xref: /dragonfly/sys/net/if.c (revision 20c2db9a)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_inet.h"
40 #include "opt_ifpoll.h"
41 
42 #include <sys/param.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/socketops.h>
52 #include <sys/protosw.h>
53 #include <sys/kernel.h>
54 #include <sys/ktr.h>
55 #include <sys/mutex.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/serialize.h>
62 #include <sys/bus.h>
63 
64 #include <sys/thread2.h>
65 #include <sys/msgport2.h>
66 #include <sys/mutex2.h>
67 
68 #include <net/if.h>
69 #include <net/if_arp.h>
70 #include <net/if_dl.h>
71 #include <net/if_types.h>
72 #include <net/if_var.h>
73 #include <net/ifq_var.h>
74 #include <net/radix.h>
75 #include <net/route.h>
76 #include <net/if_clone.h>
77 #include <net/netisr.h>
78 #include <net/netmsg2.h>
79 
80 #include <machine/atomic.h>
81 #include <machine/stdarg.h>
82 #include <machine/smp.h>
83 
84 #if defined(INET) || defined(INET6)
85 /*XXX*/
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/if_ether.h>
89 #ifdef INET6
90 #include <netinet6/in6_var.h>
91 #include <netinet6/in6_ifattach.h>
92 #endif
93 #endif
94 
95 #if defined(COMPAT_43)
96 #include <emulation/43bsd/43bsd_socket.h>
97 #endif /* COMPAT_43 */
98 
99 struct netmsg_ifaddr {
100 	struct netmsg_base base;
101 	struct ifaddr	*ifa;
102 	struct ifnet	*ifp;
103 	int		tail;
104 };
105 
106 struct ifsubq_stage_head {
107 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
108 } __cachealign;
109 
110 /*
111  * System initialization
112  */
113 static void	if_attachdomain(void *);
114 static void	if_attachdomain1(struct ifnet *);
115 static int	ifconf(u_long, caddr_t, struct ucred *);
116 static void	ifinit(void *);
117 static void	ifnetinit(void *);
118 static void	if_slowtimo(void *);
119 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
120 static int	if_rtdel(struct radix_node *, void *);
121 
122 /* Helper functions */
123 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
124 
125 #ifdef INET6
126 /*
127  * XXX: declare here to avoid to include many inet6 related files..
128  * should be more generalized?
129  */
130 extern void	nd6_setmtu(struct ifnet *);
131 #endif
132 
133 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
134 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
135 
136 static int ifsq_stage_cntmax = 4;
137 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
138 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
139     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
140 
141 static int if_stats_compat = 0;
142 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
143     &if_stats_compat, 0, "Compat the old ifnet stats");
144 
145 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
146 /* Must be after netisr_init */
147 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
148 
149 static  if_com_alloc_t *if_com_alloc[256];
150 static  if_com_free_t *if_com_free[256];
151 
152 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
153 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
154 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
155 
156 int			ifqmaxlen = IFQ_MAXLEN;
157 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
158 
159 struct callout		if_slowtimo_timer;
160 
161 int			if_index = 0;
162 struct ifnet		**ifindex2ifnet = NULL;
163 static struct thread	ifnet_threads[MAXCPU];
164 
165 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
166 
167 #ifdef notyet
168 #define IFQ_KTR_STRING		"ifq=%p"
169 #define IFQ_KTR_ARGS	struct ifaltq *ifq
170 #ifndef KTR_IFQ
171 #define KTR_IFQ			KTR_ALL
172 #endif
173 KTR_INFO_MASTER(ifq);
174 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
175 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
176 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
177 
178 #define IF_START_KTR_STRING	"ifp=%p"
179 #define IF_START_KTR_ARGS	struct ifnet *ifp
180 #ifndef KTR_IF_START
181 #define KTR_IF_START		KTR_ALL
182 #endif
183 KTR_INFO_MASTER(if_start);
184 KTR_INFO(KTR_IF_START, if_start, run, 0,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, sched, 1,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
191 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
192 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
195 #endif
196 
197 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
198 
199 /*
200  * Network interface utility routines.
201  *
202  * Routines with ifa_ifwith* names take sockaddr *'s as
203  * parameters.
204  */
205 /* ARGSUSED*/
206 void
207 ifinit(void *dummy)
208 {
209 	struct ifnet *ifp;
210 
211 	callout_init(&if_slowtimo_timer);
212 
213 	crit_enter();
214 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
215 		if (ifp->if_snd.altq_maxlen == 0) {
216 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
217 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
218 		}
219 	}
220 	crit_exit();
221 
222 	if_slowtimo(0);
223 }
224 
225 static void
226 ifsq_ifstart_ipifunc(void *arg)
227 {
228 	struct ifaltq_subque *ifsq = arg;
229 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
230 
231 	crit_enter();
232 	if (lmsg->ms_flags & MSGF_DONE)
233 		lwkt_sendmsg(netisr_portfn(mycpuid), lmsg);
234 	crit_exit();
235 }
236 
237 static __inline void
238 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
239 {
240 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
241 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
242 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
243 	stage->stg_cnt = 0;
244 	stage->stg_len = 0;
245 }
246 
247 static __inline void
248 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
249 {
250 	KKASSERT((stage->stg_flags &
251 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
252 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
253 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
254 }
255 
256 /*
257  * Schedule ifnet.if_start on ifnet's CPU
258  */
259 static void
260 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
261 {
262 	int cpu;
263 
264 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
265 	    ifsq_stage_cntmax > 0) {
266 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
267 
268 		stage->stg_cnt = 0;
269 		stage->stg_len = 0;
270 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
271 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
272 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
273 		return;
274 	}
275 
276 	cpu = ifsq_get_cpuid(ifsq);
277 	if (cpu != mycpuid)
278 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
279 	else
280 		ifsq_ifstart_ipifunc(ifsq);
281 }
282 
283 /*
284  * NOTE:
285  * This function will release ifnet.if_start interlock,
286  * if ifnet.if_start does not need to be scheduled
287  */
288 static __inline int
289 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
290 {
291 	if (!running || ifsq_is_empty(ifsq)
292 #ifdef ALTQ
293 	    || ifsq->ifsq_altq->altq_tbr != NULL
294 #endif
295 	) {
296 		ALTQ_SQ_LOCK(ifsq);
297 		/*
298 		 * ifnet.if_start interlock is released, if:
299 		 * 1) Hardware can not take any packets, due to
300 		 *    o  interface is marked down
301 		 *    o  hardware queue is full (ifq_is_oactive)
302 		 *    Under the second situation, hardware interrupt
303 		 *    or polling(4) will call/schedule ifnet.if_start
304 		 *    when hardware queue is ready
305 		 * 2) There is not packet in the ifnet.if_snd.
306 		 *    Further ifq_dispatch or ifq_handoff will call/
307 		 *    schedule ifnet.if_start
308 		 * 3) TBR is used and it does not allow further
309 		 *    dequeueing.
310 		 *    TBR callout will call ifnet.if_start
311 		 */
312 		if (!running || !ifsq_data_ready(ifsq)) {
313 			ifsq_clr_started(ifsq);
314 			ALTQ_SQ_UNLOCK(ifsq);
315 			return 0;
316 		}
317 		ALTQ_SQ_UNLOCK(ifsq);
318 	}
319 	return 1;
320 }
321 
322 static void
323 ifsq_ifstart_dispatch(netmsg_t msg)
324 {
325 	struct lwkt_msg *lmsg = &msg->base.lmsg;
326 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
327 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
328 	int running = 0, need_sched;
329 
330 	crit_enter();
331 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
332 	crit_exit();
333 
334 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
335 		/*
336 		 * We need to chase the ifnet CPU change.
337 		 */
338 		ifsq_ifstart_schedule(ifsq, 1);
339 		return;
340 	}
341 
342 	ifsq_serialize_hw(ifsq);
343 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
344 		ifp->if_start(ifp, ifsq);
345 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
346 			running = 1;
347 	}
348 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
349 	ifsq_deserialize_hw(ifsq);
350 
351 	if (need_sched) {
352 		/*
353 		 * More data need to be transmitted, ifnet.if_start is
354 		 * scheduled on ifnet's CPU, and we keep going.
355 		 * NOTE: ifnet.if_start interlock is not released.
356 		 */
357 		ifsq_ifstart_schedule(ifsq, 0);
358 	}
359 }
360 
361 /* Device driver ifnet.if_start helper function */
362 void
363 ifsq_devstart(struct ifaltq_subque *ifsq)
364 {
365 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
366 	int running = 0;
367 
368 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
369 
370 	ALTQ_SQ_LOCK(ifsq);
371 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
372 		ALTQ_SQ_UNLOCK(ifsq);
373 		return;
374 	}
375 	ifsq_set_started(ifsq);
376 	ALTQ_SQ_UNLOCK(ifsq);
377 
378 	ifp->if_start(ifp, ifsq);
379 
380 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
381 		running = 1;
382 
383 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
384 		/*
385 		 * More data need to be transmitted, ifnet.if_start is
386 		 * scheduled on ifnet's CPU, and we keep going.
387 		 * NOTE: ifnet.if_start interlock is not released.
388 		 */
389 		ifsq_ifstart_schedule(ifsq, 0);
390 	}
391 }
392 
393 void
394 if_devstart(struct ifnet *ifp)
395 {
396 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
397 }
398 
399 /* Device driver ifnet.if_start schedule helper function */
400 void
401 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
402 {
403 	ifsq_ifstart_schedule(ifsq, 1);
404 }
405 
406 void
407 if_devstart_sched(struct ifnet *ifp)
408 {
409 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
410 }
411 
412 static void
413 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
414 {
415 	lwkt_serialize_enter(ifp->if_serializer);
416 }
417 
418 static void
419 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
420 {
421 	lwkt_serialize_exit(ifp->if_serializer);
422 }
423 
424 static int
425 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427 	return lwkt_serialize_try(ifp->if_serializer);
428 }
429 
430 #ifdef INVARIANTS
431 static void
432 if_default_serialize_assert(struct ifnet *ifp,
433 			    enum ifnet_serialize slz __unused,
434 			    boolean_t serialized)
435 {
436 	if (serialized)
437 		ASSERT_SERIALIZED(ifp->if_serializer);
438 	else
439 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
440 }
441 #endif
442 
443 /*
444  * Attach an interface to the list of "active" interfaces.
445  *
446  * The serializer is optional.  If non-NULL access to the interface
447  * may be MPSAFE.
448  */
449 void
450 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
451 {
452 	unsigned socksize, ifasize;
453 	int namelen, masklen;
454 	struct sockaddr_dl *sdl;
455 	struct ifaddr *ifa;
456 	struct ifaltq *ifq;
457 	int i, q;
458 
459 	static int if_indexlim = 8;
460 
461 	if (ifp->if_serialize != NULL) {
462 		KASSERT(ifp->if_deserialize != NULL &&
463 			ifp->if_tryserialize != NULL &&
464 			ifp->if_serialize_assert != NULL,
465 			("serialize functions are partially setup"));
466 
467 		/*
468 		 * If the device supplies serialize functions,
469 		 * then clear if_serializer to catch any invalid
470 		 * usage of this field.
471 		 */
472 		KASSERT(serializer == NULL,
473 			("both serialize functions and default serializer "
474 			 "are supplied"));
475 		ifp->if_serializer = NULL;
476 	} else {
477 		KASSERT(ifp->if_deserialize == NULL &&
478 			ifp->if_tryserialize == NULL &&
479 			ifp->if_serialize_assert == NULL,
480 			("serialize functions are partially setup"));
481 		ifp->if_serialize = if_default_serialize;
482 		ifp->if_deserialize = if_default_deserialize;
483 		ifp->if_tryserialize = if_default_tryserialize;
484 #ifdef INVARIANTS
485 		ifp->if_serialize_assert = if_default_serialize_assert;
486 #endif
487 
488 		/*
489 		 * The serializer can be passed in from the device,
490 		 * allowing the same serializer to be used for both
491 		 * the interrupt interlock and the device queue.
492 		 * If not specified, the netif structure will use an
493 		 * embedded serializer.
494 		 */
495 		if (serializer == NULL) {
496 			serializer = &ifp->if_default_serializer;
497 			lwkt_serialize_init(serializer);
498 		}
499 		ifp->if_serializer = serializer;
500 	}
501 
502 	mtx_init(&ifp->if_ioctl_mtx);
503 	mtx_lock(&ifp->if_ioctl_mtx);
504 
505 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
506 	ifp->if_index = ++if_index;
507 
508 	/*
509 	 * XXX -
510 	 * The old code would work if the interface passed a pre-existing
511 	 * chain of ifaddrs to this code.  We don't trust our callers to
512 	 * properly initialize the tailq, however, so we no longer allow
513 	 * this unlikely case.
514 	 */
515 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
516 				    M_IFADDR, M_WAITOK | M_ZERO);
517 	for (i = 0; i < ncpus; ++i)
518 		TAILQ_INIT(&ifp->if_addrheads[i]);
519 
520 	TAILQ_INIT(&ifp->if_prefixhead);
521 	TAILQ_INIT(&ifp->if_multiaddrs);
522 	TAILQ_INIT(&ifp->if_groups);
523 	getmicrotime(&ifp->if_lastchange);
524 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
525 		unsigned int n;
526 		struct ifnet **q;
527 
528 		if_indexlim <<= 1;
529 
530 		/* grow ifindex2ifnet */
531 		n = if_indexlim * sizeof(*q);
532 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
533 		if (ifindex2ifnet) {
534 			bcopy(ifindex2ifnet, q, n/2);
535 			kfree(ifindex2ifnet, M_IFADDR);
536 		}
537 		ifindex2ifnet = q;
538 	}
539 
540 	ifindex2ifnet[if_index] = ifp;
541 
542 	/*
543 	 * create a Link Level name for this device
544 	 */
545 	namelen = strlen(ifp->if_xname);
546 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
547 	socksize = masklen + ifp->if_addrlen;
548 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
549 	if (socksize < sizeof(*sdl))
550 		socksize = sizeof(*sdl);
551 	socksize = ROUNDUP(socksize);
552 #undef ROUNDUP
553 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
554 	ifa = ifa_create(ifasize, M_WAITOK);
555 	sdl = (struct sockaddr_dl *)(ifa + 1);
556 	sdl->sdl_len = socksize;
557 	sdl->sdl_family = AF_LINK;
558 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
559 	sdl->sdl_nlen = namelen;
560 	sdl->sdl_index = ifp->if_index;
561 	sdl->sdl_type = ifp->if_type;
562 	ifp->if_lladdr = ifa;
563 	ifa->ifa_ifp = ifp;
564 	ifa->ifa_rtrequest = link_rtrequest;
565 	ifa->ifa_addr = (struct sockaddr *)sdl;
566 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
567 	ifa->ifa_netmask = (struct sockaddr *)sdl;
568 	sdl->sdl_len = masklen;
569 	while (namelen != 0)
570 		sdl->sdl_data[--namelen] = 0xff;
571 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
572 
573 	ifp->if_data_pcpu = kmalloc_cachealign(
574 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
575 
576 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
577 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
578 
579 	if (ifp->if_mapsubq == NULL)
580 		ifp->if_mapsubq = ifq_mapsubq_default;
581 
582 	ifq = &ifp->if_snd;
583 	ifq->altq_type = 0;
584 	ifq->altq_disc = NULL;
585 	ifq->altq_flags &= ALTQF_CANTCHANGE;
586 	ifq->altq_tbr = NULL;
587 	ifq->altq_ifp = ifp;
588 
589 	if (ifq->altq_subq_cnt <= 0)
590 		ifq->altq_subq_cnt = 1;
591 	ifq->altq_subq = kmalloc_cachealign(
592 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
593 	    M_DEVBUF, M_WAITOK | M_ZERO);
594 
595 	if (ifq->altq_maxlen == 0) {
596 		if_printf(ifp, "driver didn't set ifq_maxlen\n");
597 		ifq_set_maxlen(ifq, ifqmaxlen);
598 	}
599 
600 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
601 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
602 
603 		ALTQ_SQ_LOCK_INIT(ifsq);
604 		ifsq->ifsq_index = q;
605 
606 		ifsq->ifsq_altq = ifq;
607 		ifsq->ifsq_ifp = ifp;
608 
609 		ifsq->ifq_maxlen = ifq->altq_maxlen;
610 		ifsq->ifsq_prepended = NULL;
611 		ifsq->ifsq_started = 0;
612 		ifsq->ifsq_hw_oactive = 0;
613 		ifsq_set_cpuid(ifsq, 0);
614 		if (ifp->if_serializer != NULL)
615 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
616 
617 		ifsq->ifsq_stage =
618 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
619 		    M_DEVBUF, M_WAITOK | M_ZERO);
620 		for (i = 0; i < ncpus; ++i)
621 			ifsq->ifsq_stage[i].stg_subq = ifsq;
622 
623 		ifsq->ifsq_ifstart_nmsg =
624 		    kmalloc(ncpus * sizeof(struct netmsg_base),
625 		    M_LWKTMSG, M_WAITOK);
626 		for (i = 0; i < ncpus; ++i) {
627 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
628 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
629 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
630 		}
631 	}
632 	ifq_set_classic(ifq);
633 
634 	if (!SLIST_EMPTY(&domains))
635 		if_attachdomain1(ifp);
636 
637 	/* Announce the interface. */
638 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
639 
640 	mtx_unlock(&ifp->if_ioctl_mtx);
641 }
642 
643 static void
644 if_attachdomain(void *dummy)
645 {
646 	struct ifnet *ifp;
647 
648 	crit_enter();
649 	TAILQ_FOREACH(ifp, &ifnet, if_list)
650 		if_attachdomain1(ifp);
651 	crit_exit();
652 }
653 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
654 	if_attachdomain, NULL);
655 
656 static void
657 if_attachdomain1(struct ifnet *ifp)
658 {
659 	struct domain *dp;
660 
661 	crit_enter();
662 
663 	/* address family dependent data region */
664 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
665 	SLIST_FOREACH(dp, &domains, dom_next)
666 		if (dp->dom_ifattach)
667 			ifp->if_afdata[dp->dom_family] =
668 				(*dp->dom_ifattach)(ifp);
669 	crit_exit();
670 }
671 
672 /*
673  * Purge all addresses whose type is _not_ AF_LINK
674  */
675 void
676 if_purgeaddrs_nolink(struct ifnet *ifp)
677 {
678 	struct ifaddr_container *ifac, *next;
679 
680 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
681 			      ifa_link, next) {
682 		struct ifaddr *ifa = ifac->ifa;
683 
684 		/* Leave link ifaddr as it is */
685 		if (ifa->ifa_addr->sa_family == AF_LINK)
686 			continue;
687 #ifdef INET
688 		/* XXX: Ugly!! ad hoc just for INET */
689 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
690 			struct ifaliasreq ifr;
691 #ifdef IFADDR_DEBUG_VERBOSE
692 			int i;
693 
694 			kprintf("purge in4 addr %p: ", ifa);
695 			for (i = 0; i < ncpus; ++i)
696 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
697 			kprintf("\n");
698 #endif
699 
700 			bzero(&ifr, sizeof ifr);
701 			ifr.ifra_addr = *ifa->ifa_addr;
702 			if (ifa->ifa_dstaddr)
703 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
704 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
705 				       NULL) == 0)
706 				continue;
707 		}
708 #endif /* INET */
709 #ifdef INET6
710 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
711 #ifdef IFADDR_DEBUG_VERBOSE
712 			int i;
713 
714 			kprintf("purge in6 addr %p: ", ifa);
715 			for (i = 0; i < ncpus; ++i)
716 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
717 			kprintf("\n");
718 #endif
719 
720 			in6_purgeaddr(ifa);
721 			/* ifp_addrhead is already updated */
722 			continue;
723 		}
724 #endif /* INET6 */
725 		ifa_ifunlink(ifa, ifp);
726 		ifa_destroy(ifa);
727 	}
728 }
729 
730 static void
731 ifq_stage_detach_handler(netmsg_t nmsg)
732 {
733 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
734 	int q;
735 
736 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
737 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
738 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
739 
740 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
741 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
742 	}
743 	lwkt_replymsg(&nmsg->lmsg, 0);
744 }
745 
746 static void
747 ifq_stage_detach(struct ifaltq *ifq)
748 {
749 	struct netmsg_base base;
750 	int cpu;
751 
752 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
753 	    ifq_stage_detach_handler);
754 	base.lmsg.u.ms_resultp = ifq;
755 
756 	for (cpu = 0; cpu < ncpus; ++cpu)
757 		lwkt_domsg(netisr_portfn(cpu), &base.lmsg, 0);
758 }
759 
760 /*
761  * Detach an interface, removing it from the
762  * list of "active" interfaces.
763  */
764 void
765 if_detach(struct ifnet *ifp)
766 {
767 	struct radix_node_head	*rnh;
768 	int i, q;
769 	int cpu, origcpu;
770 	struct domain *dp;
771 
772 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
773 
774 	/*
775 	 * Remove routes and flush queues.
776 	 */
777 	crit_enter();
778 #ifdef IFPOLL_ENABLE
779 	if (ifp->if_flags & IFF_NPOLLING)
780 		ifpoll_deregister(ifp);
781 #endif
782 	if_down(ifp);
783 
784 #ifdef ALTQ
785 	if (ifq_is_enabled(&ifp->if_snd))
786 		altq_disable(&ifp->if_snd);
787 	if (ifq_is_attached(&ifp->if_snd))
788 		altq_detach(&ifp->if_snd);
789 #endif
790 
791 	/*
792 	 * Clean up all addresses.
793 	 */
794 	ifp->if_lladdr = NULL;
795 
796 	if_purgeaddrs_nolink(ifp);
797 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
798 		struct ifaddr *ifa;
799 
800 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
801 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
802 			("non-link ifaddr is left on if_addrheads"));
803 
804 		ifa_ifunlink(ifa, ifp);
805 		ifa_destroy(ifa);
806 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
807 			("there are still ifaddrs left on if_addrheads"));
808 	}
809 
810 #ifdef INET
811 	/*
812 	 * Remove all IPv4 kernel structures related to ifp.
813 	 */
814 	in_ifdetach(ifp);
815 #endif
816 
817 #ifdef INET6
818 	/*
819 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
820 	 * before removing routing entries below, since IPv6 interface direct
821 	 * routes are expected to be removed by the IPv6-specific kernel API.
822 	 * Otherwise, the kernel will detect some inconsistency and bark it.
823 	 */
824 	in6_ifdetach(ifp);
825 #endif
826 
827 	/*
828 	 * Delete all remaining routes using this interface
829 	 * Unfortuneatly the only way to do this is to slog through
830 	 * the entire routing table looking for routes which point
831 	 * to this interface...oh well...
832 	 */
833 	origcpu = mycpuid;
834 	for (cpu = 0; cpu < ncpus; cpu++) {
835 		lwkt_migratecpu(cpu);
836 		for (i = 1; i <= AF_MAX; i++) {
837 			if ((rnh = rt_tables[cpu][i]) == NULL)
838 				continue;
839 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
840 		}
841 	}
842 	lwkt_migratecpu(origcpu);
843 
844 	/* Announce that the interface is gone. */
845 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
846 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
847 
848 	SLIST_FOREACH(dp, &domains, dom_next)
849 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
850 			(*dp->dom_ifdetach)(ifp,
851 				ifp->if_afdata[dp->dom_family]);
852 
853 	/*
854 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
855 	 */
856 	ifindex2ifnet[ifp->if_index] = NULL;
857 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
858 		if_index--;
859 
860 	TAILQ_REMOVE(&ifnet, ifp, if_link);
861 	kfree(ifp->if_addrheads, M_IFADDR);
862 
863 	lwkt_synchronize_ipiqs("if_detach");
864 	ifq_stage_detach(&ifp->if_snd);
865 
866 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
867 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
868 
869 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
870 		kfree(ifsq->ifsq_stage, M_DEVBUF);
871 	}
872 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
873 
874 	kfree(ifp->if_data_pcpu, M_DEVBUF);
875 
876 	crit_exit();
877 }
878 
879 /*
880  * Create interface group without members
881  */
882 struct ifg_group *
883 if_creategroup(const char *groupname)
884 {
885         struct ifg_group        *ifg = NULL;
886 
887         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
888             M_TEMP, M_NOWAIT)) == NULL)
889                 return (NULL);
890 
891         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
892         ifg->ifg_refcnt = 0;
893         ifg->ifg_carp_demoted = 0;
894         TAILQ_INIT(&ifg->ifg_members);
895 #if NPF > 0
896         pfi_attach_ifgroup(ifg);
897 #endif
898         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
899 
900         return (ifg);
901 }
902 
903 /*
904  * Add a group to an interface
905  */
906 int
907 if_addgroup(struct ifnet *ifp, const char *groupname)
908 {
909 	struct ifg_list		*ifgl;
910 	struct ifg_group	*ifg = NULL;
911 	struct ifg_member	*ifgm;
912 
913 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
914 	    groupname[strlen(groupname) - 1] <= '9')
915 		return (EINVAL);
916 
917 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
918 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
919 			return (EEXIST);
920 
921 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
922 		return (ENOMEM);
923 
924 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
925 		kfree(ifgl, M_TEMP);
926 		return (ENOMEM);
927 	}
928 
929 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
930 		if (!strcmp(ifg->ifg_group, groupname))
931 			break;
932 
933 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
934 		kfree(ifgl, M_TEMP);
935 		kfree(ifgm, M_TEMP);
936 		return (ENOMEM);
937 	}
938 
939 	ifg->ifg_refcnt++;
940 	ifgl->ifgl_group = ifg;
941 	ifgm->ifgm_ifp = ifp;
942 
943 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
944 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
945 
946 #if NPF > 0
947 	pfi_group_change(groupname);
948 #endif
949 
950 	return (0);
951 }
952 
953 /*
954  * Remove a group from an interface
955  */
956 int
957 if_delgroup(struct ifnet *ifp, const char *groupname)
958 {
959 	struct ifg_list		*ifgl;
960 	struct ifg_member	*ifgm;
961 
962 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
963 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
964 			break;
965 	if (ifgl == NULL)
966 		return (ENOENT);
967 
968 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
969 
970 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
971 		if (ifgm->ifgm_ifp == ifp)
972 			break;
973 
974 	if (ifgm != NULL) {
975 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
976 		kfree(ifgm, M_TEMP);
977 	}
978 
979 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
980 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
981 #if NPF > 0
982 		pfi_detach_ifgroup(ifgl->ifgl_group);
983 #endif
984 		kfree(ifgl->ifgl_group, M_TEMP);
985 	}
986 
987 	kfree(ifgl, M_TEMP);
988 
989 #if NPF > 0
990 	pfi_group_change(groupname);
991 #endif
992 
993 	return (0);
994 }
995 
996 /*
997  * Stores all groups from an interface in memory pointed
998  * to by data
999  */
1000 int
1001 if_getgroup(caddr_t data, struct ifnet *ifp)
1002 {
1003 	int			 len, error;
1004 	struct ifg_list		*ifgl;
1005 	struct ifg_req		 ifgrq, *ifgp;
1006 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1007 
1008 	if (ifgr->ifgr_len == 0) {
1009 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1010 			ifgr->ifgr_len += sizeof(struct ifg_req);
1011 		return (0);
1012 	}
1013 
1014 	len = ifgr->ifgr_len;
1015 	ifgp = ifgr->ifgr_groups;
1016 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1017 		if (len < sizeof(ifgrq))
1018 			return (EINVAL);
1019 		bzero(&ifgrq, sizeof ifgrq);
1020 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1021 		    sizeof(ifgrq.ifgrq_group));
1022 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1023 		    sizeof(struct ifg_req))))
1024 			return (error);
1025 		len -= sizeof(ifgrq);
1026 		ifgp++;
1027 	}
1028 
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Stores all members of a group in memory pointed to by data
1034  */
1035 int
1036 if_getgroupmembers(caddr_t data)
1037 {
1038 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1039 	struct ifg_group	*ifg;
1040 	struct ifg_member	*ifgm;
1041 	struct ifg_req		 ifgrq, *ifgp;
1042 	int			 len, error;
1043 
1044 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1045 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1046 			break;
1047 	if (ifg == NULL)
1048 		return (ENOENT);
1049 
1050 	if (ifgr->ifgr_len == 0) {
1051 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1052 			ifgr->ifgr_len += sizeof(ifgrq);
1053 		return (0);
1054 	}
1055 
1056 	len = ifgr->ifgr_len;
1057 	ifgp = ifgr->ifgr_groups;
1058 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1059 		if (len < sizeof(ifgrq))
1060 			return (EINVAL);
1061 		bzero(&ifgrq, sizeof ifgrq);
1062 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1063 		    sizeof(ifgrq.ifgrq_member));
1064 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1065 		    sizeof(struct ifg_req))))
1066 			return (error);
1067 		len -= sizeof(ifgrq);
1068 		ifgp++;
1069 	}
1070 
1071 	return (0);
1072 }
1073 
1074 /*
1075  * Delete Routes for a Network Interface
1076  *
1077  * Called for each routing entry via the rnh->rnh_walktree() call above
1078  * to delete all route entries referencing a detaching network interface.
1079  *
1080  * Arguments:
1081  *	rn	pointer to node in the routing table
1082  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1083  *
1084  * Returns:
1085  *	0	successful
1086  *	errno	failed - reason indicated
1087  *
1088  */
1089 static int
1090 if_rtdel(struct radix_node *rn, void *arg)
1091 {
1092 	struct rtentry	*rt = (struct rtentry *)rn;
1093 	struct ifnet	*ifp = arg;
1094 	int		err;
1095 
1096 	if (rt->rt_ifp == ifp) {
1097 
1098 		/*
1099 		 * Protect (sorta) against walktree recursion problems
1100 		 * with cloned routes
1101 		 */
1102 		if (!(rt->rt_flags & RTF_UP))
1103 			return (0);
1104 
1105 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1106 				rt_mask(rt), rt->rt_flags,
1107 				NULL);
1108 		if (err) {
1109 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1110 		}
1111 	}
1112 
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Locate an interface based on a complete address.
1118  */
1119 struct ifaddr *
1120 ifa_ifwithaddr(struct sockaddr *addr)
1121 {
1122 	struct ifnet *ifp;
1123 
1124 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1125 		struct ifaddr_container *ifac;
1126 
1127 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1128 			struct ifaddr *ifa = ifac->ifa;
1129 
1130 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1131 				continue;
1132 			if (sa_equal(addr, ifa->ifa_addr))
1133 				return (ifa);
1134 			if ((ifp->if_flags & IFF_BROADCAST) &&
1135 			    ifa->ifa_broadaddr &&
1136 			    /* IPv6 doesn't have broadcast */
1137 			    ifa->ifa_broadaddr->sa_len != 0 &&
1138 			    sa_equal(ifa->ifa_broadaddr, addr))
1139 				return (ifa);
1140 		}
1141 	}
1142 	return (NULL);
1143 }
1144 /*
1145  * Locate the point to point interface with a given destination address.
1146  */
1147 struct ifaddr *
1148 ifa_ifwithdstaddr(struct sockaddr *addr)
1149 {
1150 	struct ifnet *ifp;
1151 
1152 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1153 		struct ifaddr_container *ifac;
1154 
1155 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1156 			continue;
1157 
1158 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1159 			struct ifaddr *ifa = ifac->ifa;
1160 
1161 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1162 				continue;
1163 			if (ifa->ifa_dstaddr &&
1164 			    sa_equal(addr, ifa->ifa_dstaddr))
1165 				return (ifa);
1166 		}
1167 	}
1168 	return (NULL);
1169 }
1170 
1171 /*
1172  * Find an interface on a specific network.  If many, choice
1173  * is most specific found.
1174  */
1175 struct ifaddr *
1176 ifa_ifwithnet(struct sockaddr *addr)
1177 {
1178 	struct ifnet *ifp;
1179 	struct ifaddr *ifa_maybe = NULL;
1180 	u_int af = addr->sa_family;
1181 	char *addr_data = addr->sa_data, *cplim;
1182 
1183 	/*
1184 	 * AF_LINK addresses can be looked up directly by their index number,
1185 	 * so do that if we can.
1186 	 */
1187 	if (af == AF_LINK) {
1188 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1189 
1190 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1191 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1192 	}
1193 
1194 	/*
1195 	 * Scan though each interface, looking for ones that have
1196 	 * addresses in this address family.
1197 	 */
1198 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1199 		struct ifaddr_container *ifac;
1200 
1201 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1202 			struct ifaddr *ifa = ifac->ifa;
1203 			char *cp, *cp2, *cp3;
1204 
1205 			if (ifa->ifa_addr->sa_family != af)
1206 next:				continue;
1207 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1208 				/*
1209 				 * This is a bit broken as it doesn't
1210 				 * take into account that the remote end may
1211 				 * be a single node in the network we are
1212 				 * looking for.
1213 				 * The trouble is that we don't know the
1214 				 * netmask for the remote end.
1215 				 */
1216 				if (ifa->ifa_dstaddr != NULL &&
1217 				    sa_equal(addr, ifa->ifa_dstaddr))
1218 					return (ifa);
1219 			} else {
1220 				/*
1221 				 * if we have a special address handler,
1222 				 * then use it instead of the generic one.
1223 				 */
1224 				if (ifa->ifa_claim_addr) {
1225 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1226 						return (ifa);
1227 					} else {
1228 						continue;
1229 					}
1230 				}
1231 
1232 				/*
1233 				 * Scan all the bits in the ifa's address.
1234 				 * If a bit dissagrees with what we are
1235 				 * looking for, mask it with the netmask
1236 				 * to see if it really matters.
1237 				 * (A byte at a time)
1238 				 */
1239 				if (ifa->ifa_netmask == 0)
1240 					continue;
1241 				cp = addr_data;
1242 				cp2 = ifa->ifa_addr->sa_data;
1243 				cp3 = ifa->ifa_netmask->sa_data;
1244 				cplim = ifa->ifa_netmask->sa_len +
1245 					(char *)ifa->ifa_netmask;
1246 				while (cp3 < cplim)
1247 					if ((*cp++ ^ *cp2++) & *cp3++)
1248 						goto next; /* next address! */
1249 				/*
1250 				 * If the netmask of what we just found
1251 				 * is more specific than what we had before
1252 				 * (if we had one) then remember the new one
1253 				 * before continuing to search
1254 				 * for an even better one.
1255 				 */
1256 				if (ifa_maybe == NULL ||
1257 				    rn_refines((char *)ifa->ifa_netmask,
1258 					       (char *)ifa_maybe->ifa_netmask))
1259 					ifa_maybe = ifa;
1260 			}
1261 		}
1262 	}
1263 	return (ifa_maybe);
1264 }
1265 
1266 /*
1267  * Find an interface address specific to an interface best matching
1268  * a given address.
1269  */
1270 struct ifaddr *
1271 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1272 {
1273 	struct ifaddr_container *ifac;
1274 	char *cp, *cp2, *cp3;
1275 	char *cplim;
1276 	struct ifaddr *ifa_maybe = NULL;
1277 	u_int af = addr->sa_family;
1278 
1279 	if (af >= AF_MAX)
1280 		return (0);
1281 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1282 		struct ifaddr *ifa = ifac->ifa;
1283 
1284 		if (ifa->ifa_addr->sa_family != af)
1285 			continue;
1286 		if (ifa_maybe == NULL)
1287 			ifa_maybe = ifa;
1288 		if (ifa->ifa_netmask == NULL) {
1289 			if (sa_equal(addr, ifa->ifa_addr) ||
1290 			    (ifa->ifa_dstaddr != NULL &&
1291 			     sa_equal(addr, ifa->ifa_dstaddr)))
1292 				return (ifa);
1293 			continue;
1294 		}
1295 		if (ifp->if_flags & IFF_POINTOPOINT) {
1296 			if (sa_equal(addr, ifa->ifa_dstaddr))
1297 				return (ifa);
1298 		} else {
1299 			cp = addr->sa_data;
1300 			cp2 = ifa->ifa_addr->sa_data;
1301 			cp3 = ifa->ifa_netmask->sa_data;
1302 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1303 			for (; cp3 < cplim; cp3++)
1304 				if ((*cp++ ^ *cp2++) & *cp3)
1305 					break;
1306 			if (cp3 == cplim)
1307 				return (ifa);
1308 		}
1309 	}
1310 	return (ifa_maybe);
1311 }
1312 
1313 /*
1314  * Default action when installing a route with a Link Level gateway.
1315  * Lookup an appropriate real ifa to point to.
1316  * This should be moved to /sys/net/link.c eventually.
1317  */
1318 static void
1319 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1320 {
1321 	struct ifaddr *ifa;
1322 	struct sockaddr *dst;
1323 	struct ifnet *ifp;
1324 
1325 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1326 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1327 		return;
1328 	ifa = ifaof_ifpforaddr(dst, ifp);
1329 	if (ifa != NULL) {
1330 		IFAFREE(rt->rt_ifa);
1331 		IFAREF(ifa);
1332 		rt->rt_ifa = ifa;
1333 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1334 			ifa->ifa_rtrequest(cmd, rt, info);
1335 	}
1336 }
1337 
1338 /*
1339  * Mark an interface down and notify protocols of
1340  * the transition.
1341  * NOTE: must be called at splnet or eqivalent.
1342  */
1343 void
1344 if_unroute(struct ifnet *ifp, int flag, int fam)
1345 {
1346 	struct ifaddr_container *ifac;
1347 
1348 	ifp->if_flags &= ~flag;
1349 	getmicrotime(&ifp->if_lastchange);
1350 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1351 		struct ifaddr *ifa = ifac->ifa;
1352 
1353 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1354 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1355 	}
1356 	ifq_purge_all(&ifp->if_snd);
1357 	rt_ifmsg(ifp);
1358 }
1359 
1360 /*
1361  * Mark an interface up and notify protocols of
1362  * the transition.
1363  * NOTE: must be called at splnet or eqivalent.
1364  */
1365 void
1366 if_route(struct ifnet *ifp, int flag, int fam)
1367 {
1368 	struct ifaddr_container *ifac;
1369 
1370 	ifq_purge_all(&ifp->if_snd);
1371 	ifp->if_flags |= flag;
1372 	getmicrotime(&ifp->if_lastchange);
1373 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1374 		struct ifaddr *ifa = ifac->ifa;
1375 
1376 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1377 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1378 	}
1379 	rt_ifmsg(ifp);
1380 #ifdef INET6
1381 	in6_if_up(ifp);
1382 #endif
1383 }
1384 
1385 /*
1386  * Mark an interface down and notify protocols of the transition.  An
1387  * interface going down is also considered to be a synchronizing event.
1388  * We must ensure that all packet processing related to the interface
1389  * has completed before we return so e.g. the caller can free the ifnet
1390  * structure that the mbufs may be referencing.
1391  *
1392  * NOTE: must be called at splnet or eqivalent.
1393  */
1394 void
1395 if_down(struct ifnet *ifp)
1396 {
1397 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1398 	netmsg_service_sync();
1399 }
1400 
1401 /*
1402  * Mark an interface up and notify protocols of
1403  * the transition.
1404  * NOTE: must be called at splnet or eqivalent.
1405  */
1406 void
1407 if_up(struct ifnet *ifp)
1408 {
1409 	if_route(ifp, IFF_UP, AF_UNSPEC);
1410 }
1411 
1412 /*
1413  * Process a link state change.
1414  * NOTE: must be called at splsoftnet or equivalent.
1415  */
1416 void
1417 if_link_state_change(struct ifnet *ifp)
1418 {
1419 	int link_state = ifp->if_link_state;
1420 
1421 	rt_ifmsg(ifp);
1422 	devctl_notify("IFNET", ifp->if_xname,
1423 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1424 }
1425 
1426 /*
1427  * Handle interface watchdog timer routines.  Called
1428  * from softclock, we decrement timers (if set) and
1429  * call the appropriate interface routine on expiration.
1430  */
1431 static void
1432 if_slowtimo(void *arg)
1433 {
1434 	struct ifnet *ifp;
1435 
1436 	crit_enter();
1437 
1438 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1439 		if (if_stats_compat) {
1440 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1441 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1442 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1443 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1444 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1445 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1446 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1447 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1448 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1449 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1450 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1451 		}
1452 
1453 		if (ifp->if_timer == 0 || --ifp->if_timer)
1454 			continue;
1455 		if (ifp->if_watchdog) {
1456 			if (ifnet_tryserialize_all(ifp)) {
1457 				(*ifp->if_watchdog)(ifp);
1458 				ifnet_deserialize_all(ifp);
1459 			} else {
1460 				/* try again next timeout */
1461 				++ifp->if_timer;
1462 			}
1463 		}
1464 	}
1465 
1466 	crit_exit();
1467 
1468 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1469 }
1470 
1471 /*
1472  * Map interface name to
1473  * interface structure pointer.
1474  */
1475 struct ifnet *
1476 ifunit(const char *name)
1477 {
1478 	struct ifnet *ifp;
1479 
1480 	/*
1481 	 * Search all the interfaces for this name/number
1482 	 */
1483 
1484 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1485 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1486 			break;
1487 	}
1488 	return (ifp);
1489 }
1490 
1491 
1492 /*
1493  * Map interface name in a sockaddr_dl to
1494  * interface structure pointer.
1495  */
1496 struct ifnet *
1497 if_withname(struct sockaddr *sa)
1498 {
1499 	char ifname[IFNAMSIZ+1];
1500 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1501 
1502 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1503 	     (sdl->sdl_nlen > IFNAMSIZ) )
1504 		return NULL;
1505 
1506 	/*
1507 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1508 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1509 	 * and there might not be room to put the trailing null anyway, so we
1510 	 * make a local copy that we know we can null terminate safely.
1511 	 */
1512 
1513 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1514 	ifname[sdl->sdl_nlen] = '\0';
1515 	return ifunit(ifname);
1516 }
1517 
1518 
1519 /*
1520  * Interface ioctls.
1521  */
1522 int
1523 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1524 {
1525 	struct ifnet *ifp;
1526 	struct ifreq *ifr;
1527 	struct ifstat *ifs;
1528 	int error;
1529 	short oif_flags;
1530 	int new_flags;
1531 #ifdef COMPAT_43
1532 	int ocmd;
1533 #endif
1534 	size_t namelen, onamelen;
1535 	char new_name[IFNAMSIZ];
1536 	struct ifaddr *ifa;
1537 	struct sockaddr_dl *sdl;
1538 
1539 	switch (cmd) {
1540 	case SIOCGIFCONF:
1541 	case OSIOCGIFCONF:
1542 		return (ifconf(cmd, data, cred));
1543 	default:
1544 		break;
1545 	}
1546 
1547 	ifr = (struct ifreq *)data;
1548 
1549 	switch (cmd) {
1550 	case SIOCIFCREATE:
1551 	case SIOCIFCREATE2:
1552 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1553 			return (error);
1554 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1555 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1556 	case SIOCIFDESTROY:
1557 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1558 			return (error);
1559 		return (if_clone_destroy(ifr->ifr_name));
1560 	case SIOCIFGCLONERS:
1561 		return (if_clone_list((struct if_clonereq *)data));
1562 	default:
1563 		break;
1564 	}
1565 
1566 	/*
1567 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1568 	 * lock to serialize the ifconfig ioctl operation.
1569 	 */
1570 	ifp = ifunit(ifr->ifr_name);
1571 	if (ifp == NULL)
1572 		return (ENXIO);
1573 	error = 0;
1574 	mtx_lock(&ifp->if_ioctl_mtx);
1575 
1576 	switch (cmd) {
1577 	case SIOCGIFINDEX:
1578 		ifr->ifr_index = ifp->if_index;
1579 		break;
1580 
1581 	case SIOCGIFFLAGS:
1582 		ifr->ifr_flags = ifp->if_flags;
1583 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1584 		break;
1585 
1586 	case SIOCGIFCAP:
1587 		ifr->ifr_reqcap = ifp->if_capabilities;
1588 		ifr->ifr_curcap = ifp->if_capenable;
1589 		break;
1590 
1591 	case SIOCGIFMETRIC:
1592 		ifr->ifr_metric = ifp->if_metric;
1593 		break;
1594 
1595 	case SIOCGIFMTU:
1596 		ifr->ifr_mtu = ifp->if_mtu;
1597 		break;
1598 
1599 	case SIOCGIFTSOLEN:
1600 		ifr->ifr_tsolen = ifp->if_tsolen;
1601 		break;
1602 
1603 	case SIOCGIFDATA:
1604 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1605 				sizeof(ifp->if_data));
1606 		break;
1607 
1608 	case SIOCGIFPHYS:
1609 		ifr->ifr_phys = ifp->if_physical;
1610 		break;
1611 
1612 	case SIOCGIFPOLLCPU:
1613 		ifr->ifr_pollcpu = -1;
1614 		break;
1615 
1616 	case SIOCSIFPOLLCPU:
1617 		break;
1618 
1619 	case SIOCSIFFLAGS:
1620 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1621 		if (error)
1622 			break;
1623 		new_flags = (ifr->ifr_flags & 0xffff) |
1624 		    (ifr->ifr_flagshigh << 16);
1625 		if (ifp->if_flags & IFF_SMART) {
1626 			/* Smart drivers twiddle their own routes */
1627 		} else if (ifp->if_flags & IFF_UP &&
1628 		    (new_flags & IFF_UP) == 0) {
1629 			crit_enter();
1630 			if_down(ifp);
1631 			crit_exit();
1632 		} else if (new_flags & IFF_UP &&
1633 		    (ifp->if_flags & IFF_UP) == 0) {
1634 			crit_enter();
1635 			if_up(ifp);
1636 			crit_exit();
1637 		}
1638 
1639 #ifdef IFPOLL_ENABLE
1640 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1641 			if (new_flags & IFF_NPOLLING)
1642 				ifpoll_register(ifp);
1643 			else
1644 				ifpoll_deregister(ifp);
1645 		}
1646 #endif
1647 
1648 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1649 			(new_flags &~ IFF_CANTCHANGE);
1650 		if (new_flags & IFF_PPROMISC) {
1651 			/* Permanently promiscuous mode requested */
1652 			ifp->if_flags |= IFF_PROMISC;
1653 		} else if (ifp->if_pcount == 0) {
1654 			ifp->if_flags &= ~IFF_PROMISC;
1655 		}
1656 		if (ifp->if_ioctl) {
1657 			ifnet_serialize_all(ifp);
1658 			ifp->if_ioctl(ifp, cmd, data, cred);
1659 			ifnet_deserialize_all(ifp);
1660 		}
1661 		getmicrotime(&ifp->if_lastchange);
1662 		break;
1663 
1664 	case SIOCSIFCAP:
1665 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1666 		if (error)
1667 			break;
1668 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1669 			error = EINVAL;
1670 			break;
1671 		}
1672 		ifnet_serialize_all(ifp);
1673 		ifp->if_ioctl(ifp, cmd, data, cred);
1674 		ifnet_deserialize_all(ifp);
1675 		break;
1676 
1677 	case SIOCSIFNAME:
1678 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1679 		if (error)
1680 			break;
1681 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1682 		if (error)
1683 			break;
1684 		if (new_name[0] == '\0') {
1685 			error = EINVAL;
1686 			break;
1687 		}
1688 		if (ifunit(new_name) != NULL) {
1689 			error = EEXIST;
1690 			break;
1691 		}
1692 
1693 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1694 
1695 		/* Announce the departure of the interface. */
1696 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1697 
1698 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1699 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1700 		/* XXX IFA_LOCK(ifa); */
1701 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1702 		namelen = strlen(new_name);
1703 		onamelen = sdl->sdl_nlen;
1704 		/*
1705 		 * Move the address if needed.  This is safe because we
1706 		 * allocate space for a name of length IFNAMSIZ when we
1707 		 * create this in if_attach().
1708 		 */
1709 		if (namelen != onamelen) {
1710 			bcopy(sdl->sdl_data + onamelen,
1711 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1712 		}
1713 		bcopy(new_name, sdl->sdl_data, namelen);
1714 		sdl->sdl_nlen = namelen;
1715 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1716 		bzero(sdl->sdl_data, onamelen);
1717 		while (namelen != 0)
1718 			sdl->sdl_data[--namelen] = 0xff;
1719 		/* XXX IFA_UNLOCK(ifa) */
1720 
1721 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1722 
1723 		/* Announce the return of the interface. */
1724 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1725 		break;
1726 
1727 	case SIOCSIFMETRIC:
1728 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1729 		if (error)
1730 			break;
1731 		ifp->if_metric = ifr->ifr_metric;
1732 		getmicrotime(&ifp->if_lastchange);
1733 		break;
1734 
1735 	case SIOCSIFPHYS:
1736 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1737 		if (error)
1738 			break;
1739 		if (ifp->if_ioctl == NULL) {
1740 		        error = EOPNOTSUPP;
1741 			break;
1742 		}
1743 		ifnet_serialize_all(ifp);
1744 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1745 		ifnet_deserialize_all(ifp);
1746 		if (error == 0)
1747 			getmicrotime(&ifp->if_lastchange);
1748 		break;
1749 
1750 	case SIOCSIFMTU:
1751 	{
1752 		u_long oldmtu = ifp->if_mtu;
1753 
1754 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1755 		if (error)
1756 			break;
1757 		if (ifp->if_ioctl == NULL) {
1758 			error = EOPNOTSUPP;
1759 			break;
1760 		}
1761 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1762 			error = EINVAL;
1763 			break;
1764 		}
1765 		ifnet_serialize_all(ifp);
1766 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1767 		ifnet_deserialize_all(ifp);
1768 		if (error == 0) {
1769 			getmicrotime(&ifp->if_lastchange);
1770 			rt_ifmsg(ifp);
1771 		}
1772 		/*
1773 		 * If the link MTU changed, do network layer specific procedure.
1774 		 */
1775 		if (ifp->if_mtu != oldmtu) {
1776 #ifdef INET6
1777 			nd6_setmtu(ifp);
1778 #endif
1779 		}
1780 		break;
1781 	}
1782 
1783 	case SIOCSIFTSOLEN:
1784 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1785 		if (error)
1786 			break;
1787 
1788 		/* XXX need driver supplied upper limit */
1789 		if (ifr->ifr_tsolen <= 0) {
1790 			error = EINVAL;
1791 			break;
1792 		}
1793 		ifp->if_tsolen = ifr->ifr_tsolen;
1794 		break;
1795 
1796 	case SIOCADDMULTI:
1797 	case SIOCDELMULTI:
1798 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1799 		if (error)
1800 			break;
1801 
1802 		/* Don't allow group membership on non-multicast interfaces. */
1803 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1804 			error = EOPNOTSUPP;
1805 			break;
1806 		}
1807 
1808 		/* Don't let users screw up protocols' entries. */
1809 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1810 			error = EINVAL;
1811 			break;
1812 		}
1813 
1814 		if (cmd == SIOCADDMULTI) {
1815 			struct ifmultiaddr *ifma;
1816 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1817 		} else {
1818 			error = if_delmulti(ifp, &ifr->ifr_addr);
1819 		}
1820 		if (error == 0)
1821 			getmicrotime(&ifp->if_lastchange);
1822 		break;
1823 
1824 	case SIOCSIFPHYADDR:
1825 	case SIOCDIFPHYADDR:
1826 #ifdef INET6
1827 	case SIOCSIFPHYADDR_IN6:
1828 #endif
1829 	case SIOCSLIFPHYADDR:
1830         case SIOCSIFMEDIA:
1831 	case SIOCSIFGENERIC:
1832 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1833 		if (error)
1834 			break;
1835 		if (ifp->if_ioctl == 0) {
1836 			error = EOPNOTSUPP;
1837 			break;
1838 		}
1839 		ifnet_serialize_all(ifp);
1840 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1841 		ifnet_deserialize_all(ifp);
1842 		if (error == 0)
1843 			getmicrotime(&ifp->if_lastchange);
1844 		break;
1845 
1846 	case SIOCGIFSTATUS:
1847 		ifs = (struct ifstat *)data;
1848 		ifs->ascii[0] = '\0';
1849 		/* fall through */
1850 	case SIOCGIFPSRCADDR:
1851 	case SIOCGIFPDSTADDR:
1852 	case SIOCGLIFPHYADDR:
1853 	case SIOCGIFMEDIA:
1854 	case SIOCGIFGENERIC:
1855 		if (ifp->if_ioctl == NULL) {
1856 			error = EOPNOTSUPP;
1857 			break;
1858 		}
1859 		ifnet_serialize_all(ifp);
1860 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1861 		ifnet_deserialize_all(ifp);
1862 		break;
1863 
1864 	case SIOCSIFLLADDR:
1865 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1866 		if (error)
1867 			break;
1868 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1869 				     ifr->ifr_addr.sa_len);
1870 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1871 		break;
1872 
1873 	default:
1874 		oif_flags = ifp->if_flags;
1875 		if (so->so_proto == 0) {
1876 			error = EOPNOTSUPP;
1877 			break;
1878 		}
1879 #ifndef COMPAT_43
1880 		error = so_pru_control_direct(so, cmd, data, ifp);
1881 #else
1882 		ocmd = cmd;
1883 
1884 		switch (cmd) {
1885 		case SIOCSIFDSTADDR:
1886 		case SIOCSIFADDR:
1887 		case SIOCSIFBRDADDR:
1888 		case SIOCSIFNETMASK:
1889 #if BYTE_ORDER != BIG_ENDIAN
1890 			if (ifr->ifr_addr.sa_family == 0 &&
1891 			    ifr->ifr_addr.sa_len < 16) {
1892 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1893 				ifr->ifr_addr.sa_len = 16;
1894 			}
1895 #else
1896 			if (ifr->ifr_addr.sa_len == 0)
1897 				ifr->ifr_addr.sa_len = 16;
1898 #endif
1899 			break;
1900 		case OSIOCGIFADDR:
1901 			cmd = SIOCGIFADDR;
1902 			break;
1903 		case OSIOCGIFDSTADDR:
1904 			cmd = SIOCGIFDSTADDR;
1905 			break;
1906 		case OSIOCGIFBRDADDR:
1907 			cmd = SIOCGIFBRDADDR;
1908 			break;
1909 		case OSIOCGIFNETMASK:
1910 			cmd = SIOCGIFNETMASK;
1911 			break;
1912 		default:
1913 			break;
1914 		}
1915 
1916 		error = so_pru_control_direct(so, cmd, data, ifp);
1917 
1918 		switch (ocmd) {
1919 		case OSIOCGIFADDR:
1920 		case OSIOCGIFDSTADDR:
1921 		case OSIOCGIFBRDADDR:
1922 		case OSIOCGIFNETMASK:
1923 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1924 			break;
1925 		}
1926 #endif /* COMPAT_43 */
1927 
1928 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1929 #ifdef INET6
1930 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1931 			if (ifp->if_flags & IFF_UP) {
1932 				crit_enter();
1933 				in6_if_up(ifp);
1934 				crit_exit();
1935 			}
1936 #endif
1937 		}
1938 		break;
1939 	}
1940 
1941 	mtx_unlock(&ifp->if_ioctl_mtx);
1942 	return (error);
1943 }
1944 
1945 /*
1946  * Set/clear promiscuous mode on interface ifp based on the truth value
1947  * of pswitch.  The calls are reference counted so that only the first
1948  * "on" request actually has an effect, as does the final "off" request.
1949  * Results are undefined if the "off" and "on" requests are not matched.
1950  */
1951 int
1952 ifpromisc(struct ifnet *ifp, int pswitch)
1953 {
1954 	struct ifreq ifr;
1955 	int error;
1956 	int oldflags;
1957 
1958 	oldflags = ifp->if_flags;
1959 	if (ifp->if_flags & IFF_PPROMISC) {
1960 		/* Do nothing if device is in permanently promiscuous mode */
1961 		ifp->if_pcount += pswitch ? 1 : -1;
1962 		return (0);
1963 	}
1964 	if (pswitch) {
1965 		/*
1966 		 * If the device is not configured up, we cannot put it in
1967 		 * promiscuous mode.
1968 		 */
1969 		if ((ifp->if_flags & IFF_UP) == 0)
1970 			return (ENETDOWN);
1971 		if (ifp->if_pcount++ != 0)
1972 			return (0);
1973 		ifp->if_flags |= IFF_PROMISC;
1974 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1975 		    ifp->if_xname);
1976 	} else {
1977 		if (--ifp->if_pcount > 0)
1978 			return (0);
1979 		ifp->if_flags &= ~IFF_PROMISC;
1980 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1981 		    ifp->if_xname);
1982 	}
1983 	ifr.ifr_flags = ifp->if_flags;
1984 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1985 	ifnet_serialize_all(ifp);
1986 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1987 	ifnet_deserialize_all(ifp);
1988 	if (error == 0)
1989 		rt_ifmsg(ifp);
1990 	else
1991 		ifp->if_flags = oldflags;
1992 	return error;
1993 }
1994 
1995 /*
1996  * Return interface configuration
1997  * of system.  List may be used
1998  * in later ioctl's (above) to get
1999  * other information.
2000  */
2001 static int
2002 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2003 {
2004 	struct ifconf *ifc = (struct ifconf *)data;
2005 	struct ifnet *ifp;
2006 	struct sockaddr *sa;
2007 	struct ifreq ifr, *ifrp;
2008 	int space = ifc->ifc_len, error = 0;
2009 
2010 	ifrp = ifc->ifc_req;
2011 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2012 		struct ifaddr_container *ifac;
2013 		int addrs;
2014 
2015 		if (space <= sizeof ifr)
2016 			break;
2017 
2018 		/*
2019 		 * Zero the stack declared structure first to prevent
2020 		 * memory disclosure.
2021 		 */
2022 		bzero(&ifr, sizeof(ifr));
2023 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2024 		    >= sizeof(ifr.ifr_name)) {
2025 			error = ENAMETOOLONG;
2026 			break;
2027 		}
2028 
2029 		addrs = 0;
2030 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2031 			struct ifaddr *ifa = ifac->ifa;
2032 
2033 			if (space <= sizeof ifr)
2034 				break;
2035 			sa = ifa->ifa_addr;
2036 			if (cred->cr_prison &&
2037 			    prison_if(cred, sa))
2038 				continue;
2039 			addrs++;
2040 #ifdef COMPAT_43
2041 			if (cmd == OSIOCGIFCONF) {
2042 				struct osockaddr *osa =
2043 					 (struct osockaddr *)&ifr.ifr_addr;
2044 				ifr.ifr_addr = *sa;
2045 				osa->sa_family = sa->sa_family;
2046 				error = copyout(&ifr, ifrp, sizeof ifr);
2047 				ifrp++;
2048 			} else
2049 #endif
2050 			if (sa->sa_len <= sizeof(*sa)) {
2051 				ifr.ifr_addr = *sa;
2052 				error = copyout(&ifr, ifrp, sizeof ifr);
2053 				ifrp++;
2054 			} else {
2055 				if (space < (sizeof ifr) + sa->sa_len -
2056 					    sizeof(*sa))
2057 					break;
2058 				space -= sa->sa_len - sizeof(*sa);
2059 				error = copyout(&ifr, ifrp,
2060 						sizeof ifr.ifr_name);
2061 				if (error == 0)
2062 					error = copyout(sa, &ifrp->ifr_addr,
2063 							sa->sa_len);
2064 				ifrp = (struct ifreq *)
2065 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2066 			}
2067 			if (error)
2068 				break;
2069 			space -= sizeof ifr;
2070 		}
2071 		if (error)
2072 			break;
2073 		if (!addrs) {
2074 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2075 			error = copyout(&ifr, ifrp, sizeof ifr);
2076 			if (error)
2077 				break;
2078 			space -= sizeof ifr;
2079 			ifrp++;
2080 		}
2081 	}
2082 	ifc->ifc_len -= space;
2083 	return (error);
2084 }
2085 
2086 /*
2087  * Just like if_promisc(), but for all-multicast-reception mode.
2088  */
2089 int
2090 if_allmulti(struct ifnet *ifp, int onswitch)
2091 {
2092 	int error = 0;
2093 	struct ifreq ifr;
2094 
2095 	crit_enter();
2096 
2097 	if (onswitch) {
2098 		if (ifp->if_amcount++ == 0) {
2099 			ifp->if_flags |= IFF_ALLMULTI;
2100 			ifr.ifr_flags = ifp->if_flags;
2101 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2102 			ifnet_serialize_all(ifp);
2103 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2104 					      NULL);
2105 			ifnet_deserialize_all(ifp);
2106 		}
2107 	} else {
2108 		if (ifp->if_amcount > 1) {
2109 			ifp->if_amcount--;
2110 		} else {
2111 			ifp->if_amcount = 0;
2112 			ifp->if_flags &= ~IFF_ALLMULTI;
2113 			ifr.ifr_flags = ifp->if_flags;
2114 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2115 			ifnet_serialize_all(ifp);
2116 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2117 					      NULL);
2118 			ifnet_deserialize_all(ifp);
2119 		}
2120 	}
2121 
2122 	crit_exit();
2123 
2124 	if (error == 0)
2125 		rt_ifmsg(ifp);
2126 	return error;
2127 }
2128 
2129 /*
2130  * Add a multicast listenership to the interface in question.
2131  * The link layer provides a routine which converts
2132  */
2133 int
2134 if_addmulti(
2135 	struct ifnet *ifp,	/* interface to manipulate */
2136 	struct sockaddr *sa,	/* address to add */
2137 	struct ifmultiaddr **retifma)
2138 {
2139 	struct sockaddr *llsa, *dupsa;
2140 	int error;
2141 	struct ifmultiaddr *ifma;
2142 
2143 	/*
2144 	 * If the matching multicast address already exists
2145 	 * then don't add a new one, just add a reference
2146 	 */
2147 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2148 		if (sa_equal(sa, ifma->ifma_addr)) {
2149 			ifma->ifma_refcount++;
2150 			if (retifma)
2151 				*retifma = ifma;
2152 			return 0;
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * Give the link layer a chance to accept/reject it, and also
2158 	 * find out which AF_LINK address this maps to, if it isn't one
2159 	 * already.
2160 	 */
2161 	if (ifp->if_resolvemulti) {
2162 		ifnet_serialize_all(ifp);
2163 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2164 		ifnet_deserialize_all(ifp);
2165 		if (error)
2166 			return error;
2167 	} else {
2168 		llsa = NULL;
2169 	}
2170 
2171 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2172 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2173 	bcopy(sa, dupsa, sa->sa_len);
2174 
2175 	ifma->ifma_addr = dupsa;
2176 	ifma->ifma_lladdr = llsa;
2177 	ifma->ifma_ifp = ifp;
2178 	ifma->ifma_refcount = 1;
2179 	ifma->ifma_protospec = 0;
2180 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2181 
2182 	/*
2183 	 * Some network interfaces can scan the address list at
2184 	 * interrupt time; lock them out.
2185 	 */
2186 	crit_enter();
2187 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2188 	crit_exit();
2189 	if (retifma)
2190 		*retifma = ifma;
2191 
2192 	if (llsa != NULL) {
2193 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2194 			if (sa_equal(ifma->ifma_addr, llsa))
2195 				break;
2196 		}
2197 		if (ifma) {
2198 			ifma->ifma_refcount++;
2199 		} else {
2200 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2201 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2202 			bcopy(llsa, dupsa, llsa->sa_len);
2203 			ifma->ifma_addr = dupsa;
2204 			ifma->ifma_ifp = ifp;
2205 			ifma->ifma_refcount = 1;
2206 			crit_enter();
2207 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2208 			crit_exit();
2209 		}
2210 	}
2211 	/*
2212 	 * We are certain we have added something, so call down to the
2213 	 * interface to let them know about it.
2214 	 */
2215 	crit_enter();
2216 	ifnet_serialize_all(ifp);
2217 	if (ifp->if_ioctl)
2218 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2219 	ifnet_deserialize_all(ifp);
2220 	crit_exit();
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * Remove a reference to a multicast address on this interface.  Yell
2227  * if the request does not match an existing membership.
2228  */
2229 int
2230 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2231 {
2232 	struct ifmultiaddr *ifma;
2233 
2234 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2235 		if (sa_equal(sa, ifma->ifma_addr))
2236 			break;
2237 	if (ifma == NULL)
2238 		return ENOENT;
2239 
2240 	if (ifma->ifma_refcount > 1) {
2241 		ifma->ifma_refcount--;
2242 		return 0;
2243 	}
2244 
2245 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2246 	sa = ifma->ifma_lladdr;
2247 	crit_enter();
2248 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2249 	/*
2250 	 * Make sure the interface driver is notified
2251 	 * in the case of a link layer mcast group being left.
2252 	 */
2253 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2254 		ifnet_serialize_all(ifp);
2255 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2256 		ifnet_deserialize_all(ifp);
2257 	}
2258 	crit_exit();
2259 	kfree(ifma->ifma_addr, M_IFMADDR);
2260 	kfree(ifma, M_IFMADDR);
2261 	if (sa == NULL)
2262 		return 0;
2263 
2264 	/*
2265 	 * Now look for the link-layer address which corresponds to
2266 	 * this network address.  It had been squirreled away in
2267 	 * ifma->ifma_lladdr for this purpose (so we don't have
2268 	 * to call ifp->if_resolvemulti() again), and we saved that
2269 	 * value in sa above.  If some nasty deleted the
2270 	 * link-layer address out from underneath us, we can deal because
2271 	 * the address we stored was is not the same as the one which was
2272 	 * in the record for the link-layer address.  (So we don't complain
2273 	 * in that case.)
2274 	 */
2275 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2276 		if (sa_equal(sa, ifma->ifma_addr))
2277 			break;
2278 	if (ifma == NULL)
2279 		return 0;
2280 
2281 	if (ifma->ifma_refcount > 1) {
2282 		ifma->ifma_refcount--;
2283 		return 0;
2284 	}
2285 
2286 	crit_enter();
2287 	ifnet_serialize_all(ifp);
2288 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2289 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2290 	ifnet_deserialize_all(ifp);
2291 	crit_exit();
2292 	kfree(ifma->ifma_addr, M_IFMADDR);
2293 	kfree(sa, M_IFMADDR);
2294 	kfree(ifma, M_IFMADDR);
2295 
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Delete all multicast group membership for an interface.
2301  * Should be used to quickly flush all multicast filters.
2302  */
2303 void
2304 if_delallmulti(struct ifnet *ifp)
2305 {
2306 	struct ifmultiaddr *ifma;
2307 	struct ifmultiaddr *next;
2308 
2309 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2310 		if_delmulti(ifp, ifma->ifma_addr);
2311 }
2312 
2313 
2314 /*
2315  * Set the link layer address on an interface.
2316  *
2317  * At this time we only support certain types of interfaces,
2318  * and we don't allow the length of the address to change.
2319  */
2320 int
2321 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2322 {
2323 	struct sockaddr_dl *sdl;
2324 	struct ifreq ifr;
2325 
2326 	sdl = IF_LLSOCKADDR(ifp);
2327 	if (sdl == NULL)
2328 		return (EINVAL);
2329 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2330 		return (EINVAL);
2331 	switch (ifp->if_type) {
2332 	case IFT_ETHER:			/* these types use struct arpcom */
2333 	case IFT_XETHER:
2334 	case IFT_L2VLAN:
2335 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2336 		bcopy(lladdr, LLADDR(sdl), len);
2337 		break;
2338 	default:
2339 		return (ENODEV);
2340 	}
2341 	/*
2342 	 * If the interface is already up, we need
2343 	 * to re-init it in order to reprogram its
2344 	 * address filter.
2345 	 */
2346 	ifnet_serialize_all(ifp);
2347 	if ((ifp->if_flags & IFF_UP) != 0) {
2348 #ifdef INET
2349 		struct ifaddr_container *ifac;
2350 #endif
2351 
2352 		ifp->if_flags &= ~IFF_UP;
2353 		ifr.ifr_flags = ifp->if_flags;
2354 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2355 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2356 			      NULL);
2357 		ifp->if_flags |= IFF_UP;
2358 		ifr.ifr_flags = ifp->if_flags;
2359 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2360 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2361 				 NULL);
2362 #ifdef INET
2363 		/*
2364 		 * Also send gratuitous ARPs to notify other nodes about
2365 		 * the address change.
2366 		 */
2367 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2368 			struct ifaddr *ifa = ifac->ifa;
2369 
2370 			if (ifa->ifa_addr != NULL &&
2371 			    ifa->ifa_addr->sa_family == AF_INET)
2372 				arp_gratuitous(ifp, ifa);
2373 		}
2374 #endif
2375 	}
2376 	ifnet_deserialize_all(ifp);
2377 	return (0);
2378 }
2379 
2380 struct ifmultiaddr *
2381 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2382 {
2383 	struct ifmultiaddr *ifma;
2384 
2385 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2386 		if (sa_equal(ifma->ifma_addr, sa))
2387 			break;
2388 
2389 	return ifma;
2390 }
2391 
2392 /*
2393  * This function locates the first real ethernet MAC from a network
2394  * card and loads it into node, returning 0 on success or ENOENT if
2395  * no suitable interfaces were found.  It is used by the uuid code to
2396  * generate a unique 6-byte number.
2397  */
2398 int
2399 if_getanyethermac(uint16_t *node, int minlen)
2400 {
2401 	struct ifnet *ifp;
2402 	struct sockaddr_dl *sdl;
2403 
2404 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2405 		if (ifp->if_type != IFT_ETHER)
2406 			continue;
2407 		sdl = IF_LLSOCKADDR(ifp);
2408 		if (sdl->sdl_alen < minlen)
2409 			continue;
2410 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2411 		      minlen);
2412 		return(0);
2413 	}
2414 	return (ENOENT);
2415 }
2416 
2417 /*
2418  * The name argument must be a pointer to storage which will last as
2419  * long as the interface does.  For physical devices, the result of
2420  * device_get_name(dev) is a good choice and for pseudo-devices a
2421  * static string works well.
2422  */
2423 void
2424 if_initname(struct ifnet *ifp, const char *name, int unit)
2425 {
2426 	ifp->if_dname = name;
2427 	ifp->if_dunit = unit;
2428 	if (unit != IF_DUNIT_NONE)
2429 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2430 	else
2431 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2432 }
2433 
2434 int
2435 if_printf(struct ifnet *ifp, const char *fmt, ...)
2436 {
2437 	__va_list ap;
2438 	int retval;
2439 
2440 	retval = kprintf("%s: ", ifp->if_xname);
2441 	__va_start(ap, fmt);
2442 	retval += kvprintf(fmt, ap);
2443 	__va_end(ap);
2444 	return (retval);
2445 }
2446 
2447 struct ifnet *
2448 if_alloc(uint8_t type)
2449 {
2450         struct ifnet *ifp;
2451 	size_t size;
2452 
2453 	/*
2454 	 * XXX temporary hack until arpcom is setup in if_l2com
2455 	 */
2456 	if (type == IFT_ETHER)
2457 		size = sizeof(struct arpcom);
2458 	else
2459 		size = sizeof(struct ifnet);
2460 
2461 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2462 
2463 	ifp->if_type = type;
2464 
2465 	if (if_com_alloc[type] != NULL) {
2466 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2467 		if (ifp->if_l2com == NULL) {
2468 			kfree(ifp, M_IFNET);
2469 			return (NULL);
2470 		}
2471 	}
2472 	return (ifp);
2473 }
2474 
2475 void
2476 if_free(struct ifnet *ifp)
2477 {
2478 	kfree(ifp, M_IFNET);
2479 }
2480 
2481 void
2482 ifq_set_classic(struct ifaltq *ifq)
2483 {
2484 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2485 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2486 }
2487 
2488 void
2489 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2490     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2491 {
2492 	int q;
2493 
2494 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2495 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2496 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2497 	KASSERT(request != NULL, ("request is not specified"));
2498 
2499 	ifq->altq_mapsubq = mapsubq;
2500 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2501 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2502 
2503 		ifsq->ifsq_enqueue = enqueue;
2504 		ifsq->ifsq_dequeue = dequeue;
2505 		ifsq->ifsq_request = request;
2506 	}
2507 }
2508 
2509 int
2510 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2511     struct altq_pktattr *pa __unused)
2512 {
2513 	if (IF_QFULL(ifsq)) {
2514 		m_freem(m);
2515 		return(ENOBUFS);
2516 	} else {
2517 		IF_ENQUEUE(ifsq, m);
2518 		return(0);
2519 	}
2520 }
2521 
2522 struct mbuf *
2523 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, struct mbuf *mpolled, int op)
2524 {
2525 	struct mbuf *m;
2526 
2527 	switch (op) {
2528 	case ALTDQ_POLL:
2529 		IF_POLL(ifsq, m);
2530 		break;
2531 	case ALTDQ_REMOVE:
2532 		IF_DEQUEUE(ifsq, m);
2533 		break;
2534 	default:
2535 		panic("unsupported ALTQ dequeue op: %d", op);
2536 	}
2537 	KKASSERT(mpolled == NULL || mpolled == m);
2538 	return(m);
2539 }
2540 
2541 int
2542 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2543 {
2544 	switch (req) {
2545 	case ALTRQ_PURGE:
2546 		IF_DRAIN(ifsq);
2547 		break;
2548 	default:
2549 		panic("unsupported ALTQ request: %d", req);
2550 	}
2551 	return(0);
2552 }
2553 
2554 static void
2555 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2556 {
2557 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2558 	int running = 0, need_sched;
2559 
2560 	/*
2561 	 * Try to do direct ifnet.if_start first, if there is
2562 	 * contention on ifnet's serializer, ifnet.if_start will
2563 	 * be scheduled on ifnet's CPU.
2564 	 */
2565 	if (!ifsq_tryserialize_hw(ifsq)) {
2566 		/*
2567 		 * ifnet serializer contention happened,
2568 		 * ifnet.if_start is scheduled on ifnet's
2569 		 * CPU, and we keep going.
2570 		 */
2571 		ifsq_ifstart_schedule(ifsq, 1);
2572 		return;
2573 	}
2574 
2575 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2576 		ifp->if_start(ifp, ifsq);
2577 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2578 			running = 1;
2579 	}
2580 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2581 
2582 	ifsq_deserialize_hw(ifsq);
2583 
2584 	if (need_sched) {
2585 		/*
2586 		 * More data need to be transmitted, ifnet.if_start is
2587 		 * scheduled on ifnet's CPU, and we keep going.
2588 		 * NOTE: ifnet.if_start interlock is not released.
2589 		 */
2590 		ifsq_ifstart_schedule(ifsq, force_sched);
2591 	}
2592 }
2593 
2594 /*
2595  * IFSUBQ packets staging mechanism:
2596  *
2597  * The packets enqueued into IFSUBQ are staged to a certain amount before the
2598  * ifnet's if_start is called.  In this way, the driver could avoid writing
2599  * to hardware registers upon every packet, instead, hardware registers
2600  * could be written when certain amount of packets are put onto hardware
2601  * TX ring.  The measurement on several modern NICs (emx(4), igb(4), bnx(4),
2602  * bge(4), jme(4)) shows that the hardware registers writing aggregation
2603  * could save ~20% CPU time when 18bytes UDP datagrams are transmitted at
2604  * 1.48Mpps.  The performance improvement by hardware registers writing
2605  * aggeregation is also mentioned by Luigi Rizzo's netmap paper
2606  * (http://info.iet.unipi.it/~luigi/netmap/).
2607  *
2608  * IFSUBQ packets staging is performed for two entry points into drivers's
2609  * transmission function:
2610  * - Direct ifnet's if_start calling, i.e. ifsq_ifstart_try()
2611  * - ifnet's if_start scheduling, i.e. ifsq_ifstart_schedule()
2612  *
2613  * IFSUBQ packets staging will be stopped upon any of the following conditions:
2614  * - If the count of packets enqueued on the current CPU is great than or
2615  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2616  * - If the total length of packets enqueued on the current CPU is great
2617  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2618  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2619  *   is usually less than hardware's MTU.
2620  * - ifsq_ifstart_schedule() is not pending on the current CPU and if_start
2621  *   interlock (if_snd.altq_started) is not released.
2622  * - The if_start_rollup(), which is registered as low priority netisr
2623  *   rollup function, is called; probably because no more work is pending
2624  *   for netisr.
2625  *
2626  * NOTE:
2627  * Currently IFSUBQ packet staging is only performed in netisr threads.
2628  */
2629 int
2630 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2631 {
2632 	struct ifaltq *ifq = &ifp->if_snd;
2633 	struct ifaltq_subque *ifsq;
2634 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2635 	struct ifsubq_stage_head *head = NULL;
2636 	struct ifsubq_stage *stage = NULL;
2637 
2638 	ifsq = ifq_map_subq(ifq, mycpuid);
2639 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2640 
2641 	len = m->m_pkthdr.len;
2642 	if (m->m_flags & M_MCAST)
2643 		mcast = 1;
2644 
2645 	if (curthread->td_type == TD_TYPE_NETISR) {
2646 		head = &ifsubq_stage_heads[mycpuid];
2647 		stage = ifsq_get_stage(ifsq, mycpuid);
2648 
2649 		stage->stg_cnt++;
2650 		stage->stg_len += len;
2651 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2652 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2653 			avoid_start = 1;
2654 	}
2655 
2656 	ALTQ_SQ_LOCK(ifsq);
2657 	error = ifsq_enqueue_locked(ifsq, m, pa);
2658 	if (error) {
2659 		if (!ifsq_data_ready(ifsq)) {
2660 			ALTQ_SQ_UNLOCK(ifsq);
2661 			return error;
2662 		}
2663 		avoid_start = 0;
2664 	}
2665 	if (!ifsq_is_started(ifsq)) {
2666 		if (avoid_start) {
2667 			ALTQ_SQ_UNLOCK(ifsq);
2668 
2669 			KKASSERT(!error);
2670 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2671 				ifsq_stage_insert(head, stage);
2672 
2673 			IFNET_STAT_INC(ifp, obytes, len);
2674 			if (mcast)
2675 				IFNET_STAT_INC(ifp, omcasts, 1);
2676 			return error;
2677 		}
2678 
2679 		/*
2680 		 * Hold the interlock of ifnet.if_start
2681 		 */
2682 		ifsq_set_started(ifsq);
2683 		start = 1;
2684 	}
2685 	ALTQ_SQ_UNLOCK(ifsq);
2686 
2687 	if (!error) {
2688 		IFNET_STAT_INC(ifp, obytes, len);
2689 		if (mcast)
2690 			IFNET_STAT_INC(ifp, omcasts, 1);
2691 	}
2692 
2693 	if (stage != NULL) {
2694 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2695 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2696 			if (!avoid_start) {
2697 				ifsq_stage_remove(head, stage);
2698 				ifsq_ifstart_schedule(ifsq, 1);
2699 			}
2700 			return error;
2701 		}
2702 
2703 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2704 			ifsq_stage_remove(head, stage);
2705 		} else {
2706 			stage->stg_cnt = 0;
2707 			stage->stg_len = 0;
2708 		}
2709 	}
2710 
2711 	if (!start)
2712 		return error;
2713 
2714 	ifsq_ifstart_try(ifsq, 0);
2715 	return error;
2716 }
2717 
2718 void *
2719 ifa_create(int size, int flags)
2720 {
2721 	struct ifaddr *ifa;
2722 	int i;
2723 
2724 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2725 
2726 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2727 	if (ifa == NULL)
2728 		return NULL;
2729 
2730 	ifa->ifa_containers =
2731 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2732 	        M_IFADDR, M_WAITOK | M_ZERO);
2733 	ifa->ifa_ncnt = ncpus;
2734 	for (i = 0; i < ncpus; ++i) {
2735 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2736 
2737 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2738 		ifac->ifa = ifa;
2739 		ifac->ifa_refcnt = 1;
2740 	}
2741 #ifdef IFADDR_DEBUG
2742 	kprintf("alloc ifa %p %d\n", ifa, size);
2743 #endif
2744 	return ifa;
2745 }
2746 
2747 void
2748 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2749 {
2750 	struct ifaddr *ifa = ifac->ifa;
2751 
2752 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2753 	KKASSERT(ifac->ifa_refcnt == 0);
2754 	KASSERT(ifac->ifa_listmask == 0,
2755 		("ifa is still on %#x lists", ifac->ifa_listmask));
2756 
2757 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2758 
2759 #ifdef IFADDR_DEBUG_VERBOSE
2760 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2761 #endif
2762 
2763 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2764 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2765 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2766 #ifdef IFADDR_DEBUG
2767 		kprintf("free ifa %p\n", ifa);
2768 #endif
2769 		kfree(ifa->ifa_containers, M_IFADDR);
2770 		kfree(ifa, M_IFADDR);
2771 	}
2772 }
2773 
2774 static void
2775 ifa_iflink_dispatch(netmsg_t nmsg)
2776 {
2777 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2778 	struct ifaddr *ifa = msg->ifa;
2779 	struct ifnet *ifp = msg->ifp;
2780 	int cpu = mycpuid;
2781 	struct ifaddr_container *ifac;
2782 
2783 	crit_enter();
2784 
2785 	ifac = &ifa->ifa_containers[cpu];
2786 	ASSERT_IFAC_VALID(ifac);
2787 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2788 		("ifaddr is on if_addrheads"));
2789 
2790 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2791 	if (msg->tail)
2792 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2793 	else
2794 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2795 
2796 	crit_exit();
2797 
2798 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2799 }
2800 
2801 void
2802 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2803 {
2804 	struct netmsg_ifaddr msg;
2805 
2806 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2807 		    0, ifa_iflink_dispatch);
2808 	msg.ifa = ifa;
2809 	msg.ifp = ifp;
2810 	msg.tail = tail;
2811 
2812 	ifa_domsg(&msg.base.lmsg, 0);
2813 }
2814 
2815 static void
2816 ifa_ifunlink_dispatch(netmsg_t nmsg)
2817 {
2818 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2819 	struct ifaddr *ifa = msg->ifa;
2820 	struct ifnet *ifp = msg->ifp;
2821 	int cpu = mycpuid;
2822 	struct ifaddr_container *ifac;
2823 
2824 	crit_enter();
2825 
2826 	ifac = &ifa->ifa_containers[cpu];
2827 	ASSERT_IFAC_VALID(ifac);
2828 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2829 		("ifaddr is not on if_addrhead"));
2830 
2831 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2832 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2833 
2834 	crit_exit();
2835 
2836 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2837 }
2838 
2839 void
2840 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2841 {
2842 	struct netmsg_ifaddr msg;
2843 
2844 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2845 		    0, ifa_ifunlink_dispatch);
2846 	msg.ifa = ifa;
2847 	msg.ifp = ifp;
2848 
2849 	ifa_domsg(&msg.base.lmsg, 0);
2850 }
2851 
2852 static void
2853 ifa_destroy_dispatch(netmsg_t nmsg)
2854 {
2855 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2856 
2857 	IFAFREE(msg->ifa);
2858 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2859 }
2860 
2861 void
2862 ifa_destroy(struct ifaddr *ifa)
2863 {
2864 	struct netmsg_ifaddr msg;
2865 
2866 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2867 		    0, ifa_destroy_dispatch);
2868 	msg.ifa = ifa;
2869 
2870 	ifa_domsg(&msg.base.lmsg, 0);
2871 }
2872 
2873 struct lwkt_port *
2874 ifnet_portfn(int cpu)
2875 {
2876 	return &ifnet_threads[cpu].td_msgport;
2877 }
2878 
2879 void
2880 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2881 {
2882 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2883 
2884 	if (next_cpu < ncpus)
2885 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2886 	else
2887 		lwkt_replymsg(lmsg, 0);
2888 }
2889 
2890 int
2891 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2892 {
2893 	KKASSERT(cpu < ncpus);
2894 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2895 }
2896 
2897 void
2898 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2899 {
2900 	KKASSERT(cpu < ncpus);
2901 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2902 }
2903 
2904 /*
2905  * Generic netmsg service loop.  Some protocols may roll their own but all
2906  * must do the basic command dispatch function call done here.
2907  */
2908 static void
2909 ifnet_service_loop(void *arg __unused)
2910 {
2911 	netmsg_t msg;
2912 
2913 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2914 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2915 		msg->base.nm_dispatch(msg);
2916 	}
2917 }
2918 
2919 static void
2920 if_start_rollup(void)
2921 {
2922 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
2923 	struct ifsubq_stage *stage;
2924 
2925 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
2926 		struct ifaltq_subque *ifsq = stage->stg_subq;
2927 		int is_sched = 0;
2928 
2929 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
2930 			is_sched = 1;
2931 		ifsq_stage_remove(head, stage);
2932 
2933 		if (is_sched) {
2934 			ifsq_ifstart_schedule(ifsq, 1);
2935 		} else {
2936 			int start = 0;
2937 
2938 			ALTQ_SQ_LOCK(ifsq);
2939 			if (!ifsq_is_started(ifsq)) {
2940 				/*
2941 				 * Hold the interlock of ifnet.if_start
2942 				 */
2943 				ifsq_set_started(ifsq);
2944 				start = 1;
2945 			}
2946 			ALTQ_SQ_UNLOCK(ifsq);
2947 
2948 			if (start)
2949 				ifsq_ifstart_try(ifsq, 1);
2950 		}
2951 		KKASSERT((stage->stg_flags &
2952 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
2953 	}
2954 }
2955 
2956 static void
2957 ifnetinit(void *dummy __unused)
2958 {
2959 	int i;
2960 
2961 	for (i = 0; i < ncpus; ++i) {
2962 		struct thread *thr = &ifnet_threads[i];
2963 
2964 		lwkt_create(ifnet_service_loop, NULL, NULL,
2965 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2966 			    i, "ifnet %d", i);
2967 		netmsg_service_port_init(&thr->td_msgport);
2968 		lwkt_schedule(thr);
2969 	}
2970 
2971 	for (i = 0; i < ncpus; ++i)
2972 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
2973 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
2974 }
2975 
2976 struct ifnet *
2977 ifnet_byindex(unsigned short idx)
2978 {
2979 	if (idx > if_index)
2980 		return NULL;
2981 	return ifindex2ifnet[idx];
2982 }
2983 
2984 struct ifaddr *
2985 ifaddr_byindex(unsigned short idx)
2986 {
2987 	struct ifnet *ifp;
2988 
2989 	ifp = ifnet_byindex(idx);
2990 	if (!ifp)
2991 		return NULL;
2992 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2993 }
2994 
2995 void
2996 if_register_com_alloc(u_char type,
2997     if_com_alloc_t *a, if_com_free_t *f)
2998 {
2999 
3000         KASSERT(if_com_alloc[type] == NULL,
3001             ("if_register_com_alloc: %d already registered", type));
3002         KASSERT(if_com_free[type] == NULL,
3003             ("if_register_com_alloc: %d free already registered", type));
3004 
3005         if_com_alloc[type] = a;
3006         if_com_free[type] = f;
3007 }
3008 
3009 void
3010 if_deregister_com_alloc(u_char type)
3011 {
3012 
3013         KASSERT(if_com_alloc[type] != NULL,
3014             ("if_deregister_com_alloc: %d not registered", type));
3015         KASSERT(if_com_free[type] != NULL,
3016             ("if_deregister_com_alloc: %d free not registered", type));
3017         if_com_alloc[type] = NULL;
3018         if_com_free[type] = NULL;
3019 }
3020 
3021 int
3022 if_ring_count2(int cnt, int cnt_max)
3023 {
3024 	int shift = 0;
3025 
3026 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3027 	    ("invalid ring count max %d", cnt_max));
3028 
3029 	if (cnt <= 0)
3030 		cnt = cnt_max;
3031 	if (cnt > ncpus2)
3032 		cnt = ncpus2;
3033 	if (cnt > cnt_max)
3034 		cnt = cnt_max;
3035 
3036 	while ((1 << (shift + 1)) <= cnt)
3037 		++shift;
3038 	cnt = 1 << shift;
3039 
3040 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3041 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3042 	     cnt, ncpus2, cnt_max));
3043 	return cnt;
3044 }
3045 
3046 void
3047 ifq_set_maxlen(struct ifaltq *ifq, int len)
3048 {
3049 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3050 }
3051 
3052 int
3053 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3054 {
3055 	return ALTQ_SUBQ_INDEX_DEFAULT;
3056 }
3057 
3058 int
3059 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3060 {
3061 	return (cpuid & ifq->altq_subq_mask);
3062 }
3063 
3064 static void
3065 ifsq_watchdog(void *arg)
3066 {
3067 	struct ifsubq_watchdog *wd = arg;
3068 	struct ifnet *ifp;
3069 
3070 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3071 		goto done;
3072 
3073 	ifp = ifsq_get_ifp(wd->wd_subq);
3074 	if (ifnet_tryserialize_all(ifp)) {
3075 		wd->wd_watchdog(wd->wd_subq);
3076 		ifnet_deserialize_all(ifp);
3077 	} else {
3078 		/* try again next timeout */
3079 		wd->wd_timer = 1;
3080 	}
3081 done:
3082 	ifsq_watchdog_reset(wd);
3083 }
3084 
3085 static void
3086 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3087 {
3088 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3089 	    ifsq_get_cpuid(wd->wd_subq));
3090 }
3091 
3092 void
3093 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3094     ifsq_watchdog_t watchdog)
3095 {
3096 	callout_init_mp(&wd->wd_callout);
3097 	wd->wd_timer = 0;
3098 	wd->wd_subq = ifsq;
3099 	wd->wd_watchdog = watchdog;
3100 }
3101 
3102 void
3103 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3104 {
3105 	wd->wd_timer = 0;
3106 	ifsq_watchdog_reset(wd);
3107 }
3108 
3109 void
3110 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3111 {
3112 	wd->wd_timer = 0;
3113 	callout_stop(&wd->wd_callout);
3114 }
3115