xref: /dragonfly/sys/net/if.c (revision 12b71966)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/socketops.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/thread2.h>
62 #include <sys/serialize.h>
63 #include <sys/msgport2.h>
64 #include <sys/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_var.h>
71 #include <net/ifq_var.h>
72 #include <net/radix.h>
73 #include <net/route.h>
74 #include <net/if_clone.h>
75 #include <net/netisr.h>
76 #include <net/netmsg2.h>
77 
78 #include <machine/atomic.h>
79 #include <machine/stdarg.h>
80 #include <machine/smp.h>
81 
82 #if defined(INET) || defined(INET6)
83 /*XXX*/
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #ifdef INET6
88 #include <netinet6/in6_var.h>
89 #include <netinet6/in6_ifattach.h>
90 #endif
91 #endif
92 
93 #if defined(COMPAT_43)
94 #include <emulation/43bsd/43bsd_socket.h>
95 #endif /* COMPAT_43 */
96 
97 struct netmsg_ifaddr {
98 	struct netmsg	netmsg;
99 	struct ifaddr	*ifa;
100 	struct ifnet	*ifp;
101 	int		tail;
102 };
103 
104 /*
105  * System initialization
106  */
107 static void	if_attachdomain(void *);
108 static void	if_attachdomain1(struct ifnet *);
109 static int	ifconf(u_long, caddr_t, struct ucred *);
110 static void	ifinit(void *);
111 static void	ifnetinit(void *);
112 static void	if_slowtimo(void *);
113 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
114 static int	if_rtdel(struct radix_node *, void *);
115 
116 #ifdef INET6
117 /*
118  * XXX: declare here to avoid to include many inet6 related files..
119  * should be more generalized?
120  */
121 extern void	nd6_setmtu(struct ifnet *);
122 #endif
123 
124 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
125 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
126 
127 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
128 /* Must be after netisr_init */
129 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
130 
131 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
132 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
133 
134 int			ifqmaxlen = IFQ_MAXLEN;
135 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
136 
137 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
138 static int		ifq_dispatch_schedonly = 0;
139 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
140            &ifq_dispatch_schedonly, 0, "");
141 
142 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
143 static int		ifq_dispatch_schednochk = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
145            &ifq_dispatch_schednochk, 0, "");
146 
147 /* In if_devstart(), try to do direct ifnet.if_start first */
148 static int		if_devstart_schedonly = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
150            &if_devstart_schedonly, 0, "");
151 
152 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
153 static int		if_devstart_schednochk = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
155            &if_devstart_schednochk, 0, "");
156 
157 #ifdef SMP
158 /* Schedule ifnet.if_start on the current CPU */
159 static int		if_start_oncpu_sched = 0;
160 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
161            &if_start_oncpu_sched, 0, "");
162 #endif
163 
164 struct callout		if_slowtimo_timer;
165 
166 int			if_index = 0;
167 struct ifnet		**ifindex2ifnet = NULL;
168 static struct thread	ifnet_threads[MAXCPU];
169 static int		ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
170 
171 #define IFQ_KTR_STRING		"ifq=%p"
172 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
173 #ifndef KTR_IFQ
174 #define KTR_IFQ			KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
179 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
180 
181 #define IF_START_KTR_STRING	"ifp=%p"
182 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
183 #ifndef KTR_IF_START
184 #define KTR_IF_START		KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
198 
199 /*
200  * Network interface utility routines.
201  *
202  * Routines with ifa_ifwith* names take sockaddr *'s as
203  * parameters.
204  */
205 /* ARGSUSED*/
206 void
207 ifinit(void *dummy)
208 {
209 	struct ifnet *ifp;
210 
211 	callout_init(&if_slowtimo_timer);
212 
213 	crit_enter();
214 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
215 		if (ifp->if_snd.ifq_maxlen == 0) {
216 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
217 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
218 		}
219 	}
220 	crit_exit();
221 
222 	if_slowtimo(0);
223 }
224 
225 static int
226 if_start_cpuid(struct ifnet *ifp)
227 {
228 	return ifp->if_cpuid;
229 }
230 
231 #ifdef DEVICE_POLLING
232 static int
233 if_start_cpuid_poll(struct ifnet *ifp)
234 {
235 	int poll_cpuid = ifp->if_poll_cpuid;
236 
237 	if (poll_cpuid >= 0)
238 		return poll_cpuid;
239 	else
240 		return ifp->if_cpuid;
241 }
242 #endif
243 
244 static void
245 if_start_ipifunc(void *arg)
246 {
247 	struct ifnet *ifp = arg;
248 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
249 
250 	crit_enter();
251 	if (lmsg->ms_flags & MSGF_DONE)
252 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
253 	crit_exit();
254 }
255 
256 /*
257  * Schedule ifnet.if_start on ifnet's CPU
258  */
259 static void
260 if_start_schedule(struct ifnet *ifp)
261 {
262 #ifdef SMP
263 	int cpu;
264 
265 	if (if_start_oncpu_sched)
266 		cpu = mycpuid;
267 	else
268 		cpu = ifp->if_start_cpuid(ifp);
269 
270 	if (cpu != mycpuid)
271 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
272 	else
273 #endif
274 	if_start_ipifunc(ifp);
275 }
276 
277 /*
278  * NOTE:
279  * This function will release ifnet.if_start interlock,
280  * if ifnet.if_start does not need to be scheduled
281  */
282 static __inline int
283 if_start_need_schedule(struct ifaltq *ifq, int running)
284 {
285 	if (!running || ifq_is_empty(ifq)
286 #ifdef ALTQ
287 	    || ifq->altq_tbr != NULL
288 #endif
289 	) {
290 		ALTQ_LOCK(ifq);
291 		/*
292 		 * ifnet.if_start interlock is released, if:
293 		 * 1) Hardware can not take any packets, due to
294 		 *    o  interface is marked down
295 		 *    o  hardware queue is full (IFF_OACTIVE)
296 		 *    Under the second situation, hardware interrupt
297 		 *    or polling(4) will call/schedule ifnet.if_start
298 		 *    when hardware queue is ready
299 		 * 2) There is not packet in the ifnet.if_snd.
300 		 *    Further ifq_dispatch or ifq_handoff will call/
301 		 *    schedule ifnet.if_start
302 		 * 3) TBR is used and it does not allow further
303 		 *    dequeueing.
304 		 *    TBR callout will call ifnet.if_start
305 		 */
306 		if (!running || !ifq_data_ready(ifq)) {
307 			ifq->altq_started = 0;
308 			ALTQ_UNLOCK(ifq);
309 			return 0;
310 		}
311 		ALTQ_UNLOCK(ifq);
312 	}
313 	return 1;
314 }
315 
316 static void
317 if_start_dispatch(struct netmsg *nmsg)
318 {
319 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
320 	struct ifnet *ifp = lmsg->u.ms_resultp;
321 	struct ifaltq *ifq = &ifp->if_snd;
322 	int running = 0;
323 
324 	crit_enter();
325 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
326 	crit_exit();
327 
328 #ifdef SMP
329 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
330 		/*
331 		 * If the ifnet is still up, we need to
332 		 * chase its CPU change.
333 		 */
334 		if (ifp->if_flags & IFF_UP) {
335 			logifstart(chase_sched, ifp);
336 			if_start_schedule(ifp);
337 			return;
338 		} else {
339 			goto check;
340 		}
341 	}
342 #endif
343 
344 	if (ifp->if_flags & IFF_UP) {
345 		lwkt_serialize_enter(ifp->if_serializer); /* XXX try? */
346 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
347 			logifstart(run, ifp);
348 			ifp->if_start(ifp);
349 			if ((ifp->if_flags &
350 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
351 				running = 1;
352 		}
353 		lwkt_serialize_exit(ifp->if_serializer);
354 	}
355 #ifdef SMP
356 check:
357 #endif
358 	if (if_start_need_schedule(ifq, running)) {
359 		crit_enter();
360 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
361 			logifstart(sched, ifp);
362 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
363 		}
364 		crit_exit();
365 	}
366 }
367 
368 /* Device driver ifnet.if_start helper function */
369 void
370 if_devstart(struct ifnet *ifp)
371 {
372 	struct ifaltq *ifq = &ifp->if_snd;
373 	int running = 0;
374 
375 	ASSERT_SERIALIZED(ifp->if_serializer);
376 
377 	ALTQ_LOCK(ifq);
378 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
379 		logifstart(avoid, ifp);
380 		ALTQ_UNLOCK(ifq);
381 		return;
382 	}
383 	ifq->altq_started = 1;
384 	ALTQ_UNLOCK(ifq);
385 
386 	if (if_devstart_schedonly) {
387 		/*
388 		 * Always schedule ifnet.if_start on ifnet's CPU,
389 		 * short circuit the rest of this function.
390 		 */
391 		logifstart(sched, ifp);
392 		if_start_schedule(ifp);
393 		return;
394 	}
395 
396 	logifstart(run, ifp);
397 	ifp->if_start(ifp);
398 
399 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
400 		running = 1;
401 
402 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
403 		/*
404 		 * More data need to be transmitted, ifnet.if_start is
405 		 * scheduled on ifnet's CPU, and we keep going.
406 		 * NOTE: ifnet.if_start interlock is not released.
407 		 */
408 		logifstart(sched, ifp);
409 		if_start_schedule(ifp);
410 	}
411 }
412 
413 /*
414  * Attach an interface to the list of "active" interfaces.
415  *
416  * The serializer is optional.  If non-NULL access to the interface
417  * may be MPSAFE.
418  */
419 void
420 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
421 {
422 	unsigned socksize, ifasize;
423 	int namelen, masklen;
424 	struct sockaddr_dl *sdl;
425 	struct ifaddr *ifa;
426 	struct ifaltq *ifq;
427 	int i;
428 
429 	static int if_indexlim = 8;
430 
431 	/*
432 	 * The serializer can be passed in from the device, allowing the
433 	 * same serializer to be used for both the interrupt interlock and
434 	 * the device queue.  If not specified, the netif structure will
435 	 * use an embedded serializer.
436 	 */
437 	if (serializer == NULL) {
438 		serializer = &ifp->if_default_serializer;
439 		lwkt_serialize_init(serializer);
440 	}
441 	ifp->if_serializer = serializer;
442 
443 	ifp->if_start_cpuid = if_start_cpuid;
444 	ifp->if_cpuid = 0;
445 
446 #ifdef DEVICE_POLLING
447 	/* Device is not in polling mode by default */
448 	ifp->if_poll_cpuid = -1;
449 	if (ifp->if_poll != NULL)
450 		ifp->if_start_cpuid = if_start_cpuid_poll;
451 #endif
452 
453 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
454 				     M_LWKTMSG, M_WAITOK);
455 	for (i = 0; i < ncpus; ++i) {
456 		netmsg_init(&ifp->if_start_nmsg[i], &netisr_adone_rport, 0,
457 			    if_start_dispatch);
458 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
459 	}
460 
461 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
462 	ifp->if_index = ++if_index;
463 
464 	/*
465 	 * XXX -
466 	 * The old code would work if the interface passed a pre-existing
467 	 * chain of ifaddrs to this code.  We don't trust our callers to
468 	 * properly initialize the tailq, however, so we no longer allow
469 	 * this unlikely case.
470 	 */
471 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
472 				    M_IFADDR, M_WAITOK | M_ZERO);
473 	for (i = 0; i < ncpus; ++i)
474 		TAILQ_INIT(&ifp->if_addrheads[i]);
475 
476 	TAILQ_INIT(&ifp->if_prefixhead);
477 	LIST_INIT(&ifp->if_multiaddrs);
478 	getmicrotime(&ifp->if_lastchange);
479 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
480 		unsigned int n;
481 		struct ifnet **q;
482 
483 		if_indexlim <<= 1;
484 
485 		/* grow ifindex2ifnet */
486 		n = if_indexlim * sizeof(*q);
487 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
488 		if (ifindex2ifnet) {
489 			bcopy(ifindex2ifnet, q, n/2);
490 			kfree(ifindex2ifnet, M_IFADDR);
491 		}
492 		ifindex2ifnet = q;
493 	}
494 
495 	ifindex2ifnet[if_index] = ifp;
496 
497 	/*
498 	 * create a Link Level name for this device
499 	 */
500 	namelen = strlen(ifp->if_xname);
501 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
502 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
503 	socksize = masklen + ifp->if_addrlen;
504 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
505 	if (socksize < sizeof(*sdl))
506 		socksize = sizeof(*sdl);
507 	socksize = ROUNDUP(socksize);
508 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
509 	ifa = ifa_create(ifasize, M_WAITOK);
510 	sdl = (struct sockaddr_dl *)(ifa + 1);
511 	sdl->sdl_len = socksize;
512 	sdl->sdl_family = AF_LINK;
513 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
514 	sdl->sdl_nlen = namelen;
515 	sdl->sdl_index = ifp->if_index;
516 	sdl->sdl_type = ifp->if_type;
517 	ifp->if_lladdr = ifa;
518 	ifa->ifa_ifp = ifp;
519 	ifa->ifa_rtrequest = link_rtrequest;
520 	ifa->ifa_addr = (struct sockaddr *)sdl;
521 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
522 	ifa->ifa_netmask = (struct sockaddr *)sdl;
523 	sdl->sdl_len = masklen;
524 	while (namelen != 0)
525 		sdl->sdl_data[--namelen] = 0xff;
526 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
527 
528 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
529 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
530 
531 	ifq = &ifp->if_snd;
532 	ifq->altq_type = 0;
533 	ifq->altq_disc = NULL;
534 	ifq->altq_flags &= ALTQF_CANTCHANGE;
535 	ifq->altq_tbr = NULL;
536 	ifq->altq_ifp = ifp;
537 	ifq->altq_started = 0;
538 	ifq->altq_prepended = NULL;
539 	ALTQ_LOCK_INIT(ifq);
540 	ifq_set_classic(ifq);
541 
542 	if (!SLIST_EMPTY(&domains))
543 		if_attachdomain1(ifp);
544 
545 	/* Announce the interface. */
546 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
547 }
548 
549 static void
550 if_attachdomain(void *dummy)
551 {
552 	struct ifnet *ifp;
553 
554 	crit_enter();
555 	TAILQ_FOREACH(ifp, &ifnet, if_list)
556 		if_attachdomain1(ifp);
557 	crit_exit();
558 }
559 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
560 	if_attachdomain, NULL);
561 
562 static void
563 if_attachdomain1(struct ifnet *ifp)
564 {
565 	struct domain *dp;
566 
567 	crit_enter();
568 
569 	/* address family dependent data region */
570 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
571 	SLIST_FOREACH(dp, &domains, dom_next)
572 		if (dp->dom_ifattach)
573 			ifp->if_afdata[dp->dom_family] =
574 				(*dp->dom_ifattach)(ifp);
575 	crit_exit();
576 }
577 
578 /*
579  * Purge all addresses whose type is _not_ AF_LINK
580  */
581 void
582 if_purgeaddrs_nolink(struct ifnet *ifp)
583 {
584 	struct ifaddr_container *ifac, *next;
585 
586 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
587 			      ifa_link, next) {
588 		struct ifaddr *ifa = ifac->ifa;
589 
590 		/* Leave link ifaddr as it is */
591 		if (ifa->ifa_addr->sa_family == AF_LINK)
592 			continue;
593 #ifdef INET
594 		/* XXX: Ugly!! ad hoc just for INET */
595 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
596 			struct ifaliasreq ifr;
597 #ifdef IFADDR_DEBUG_VERBOSE
598 			int i;
599 
600 			kprintf("purge in4 addr %p: ", ifa);
601 			for (i = 0; i < ncpus; ++i)
602 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
603 			kprintf("\n");
604 #endif
605 
606 			bzero(&ifr, sizeof ifr);
607 			ifr.ifra_addr = *ifa->ifa_addr;
608 			if (ifa->ifa_dstaddr)
609 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
610 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
611 				       NULL) == 0)
612 				continue;
613 		}
614 #endif /* INET */
615 #ifdef INET6
616 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
617 #ifdef IFADDR_DEBUG_VERBOSE
618 			int i;
619 
620 			kprintf("purge in6 addr %p: ", ifa);
621 			for (i = 0; i < ncpus; ++i)
622 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
623 			kprintf("\n");
624 #endif
625 
626 			in6_purgeaddr(ifa);
627 			/* ifp_addrhead is already updated */
628 			continue;
629 		}
630 #endif /* INET6 */
631 		ifa_ifunlink(ifa, ifp);
632 		ifa_destroy(ifa);
633 	}
634 }
635 
636 /*
637  * Detach an interface, removing it from the
638  * list of "active" interfaces.
639  */
640 void
641 if_detach(struct ifnet *ifp)
642 {
643 	struct radix_node_head	*rnh;
644 	int i;
645 	int cpu, origcpu;
646 	struct domain *dp;
647 
648 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
649 
650 	/*
651 	 * Remove routes and flush queues.
652 	 */
653 	crit_enter();
654 #ifdef DEVICE_POLLING
655 	if (ifp->if_flags & IFF_POLLING)
656 		ether_poll_deregister(ifp);
657 #endif
658 	if_down(ifp);
659 
660 	if (ifq_is_enabled(&ifp->if_snd))
661 		altq_disable(&ifp->if_snd);
662 	if (ifq_is_attached(&ifp->if_snd))
663 		altq_detach(&ifp->if_snd);
664 
665 	/*
666 	 * Clean up all addresses.
667 	 */
668 	ifp->if_lladdr = NULL;
669 
670 	if_purgeaddrs_nolink(ifp);
671 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
672 		struct ifaddr *ifa;
673 
674 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
675 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
676 			("non-link ifaddr is left on if_addrheads"));
677 
678 		ifa_ifunlink(ifa, ifp);
679 		ifa_destroy(ifa);
680 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
681 			("there are still ifaddrs left on if_addrheads"));
682 	}
683 
684 #ifdef INET
685 	/*
686 	 * Remove all IPv4 kernel structures related to ifp.
687 	 */
688 	in_ifdetach(ifp);
689 #endif
690 
691 #ifdef INET6
692 	/*
693 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
694 	 * before removing routing entries below, since IPv6 interface direct
695 	 * routes are expected to be removed by the IPv6-specific kernel API.
696 	 * Otherwise, the kernel will detect some inconsistency and bark it.
697 	 */
698 	in6_ifdetach(ifp);
699 #endif
700 
701 	/*
702 	 * Delete all remaining routes using this interface
703 	 * Unfortuneatly the only way to do this is to slog through
704 	 * the entire routing table looking for routes which point
705 	 * to this interface...oh well...
706 	 */
707 	origcpu = mycpuid;
708 	for (cpu = 0; cpu < ncpus2; cpu++) {
709 		lwkt_migratecpu(cpu);
710 		for (i = 1; i <= AF_MAX; i++) {
711 			if ((rnh = rt_tables[cpu][i]) == NULL)
712 				continue;
713 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
714 		}
715 	}
716 	lwkt_migratecpu(origcpu);
717 
718 	/* Announce that the interface is gone. */
719 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
720 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
721 
722 	SLIST_FOREACH(dp, &domains, dom_next)
723 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
724 			(*dp->dom_ifdetach)(ifp,
725 				ifp->if_afdata[dp->dom_family]);
726 
727 	/*
728 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
729 	 */
730 	ifindex2ifnet[ifp->if_index] = NULL;
731 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
732 		if_index--;
733 
734 	TAILQ_REMOVE(&ifnet, ifp, if_link);
735 	kfree(ifp->if_addrheads, M_IFADDR);
736 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
737 	crit_exit();
738 }
739 
740 /*
741  * Delete Routes for a Network Interface
742  *
743  * Called for each routing entry via the rnh->rnh_walktree() call above
744  * to delete all route entries referencing a detaching network interface.
745  *
746  * Arguments:
747  *	rn	pointer to node in the routing table
748  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
749  *
750  * Returns:
751  *	0	successful
752  *	errno	failed - reason indicated
753  *
754  */
755 static int
756 if_rtdel(struct radix_node *rn, void *arg)
757 {
758 	struct rtentry	*rt = (struct rtentry *)rn;
759 	struct ifnet	*ifp = arg;
760 	int		err;
761 
762 	if (rt->rt_ifp == ifp) {
763 
764 		/*
765 		 * Protect (sorta) against walktree recursion problems
766 		 * with cloned routes
767 		 */
768 		if (!(rt->rt_flags & RTF_UP))
769 			return (0);
770 
771 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
772 				rt_mask(rt), rt->rt_flags,
773 				(struct rtentry **) NULL);
774 		if (err) {
775 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
776 		}
777 	}
778 
779 	return (0);
780 }
781 
782 /*
783  * Locate an interface based on a complete address.
784  */
785 struct ifaddr *
786 ifa_ifwithaddr(struct sockaddr *addr)
787 {
788 	struct ifnet *ifp;
789 
790 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
791 		struct ifaddr_container *ifac;
792 
793 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
794 			struct ifaddr *ifa = ifac->ifa;
795 
796 			if (ifa->ifa_addr->sa_family != addr->sa_family)
797 				continue;
798 			if (sa_equal(addr, ifa->ifa_addr))
799 				return (ifa);
800 			if ((ifp->if_flags & IFF_BROADCAST) &&
801 			    ifa->ifa_broadaddr &&
802 			    /* IPv6 doesn't have broadcast */
803 			    ifa->ifa_broadaddr->sa_len != 0 &&
804 			    sa_equal(ifa->ifa_broadaddr, addr))
805 				return (ifa);
806 		}
807 	}
808 	return (NULL);
809 }
810 /*
811  * Locate the point to point interface with a given destination address.
812  */
813 struct ifaddr *
814 ifa_ifwithdstaddr(struct sockaddr *addr)
815 {
816 	struct ifnet *ifp;
817 
818 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
819 		struct ifaddr_container *ifac;
820 
821 		if (!(ifp->if_flags & IFF_POINTOPOINT))
822 			continue;
823 
824 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
825 			struct ifaddr *ifa = ifac->ifa;
826 
827 			if (ifa->ifa_addr->sa_family != addr->sa_family)
828 				continue;
829 			if (ifa->ifa_dstaddr &&
830 			    sa_equal(addr, ifa->ifa_dstaddr))
831 				return (ifa);
832 		}
833 	}
834 	return (NULL);
835 }
836 
837 /*
838  * Find an interface on a specific network.  If many, choice
839  * is most specific found.
840  */
841 struct ifaddr *
842 ifa_ifwithnet(struct sockaddr *addr)
843 {
844 	struct ifnet *ifp;
845 	struct ifaddr *ifa_maybe = NULL;
846 	u_int af = addr->sa_family;
847 	char *addr_data = addr->sa_data, *cplim;
848 
849 	/*
850 	 * AF_LINK addresses can be looked up directly by their index number,
851 	 * so do that if we can.
852 	 */
853 	if (af == AF_LINK) {
854 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
855 
856 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
857 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
858 	}
859 
860 	/*
861 	 * Scan though each interface, looking for ones that have
862 	 * addresses in this address family.
863 	 */
864 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
865 		struct ifaddr_container *ifac;
866 
867 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
868 			struct ifaddr *ifa = ifac->ifa;
869 			char *cp, *cp2, *cp3;
870 
871 			if (ifa->ifa_addr->sa_family != af)
872 next:				continue;
873 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
874 				/*
875 				 * This is a bit broken as it doesn't
876 				 * take into account that the remote end may
877 				 * be a single node in the network we are
878 				 * looking for.
879 				 * The trouble is that we don't know the
880 				 * netmask for the remote end.
881 				 */
882 				if (ifa->ifa_dstaddr != NULL &&
883 				    sa_equal(addr, ifa->ifa_dstaddr))
884 					return (ifa);
885 			} else {
886 				/*
887 				 * if we have a special address handler,
888 				 * then use it instead of the generic one.
889 				 */
890 				if (ifa->ifa_claim_addr) {
891 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
892 						return (ifa);
893 					} else {
894 						continue;
895 					}
896 				}
897 
898 				/*
899 				 * Scan all the bits in the ifa's address.
900 				 * If a bit dissagrees with what we are
901 				 * looking for, mask it with the netmask
902 				 * to see if it really matters.
903 				 * (A byte at a time)
904 				 */
905 				if (ifa->ifa_netmask == 0)
906 					continue;
907 				cp = addr_data;
908 				cp2 = ifa->ifa_addr->sa_data;
909 				cp3 = ifa->ifa_netmask->sa_data;
910 				cplim = ifa->ifa_netmask->sa_len +
911 					(char *)ifa->ifa_netmask;
912 				while (cp3 < cplim)
913 					if ((*cp++ ^ *cp2++) & *cp3++)
914 						goto next; /* next address! */
915 				/*
916 				 * If the netmask of what we just found
917 				 * is more specific than what we had before
918 				 * (if we had one) then remember the new one
919 				 * before continuing to search
920 				 * for an even better one.
921 				 */
922 				if (ifa_maybe == 0 ||
923 				    rn_refines((char *)ifa->ifa_netmask,
924 					       (char *)ifa_maybe->ifa_netmask))
925 					ifa_maybe = ifa;
926 			}
927 		}
928 	}
929 	return (ifa_maybe);
930 }
931 
932 /*
933  * Find an interface address specific to an interface best matching
934  * a given address.
935  */
936 struct ifaddr *
937 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
938 {
939 	struct ifaddr_container *ifac;
940 	char *cp, *cp2, *cp3;
941 	char *cplim;
942 	struct ifaddr *ifa_maybe = 0;
943 	u_int af = addr->sa_family;
944 
945 	if (af >= AF_MAX)
946 		return (0);
947 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
948 		struct ifaddr *ifa = ifac->ifa;
949 
950 		if (ifa->ifa_addr->sa_family != af)
951 			continue;
952 		if (ifa_maybe == 0)
953 			ifa_maybe = ifa;
954 		if (ifa->ifa_netmask == NULL) {
955 			if (sa_equal(addr, ifa->ifa_addr) ||
956 			    (ifa->ifa_dstaddr != NULL &&
957 			     sa_equal(addr, ifa->ifa_dstaddr)))
958 				return (ifa);
959 			continue;
960 		}
961 		if (ifp->if_flags & IFF_POINTOPOINT) {
962 			if (sa_equal(addr, ifa->ifa_dstaddr))
963 				return (ifa);
964 		} else {
965 			cp = addr->sa_data;
966 			cp2 = ifa->ifa_addr->sa_data;
967 			cp3 = ifa->ifa_netmask->sa_data;
968 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
969 			for (; cp3 < cplim; cp3++)
970 				if ((*cp++ ^ *cp2++) & *cp3)
971 					break;
972 			if (cp3 == cplim)
973 				return (ifa);
974 		}
975 	}
976 	return (ifa_maybe);
977 }
978 
979 /*
980  * Default action when installing a route with a Link Level gateway.
981  * Lookup an appropriate real ifa to point to.
982  * This should be moved to /sys/net/link.c eventually.
983  */
984 static void
985 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
986 {
987 	struct ifaddr *ifa;
988 	struct sockaddr *dst;
989 	struct ifnet *ifp;
990 
991 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
992 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
993 		return;
994 	ifa = ifaof_ifpforaddr(dst, ifp);
995 	if (ifa != NULL) {
996 		IFAFREE(rt->rt_ifa);
997 		IFAREF(ifa);
998 		rt->rt_ifa = ifa;
999 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1000 			ifa->ifa_rtrequest(cmd, rt, info);
1001 	}
1002 }
1003 
1004 /*
1005  * Mark an interface down and notify protocols of
1006  * the transition.
1007  * NOTE: must be called at splnet or eqivalent.
1008  */
1009 void
1010 if_unroute(struct ifnet *ifp, int flag, int fam)
1011 {
1012 	struct ifaddr_container *ifac;
1013 
1014 	ifp->if_flags &= ~flag;
1015 	getmicrotime(&ifp->if_lastchange);
1016 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1017 		struct ifaddr *ifa = ifac->ifa;
1018 
1019 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1020 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1021 	}
1022 	ifq_purge(&ifp->if_snd);
1023 	rt_ifmsg(ifp);
1024 }
1025 
1026 /*
1027  * Mark an interface up and notify protocols of
1028  * the transition.
1029  * NOTE: must be called at splnet or eqivalent.
1030  */
1031 void
1032 if_route(struct ifnet *ifp, int flag, int fam)
1033 {
1034 	struct ifaddr_container *ifac;
1035 
1036 	ifq_purge(&ifp->if_snd);
1037 	ifp->if_flags |= flag;
1038 	getmicrotime(&ifp->if_lastchange);
1039 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1040 		struct ifaddr *ifa = ifac->ifa;
1041 
1042 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1043 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1044 	}
1045 	rt_ifmsg(ifp);
1046 #ifdef INET6
1047 	in6_if_up(ifp);
1048 #endif
1049 }
1050 
1051 /*
1052  * Mark an interface down and notify protocols of the transition.  An
1053  * interface going down is also considered to be a synchronizing event.
1054  * We must ensure that all packet processing related to the interface
1055  * has completed before we return so e.g. the caller can free the ifnet
1056  * structure that the mbufs may be referencing.
1057  *
1058  * NOTE: must be called at splnet or eqivalent.
1059  */
1060 void
1061 if_down(struct ifnet *ifp)
1062 {
1063 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1064 	netmsg_service_sync();
1065 }
1066 
1067 /*
1068  * Mark an interface up and notify protocols of
1069  * the transition.
1070  * NOTE: must be called at splnet or eqivalent.
1071  */
1072 void
1073 if_up(struct ifnet *ifp)
1074 {
1075 	if_route(ifp, IFF_UP, AF_UNSPEC);
1076 }
1077 
1078 /*
1079  * Process a link state change.
1080  * NOTE: must be called at splsoftnet or equivalent.
1081  */
1082 void
1083 if_link_state_change(struct ifnet *ifp)
1084 {
1085 	int link_state = ifp->if_link_state;
1086 
1087 	rt_ifmsg(ifp);
1088 	devctl_notify("IFNET", ifp->if_xname,
1089 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1090 }
1091 
1092 /*
1093  * Handle interface watchdog timer routines.  Called
1094  * from softclock, we decrement timers (if set) and
1095  * call the appropriate interface routine on expiration.
1096  */
1097 static void
1098 if_slowtimo(void *arg)
1099 {
1100 	struct ifnet *ifp;
1101 
1102 	crit_enter();
1103 
1104 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1105 		if (ifp->if_timer == 0 || --ifp->if_timer)
1106 			continue;
1107 		if (ifp->if_watchdog) {
1108 			if (lwkt_serialize_try(ifp->if_serializer)) {
1109 				(*ifp->if_watchdog)(ifp);
1110 				lwkt_serialize_exit(ifp->if_serializer);
1111 			} else {
1112 				/* try again next timeout */
1113 				++ifp->if_timer;
1114 			}
1115 		}
1116 	}
1117 
1118 	crit_exit();
1119 
1120 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1121 }
1122 
1123 /*
1124  * Map interface name to
1125  * interface structure pointer.
1126  */
1127 struct ifnet *
1128 ifunit(const char *name)
1129 {
1130 	struct ifnet *ifp;
1131 
1132 	/*
1133 	 * Search all the interfaces for this name/number
1134 	 */
1135 
1136 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1137 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1138 			break;
1139 	}
1140 	return (ifp);
1141 }
1142 
1143 
1144 /*
1145  * Map interface name in a sockaddr_dl to
1146  * interface structure pointer.
1147  */
1148 struct ifnet *
1149 if_withname(struct sockaddr *sa)
1150 {
1151 	char ifname[IFNAMSIZ+1];
1152 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1153 
1154 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1155 	     (sdl->sdl_nlen > IFNAMSIZ) )
1156 		return NULL;
1157 
1158 	/*
1159 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1160 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1161 	 * and there might not be room to put the trailing null anyway, so we
1162 	 * make a local copy that we know we can null terminate safely.
1163 	 */
1164 
1165 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1166 	ifname[sdl->sdl_nlen] = '\0';
1167 	return ifunit(ifname);
1168 }
1169 
1170 
1171 /*
1172  * Interface ioctls.
1173  */
1174 int
1175 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1176 {
1177 	struct ifnet *ifp;
1178 	struct ifreq *ifr;
1179 	struct ifstat *ifs;
1180 	int error;
1181 	short oif_flags;
1182 	int new_flags;
1183 	size_t namelen, onamelen;
1184 	char new_name[IFNAMSIZ];
1185 	struct ifaddr *ifa;
1186 	struct sockaddr_dl *sdl;
1187 
1188 	switch (cmd) {
1189 
1190 	case SIOCGIFCONF:
1191 	case OSIOCGIFCONF:
1192 		return (ifconf(cmd, data, cred));
1193 	}
1194 	ifr = (struct ifreq *)data;
1195 
1196 	switch (cmd) {
1197 	case SIOCIFCREATE:
1198 	case SIOCIFDESTROY:
1199 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1200 			return (error);
1201 		return ((cmd == SIOCIFCREATE) ?
1202 			if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) :
1203 			if_clone_destroy(ifr->ifr_name));
1204 
1205 	case SIOCIFGCLONERS:
1206 		return (if_clone_list((struct if_clonereq *)data));
1207 	}
1208 
1209 	ifp = ifunit(ifr->ifr_name);
1210 	if (ifp == 0)
1211 		return (ENXIO);
1212 	switch (cmd) {
1213 
1214 	case SIOCGIFINDEX:
1215 		ifr->ifr_index = ifp->if_index;
1216 		break;
1217 
1218 	case SIOCGIFFLAGS:
1219 		ifr->ifr_flags = ifp->if_flags;
1220 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1221 		break;
1222 
1223 	case SIOCGIFCAP:
1224 		ifr->ifr_reqcap = ifp->if_capabilities;
1225 		ifr->ifr_curcap = ifp->if_capenable;
1226 		break;
1227 
1228 	case SIOCGIFMETRIC:
1229 		ifr->ifr_metric = ifp->if_metric;
1230 		break;
1231 
1232 	case SIOCGIFMTU:
1233 		ifr->ifr_mtu = ifp->if_mtu;
1234 		break;
1235 
1236 	case SIOCGIFPHYS:
1237 		ifr->ifr_phys = ifp->if_physical;
1238 		break;
1239 
1240 	case SIOCGIFPOLLCPU:
1241 #ifdef DEVICE_POLLING
1242 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1243 #else
1244 		ifr->ifr_pollcpu = -1;
1245 #endif
1246 		break;
1247 
1248 	case SIOCSIFPOLLCPU:
1249 #ifdef DEVICE_POLLING
1250 		if ((ifp->if_flags & IFF_POLLING) == 0)
1251 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1252 #endif
1253 		break;
1254 
1255 	case SIOCSIFFLAGS:
1256 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1257 		if (error)
1258 			return (error);
1259 		new_flags = (ifr->ifr_flags & 0xffff) |
1260 		    (ifr->ifr_flagshigh << 16);
1261 		if (ifp->if_flags & IFF_SMART) {
1262 			/* Smart drivers twiddle their own routes */
1263 		} else if (ifp->if_flags & IFF_UP &&
1264 		    (new_flags & IFF_UP) == 0) {
1265 			crit_enter();
1266 			if_down(ifp);
1267 			crit_exit();
1268 		} else if (new_flags & IFF_UP &&
1269 		    (ifp->if_flags & IFF_UP) == 0) {
1270 			crit_enter();
1271 			if_up(ifp);
1272 			crit_exit();
1273 		}
1274 
1275 #ifdef DEVICE_POLLING
1276 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1277 			if (new_flags & IFF_POLLING) {
1278 				ether_poll_register(ifp);
1279 			} else {
1280 				ether_poll_deregister(ifp);
1281 			}
1282 		}
1283 #endif
1284 
1285 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1286 			(new_flags &~ IFF_CANTCHANGE);
1287 		if (new_flags & IFF_PPROMISC) {
1288 			/* Permanently promiscuous mode requested */
1289 			ifp->if_flags |= IFF_PROMISC;
1290 		} else if (ifp->if_pcount == 0) {
1291 			ifp->if_flags &= ~IFF_PROMISC;
1292 		}
1293 		if (ifp->if_ioctl) {
1294 			lwkt_serialize_enter(ifp->if_serializer);
1295 			ifp->if_ioctl(ifp, cmd, data, cred);
1296 			lwkt_serialize_exit(ifp->if_serializer);
1297 		}
1298 		getmicrotime(&ifp->if_lastchange);
1299 		break;
1300 
1301 	case SIOCSIFCAP:
1302 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1303 		if (error)
1304 			return (error);
1305 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1306 			return (EINVAL);
1307 		lwkt_serialize_enter(ifp->if_serializer);
1308 		ifp->if_ioctl(ifp, cmd, data, cred);
1309 		lwkt_serialize_exit(ifp->if_serializer);
1310 		break;
1311 
1312 	case SIOCSIFNAME:
1313 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1314 		if (error != 0)
1315 			return (error);
1316 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1317 		if (error != 0)
1318 			return (error);
1319 		if (new_name[0] == '\0')
1320 			return (EINVAL);
1321 		if (ifunit(new_name) != NULL)
1322 			return (EEXIST);
1323 
1324 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1325 
1326 		/* Announce the departure of the interface. */
1327 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1328 
1329 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1330 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1331 		/* XXX IFA_LOCK(ifa); */
1332 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1333 		namelen = strlen(new_name);
1334 		onamelen = sdl->sdl_nlen;
1335 		/*
1336 		 * Move the address if needed.  This is safe because we
1337 		 * allocate space for a name of length IFNAMSIZ when we
1338 		 * create this in if_attach().
1339 		 */
1340 		if (namelen != onamelen) {
1341 			bcopy(sdl->sdl_data + onamelen,
1342 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1343 		}
1344 		bcopy(new_name, sdl->sdl_data, namelen);
1345 		sdl->sdl_nlen = namelen;
1346 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1347 		bzero(sdl->sdl_data, onamelen);
1348 		while (namelen != 0)
1349 			sdl->sdl_data[--namelen] = 0xff;
1350 		/* XXX IFA_UNLOCK(ifa) */
1351 
1352 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1353 
1354 		/* Announce the return of the interface. */
1355 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1356 		break;
1357 
1358 	case SIOCSIFMETRIC:
1359 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1360 		if (error)
1361 			return (error);
1362 		ifp->if_metric = ifr->ifr_metric;
1363 		getmicrotime(&ifp->if_lastchange);
1364 		break;
1365 
1366 	case SIOCSIFPHYS:
1367 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1368 		if (error)
1369 			return error;
1370 		if (!ifp->if_ioctl)
1371 		        return EOPNOTSUPP;
1372 		lwkt_serialize_enter(ifp->if_serializer);
1373 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1374 		lwkt_serialize_exit(ifp->if_serializer);
1375 		if (error == 0)
1376 			getmicrotime(&ifp->if_lastchange);
1377 		return (error);
1378 
1379 	case SIOCSIFMTU:
1380 	{
1381 		u_long oldmtu = ifp->if_mtu;
1382 
1383 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1384 		if (error)
1385 			return (error);
1386 		if (ifp->if_ioctl == NULL)
1387 			return (EOPNOTSUPP);
1388 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1389 			return (EINVAL);
1390 		lwkt_serialize_enter(ifp->if_serializer);
1391 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1392 		lwkt_serialize_exit(ifp->if_serializer);
1393 		if (error == 0) {
1394 			getmicrotime(&ifp->if_lastchange);
1395 			rt_ifmsg(ifp);
1396 		}
1397 		/*
1398 		 * If the link MTU changed, do network layer specific procedure.
1399 		 */
1400 		if (ifp->if_mtu != oldmtu) {
1401 #ifdef INET6
1402 			nd6_setmtu(ifp);
1403 #endif
1404 		}
1405 		return (error);
1406 	}
1407 
1408 	case SIOCADDMULTI:
1409 	case SIOCDELMULTI:
1410 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1411 		if (error)
1412 			return (error);
1413 
1414 		/* Don't allow group membership on non-multicast interfaces. */
1415 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1416 			return EOPNOTSUPP;
1417 
1418 		/* Don't let users screw up protocols' entries. */
1419 		if (ifr->ifr_addr.sa_family != AF_LINK)
1420 			return EINVAL;
1421 
1422 		if (cmd == SIOCADDMULTI) {
1423 			struct ifmultiaddr *ifma;
1424 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1425 		} else {
1426 			error = if_delmulti(ifp, &ifr->ifr_addr);
1427 		}
1428 		if (error == 0)
1429 			getmicrotime(&ifp->if_lastchange);
1430 		return error;
1431 
1432 	case SIOCSIFPHYADDR:
1433 	case SIOCDIFPHYADDR:
1434 #ifdef INET6
1435 	case SIOCSIFPHYADDR_IN6:
1436 #endif
1437 	case SIOCSLIFPHYADDR:
1438         case SIOCSIFMEDIA:
1439 	case SIOCSIFGENERIC:
1440 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1441 		if (error)
1442 			return (error);
1443 		if (ifp->if_ioctl == 0)
1444 			return (EOPNOTSUPP);
1445 		lwkt_serialize_enter(ifp->if_serializer);
1446 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1447 		lwkt_serialize_exit(ifp->if_serializer);
1448 		if (error == 0)
1449 			getmicrotime(&ifp->if_lastchange);
1450 		return error;
1451 
1452 	case SIOCGIFSTATUS:
1453 		ifs = (struct ifstat *)data;
1454 		ifs->ascii[0] = '\0';
1455 
1456 	case SIOCGIFPSRCADDR:
1457 	case SIOCGIFPDSTADDR:
1458 	case SIOCGLIFPHYADDR:
1459 	case SIOCGIFMEDIA:
1460 	case SIOCGIFGENERIC:
1461 		if (ifp->if_ioctl == NULL)
1462 			return (EOPNOTSUPP);
1463 		lwkt_serialize_enter(ifp->if_serializer);
1464 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1465 		lwkt_serialize_exit(ifp->if_serializer);
1466 		return (error);
1467 
1468 	case SIOCSIFLLADDR:
1469 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1470 		if (error)
1471 			return (error);
1472 		return if_setlladdr(ifp,
1473 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1474 
1475 	default:
1476 		oif_flags = ifp->if_flags;
1477 		if (so->so_proto == 0)
1478 			return (EOPNOTSUPP);
1479 #ifndef COMPAT_43
1480 		error = so_pru_control(so, cmd, data, ifp);
1481 #else
1482 	    {
1483 		int ocmd = cmd;
1484 
1485 		switch (cmd) {
1486 
1487 		case SIOCSIFDSTADDR:
1488 		case SIOCSIFADDR:
1489 		case SIOCSIFBRDADDR:
1490 		case SIOCSIFNETMASK:
1491 #if BYTE_ORDER != BIG_ENDIAN
1492 			if (ifr->ifr_addr.sa_family == 0 &&
1493 			    ifr->ifr_addr.sa_len < 16) {
1494 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1495 				ifr->ifr_addr.sa_len = 16;
1496 			}
1497 #else
1498 			if (ifr->ifr_addr.sa_len == 0)
1499 				ifr->ifr_addr.sa_len = 16;
1500 #endif
1501 			break;
1502 
1503 		case OSIOCGIFADDR:
1504 			cmd = SIOCGIFADDR;
1505 			break;
1506 
1507 		case OSIOCGIFDSTADDR:
1508 			cmd = SIOCGIFDSTADDR;
1509 			break;
1510 
1511 		case OSIOCGIFBRDADDR:
1512 			cmd = SIOCGIFBRDADDR;
1513 			break;
1514 
1515 		case OSIOCGIFNETMASK:
1516 			cmd = SIOCGIFNETMASK;
1517 		}
1518 		error =  so_pru_control(so, cmd, data, ifp);
1519 		switch (ocmd) {
1520 
1521 		case OSIOCGIFADDR:
1522 		case OSIOCGIFDSTADDR:
1523 		case OSIOCGIFBRDADDR:
1524 		case OSIOCGIFNETMASK:
1525 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1526 
1527 		}
1528 	    }
1529 #endif /* COMPAT_43 */
1530 
1531 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1532 #ifdef INET6
1533 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1534 			if (ifp->if_flags & IFF_UP) {
1535 				crit_enter();
1536 				in6_if_up(ifp);
1537 				crit_exit();
1538 			}
1539 #endif
1540 		}
1541 		return (error);
1542 
1543 	}
1544 	return (0);
1545 }
1546 
1547 /*
1548  * Set/clear promiscuous mode on interface ifp based on the truth value
1549  * of pswitch.  The calls are reference counted so that only the first
1550  * "on" request actually has an effect, as does the final "off" request.
1551  * Results are undefined if the "off" and "on" requests are not matched.
1552  */
1553 int
1554 ifpromisc(struct ifnet *ifp, int pswitch)
1555 {
1556 	struct ifreq ifr;
1557 	int error;
1558 	int oldflags;
1559 
1560 	oldflags = ifp->if_flags;
1561 	if (ifp->if_flags & IFF_PPROMISC) {
1562 		/* Do nothing if device is in permanently promiscuous mode */
1563 		ifp->if_pcount += pswitch ? 1 : -1;
1564 		return (0);
1565 	}
1566 	if (pswitch) {
1567 		/*
1568 		 * If the device is not configured up, we cannot put it in
1569 		 * promiscuous mode.
1570 		 */
1571 		if ((ifp->if_flags & IFF_UP) == 0)
1572 			return (ENETDOWN);
1573 		if (ifp->if_pcount++ != 0)
1574 			return (0);
1575 		ifp->if_flags |= IFF_PROMISC;
1576 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1577 		    ifp->if_xname);
1578 	} else {
1579 		if (--ifp->if_pcount > 0)
1580 			return (0);
1581 		ifp->if_flags &= ~IFF_PROMISC;
1582 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1583 		    ifp->if_xname);
1584 	}
1585 	ifr.ifr_flags = ifp->if_flags;
1586 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1587 	lwkt_serialize_enter(ifp->if_serializer);
1588 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1589 				 (struct ucred *)NULL);
1590 	lwkt_serialize_exit(ifp->if_serializer);
1591 	if (error == 0)
1592 		rt_ifmsg(ifp);
1593 	else
1594 		ifp->if_flags = oldflags;
1595 	return error;
1596 }
1597 
1598 /*
1599  * Return interface configuration
1600  * of system.  List may be used
1601  * in later ioctl's (above) to get
1602  * other information.
1603  */
1604 static int
1605 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1606 {
1607 	struct ifconf *ifc = (struct ifconf *)data;
1608 	struct ifnet *ifp;
1609 	struct sockaddr *sa;
1610 	struct ifreq ifr, *ifrp;
1611 	int space = ifc->ifc_len, error = 0;
1612 
1613 	ifrp = ifc->ifc_req;
1614 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1615 		struct ifaddr_container *ifac;
1616 		int addrs;
1617 
1618 		if (space <= sizeof ifr)
1619 			break;
1620 
1621 		/*
1622 		 * Zero the stack declared structure first to prevent
1623 		 * memory disclosure.
1624 		 */
1625 		bzero(&ifr, sizeof(ifr));
1626 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1627 		    >= sizeof(ifr.ifr_name)) {
1628 			error = ENAMETOOLONG;
1629 			break;
1630 		}
1631 
1632 		addrs = 0;
1633 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1634 			struct ifaddr *ifa = ifac->ifa;
1635 
1636 			if (space <= sizeof ifr)
1637 				break;
1638 			sa = ifa->ifa_addr;
1639 			if (cred->cr_prison &&
1640 			    prison_if(cred, sa))
1641 				continue;
1642 			addrs++;
1643 #ifdef COMPAT_43
1644 			if (cmd == OSIOCGIFCONF) {
1645 				struct osockaddr *osa =
1646 					 (struct osockaddr *)&ifr.ifr_addr;
1647 				ifr.ifr_addr = *sa;
1648 				osa->sa_family = sa->sa_family;
1649 				error = copyout(&ifr, ifrp, sizeof ifr);
1650 				ifrp++;
1651 			} else
1652 #endif
1653 			if (sa->sa_len <= sizeof(*sa)) {
1654 				ifr.ifr_addr = *sa;
1655 				error = copyout(&ifr, ifrp, sizeof ifr);
1656 				ifrp++;
1657 			} else {
1658 				if (space < (sizeof ifr) + sa->sa_len -
1659 					    sizeof(*sa))
1660 					break;
1661 				space -= sa->sa_len - sizeof(*sa);
1662 				error = copyout(&ifr, ifrp,
1663 						sizeof ifr.ifr_name);
1664 				if (error == 0)
1665 					error = copyout(sa, &ifrp->ifr_addr,
1666 							sa->sa_len);
1667 				ifrp = (struct ifreq *)
1668 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1669 			}
1670 			if (error)
1671 				break;
1672 			space -= sizeof ifr;
1673 		}
1674 		if (error)
1675 			break;
1676 		if (!addrs) {
1677 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1678 			error = copyout(&ifr, ifrp, sizeof ifr);
1679 			if (error)
1680 				break;
1681 			space -= sizeof ifr;
1682 			ifrp++;
1683 		}
1684 	}
1685 	ifc->ifc_len -= space;
1686 	return (error);
1687 }
1688 
1689 /*
1690  * Just like if_promisc(), but for all-multicast-reception mode.
1691  */
1692 int
1693 if_allmulti(struct ifnet *ifp, int onswitch)
1694 {
1695 	int error = 0;
1696 	struct ifreq ifr;
1697 
1698 	crit_enter();
1699 
1700 	if (onswitch) {
1701 		if (ifp->if_amcount++ == 0) {
1702 			ifp->if_flags |= IFF_ALLMULTI;
1703 			ifr.ifr_flags = ifp->if_flags;
1704 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1705 			lwkt_serialize_enter(ifp->if_serializer);
1706 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1707 					      (struct ucred *)NULL);
1708 			lwkt_serialize_exit(ifp->if_serializer);
1709 		}
1710 	} else {
1711 		if (ifp->if_amcount > 1) {
1712 			ifp->if_amcount--;
1713 		} else {
1714 			ifp->if_amcount = 0;
1715 			ifp->if_flags &= ~IFF_ALLMULTI;
1716 			ifr.ifr_flags = ifp->if_flags;
1717 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1718 			lwkt_serialize_enter(ifp->if_serializer);
1719 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1720 					      (struct ucred *)NULL);
1721 			lwkt_serialize_exit(ifp->if_serializer);
1722 		}
1723 	}
1724 
1725 	crit_exit();
1726 
1727 	if (error == 0)
1728 		rt_ifmsg(ifp);
1729 	return error;
1730 }
1731 
1732 /*
1733  * Add a multicast listenership to the interface in question.
1734  * The link layer provides a routine which converts
1735  */
1736 int
1737 if_addmulti(
1738 	struct ifnet *ifp,	/* interface to manipulate */
1739 	struct sockaddr *sa,	/* address to add */
1740 	struct ifmultiaddr **retifma)
1741 {
1742 	struct sockaddr *llsa, *dupsa;
1743 	int error;
1744 	struct ifmultiaddr *ifma;
1745 
1746 	/*
1747 	 * If the matching multicast address already exists
1748 	 * then don't add a new one, just add a reference
1749 	 */
1750 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1751 		if (sa_equal(sa, ifma->ifma_addr)) {
1752 			ifma->ifma_refcount++;
1753 			if (retifma)
1754 				*retifma = ifma;
1755 			return 0;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * Give the link layer a chance to accept/reject it, and also
1761 	 * find out which AF_LINK address this maps to, if it isn't one
1762 	 * already.
1763 	 */
1764 	if (ifp->if_resolvemulti) {
1765 		lwkt_serialize_enter(ifp->if_serializer);
1766 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1767 		lwkt_serialize_exit(ifp->if_serializer);
1768 		if (error)
1769 			return error;
1770 	} else {
1771 		llsa = 0;
1772 	}
1773 
1774 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1775 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1776 	bcopy(sa, dupsa, sa->sa_len);
1777 
1778 	ifma->ifma_addr = dupsa;
1779 	ifma->ifma_lladdr = llsa;
1780 	ifma->ifma_ifp = ifp;
1781 	ifma->ifma_refcount = 1;
1782 	ifma->ifma_protospec = 0;
1783 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1784 
1785 	/*
1786 	 * Some network interfaces can scan the address list at
1787 	 * interrupt time; lock them out.
1788 	 */
1789 	crit_enter();
1790 	LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1791 	crit_exit();
1792 	*retifma = ifma;
1793 
1794 	if (llsa != 0) {
1795 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1796 			if (sa_equal(ifma->ifma_addr, llsa))
1797 				break;
1798 		}
1799 		if (ifma) {
1800 			ifma->ifma_refcount++;
1801 		} else {
1802 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1803 			       M_IFMADDR, M_WAITOK);
1804 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1805 			       M_IFMADDR, M_WAITOK);
1806 			bcopy(llsa, dupsa, llsa->sa_len);
1807 			ifma->ifma_addr = dupsa;
1808 			ifma->ifma_ifp = ifp;
1809 			ifma->ifma_refcount = 1;
1810 			crit_enter();
1811 			LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1812 			crit_exit();
1813 		}
1814 	}
1815 	/*
1816 	 * We are certain we have added something, so call down to the
1817 	 * interface to let them know about it.
1818 	 */
1819 	crit_enter();
1820 	lwkt_serialize_enter(ifp->if_serializer);
1821 	ifp->if_ioctl(ifp, SIOCADDMULTI, 0, (struct ucred *)NULL);
1822 	lwkt_serialize_exit(ifp->if_serializer);
1823 	crit_exit();
1824 
1825 	return 0;
1826 }
1827 
1828 /*
1829  * Remove a reference to a multicast address on this interface.  Yell
1830  * if the request does not match an existing membership.
1831  */
1832 int
1833 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1834 {
1835 	struct ifmultiaddr *ifma;
1836 
1837 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1838 		if (sa_equal(sa, ifma->ifma_addr))
1839 			break;
1840 	if (ifma == 0)
1841 		return ENOENT;
1842 
1843 	if (ifma->ifma_refcount > 1) {
1844 		ifma->ifma_refcount--;
1845 		return 0;
1846 	}
1847 
1848 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1849 	sa = ifma->ifma_lladdr;
1850 	crit_enter();
1851 	LIST_REMOVE(ifma, ifma_link);
1852 	/*
1853 	 * Make sure the interface driver is notified
1854 	 * in the case of a link layer mcast group being left.
1855 	 */
1856 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1857 		lwkt_serialize_enter(ifp->if_serializer);
1858 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, (struct ucred *)NULL);
1859 		lwkt_serialize_exit(ifp->if_serializer);
1860 	}
1861 	crit_exit();
1862 	kfree(ifma->ifma_addr, M_IFMADDR);
1863 	kfree(ifma, M_IFMADDR);
1864 	if (sa == 0)
1865 		return 0;
1866 
1867 	/*
1868 	 * Now look for the link-layer address which corresponds to
1869 	 * this network address.  It had been squirreled away in
1870 	 * ifma->ifma_lladdr for this purpose (so we don't have
1871 	 * to call ifp->if_resolvemulti() again), and we saved that
1872 	 * value in sa above.  If some nasty deleted the
1873 	 * link-layer address out from underneath us, we can deal because
1874 	 * the address we stored was is not the same as the one which was
1875 	 * in the record for the link-layer address.  (So we don't complain
1876 	 * in that case.)
1877 	 */
1878 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1879 		if (sa_equal(sa, ifma->ifma_addr))
1880 			break;
1881 	if (ifma == 0)
1882 		return 0;
1883 
1884 	if (ifma->ifma_refcount > 1) {
1885 		ifma->ifma_refcount--;
1886 		return 0;
1887 	}
1888 
1889 	crit_enter();
1890 	lwkt_serialize_enter(ifp->if_serializer);
1891 	LIST_REMOVE(ifma, ifma_link);
1892 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, (struct ucred *)NULL);
1893 	lwkt_serialize_exit(ifp->if_serializer);
1894 	crit_exit();
1895 	kfree(ifma->ifma_addr, M_IFMADDR);
1896 	kfree(sa, M_IFMADDR);
1897 	kfree(ifma, M_IFMADDR);
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Set the link layer address on an interface.
1904  *
1905  * At this time we only support certain types of interfaces,
1906  * and we don't allow the length of the address to change.
1907  */
1908 int
1909 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
1910 {
1911 	struct sockaddr_dl *sdl;
1912 	struct ifreq ifr;
1913 
1914 	sdl = IF_LLSOCKADDR(ifp);
1915 	if (sdl == NULL)
1916 		return (EINVAL);
1917 	if (len != sdl->sdl_alen)	/* don't allow length to change */
1918 		return (EINVAL);
1919 	switch (ifp->if_type) {
1920 	case IFT_ETHER:			/* these types use struct arpcom */
1921 	case IFT_XETHER:
1922 	case IFT_L2VLAN:
1923 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
1924 		bcopy(lladdr, LLADDR(sdl), len);
1925 		break;
1926 	default:
1927 		return (ENODEV);
1928 	}
1929 	/*
1930 	 * If the interface is already up, we need
1931 	 * to re-init it in order to reprogram its
1932 	 * address filter.
1933 	 */
1934 	lwkt_serialize_enter(ifp->if_serializer);
1935 	if ((ifp->if_flags & IFF_UP) != 0) {
1936 		struct ifaddr_container *ifac;
1937 
1938 		ifp->if_flags &= ~IFF_UP;
1939 		ifr.ifr_flags = ifp->if_flags;
1940 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
1941 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1942 			      (struct ucred *)NULL);
1943 		ifp->if_flags |= IFF_UP;
1944 		ifr.ifr_flags = ifp->if_flags;
1945 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
1946 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1947 				 (struct ucred *)NULL);
1948 #ifdef INET
1949 		/*
1950 		 * Also send gratuitous ARPs to notify other nodes about
1951 		 * the address change.
1952 		 */
1953 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1954 			struct ifaddr *ifa = ifac->ifa;
1955 
1956 			if (ifa->ifa_addr != NULL &&
1957 			    ifa->ifa_addr->sa_family == AF_INET)
1958 				arp_ifinit(ifp, ifa);
1959 		}
1960 #endif
1961 	}
1962 	lwkt_serialize_exit(ifp->if_serializer);
1963 	return (0);
1964 }
1965 
1966 struct ifmultiaddr *
1967 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
1968 {
1969 	struct ifmultiaddr *ifma;
1970 
1971 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1972 		if (sa_equal(ifma->ifma_addr, sa))
1973 			break;
1974 
1975 	return ifma;
1976 }
1977 
1978 /*
1979  * This function locates the first real ethernet MAC from a network
1980  * card and loads it into node, returning 0 on success or ENOENT if
1981  * no suitable interfaces were found.  It is used by the uuid code to
1982  * generate a unique 6-byte number.
1983  */
1984 int
1985 if_getanyethermac(uint16_t *node, int minlen)
1986 {
1987 	struct ifnet *ifp;
1988 	struct sockaddr_dl *sdl;
1989 
1990 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1991 		if (ifp->if_type != IFT_ETHER)
1992 			continue;
1993 		sdl = IF_LLSOCKADDR(ifp);
1994 		if (sdl->sdl_alen < minlen)
1995 			continue;
1996 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
1997 		      minlen);
1998 		return(0);
1999 	}
2000 	return (ENOENT);
2001 }
2002 
2003 /*
2004  * The name argument must be a pointer to storage which will last as
2005  * long as the interface does.  For physical devices, the result of
2006  * device_get_name(dev) is a good choice and for pseudo-devices a
2007  * static string works well.
2008  */
2009 void
2010 if_initname(struct ifnet *ifp, const char *name, int unit)
2011 {
2012 	ifp->if_dname = name;
2013 	ifp->if_dunit = unit;
2014 	if (unit != IF_DUNIT_NONE)
2015 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2016 	else
2017 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2018 }
2019 
2020 int
2021 if_printf(struct ifnet *ifp, const char *fmt, ...)
2022 {
2023 	__va_list ap;
2024 	int retval;
2025 
2026 	retval = kprintf("%s: ", ifp->if_xname);
2027 	__va_start(ap, fmt);
2028 	retval += kvprintf(fmt, ap);
2029 	__va_end(ap);
2030 	return (retval);
2031 }
2032 
2033 void
2034 ifq_set_classic(struct ifaltq *ifq)
2035 {
2036 	ifq->altq_enqueue = ifq_classic_enqueue;
2037 	ifq->altq_dequeue = ifq_classic_dequeue;
2038 	ifq->altq_request = ifq_classic_request;
2039 }
2040 
2041 int
2042 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2043 		    struct altq_pktattr *pa __unused)
2044 {
2045 	logifq(enqueue, ifq);
2046 	if (IF_QFULL(ifq)) {
2047 		m_freem(m);
2048 		return(ENOBUFS);
2049 	} else {
2050 		IF_ENQUEUE(ifq, m);
2051 		return(0);
2052 	}
2053 }
2054 
2055 struct mbuf *
2056 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2057 {
2058 	struct mbuf *m;
2059 
2060 	switch (op) {
2061 	case ALTDQ_POLL:
2062 		IF_POLL(ifq, m);
2063 		break;
2064 	case ALTDQ_REMOVE:
2065 		logifq(dequeue, ifq);
2066 		IF_DEQUEUE(ifq, m);
2067 		break;
2068 	default:
2069 		panic("unsupported ALTQ dequeue op: %d", op);
2070 	}
2071 	KKASSERT(mpolled == NULL || mpolled == m);
2072 	return(m);
2073 }
2074 
2075 int
2076 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2077 {
2078 	switch (req) {
2079 	case ALTRQ_PURGE:
2080 		IF_DRAIN(ifq);
2081 		break;
2082 	default:
2083 		panic("unsupported ALTQ request: %d", req);
2084 	}
2085 	return(0);
2086 }
2087 
2088 int
2089 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2090 {
2091 	struct ifaltq *ifq = &ifp->if_snd;
2092 	int running = 0, error, start = 0;
2093 
2094 	ASSERT_NOT_SERIALIZED(ifp->if_serializer);
2095 
2096 	ALTQ_LOCK(ifq);
2097 	error = ifq_enqueue_locked(ifq, m, pa);
2098 	if (error) {
2099 		ALTQ_UNLOCK(ifq);
2100 		return error;
2101 	}
2102 	if (!ifq->altq_started) {
2103 		/*
2104 		 * Hold the interlock of ifnet.if_start
2105 		 */
2106 		ifq->altq_started = 1;
2107 		start = 1;
2108 	}
2109 	ALTQ_UNLOCK(ifq);
2110 
2111 	ifp->if_obytes += m->m_pkthdr.len;
2112 	if (m->m_flags & M_MCAST)
2113 		ifp->if_omcasts++;
2114 
2115 	if (!start) {
2116 		logifstart(avoid, ifp);
2117 		return 0;
2118 	}
2119 
2120 	if (ifq_dispatch_schedonly) {
2121 		/*
2122 		 * Always schedule ifnet.if_start on ifnet's CPU,
2123 		 * short circuit the rest of this function.
2124 		 */
2125 		logifstart(sched, ifp);
2126 		if_start_schedule(ifp);
2127 		return 0;
2128 	}
2129 
2130 	/*
2131 	 * Try to do direct ifnet.if_start first, if there is
2132 	 * contention on ifnet's serializer, ifnet.if_start will
2133 	 * be scheduled on ifnet's CPU.
2134 	 */
2135 	if (!lwkt_serialize_try(ifp->if_serializer)) {
2136 		/*
2137 		 * ifnet serializer contention happened,
2138 		 * ifnet.if_start is scheduled on ifnet's
2139 		 * CPU, and we keep going.
2140 		 */
2141 		logifstart(contend_sched, ifp);
2142 		if_start_schedule(ifp);
2143 		return 0;
2144 	}
2145 
2146 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2147 		logifstart(run, ifp);
2148 		ifp->if_start(ifp);
2149 		if ((ifp->if_flags &
2150 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2151 			running = 1;
2152 	}
2153 
2154 	lwkt_serialize_exit(ifp->if_serializer);
2155 
2156 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2157 		/*
2158 		 * More data need to be transmitted, ifnet.if_start is
2159 		 * scheduled on ifnet's CPU, and we keep going.
2160 		 * NOTE: ifnet.if_start interlock is not released.
2161 		 */
2162 		logifstart(sched, ifp);
2163 		if_start_schedule(ifp);
2164 	}
2165 	return 0;
2166 }
2167 
2168 void *
2169 ifa_create(int size, int flags)
2170 {
2171 	struct ifaddr *ifa;
2172 	int i;
2173 
2174 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2175 
2176 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2177 	if (ifa == NULL)
2178 		return NULL;
2179 
2180 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2181 				      M_IFADDR, M_WAITOK | M_ZERO);
2182 	ifa->ifa_ncnt = ncpus;
2183 	for (i = 0; i < ncpus; ++i) {
2184 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2185 
2186 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2187 		ifac->ifa = ifa;
2188 		ifac->ifa_refcnt = 1;
2189 	}
2190 #ifdef IFADDR_DEBUG
2191 	kprintf("alloc ifa %p %d\n", ifa, size);
2192 #endif
2193 	return ifa;
2194 }
2195 
2196 void
2197 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2198 {
2199 	struct ifaddr *ifa = ifac->ifa;
2200 
2201 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2202 	KKASSERT(ifac->ifa_refcnt == 0);
2203 	KASSERT(ifac->ifa_listmask == 0,
2204 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2205 
2206 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2207 
2208 #ifdef IFADDR_DEBUG_VERBOSE
2209 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2210 #endif
2211 
2212 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2213 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2214 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2215 #ifdef IFADDR_DEBUG
2216 		kprintf("free ifa %p\n", ifa);
2217 #endif
2218 		kfree(ifa->ifa_containers, M_IFADDR);
2219 		kfree(ifa, M_IFADDR);
2220 	}
2221 }
2222 
2223 static void
2224 ifa_iflink_dispatch(struct netmsg *nmsg)
2225 {
2226 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2227 	struct ifaddr *ifa = msg->ifa;
2228 	struct ifnet *ifp = msg->ifp;
2229 	int cpu = mycpuid;
2230 	struct ifaddr_container *ifac;
2231 
2232 	crit_enter();
2233 
2234 	ifac = &ifa->ifa_containers[cpu];
2235 	ASSERT_IFAC_VALID(ifac);
2236 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2237 		("ifaddr is on if_addrheads\n"));
2238 
2239 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2240 	if (msg->tail)
2241 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2242 	else
2243 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2244 
2245 	crit_exit();
2246 
2247 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2248 }
2249 
2250 void
2251 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2252 {
2253 	struct netmsg_ifaddr msg;
2254 
2255 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2256 		    ifa_iflink_dispatch);
2257 	msg.ifa = ifa;
2258 	msg.ifp = ifp;
2259 	msg.tail = tail;
2260 
2261 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2262 }
2263 
2264 static void
2265 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2266 {
2267 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2268 	struct ifaddr *ifa = msg->ifa;
2269 	struct ifnet *ifp = msg->ifp;
2270 	int cpu = mycpuid;
2271 	struct ifaddr_container *ifac;
2272 
2273 	crit_enter();
2274 
2275 	ifac = &ifa->ifa_containers[cpu];
2276 	ASSERT_IFAC_VALID(ifac);
2277 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2278 		("ifaddr is not on if_addrhead\n"));
2279 
2280 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2281 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2282 
2283 	crit_exit();
2284 
2285 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2286 }
2287 
2288 void
2289 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2290 {
2291 	struct netmsg_ifaddr msg;
2292 
2293 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2294 		    ifa_ifunlink_dispatch);
2295 	msg.ifa = ifa;
2296 	msg.ifp = ifp;
2297 
2298 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2299 }
2300 
2301 static void
2302 ifa_destroy_dispatch(struct netmsg *nmsg)
2303 {
2304 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2305 
2306 	IFAFREE(msg->ifa);
2307 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2308 }
2309 
2310 void
2311 ifa_destroy(struct ifaddr *ifa)
2312 {
2313 	struct netmsg_ifaddr msg;
2314 
2315 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2316 		    ifa_destroy_dispatch);
2317 	msg.ifa = ifa;
2318 
2319 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2320 }
2321 
2322 struct lwkt_port *
2323 ifnet_portfn(int cpu)
2324 {
2325 	return &ifnet_threads[cpu].td_msgport;
2326 }
2327 
2328 void
2329 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2330 {
2331 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2332 
2333 	if (next_cpu < ncpus)
2334 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2335 	else
2336 		lwkt_replymsg(lmsg, 0);
2337 }
2338 
2339 int
2340 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2341 {
2342 	KKASSERT(cpu < ncpus);
2343 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2344 }
2345 
2346 void
2347 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2348 {
2349 	KKASSERT(cpu < ncpus);
2350 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2351 }
2352 
2353 static void
2354 ifnetinit(void *dummy __unused)
2355 {
2356 	int i;
2357 
2358 	for (i = 0; i < ncpus; ++i) {
2359 		struct thread *thr = &ifnet_threads[i];
2360 
2361 		lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2362 			    thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2363 		netmsg_service_port_init(&thr->td_msgport);
2364 	}
2365 }
2366