC) {
1668 			/* Permanently promiscuous mode requested */
1669 			ifp->if_flags |= IFF_PROMISC;
1670 		} else if (ifp->if_pcount == 0) {
1671 			ifp->if_flags &= ~IFF_PROMISC;
1672 		}
1673 		if (ifp->if_ioctl) {
1674 			ifnet_serialize_all(ifp);
1675 			ifp->if_ioctl(ifp, cmd, data, cred);
1676 			ifnet_deserialize_all(ifp);
1677 		}
1678 		getmicrotime(&ifp->if_lastchange);
1679 		break;
1680 
1681 	case SIOCSIFCAP:
1682 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1683 		if (error)
1684 			break;
1685 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1686 			error = EINVAL;
1687 			break;
1688 		}
1689 		ifnet_serialize_all(ifp);
1690 		ifp->if_ioctl(ifp, cmd, data, cred);
1691 		ifnet_deserialize_all(ifp);
1692 		break;
1693 
1694 	case SIOCSIFNAME:
1695 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1696 		if (error)
1697 			break;
1698 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1699 		if (error)
1700 			break;
1701 		if (new_name[0] == '\0') {
1702 			error = EINVAL;
1703 			break;
1704 		}
1705 		if (ifunit(new_name) != NULL) {
1706 			error = EEXIST;
1707 			break;
1708 		}
1709 
1710 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1711 
1712 		/* Announce the departure of the interface. */
1713 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1714 
1715 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1716 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1717 		/* XXX IFA_LOCK(ifa); */
1718 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1719 		namelen = strlen(new_name);
1720 		onamelen = sdl->sdl_nlen;
1721 		/*
1722 		 * Move the address if needed.  This is safe because we
1723 		 * allocate space for a name of length IFNAMSIZ when we
1724 		 * create this in if_attach().
1725 		 */
1726 		if (namelen != onamelen) {
1727 			bcopy(sdl->sdl_data + onamelen,
1728 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1729 		}
1730 		bcopy(new_name, sdl->sdl_data, namelen);
1731 		sdl->sdl_nlen = namelen;
1732 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1733 		bzero(sdl->sdl_data, onamelen);
1734 		while (namelen != 0)
1735 			sdl->sdl_data[--namelen] = 0xff;
1736 		/* XXX IFA_UNLOCK(ifa) */
1737 
1738 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1739 
1740 		/* Announce the return of the interface. */
1741 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1742 		break;
1743 
1744 	case SIOCSIFMETRIC:
1745 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1746 		if (error)
1747 			break;
1748 		ifp->if_metric = ifr->ifr_metric;
1749 		getmicrotime(&ifp->if_lastchange);
1750 		break;
1751 
1752 	case SIOCSIFPHYS:
1753 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1754 		if (error)
1755 			break;
1756 		if (ifp->if_ioctl == NULL) {
1757 		        error = EOPNOTSUPP;
1758 			break;
1759 		}
1760 		ifnet_serialize_all(ifp);
1761 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1762 		ifnet_deserialize_all(ifp);
1763 		if (error == 0)
1764 			getmicrotime(&ifp->if_lastchange);
1765 		break;
1766 
1767 	case SIOCSIFMTU:
1768 	{
1769 		u_long oldmtu = ifp->if_mtu;
1770 
1771 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1772 		if (error)
1773 			break;
1774 		if (ifp->if_ioctl == NULL) {
1775 			error = EOPNOTSUPP;
1776 			break;
1777 		}
1778 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1779 			error = EINVAL;
1780 			break;
1781 		}
1782 		ifnet_serialize_all(ifp);
1783 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1784 		ifnet_deserialize_all(ifp);
1785 		if (error == 0) {
1786 			getmicrotime(&ifp->if_lastchange);
1787 			rt_ifmsg(ifp);
1788 		}
1789 		/*
1790 		 * If the link MTU changed, do network layer specific procedure.
1791 		 */
1792 		if (ifp->if_mtu != oldmtu) {
1793 #ifdef INET6
1794 			nd6_setmtu(ifp);
1795 #endif
1796 		}
1797 		break;
1798 	}
1799 
1800 	case SIOCSIFTSOLEN:
1801 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1802 		if (error)
1803 			break;
1804 
1805 		/* XXX need driver supplied upper limit */
1806 		if (ifr->ifr_tsolen <= 0) {
1807 			error = EINVAL;
1808 			break;
1809 		}
1810 		ifp->if_tsolen = ifr->ifr_tsolen;
1811 		break;
1812 
1813 	case SIOCADDMULTI:
1814 	case SIOCDELMULTI:
1815 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1816 		if (error)
1817 			break;
1818 
1819 		/* Don't allow group membership on non-multicast interfaces. */
1820 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1821 			error = EOPNOTSUPP;
1822 			break;
1823 		}
1824 
1825 		/* Don't let users screw up protocols' entries. */
1826 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1827 			error = EINVAL;
1828 			break;
1829 		}
1830 
1831 		if (cmd == SIOCADDMULTI) {
1832 			struct ifmultiaddr *ifma;
1833 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1834 		} else {
1835 			error = if_delmulti(ifp, &ifr->ifr_addr);
1836 		}
1837 		if (error == 0)
1838 			getmicrotime(&ifp->if_lastchange);
1839 		break;
1840 
1841 	case SIOCSIFPHYADDR:
1842 	case SIOCDIFPHYADDR:
1843 #ifdef INET6
1844 	case SIOCSIFPHYADDR_IN6:
1845 #endif
1846 	case SIOCSLIFPHYADDR:
1847         case SIOCSIFMEDIA:
1848 	case SIOCSIFGENERIC:
1849 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1850 		if (error)
1851 			break;
1852 		if (ifp->if_ioctl == 0) {
1853 			error = EOPNOTSUPP;
1854 			break;
1855 		}
1856 		ifnet_serialize_all(ifp);
1857 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1858 		ifnet_deserialize_all(ifp);
1859 		if (error == 0)
1860 			getmicrotime(&ifp->if_lastchange);
1861 		break;
1862 
1863 	case SIOCGIFSTATUS:
1864 		ifs = (struct ifstat *)data;
1865 		ifs->ascii[0] = '\0';
1866 		/* fall through */
1867 	case SIOCGIFPSRCADDR:
1868 	case SIOCGIFPDSTADDR:
1869 	case SIOCGLIFPHYADDR:
1870 	case SIOCGIFMEDIA:
1871 	case SIOCGIFGENERIC:
1872 		if (ifp->if_ioctl == NULL) {
1873 			error = EOPNOTSUPP;
1874 			break;
1875 		}
1876 		ifnet_serialize_all(ifp);
1877 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1878 		ifnet_deserialize_all(ifp);
1879 		break;
1880 
1881 	case SIOCSIFLLADDR:
1882 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1883 		if (error)
1884 			break;
1885 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1886 				     ifr->ifr_addr.sa_len);
1887 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1888 		break;
1889 
1890 	default:
1891 		oif_flags = ifp->if_flags;
1892 		if (so->so_proto == 0) {
1893 			error = EOPNOTSUPP;
1894 			break;
1895 		}
1896 #ifndef COMPAT_43
1897 		error = so_pru_control_direct(so, cmd, data, ifp);
1898 #else
1899 		ocmd = cmd;
1900 
1901 		switch (cmd) {
1902 		case SIOCSIFDSTADDR:
1903 		case SIOCSIFADDR:
1904 		case SIOCSIFBRDADDR:
1905 		case SIOCSIFNETMASK:
1906 #if BYTE_ORDER != BIG_ENDIAN
1907 			if (ifr->ifr_addr.sa_family == 0 &&
1908 			    ifr->ifr_addr.sa_len < 16) {
1909 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1910 				ifr->ifr_addr.sa_len = 16;
1911 			}
1912 #else
1913 			if (ifr->ifr_addr.sa_len == 0)
1914 				ifr->ifr_addr.sa_len = 16;
1915 #endif
1916 			break;
1917 		case OSIOCGIFADDR:
1918 			cmd = SIOCGIFADDR;
1919 			break;
1920 		case OSIOCGIFDSTADDR:
1921 			cmd = SIOCGIFDSTADDR;
1922 			break;
1923 		case OSIOCGIFBRDADDR:
1924 			cmd = SIOCGIFBRDADDR;
1925 			break;
1926 		case OSIOCGIFNETMASK:
1927 			cmd = SIOCGIFNETMASK;
1928 			break;
1929 		default:
1930 			break;
1931 		}
1932 
1933 		error = so_pru_control_direct(so, cmd, data, ifp);
1934 
1935 		switch (ocmd) {
1936 		case OSIOCGIFADDR:
1937 		case OSIOCGIFDSTADDR:
1938 		case OSIOCGIFBRDADDR:
1939 		case OSIOCGIFNETMASK:
1940 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1941 			break;
1942 		}
1943 #endif /* COMPAT_43 */
1944 
1945 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1946 #ifdef INET6
1947 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1948 			if (ifp->if_flags & IFF_UP) {
1949 				crit_enter();
1950 				in6_if_up(ifp);
1951 				crit_exit();
1952 			}
1953 #endif
1954 		}
1955 		break;
1956 	}
1957 
1958 	mtx_unlock(&ifp->if_ioctl_mtx);
1959 	return (error);
1960 }
1961 
1962 /*
1963  * Set/clear promiscuous mode on interface ifp based on the truth value
1964  * of pswitch.  The calls are reference counted so that only the first
1965  * "on" request actually has an effect, as does the final "off" request.
1966  * Results are undefined if the "off" and "on" requests are not matched.
1967  */
1968 int
1969 ifpromisc(struct ifnet *ifp, int pswitch)
1970 {
1971 	struct ifreq ifr;
1972 	int error;
1973 	int oldflags;
1974 
1975 	oldflags = ifp->if_flags;
1976 	if (ifp->if_flags & IFF_PPROMISC) {
1977 		/* Do nothing if device is in permanently promiscuous mode */
1978 		ifp->if_pcount += pswitch ? 1 : -1;
1979 		return (0);
1980 	}
1981 	if (pswitch) {
1982 		/*
1983 		 * If the device is not configured up, we cannot put it in
1984 		 * promiscuous mode.
1985 		 */
1986 		if ((ifp->if_flags & IFF_UP) == 0)
1987 			return (ENETDOWN);
1988 		if (ifp->if_pcount++ != 0)
1989 			return (0);
1990 		ifp->if_flags |= IFF_PROMISC;
1991 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1992 		    ifp->if_xname);
1993 	} else {
1994 		if (--ifp->if_pcount > 0)
1995 			return (0);
1996 		ifp->if_flags &= ~IFF_PROMISC;
1997 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1998 		    ifp->if_xname);
1999 	}
2000 	ifr.ifr_flags = ifp->if_flags;
2001 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2002 	ifnet_serialize_all(ifp);
2003 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2004 	ifnet_deserialize_all(ifp);
2005 	if (error == 0)
2006 		rt_ifmsg(ifp);
2007 	else
2008 		ifp->if_flags = oldflags;
2009 	return error;
2010 }
2011 
2012 /*
2013  * Return interface configuration
2014  * of system.  List may be used
2015  * in later ioctl's (above) to get
2016  * other information.
2017  */
2018 static int
2019 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2020 {
2021 	struct ifconf *ifc = (struct ifconf *)data;
2022 	struct ifnet *ifp;
2023 	struct sockaddr *sa;
2024 	struct ifreq ifr, *ifrp;
2025 	int space = ifc->ifc_len, error = 0;
2026 
2027 	ifrp = ifc->ifc_req;
2028 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2029 		struct ifaddr_container *ifac;
2030 		int addrs;
2031 
2032 		if (space <= sizeof ifr)
2033 			break;
2034 
2035 		/*
2036 		 * Zero the stack declared structure first to prevent
2037 		 * memory disclosure.
2038 		 */
2039 		bzero(&ifr, sizeof(ifr));
2040 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2041 		    >= sizeof(ifr.ifr_name)) {
2042 			error = ENAMETOOLONG;
2043 			break;
2044 		}
2045 
2046 		addrs = 0;
2047 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2048 			struct ifaddr *ifa = ifac->ifa;
2049 
2050 			if (space <= sizeof ifr)
2051 				break;
2052 			sa = ifa->ifa_addr;
2053 			if (cred->cr_prison &&
2054 			    prison_if(cred, sa))
2055 				continue;
2056 			addrs++;
2057 #ifdef COMPAT_43
2058 			if (cmd == OSIOCGIFCONF) {
2059 				struct osockaddr *osa =
2060 					 (struct osockaddr *)&ifr.ifr_addr;
2061 				ifr.ifr_addr = *sa;
2062 				osa->sa_family = sa->sa_family;
2063 				error = copyout(&ifr, ifrp, sizeof ifr);
2064 				ifrp++;
2065 			} else
2066 #endif
2067 			if (sa->sa_len <= sizeof(*sa)) {
2068 				ifr.ifr_addr = *sa;
2069 				error = copyout(&ifr, ifrp, sizeof ifr);
2070 				ifrp++;
2071 			} else {
2072 				if (space < (sizeof ifr) + sa->sa_len -
2073 					    sizeof(*sa))
2074 					break;
2075 				space -= sa->sa_len - sizeof(*sa);
2076 				error = copyout(&ifr, ifrp,
2077 						sizeof ifr.ifr_name);
2078 				if (error == 0)
2079 					error = copyout(sa, &ifrp->ifr_addr,
2080 							sa->sa_len);
2081 				ifrp = (struct ifreq *)
2082 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2083 			}
2084 			if (error)
2085 				break;
2086 			space -= sizeof ifr;
2087 		}
2088 		if (error)
2089 			break;
2090 		if (!addrs) {
2091 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2092 			error = copyout(&ifr, ifrp, sizeof ifr);
2093 			if (error)
2094 				break;
2095 			space -= sizeof ifr;
2096 			ifrp++;
2097 		}
2098 	}
2099 	ifc->ifc_len -= space;
2100 	return (error);
2101 }
2102 
2103 /*
2104  * Just like if_promisc(), but for all-multicast-reception mode.
2105  */
2106 int
2107 if_allmulti(struct ifnet *ifp, int onswitch)
2108 {
2109 	int error = 0;
2110 	struct ifreq ifr;
2111 
2112 	crit_enter();
2113 
2114 	if (onswitch) {
2115 		if (ifp->if_amcount++ == 0) {
2116 			ifp->if_flags |= IFF_ALLMULTI;
2117 			ifr.ifr_flags = ifp->if_flags;
2118 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2119 			ifnet_serialize_all(ifp);
2120 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2121 					      NULL);
2122 			ifnet_deserialize_all(ifp);
2123 		}
2124 	} else {
2125 		if (ifp->if_amcount > 1) {
2126 			ifp->if_amcount--;
2127 		} else {
2128 			ifp->if_amcount = 0;
2129 			ifp->if_flags &= ~IFF_ALLMULTI;
2130 			ifr.ifr_flags = ifp->if_flags;
2131 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2132 			ifnet_serialize_all(ifp);
2133 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2134 					      NULL);
2135 			ifnet_deserialize_all(ifp);
2136 		}
2137 	}
2138 
2139 	crit_exit();
2140 
2141 	if (error == 0)
2142 		rt_ifmsg(ifp);
2143 	return error;
2144 }
2145 
2146 /*
2147  * Add a multicast listenership to the interface in question.
2148  * The link layer provides a routine which converts
2149  */
2150 int
2151 if_addmulti(
2152 	struct ifnet *ifp,	/* interface to manipulate */
2153 	struct sockaddr *sa,	/* address to add */
2154 	struct ifmultiaddr **retifma)
2155 {
2156 	struct sockaddr *llsa, *dupsa;
2157 	int error;
2158 	struct ifmultiaddr *ifma;
2159 
2160 	/*
2161 	 * If the matching multicast address already exists
2162 	 * then don't add a new one, just add a reference
2163 	 */
2164 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2165 		if (sa_equal(sa, ifma->ifma_addr)) {
2166 			ifma->ifma_refcount++;
2167 			if (retifma)
2168 				*retifma = ifma;
2169 			return 0;
2170 		}
2171 	}
2172 
2173 	/*
2174 	 * Give the link layer a chance to accept/reject it, and also
2175 	 * find out which AF_LINK address this maps to, if it isn't one
2176 	 * already.
2177 	 */
2178 	if (ifp->if_resolvemulti) {
2179 		ifnet_serialize_all(ifp);
2180 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2181 		ifnet_deserialize_all(ifp);
2182 		if (error)
2183 			return error;
2184 	} else {
2185 		llsa = NULL;
2186 	}
2187 
2188 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2189 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2190 	bcopy(sa, dupsa, sa->sa_len);
2191 
2192 	ifma->ifma_addr = dupsa;
2193 	ifma->ifma_lladdr = llsa;
2194 	ifma->ifma_ifp = ifp;
2195 	ifma->ifma_refcount = 1;
2196 	ifma->ifma_protospec = 0;
2197 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2198 
2199 	/*
2200 	 * Some network interfaces can scan the address list at
2201 	 * interrupt time; lock them out.
2202 	 */
2203 	crit_enter();
2204 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2205 	crit_exit();
2206 	if (retifma)
2207 		*retifma = ifma;
2208 
2209 	if (llsa != NULL) {
2210 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2211 			if (sa_equal(ifma->ifma_addr, llsa))
2212 				break;
2213 		}
2214 		if (ifma) {
2215 			ifma->ifma_refcount++;
2216 		} else {
2217 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2218 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2219 			bcopy(llsa, dupsa, llsa->sa_len);
2220 			ifma->ifma_addr = dupsa;
2221 			ifma->ifma_ifp = ifp;
2222 			ifma->ifma_refcount = 1;
2223 			crit_enter();
2224 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2225 			crit_exit();
2226 		}
2227 	}
2228 	/*
2229 	 * We are certain we have added something, so call down to the
2230 	 * interface to let them know about it.
2231 	 */
2232 	crit_enter();
2233 	ifnet_serialize_all(ifp);
2234 	if (ifp->if_ioctl)
2235 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2236 	ifnet_deserialize_all(ifp);
2237 	crit_exit();
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Remove a reference to a multicast address on this interface.  Yell
2244  * if the request does not match an existing membership.
2245  */
2246 int
2247 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2248 {
2249 	struct ifmultiaddr *ifma;
2250 
2251 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2252 		if (sa_equal(sa, ifma->ifma_addr))
2253 			break;
2254 	if (ifma == NULL)
2255 		return ENOENT;
2256 
2257 	if (ifma->ifma_refcount > 1) {
2258 		ifma->ifma_refcount--;
2259 		return 0;
2260 	}
2261 
2262 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2263 	sa = ifma->ifma_lladdr;
2264 	crit_enter();
2265 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2266 	/*
2267 	 * Make sure the interface driver is notified
2268 	 * in the case of a link layer mcast group being left.
2269 	 */
2270 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2271 		ifnet_serialize_all(ifp);
2272 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2273 		ifnet_deserialize_all(ifp);
2274 	}
2275 	crit_exit();
2276 	kfree(ifma->ifma_addr, M_IFMADDR);
2277 	kfree(ifma, M_IFMADDR);
2278 	if (sa == NULL)
2279 		return 0;
2280 
2281 	/*
2282 	 * Now look for the link-layer address which corresponds to
2283 	 * this network address.  It had been squirreled away in
2284 	 * ifma->ifma_lladdr for this purpose (so we don't have
2285 	 * to call ifp->if_resolvemulti() again), and we saved that
2286 	 * value in sa above.  If some nasty deleted the
2287 	 * link-layer address out from underneath us, we can deal because
2288 	 * the address we stored was is not the same as the one which was
2289 	 * in the record for the link-layer address.  (So we don't complain
2290 	 * in that case.)
2291 	 */
2292 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2293 		if (sa_equal(sa, ifma->ifma_addr))
2294 			break;
2295 	if (ifma == NULL)
2296 		return 0;
2297 
2298 	if (ifma->ifma_refcount > 1) {
2299 		ifma->ifma_refcount--;
2300 		return 0;
2301 	}
2302 
2303 	crit_enter();
2304 	ifnet_serialize_all(ifp);
2305 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2306 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2307 	ifnet_deserialize_all(ifp);
2308 	crit_exit();
2309 	kfree(ifma->ifma_addr, M_IFMADDR);
2310 	kfree(sa, M_IFMADDR);
2311 	kfree(ifma, M_IFMADDR);
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * Delete all multicast group membership for an interface.
2318  * Should be used to quickly flush all multicast filters.
2319  */
2320 void
2321 if_delallmulti(struct ifnet *ifp)
2322 {
2323 	struct ifmultiaddr *ifma;
2324 	struct ifmultiaddr *next;
2325 
2326 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2327 		if_delmulti(ifp, ifma->ifma_addr);
2328 }
2329 
2330 
2331 /*
2332  * Set the link layer address on an interface.
2333  *
2334  * At this time we only support certain types of interfaces,
2335  * and we don't allow the length of the address to change.
2336  */
2337 int
2338 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2339 {
2340 	struct sockaddr_dl *sdl;
2341 	struct ifreq ifr;
2342 
2343 	sdl = IF_LLSOCKADDR(ifp);
2344 	if (sdl == NULL)
2345 		return (EINVAL);
2346 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2347 		return (EINVAL);
2348 	switch (ifp->if_type) {
2349 	case IFT_ETHER:			/* these types use struct arpcom */
2350 	case IFT_XETHER:
2351 	case IFT_L2VLAN:
2352 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2353 		bcopy(lladdr, LLADDR(sdl), len);
2354 		break;
2355 	default:
2356 		return (ENODEV);
2357 	}
2358 	/*
2359 	 * If the interface is already up, we need
2360 	 * to re-init it in order to reprogram its
2361 	 * address filter.
2362 	 */
2363 	ifnet_serialize_all(ifp);
2364 	if ((ifp->if_flags & IFF_UP) != 0) {
2365 #ifdef INET
2366 		struct ifaddr_container *ifac;
2367 #endif
2368 
2369 		ifp->if_flags &= ~IFF_UP;
2370 		ifr.ifr_flags = ifp->if_flags;
2371 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2372 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2373 			      NULL);
2374 		ifp->if_flags |= IFF_UP;
2375 		ifr.ifr_flags = ifp->if_flags;
2376 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2377 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2378 				 NULL);
2379 #ifdef INET
2380 		/*
2381 		 * Also send gratuitous ARPs to notify other nodes about
2382 		 * the address change.
2383 		 */
2384 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2385 			struct ifaddr *ifa = ifac->ifa;
2386 
2387 			if (ifa->ifa_addr != NULL &&
2388 			    ifa->ifa_addr->sa_family == AF_INET)
2389 				arp_gratuitous(ifp, ifa);
2390 		}
2391 #endif
2392 	}
2393 	ifnet_deserialize_all(ifp);
2394 	return (0);
2395 }
2396 
2397 struct ifmultiaddr *
2398 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2399 {
2400 	struct ifmultiaddr *ifma;
2401 
2402 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2403 		if (sa_equal(ifma->ifma_addr, sa))
2404 			break;
2405 
2406 	return ifma;
2407 }
2408 
2409 /*
2410  * This function locates the first real ethernet MAC from a network
2411  * card and loads it into node, returning 0 on success or ENOENT if
2412  * no suitable interfaces were found.  It is used by the uuid code to
2413  * generate a unique 6-byte number.
2414  */
2415 int
2416 if_getanyethermac(uint16_t *node, int minlen)
2417 {
2418 	struct ifnet *ifp;
2419 	struct sockaddr_dl *sdl;
2420 
2421 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2422 		if (ifp->if_type != IFT_ETHER)
2423 			continue;
2424 		sdl = IF_LLSOCKADDR(ifp);
2425 		if (sdl->sdl_alen < minlen)
2426 			continue;
2427 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2428 		      minlen);
2429 		return(0);
2430 	}
2431 	return (ENOENT);
2432 }
2433 
2434 /*
2435  * The name argument must be a pointer to storage which will last as
2436  * long as the interface does.  For physical devices, the result of
2437  * device_get_name(dev) is a good choice and for pseudo-devices a
2438  * static string works well.
2439  */
2440 void
2441 if_initname(struct ifnet *ifp, const char *name, int unit)
2442 {
2443 	ifp->if_dname = name;
2444 	ifp->if_dunit = unit;
2445 	if (unit != IF_DUNIT_NONE)
2446 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2447 	else
2448 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2449 }
2450 
2451 int
2452 if_printf(struct ifnet *ifp, const char *fmt, ...)
2453 {
2454 	__va_list ap;
2455 	int retval;
2456 
2457 	retval = kprintf("%s: ", ifp->if_xname);
2458 	__va_start(ap, fmt);
2459 	retval += kvprintf(fmt, ap);
2460 	__va_end(ap);
2461 	return (retval);
2462 }
2463 
2464 struct ifnet *
2465 if_alloc(uint8_t type)
2466 {
2467         struct ifnet *ifp;
2468 	size_t size;
2469 
2470 	/*
2471 	 * XXX temporary hack until arpcom is setup in if_l2com
2472 	 */
2473 	if (type == IFT_ETHER)
2474 		size = sizeof(struct arpcom);
2475 	else
2476 		size = sizeof(struct ifnet);
2477 
2478 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2479 
2480 	ifp->if_type = type;
2481 
2482 	if (if_com_alloc[type] != NULL) {
2483 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2484 		if (ifp->if_l2com == NULL) {
2485 			kfree(ifp, M_IFNET);
2486 			return (NULL);
2487 		}
2488 	}
2489 	return (ifp);
2490 }
2491 
2492 void
2493 if_free(struct ifnet *ifp)
2494 {
2495 	kfree(ifp, M_IFNET);
2496 }
2497 
2498 void
2499 ifq_set_classic(struct ifaltq *ifq)
2500 {
2501 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2502 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2503 }
2504 
2505 void
2506 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2507     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2508 {
2509 	int q;
2510 
2511 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2512 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2513 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2514 	KASSERT(request != NULL, ("request is not specified"));
2515 
2516 	ifq->altq_mapsubq = mapsubq;
2517 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2518 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2519 
2520 		ifsq->ifsq_enqueue = enqueue;
2521 		ifsq->ifsq_dequeue = dequeue;
2522 		ifsq->ifsq_request = request;
2523 	}
2524 }
2525 
2526 static void
2527 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2528 {
2529 	m->m_nextpkt = NULL;
2530 	if (ifsq->ifsq_norm_tail == NULL)
2531 		ifsq->ifsq_norm_head = m;
2532 	else
2533 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2534 	ifsq->ifsq_norm_tail = m;
2535 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2536 }
2537 
2538 static void
2539 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2540 {
2541 	m->m_nextpkt = NULL;
2542 	if (ifsq->ifsq_prio_tail == NULL)
2543 		ifsq->ifsq_prio_head = m;
2544 	else
2545 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2546 	ifsq->ifsq_prio_tail = m;
2547 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2548 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2549 }
2550 
2551 static struct mbuf *
2552 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2553 {
2554 	struct mbuf *m;
2555 
2556 	m = ifsq->ifsq_norm_head;
2557 	if (m != NULL) {
2558 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2559 			ifsq->ifsq_norm_tail = NULL;
2560 		m->m_nextpkt = NULL;
2561 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2562 	}
2563 	return m;
2564 }
2565 
2566 static struct mbuf *
2567 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2568 {
2569 	struct mbuf *m;
2570 
2571 	m = ifsq->ifsq_prio_head;
2572 	if (m != NULL) {
2573 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2574 			ifsq->ifsq_prio_tail = NULL;
2575 		m->m_nextpkt = NULL;
2576 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2577 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2578 	}
2579 	return m;
2580 }
2581 
2582 int
2583 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2584     struct altq_pktattr *pa __unused)
2585 {
2586 	M_ASSERTPKTHDR(m);
2587 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2588 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2589 		if ((m->m_flags & M_PRIO) &&
2590 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2591 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2592 			struct mbuf *m_drop;
2593 
2594 			/*
2595 			 * Perform drop-head on normal queue
2596 			 */
2597 			m_drop = ifsq_norm_dequeue(ifsq);
2598 			if (m_drop != NULL) {
2599 				m_freem(m_drop);
2600 				ifsq_prio_enqueue(ifsq, m);
2601 				return 0;
2602 			}
2603 			/* XXX nothing could be dropped? */
2604 		}
2605 		m_freem(m);
2606 		return ENOBUFS;
2607 	} else {
2608 		if (m->m_flags & M_PRIO)
2609 			ifsq_prio_enqueue(ifsq, m);
2610 		else
2611 			ifsq_norm_enqueue(ifsq, m);
2612 		return 0;
2613 	}
2614 }
2615 
2616 struct mbuf *
2617 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2618 {
2619 	struct mbuf *m;
2620 
2621 	switch (op) {
2622 	case ALTDQ_POLL:
2623 		m = ifsq->ifsq_prio_head;
2624 		if (m == NULL)
2625 			m = ifsq->ifsq_norm_head;
2626 		break;
2627 
2628 	case ALTDQ_REMOVE:
2629 		m = ifsq_prio_dequeue(ifsq);
2630 		if (m == NULL)
2631 			m = ifsq_norm_dequeue(ifsq);
2632 		break;
2633 
2634 	default:
2635 		panic("unsupported ALTQ dequeue op: %d", op);
2636 	}
2637 	return m;
2638 }
2639 
2640 int
2641 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2642 {
2643 	switch (req) {
2644 	case ALTRQ_PURGE:
2645 		for (;;) {
2646 			struct mbuf *m;
2647 
2648 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2649 			if (m == NULL)
2650 				break;
2651 			m_freem(m);
2652 		}
2653 		break;
2654 
2655 	default:
2656 		panic("unsupported ALTQ request: %d", req);
2657 	}
2658 	return 0;
2659 }
2660 
2661 static void
2662 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2663 {
2664 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2665 	int running = 0, need_sched;
2666 
2667 	/*
2668 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2669 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2670 	 * the subqueue will be scheduled on the subqueue owner CPU.
2671 	 */
2672 	if (!ifsq_tryserialize_hw(ifsq)) {
2673 		/*
2674 		 * Subqueue hardware serializer contention happened,
2675 		 * ifnet.if_start on the subqueue is scheduled on
2676 		 * the subqueue owner CPU, and we keep going.
2677 		 */
2678 		ifsq_ifstart_schedule(ifsq, 1);
2679 		return;
2680 	}
2681 
2682 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2683 		ifp->if_start(ifp, ifsq);
2684 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2685 			running = 1;
2686 	}
2687 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2688 
2689 	ifsq_deserialize_hw(ifsq);
2690 
2691 	if (need_sched) {
2692 		/*
2693 		 * More data need to be transmitted, ifnet.if_start on the
2694 		 * subqueue is scheduled on the subqueue owner CPU, and we
2695 		 * keep going.
2696 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2697 		 */
2698 		ifsq_ifstart_schedule(ifsq, force_sched);
2699 	}
2700 }
2701 
2702 /*
2703  * Subqeue packets staging mechanism:
2704  *
2705  * The packets enqueued into the subqueue are staged to a certain amount
2706  * before the ifnet.if_start on the subqueue is called.  In this way, the
2707  * driver could avoid writing to hardware registers upon every packet,
2708  * instead, hardware registers could be written when certain amount of
2709  * packets are put onto hardware TX ring.  The measurement on several modern
2710  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2711  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2712  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2713  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2714  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2715  *
2716  * Subqueue packets staging is performed for two entry points into drivers'
2717  * transmission function:
2718  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2719  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2720  *
2721  * Subqueue packets staging will be stopped upon any of the following
2722  * conditions:
2723  * - If the count of packets enqueued on the current CPU is great than or
2724  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2725  * - If the total length of packets enqueued on the current CPU is great
2726  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2727  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2728  *   is usually less than hardware's MTU.
2729  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2730  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2731  *   released.
2732  * - The if_start_rollup(), which is registered as low priority netisr
2733  *   rollup function, is called; probably because no more work is pending
2734  *   for netisr.
2735  *
2736  * NOTE:
2737  * Currently subqueue packet staging is only performed in netisr threads.
2738  */
2739 int
2740 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2741 {
2742 	struct ifaltq *ifq = &ifp->if_snd;
2743 	struct ifaltq_subque *ifsq;
2744 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2745 	struct ifsubq_stage_head *head = NULL;
2746 	struct ifsubq_stage *stage = NULL;
2747 
2748 	ifsq = ifq_map_subq(ifq, mycpuid);
2749 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2750 
2751 	len = m->m_pkthdr.len;
2752 	if (m->m_flags & M_MCAST)
2753 		mcast = 1;
2754 
2755 	if (curthread->td_type == TD_TYPE_NETISR) {
2756 		head = &ifsubq_stage_heads[mycpuid];
2757 		stage = ifsq_get_stage(ifsq, mycpuid);
2758 
2759 		stage->stg_cnt++;
2760 		stage->stg_len += len;
2761 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2762 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2763 			avoid_start = 1;
2764 	}
2765 
2766 	ALTQ_SQ_LOCK(ifsq);
2767 	error = ifsq_enqueue_locked(ifsq, m, pa);
2768 	if (error) {
2769 		if (!ifsq_data_ready(ifsq)) {
2770 			ALTQ_SQ_UNLOCK(ifsq);
2771 			return error;
2772 		}
2773 		avoid_start = 0;
2774 	}
2775 	if (!ifsq_is_started(ifsq)) {
2776 		if (avoid_start) {
2777 			ALTQ_SQ_UNLOCK(ifsq);
2778 
2779 			KKASSERT(!error);
2780 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2781 				ifsq_stage_insert(head, stage);
2782 
2783 			IFNET_STAT_INC(ifp, obytes, len);
2784 			if (mcast)
2785 				IFNET_STAT_INC(ifp, omcasts, 1);
2786 			return error;
2787 		}
2788 
2789 		/*
2790 		 * Hold the subqueue interlock of ifnet.if_start
2791 		 */
2792 		ifsq_set_started(ifsq);
2793 		start = 1;
2794 	}
2795 	ALTQ_SQ_UNLOCK(ifsq);
2796 
2797 	if (!error) {
2798 		IFNET_STAT_INC(ifp, obytes, len);
2799 		if (mcast)
2800 			IFNET_STAT_INC(ifp, omcasts, 1);
2801 	}
2802 
2803 	if (stage != NULL) {
2804 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2805 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2806 			if (!avoid_start) {
2807 				ifsq_stage_remove(head, stage);
2808 				ifsq_ifstart_schedule(ifsq, 1);
2809 			}
2810 			return error;
2811 		}
2812 
2813 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2814 			ifsq_stage_remove(head, stage);
2815 		} else {
2816 			stage->stg_cnt = 0;
2817 			stage->stg_len = 0;
2818 		}
2819 	}
2820 
2821 	if (!start)
2822 		return error;
2823 
2824 	ifsq_ifstart_try(ifsq, 0);
2825 	return error;
2826 }
2827 
2828 void *
2829 ifa_create(int size, int flags)
2830 {
2831 	struct ifaddr *ifa;
2832 	int i;
2833 
2834 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2835 
2836 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2837 	if (ifa == NULL)
2838 		return NULL;
2839 
2840 	ifa->ifa_containers =
2841 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2842 	        M_IFADDR, M_WAITOK | M_ZERO);
2843 	ifa->ifa_ncnt = ncpus;
2844 	for (i = 0; i < ncpus; ++i) {
2845 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2846 
2847 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2848 		ifac->ifa = ifa;
2849 		ifac->ifa_refcnt = 1;
2850 	}
2851 #ifdef IFADDR_DEBUG
2852 	kprintf("alloc ifa %p %d\n", ifa, size);
2853 #endif
2854 	return ifa;
2855 }
2856 
2857 void
2858 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2859 {
2860 	struct ifaddr *ifa = ifac->ifa;
2861 
2862 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2863 	KKASSERT(ifac->ifa_refcnt == 0);
2864 	KASSERT(ifac->ifa_listmask == 0,
2865 		("ifa is still on %#x lists", ifac->ifa_listmask));
2866 
2867 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2868 
2869 #ifdef IFADDR_DEBUG_VERBOSE
2870 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2871 #endif
2872 
2873 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2874 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2875 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2876 #ifdef IFADDR_DEBUG
2877 		kprintf("free ifa %p\n", ifa);
2878 #endif
2879 		kfree(ifa->ifa_containers, M_IFADDR);
2880 		kfree(ifa, M_IFADDR);
2881 	}
2882 }
2883 
2884 static void
2885 ifa_iflink_dispatch(netmsg_t nmsg)
2886 {
2887 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2888 	struct ifaddr *ifa = msg->ifa;
2889 	struct ifnet *ifp = msg->ifp;
2890 	int cpu = mycpuid;
2891 	struct ifaddr_container *ifac;
2892 
2893 	crit_enter();
2894 
2895 	ifac = &ifa->ifa_containers[cpu];
2896 	ASSERT_IFAC_VALID(ifac);
2897 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2898 		("ifaddr is on if_addrheads"));
2899 
2900 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2901 	if (msg->tail)
2902 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2903 	else
2904 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2905 
2906 	crit_exit();
2907 
2908 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2909 }
2910 
2911 void
2912 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2913 {
2914 	struct netmsg_ifaddr msg;
2915 
2916 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2917 		    0, ifa_iflink_dispatch);
2918 	msg.ifa = ifa;
2919 	msg.ifp = ifp;
2920 	msg.tail = tail;
2921 
2922 	ifa_domsg(&msg.base.lmsg, 0);
2923 }
2924 
2925 static void
2926 ifa_ifunlink_dispatch(netmsg_t nmsg)
2927 {
2928 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2929 	struct ifaddr *ifa = msg->ifa;
2930 	struct ifnet *ifp = msg->ifp;
2931 	int cpu = mycpuid;
2932 	struct ifaddr_container *ifac;
2933 
2934 	crit_enter();
2935 
2936 	ifac = &ifa->ifa_containers[cpu];
2937 	ASSERT_IFAC_VALID(ifac);
2938 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2939 		("ifaddr is not on if_addrhead"));
2940 
2941 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2942 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2943 
2944 	crit_exit();
2945 
2946 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2947 }
2948 
2949 void
2950 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2951 {
2952 	struct netmsg_ifaddr msg;
2953 
2954 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2955 		    0, ifa_ifunlink_dispatch);
2956 	msg.ifa = ifa;
2957 	msg.ifp = ifp;
2958 
2959 	ifa_domsg(&msg.base.lmsg, 0);
2960 }
2961 
2962 static void
2963 ifa_destroy_dispatch(netmsg_t nmsg)
2964 {
2965 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2966 
2967 	IFAFREE(msg->ifa);
2968 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2969 }
2970 
2971 void
2972 ifa_destroy(struct ifaddr *ifa)
2973 {
2974 	struct netmsg_ifaddr msg;
2975 
2976 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2977 		    0, ifa_destroy_dispatch);
2978 	msg.ifa = ifa;
2979 
2980 	ifa_domsg(&msg.base.lmsg, 0);
2981 }
2982 
2983 struct lwkt_port *
2984 ifnet_portfn(int cpu)
2985 {
2986 	return &ifnet_threads[cpu].td_msgport;
2987 }
2988 
2989 void
2990 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2991 {
2992 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2993 
2994 	if (next_cpu < ncpus)
2995 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2996 	else
2997 		lwkt_replymsg(lmsg, 0);
2998 }
2999 
3000 int
3001 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3002 {
3003 	KKASSERT(cpu < ncpus);
3004 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3005 }
3006 
3007 void
3008 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3009 {
3010 	KKASSERT(cpu < ncpus);
3011 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3012 }
3013 
3014 /*
3015  * Generic netmsg service loop.  Some protocols may roll their own but all
3016  * must do the basic command dispatch function call done here.
3017  */
3018 static void
3019 ifnet_service_loop(void *arg __unused)
3020 {
3021 	netmsg_t msg;
3022 
3023 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3024 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3025 		msg->base.nm_dispatch(msg);
3026 	}
3027 }
3028 
3029 static void
3030 if_start_rollup(void)
3031 {
3032 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3033 	struct ifsubq_stage *stage;
3034 
3035 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3036 		struct ifaltq_subque *ifsq = stage->stg_subq;
3037 		int is_sched = 0;
3038 
3039 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3040 			is_sched = 1;
3041 		ifsq_stage_remove(head, stage);
3042 
3043 		if (is_sched) {
3044 			ifsq_ifstart_schedule(ifsq, 1);
3045 		} else {
3046 			int start = 0;
3047 
3048 			ALTQ_SQ_LOCK(ifsq);
3049 			if (!ifsq_is_started(ifsq)) {
3050 				/*
3051 				 * Hold the subqueue interlock of
3052 				 * ifnet.if_start
3053 				 */
3054 				ifsq_set_started(ifsq);
3055 				start = 1;
3056 			}
3057 			ALTQ_SQ_UNLOCK(ifsq);
3058 
3059 			if (start)
3060 				ifsq_ifstart_try(ifsq, 1);
3061 		}
3062 		KKASSERT((stage->stg_flags &
3063 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3064 	}
3065 }
3066 
3067 static void
3068 ifnetinit(void *dummy __unused)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < ncpus; ++i) {
3073 		struct thread *thr = &ifnet_threads[i];
3074 
3075 		lwkt_create(ifnet_service_loop, NULL, NULL,
3076 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
3077 			    i, "ifnet %d", i);
3078 		netmsg_service_port_init(&thr->td_msgport);
3079 		lwkt_schedule(thr);
3080 	}
3081 
3082 	for (i = 0; i < ncpus; ++i)
3083 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3084 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3085 }
3086 
3087 struct ifnet *
3088 ifnet_byindex(unsigned short idx)
3089 {
3090 	if (idx > if_index)
3091 		return NULL;
3092 	return ifindex2ifnet[idx];
3093 }
3094 
3095 struct ifaddr *
3096 ifaddr_byindex(unsigned short idx)
3097 {
3098 	struct ifnet *ifp;
3099 
3100 	ifp = ifnet_byindex(idx);
3101 	if (!ifp)
3102 		return NULL;
3103 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
3104 }
3105 
3106 void
3107 if_register_com_alloc(u_char type,
3108     if_com_alloc_t *a, if_com_free_t *f)
3109 {
3110 
3111         KASSERT(if_com_alloc[type] == NULL,
3112             ("if_register_com_alloc: %d already registered", type));
3113         KASSERT(if_com_free[type] == NULL,
3114             ("if_register_com_alloc: %d free already registered", type));
3115 
3116         if_com_alloc[type] = a;
3117         if_com_free[type] = f;
3118 }
3119 
3120 void
3121 if_deregister_com_alloc(u_char type)
3122 {
3123 
3124         KASSERT(if_com_alloc[type] != NULL,
3125             ("if_deregister_com_alloc: %d not registered", type));
3126         KASSERT(if_com_free[type] != NULL,
3127             ("if_deregister_com_alloc: %d free not registered", type));
3128         if_com_alloc[type] = NULL;
3129         if_com_free[type] = NULL;
3130 }
3131 
3132 int
3133 if_ring_count2(int cnt, int cnt_max)
3134 {
3135 	int shift = 0;
3136 
3137 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3138 	    ("invalid ring count max %d", cnt_max));
3139 
3140 	if (cnt <= 0)
3141 		cnt = cnt_max;
3142 	if (cnt > ncpus2)
3143 		cnt = ncpus2;
3144 	if (cnt > cnt_max)
3145 		cnt = cnt_max;
3146 
3147 	while ((1 << (shift + 1)) <= cnt)
3148 		++shift;
3149 	cnt = 1 << shift;
3150 
3151 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3152 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3153 	     cnt, ncpus2, cnt_max));
3154 	return cnt;
3155 }
3156 
3157 void
3158 ifq_set_maxlen(struct ifaltq *ifq, int len)
3159 {
3160 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3161 }
3162 
3163 int
3164 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3165 {
3166 	return ALTQ_SUBQ_INDEX_DEFAULT;
3167 }
3168 
3169 int
3170 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3171 {
3172 	return (cpuid & ifq->altq_subq_mask);
3173 }
3174 
3175 static void
3176 ifsq_watchdog(void *arg)
3177 {
3178 	struct ifsubq_watchdog *wd = arg;
3179 	struct ifnet *ifp;
3180 
3181 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3182 		goto done;
3183 
3184 	ifp = ifsq_get_ifp(wd->wd_subq);
3185 	if (ifnet_tryserialize_all(ifp)) {
3186 		wd->wd_watchdog(wd->wd_subq);
3187 		ifnet_deserialize_all(ifp);
3188 	} else {
3189 		/* try again next timeout */
3190 		wd->wd_timer = 1;
3191 	}
3192 done:
3193 	ifsq_watchdog_reset(wd);
3194 }
3195 
3196 static void
3197 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3198 {
3199 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3200 	    ifsq_get_cpuid(wd->wd_subq));
3201 }
3202 
3203 void
3204 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3205     ifsq_watchdog_t watchdog)
3206 {
3207 	callout_init_mp(&wd->wd_callout);
3208 	wd->wd_timer = 0;
3209 	wd->wd_subq = ifsq;
3210 	wd->wd_watchdog = watchdog;
3211 }
3212 
3213 void
3214 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3215 {
3216 	wd->wd_timer = 0;
3217 	ifsq_watchdog_reset(wd);
3218 }
3219 
3220 void
3221 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3222 {
3223 	wd->wd_timer = 0;
3224 	callout_stop(&wd->wd_callout);
3225 }
3226