xref: /dragonfly/sys/net/if.c (revision 277350a0)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 static void	if_slowtimo_dispatch(netmsg_t);
117 
118 /* Helper functions */
119 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
121 static struct ifnet_array *ifnet_array_alloc(int);
122 static void	ifnet_array_free(struct ifnet_array *);
123 static struct ifnet_array *ifnet_array_add(struct ifnet *,
124 		    const struct ifnet_array *);
125 static struct ifnet_array *ifnet_array_del(struct ifnet *,
126 		    const struct ifnet_array *);
127 
128 #ifdef INET6
129 /*
130  * XXX: declare here to avoid to include many inet6 related files..
131  * should be more generalized?
132  */
133 extern void	nd6_setmtu(struct ifnet *);
134 #endif
135 
136 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
137 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
138 
139 static int ifsq_stage_cntmax = 4;
140 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
141 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
142     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
143 
144 static int if_stats_compat = 0;
145 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
146     &if_stats_compat, 0, "Compat the old ifnet stats");
147 
148 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
149 /* Must be after netisr_init */
150 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
151 
152 static  if_com_alloc_t *if_com_alloc[256];
153 static  if_com_free_t *if_com_free[256];
154 
155 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
156 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
157 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
158 
159 int			ifqmaxlen = IFQ_MAXLEN;
160 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
161 
162 static struct ifnet_array	ifnet_array0;
163 static struct ifnet_array	*ifnet_array = &ifnet_array0;
164 
165 static struct callout		if_slowtimo_timer;
166 static struct netmsg_base	if_slowtimo_netmsg;
167 
168 int			if_index = 0;
169 struct ifnet		**ifindex2ifnet = NULL;
170 static struct thread	*ifnet_threads[MAXCPU];
171 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
172 
173 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
174 
175 #ifdef notyet
176 #define IFQ_KTR_STRING		"ifq=%p"
177 #define IFQ_KTR_ARGS	struct ifaltq *ifq
178 #ifndef KTR_IFQ
179 #define KTR_IFQ			KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
184 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
185 
186 #define IF_START_KTR_STRING	"ifp=%p"
187 #define IF_START_KTR_ARGS	struct ifnet *ifp
188 #ifndef KTR_IF_START
189 #define KTR_IF_START		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
203 #endif
204 
205 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
206 
207 /*
208  * Network interface utility routines.
209  *
210  * Routines with ifa_ifwith* names take sockaddr *'s as
211  * parameters.
212  */
213 /* ARGSUSED*/
214 static void
215 ifinit(void *dummy)
216 {
217 	struct ifnet *ifp;
218 
219 	callout_init_mp(&if_slowtimo_timer);
220 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
221 	    MSGF_PRIORITY, if_slowtimo_dispatch);
222 
223 	/* XXX is this necessary? */
224 	ifnet_lock();
225 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
226 		if (ifp->if_snd.altq_maxlen == 0) {
227 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
228 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
229 		}
230 	}
231 	ifnet_unlock();
232 
233 	/* Start if_slowtimo */
234 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
235 }
236 
237 static void
238 ifsq_ifstart_ipifunc(void *arg)
239 {
240 	struct ifaltq_subque *ifsq = arg;
241 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
242 
243 	crit_enter();
244 	if (lmsg->ms_flags & MSGF_DONE)
245 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
246 	crit_exit();
247 }
248 
249 static __inline void
250 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
251 {
252 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
253 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
254 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
255 	stage->stg_cnt = 0;
256 	stage->stg_len = 0;
257 }
258 
259 static __inline void
260 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
261 {
262 	KKASSERT((stage->stg_flags &
263 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
264 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
265 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
266 }
267 
268 /*
269  * Schedule ifnet.if_start on the subqueue owner CPU
270  */
271 static void
272 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
273 {
274 	int cpu;
275 
276 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
277 	    ifsq_stage_cntmax > 0) {
278 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
279 
280 		stage->stg_cnt = 0;
281 		stage->stg_len = 0;
282 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
283 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
284 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
285 		return;
286 	}
287 
288 	cpu = ifsq_get_cpuid(ifsq);
289 	if (cpu != mycpuid)
290 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
291 	else
292 		ifsq_ifstart_ipifunc(ifsq);
293 }
294 
295 /*
296  * NOTE:
297  * This function will release ifnet.if_start subqueue interlock,
298  * if ifnet.if_start for the subqueue does not need to be scheduled
299  */
300 static __inline int
301 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
302 {
303 	if (!running || ifsq_is_empty(ifsq)
304 #ifdef ALTQ
305 	    || ifsq->ifsq_altq->altq_tbr != NULL
306 #endif
307 	) {
308 		ALTQ_SQ_LOCK(ifsq);
309 		/*
310 		 * ifnet.if_start subqueue interlock is released, if:
311 		 * 1) Hardware can not take any packets, due to
312 		 *    o  interface is marked down
313 		 *    o  hardware queue is full (ifsq_is_oactive)
314 		 *    Under the second situation, hardware interrupt
315 		 *    or polling(4) will call/schedule ifnet.if_start
316 		 *    on the subqueue when hardware queue is ready
317 		 * 2) There is no packet in the subqueue.
318 		 *    Further ifq_dispatch or ifq_handoff will call/
319 		 *    schedule ifnet.if_start on the subqueue.
320 		 * 3) TBR is used and it does not allow further
321 		 *    dequeueing.
322 		 *    TBR callout will call ifnet.if_start on the
323 		 *    subqueue.
324 		 */
325 		if (!running || !ifsq_data_ready(ifsq)) {
326 			ifsq_clr_started(ifsq);
327 			ALTQ_SQ_UNLOCK(ifsq);
328 			return 0;
329 		}
330 		ALTQ_SQ_UNLOCK(ifsq);
331 	}
332 	return 1;
333 }
334 
335 static void
336 ifsq_ifstart_dispatch(netmsg_t msg)
337 {
338 	struct lwkt_msg *lmsg = &msg->base.lmsg;
339 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
340 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
341 	struct globaldata *gd = mycpu;
342 	int running = 0, need_sched;
343 
344 	crit_enter_gd(gd);
345 
346 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
347 
348 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
349 		/*
350 		 * We need to chase the subqueue owner CPU change.
351 		 */
352 		ifsq_ifstart_schedule(ifsq, 1);
353 		crit_exit_gd(gd);
354 		return;
355 	}
356 
357 	ifsq_serialize_hw(ifsq);
358 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
359 		ifp->if_start(ifp, ifsq);
360 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
361 			running = 1;
362 	}
363 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
364 	ifsq_deserialize_hw(ifsq);
365 
366 	if (need_sched) {
367 		/*
368 		 * More data need to be transmitted, ifnet.if_start is
369 		 * scheduled on the subqueue owner CPU, and we keep going.
370 		 * NOTE: ifnet.if_start subqueue interlock is not released.
371 		 */
372 		ifsq_ifstart_schedule(ifsq, 0);
373 	}
374 
375 	crit_exit_gd(gd);
376 }
377 
378 /* Device driver ifnet.if_start helper function */
379 void
380 ifsq_devstart(struct ifaltq_subque *ifsq)
381 {
382 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
383 	int running = 0;
384 
385 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
386 
387 	ALTQ_SQ_LOCK(ifsq);
388 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
389 		ALTQ_SQ_UNLOCK(ifsq);
390 		return;
391 	}
392 	ifsq_set_started(ifsq);
393 	ALTQ_SQ_UNLOCK(ifsq);
394 
395 	ifp->if_start(ifp, ifsq);
396 
397 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
398 		running = 1;
399 
400 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
401 		/*
402 		 * More data need to be transmitted, ifnet.if_start is
403 		 * scheduled on ifnet's CPU, and we keep going.
404 		 * NOTE: ifnet.if_start interlock is not released.
405 		 */
406 		ifsq_ifstart_schedule(ifsq, 0);
407 	}
408 }
409 
410 void
411 if_devstart(struct ifnet *ifp)
412 {
413 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
414 }
415 
416 /* Device driver ifnet.if_start schedule helper function */
417 void
418 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
419 {
420 	ifsq_ifstart_schedule(ifsq, 1);
421 }
422 
423 void
424 if_devstart_sched(struct ifnet *ifp)
425 {
426 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
427 }
428 
429 static void
430 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
431 {
432 	lwkt_serialize_enter(ifp->if_serializer);
433 }
434 
435 static void
436 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
437 {
438 	lwkt_serialize_exit(ifp->if_serializer);
439 }
440 
441 static int
442 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
443 {
444 	return lwkt_serialize_try(ifp->if_serializer);
445 }
446 
447 #ifdef INVARIANTS
448 static void
449 if_default_serialize_assert(struct ifnet *ifp,
450 			    enum ifnet_serialize slz __unused,
451 			    boolean_t serialized)
452 {
453 	if (serialized)
454 		ASSERT_SERIALIZED(ifp->if_serializer);
455 	else
456 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
457 }
458 #endif
459 
460 /*
461  * Attach an interface to the list of "active" interfaces.
462  *
463  * The serializer is optional.
464  */
465 void
466 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
467 {
468 	unsigned socksize;
469 	int namelen, masklen;
470 	struct sockaddr_dl *sdl, *sdl_addr;
471 	struct ifaddr *ifa;
472 	struct ifaltq *ifq;
473 	struct ifnet **old_ifindex2ifnet = NULL;
474 	struct ifnet_array *old_ifnet_array;
475 	int i, q;
476 
477 	static int if_indexlim = 8;
478 
479 	if (ifp->if_serialize != NULL) {
480 		KASSERT(ifp->if_deserialize != NULL &&
481 			ifp->if_tryserialize != NULL &&
482 			ifp->if_serialize_assert != NULL,
483 			("serialize functions are partially setup"));
484 
485 		/*
486 		 * If the device supplies serialize functions,
487 		 * then clear if_serializer to catch any invalid
488 		 * usage of this field.
489 		 */
490 		KASSERT(serializer == NULL,
491 			("both serialize functions and default serializer "
492 			 "are supplied"));
493 		ifp->if_serializer = NULL;
494 	} else {
495 		KASSERT(ifp->if_deserialize == NULL &&
496 			ifp->if_tryserialize == NULL &&
497 			ifp->if_serialize_assert == NULL,
498 			("serialize functions are partially setup"));
499 		ifp->if_serialize = if_default_serialize;
500 		ifp->if_deserialize = if_default_deserialize;
501 		ifp->if_tryserialize = if_default_tryserialize;
502 #ifdef INVARIANTS
503 		ifp->if_serialize_assert = if_default_serialize_assert;
504 #endif
505 
506 		/*
507 		 * The serializer can be passed in from the device,
508 		 * allowing the same serializer to be used for both
509 		 * the interrupt interlock and the device queue.
510 		 * If not specified, the netif structure will use an
511 		 * embedded serializer.
512 		 */
513 		if (serializer == NULL) {
514 			serializer = &ifp->if_default_serializer;
515 			lwkt_serialize_init(serializer);
516 		}
517 		ifp->if_serializer = serializer;
518 	}
519 
520 	/*
521 	 * XXX -
522 	 * The old code would work if the interface passed a pre-existing
523 	 * chain of ifaddrs to this code.  We don't trust our callers to
524 	 * properly initialize the tailq, however, so we no longer allow
525 	 * this unlikely case.
526 	 */
527 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
528 				    M_IFADDR, M_WAITOK | M_ZERO);
529 	for (i = 0; i < ncpus; ++i)
530 		TAILQ_INIT(&ifp->if_addrheads[i]);
531 
532 	TAILQ_INIT(&ifp->if_multiaddrs);
533 	TAILQ_INIT(&ifp->if_groups);
534 	getmicrotime(&ifp->if_lastchange);
535 
536 	/*
537 	 * create a Link Level name for this device
538 	 */
539 	namelen = strlen(ifp->if_xname);
540 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
541 	socksize = masklen + ifp->if_addrlen;
542 	if (socksize < sizeof(*sdl))
543 		socksize = sizeof(*sdl);
544 	socksize = RT_ROUNDUP(socksize);
545 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
546 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
547 	sdl->sdl_len = socksize;
548 	sdl->sdl_family = AF_LINK;
549 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
550 	sdl->sdl_nlen = namelen;
551 	sdl->sdl_type = ifp->if_type;
552 	ifp->if_lladdr = ifa;
553 	ifa->ifa_ifp = ifp;
554 	ifa->ifa_rtrequest = link_rtrequest;
555 	ifa->ifa_addr = (struct sockaddr *)sdl;
556 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
557 	ifa->ifa_netmask = (struct sockaddr *)sdl;
558 	sdl->sdl_len = masklen;
559 	while (namelen != 0)
560 		sdl->sdl_data[--namelen] = 0xff;
561 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
562 
563 	ifp->if_data_pcpu = kmalloc_cachealign(
564 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
565 
566 	if (ifp->if_mapsubq == NULL)
567 		ifp->if_mapsubq = ifq_mapsubq_default;
568 
569 	ifq = &ifp->if_snd;
570 	ifq->altq_type = 0;
571 	ifq->altq_disc = NULL;
572 	ifq->altq_flags &= ALTQF_CANTCHANGE;
573 	ifq->altq_tbr = NULL;
574 	ifq->altq_ifp = ifp;
575 
576 	if (ifq->altq_subq_cnt <= 0)
577 		ifq->altq_subq_cnt = 1;
578 	ifq->altq_subq = kmalloc_cachealign(
579 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
580 	    M_DEVBUF, M_WAITOK | M_ZERO);
581 
582 	if (ifq->altq_maxlen == 0) {
583 		if_printf(ifp, "driver didn't set altq_maxlen\n");
584 		ifq_set_maxlen(ifq, ifqmaxlen);
585 	}
586 
587 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
588 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
589 
590 		ALTQ_SQ_LOCK_INIT(ifsq);
591 		ifsq->ifsq_index = q;
592 
593 		ifsq->ifsq_altq = ifq;
594 		ifsq->ifsq_ifp = ifp;
595 
596 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
597 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
598 		ifsq->ifsq_prepended = NULL;
599 		ifsq->ifsq_started = 0;
600 		ifsq->ifsq_hw_oactive = 0;
601 		ifsq_set_cpuid(ifsq, 0);
602 		if (ifp->if_serializer != NULL)
603 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
604 
605 		ifsq->ifsq_stage =
606 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
607 		    M_DEVBUF, M_WAITOK | M_ZERO);
608 		for (i = 0; i < ncpus; ++i)
609 			ifsq->ifsq_stage[i].stg_subq = ifsq;
610 
611 		ifsq->ifsq_ifstart_nmsg =
612 		    kmalloc(ncpus * sizeof(struct netmsg_base),
613 		    M_LWKTMSG, M_WAITOK);
614 		for (i = 0; i < ncpus; ++i) {
615 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
616 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
617 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
618 		}
619 	}
620 	ifq_set_classic(ifq);
621 
622 	/*
623 	 * Increase mbuf cluster/jcluster limits for the mbufs that
624 	 * could sit on the device queues for quite some time.
625 	 */
626 	if (ifp->if_nmbclusters > 0)
627 		mcl_inclimit(ifp->if_nmbclusters);
628 	if (ifp->if_nmbjclusters > 0)
629 		mjcl_inclimit(ifp->if_nmbjclusters);
630 
631 	/*
632 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
633 	 * array after it is setup.
634 	 *
635 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
636 	 * by ifnet lock, so that non-netisr threads could get a
637 	 * consistent view.
638 	 */
639 	ifnet_lock();
640 
641 	/* Don't update if_index until ifindex2ifnet is setup */
642 	ifp->if_index = if_index + 1;
643 	sdl_addr->sdl_index = ifp->if_index;
644 
645 	/*
646 	 * Install this ifp into ifindex2ifnet
647 	 */
648 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
649 		unsigned int n;
650 		struct ifnet **q;
651 
652 		/*
653 		 * Grow ifindex2ifnet
654 		 */
655 		if_indexlim <<= 1;
656 		n = if_indexlim * sizeof(*q);
657 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
658 		if (ifindex2ifnet != NULL) {
659 			bcopy(ifindex2ifnet, q, n/2);
660 			/* Free old ifindex2ifnet after sync all netisrs */
661 			old_ifindex2ifnet = ifindex2ifnet;
662 		}
663 		ifindex2ifnet = q;
664 	}
665 	ifindex2ifnet[ifp->if_index] = ifp;
666 	/*
667 	 * Update if_index after this ifp is installed into ifindex2ifnet,
668 	 * so that netisrs could get a consistent view of ifindex2ifnet.
669 	 */
670 	cpu_sfence();
671 	if_index = ifp->if_index;
672 
673 	/*
674 	 * Install this ifp into ifnet array.
675 	 */
676 	/* Free old ifnet array after sync all netisrs */
677 	old_ifnet_array = ifnet_array;
678 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
679 
680 	/*
681 	 * Install this ifp into ifnet queue.
682 	 */
683 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
684 
685 	ifnet_unlock();
686 
687 	/*
688 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
689 	 * are no longer accessed and we can free them safely later on.
690 	 */
691 	netmsg_service_sync();
692 	if (old_ifindex2ifnet != NULL)
693 		kfree(old_ifindex2ifnet, M_IFADDR);
694 	ifnet_array_free(old_ifnet_array);
695 
696 	if (!SLIST_EMPTY(&domains))
697 		if_attachdomain1(ifp);
698 
699 	/* Announce the interface. */
700 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
701 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
702 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
703 }
704 
705 static void
706 if_attachdomain(void *dummy)
707 {
708 	struct ifnet *ifp;
709 
710 	ifnet_lock();
711 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
712 		if_attachdomain1(ifp);
713 	ifnet_unlock();
714 }
715 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
716 	if_attachdomain, NULL);
717 
718 static void
719 if_attachdomain1(struct ifnet *ifp)
720 {
721 	struct domain *dp;
722 
723 	crit_enter();
724 
725 	/* address family dependent data region */
726 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
727 	SLIST_FOREACH(dp, &domains, dom_next)
728 		if (dp->dom_ifattach)
729 			ifp->if_afdata[dp->dom_family] =
730 				(*dp->dom_ifattach)(ifp);
731 	crit_exit();
732 }
733 
734 /*
735  * Purge all addresses whose type is _not_ AF_LINK
736  */
737 static void
738 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
739 {
740 	struct lwkt_msg *lmsg = &nmsg->lmsg;
741 	struct ifnet *ifp = lmsg->u.ms_resultp;
742 	struct ifaddr_container *ifac, *next;
743 
744 	ASSERT_IN_NETISR(0);
745 
746 	/*
747 	 * The ifaddr processing in the following loop will block,
748 	 * however, this function is called in netisr0, in which
749 	 * ifaddr list changes happen, so we don't care about the
750 	 * blockness of the ifaddr processing here.
751 	 */
752 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
753 			      ifa_link, next) {
754 		struct ifaddr *ifa = ifac->ifa;
755 
756 		/* Ignore marker */
757 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
758 			continue;
759 
760 		/* Leave link ifaddr as it is */
761 		if (ifa->ifa_addr->sa_family == AF_LINK)
762 			continue;
763 #ifdef INET
764 		/* XXX: Ugly!! ad hoc just for INET */
765 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
766 			struct ifaliasreq ifr;
767 #ifdef IFADDR_DEBUG_VERBOSE
768 			int i;
769 
770 			kprintf("purge in4 addr %p: ", ifa);
771 			for (i = 0; i < ncpus; ++i)
772 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
773 			kprintf("\n");
774 #endif
775 
776 			bzero(&ifr, sizeof ifr);
777 			ifr.ifra_addr = *ifa->ifa_addr;
778 			if (ifa->ifa_dstaddr)
779 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
780 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
781 				       NULL) == 0)
782 				continue;
783 		}
784 #endif /* INET */
785 #ifdef INET6
786 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
787 #ifdef IFADDR_DEBUG_VERBOSE
788 			int i;
789 
790 			kprintf("purge in6 addr %p: ", ifa);
791 			for (i = 0; i < ncpus; ++i)
792 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
793 			kprintf("\n");
794 #endif
795 
796 			in6_purgeaddr(ifa);
797 			/* ifp_addrhead is already updated */
798 			continue;
799 		}
800 #endif /* INET6 */
801 		ifa_ifunlink(ifa, ifp);
802 		ifa_destroy(ifa);
803 	}
804 
805 	lwkt_replymsg(lmsg, 0);
806 }
807 
808 void
809 if_purgeaddrs_nolink(struct ifnet *ifp)
810 {
811 	struct netmsg_base nmsg;
812 	struct lwkt_msg *lmsg = &nmsg.lmsg;
813 
814 	ASSERT_CANDOMSG_NETISR0(curthread);
815 
816 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
817 	    if_purgeaddrs_nolink_dispatch);
818 	lmsg->u.ms_resultp = ifp;
819 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
820 }
821 
822 static void
823 ifq_stage_detach_handler(netmsg_t nmsg)
824 {
825 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
826 	int q;
827 
828 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
829 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
830 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
831 
832 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
833 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
834 	}
835 	lwkt_replymsg(&nmsg->lmsg, 0);
836 }
837 
838 static void
839 ifq_stage_detach(struct ifaltq *ifq)
840 {
841 	struct netmsg_base base;
842 	int cpu;
843 
844 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
845 	    ifq_stage_detach_handler);
846 	base.lmsg.u.ms_resultp = ifq;
847 
848 	for (cpu = 0; cpu < ncpus; ++cpu)
849 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
850 }
851 
852 struct netmsg_if_rtdel {
853 	struct netmsg_base	base;
854 	struct ifnet		*ifp;
855 };
856 
857 static void
858 if_rtdel_dispatch(netmsg_t msg)
859 {
860 	struct netmsg_if_rtdel *rmsg = (void *)msg;
861 	int i, nextcpu, cpu;
862 
863 	cpu = mycpuid;
864 	for (i = 1; i <= AF_MAX; i++) {
865 		struct radix_node_head	*rnh;
866 
867 		if ((rnh = rt_tables[cpu][i]) == NULL)
868 			continue;
869 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
870 	}
871 
872 	nextcpu = cpu + 1;
873 	if (nextcpu < ncpus)
874 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
875 	else
876 		lwkt_replymsg(&rmsg->base.lmsg, 0);
877 }
878 
879 /*
880  * Detach an interface, removing it from the
881  * list of "active" interfaces.
882  */
883 void
884 if_detach(struct ifnet *ifp)
885 {
886 	struct ifnet_array *old_ifnet_array;
887 	struct netmsg_if_rtdel msg;
888 	struct domain *dp;
889 	int q;
890 
891 	/* Announce that the interface is gone. */
892 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
893 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
894 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
895 
896 	/*
897 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
898 	 * array before it is whacked.
899 	 *
900 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
901 	 * by ifnet lock, so that non-netisr threads could get a
902 	 * consistent view.
903 	 */
904 	ifnet_lock();
905 
906 	/*
907 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
908 	 */
909 	ifindex2ifnet[ifp->if_index] = NULL;
910 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
911 		if_index--;
912 
913 	/*
914 	 * Remove this ifp from ifnet queue.
915 	 */
916 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
917 
918 	/*
919 	 * Remove this ifp from ifnet array.
920 	 */
921 	/* Free old ifnet array after sync all netisrs */
922 	old_ifnet_array = ifnet_array;
923 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
924 
925 	ifnet_unlock();
926 
927 	/*
928 	 * Sync all netisrs so that the old ifnet array is no longer
929 	 * accessed and we can free it safely later on.
930 	 */
931 	netmsg_service_sync();
932 	ifnet_array_free(old_ifnet_array);
933 
934 	/*
935 	 * Remove routes and flush queues.
936 	 */
937 	crit_enter();
938 #ifdef IFPOLL_ENABLE
939 	if (ifp->if_flags & IFF_NPOLLING)
940 		ifpoll_deregister(ifp);
941 #endif
942 	if_down(ifp);
943 
944 	/* Decrease the mbuf clusters/jclusters limits increased by us */
945 	if (ifp->if_nmbclusters > 0)
946 		mcl_inclimit(-ifp->if_nmbclusters);
947 	if (ifp->if_nmbjclusters > 0)
948 		mjcl_inclimit(-ifp->if_nmbjclusters);
949 
950 #ifdef ALTQ
951 	if (ifq_is_enabled(&ifp->if_snd))
952 		altq_disable(&ifp->if_snd);
953 	if (ifq_is_attached(&ifp->if_snd))
954 		altq_detach(&ifp->if_snd);
955 #endif
956 
957 	/*
958 	 * Clean up all addresses.
959 	 */
960 	ifp->if_lladdr = NULL;
961 
962 	if_purgeaddrs_nolink(ifp);
963 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
964 		struct ifaddr *ifa;
965 
966 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
967 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
968 			("non-link ifaddr is left on if_addrheads"));
969 
970 		ifa_ifunlink(ifa, ifp);
971 		ifa_destroy(ifa);
972 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
973 			("there are still ifaddrs left on if_addrheads"));
974 	}
975 
976 #ifdef INET
977 	/*
978 	 * Remove all IPv4 kernel structures related to ifp.
979 	 */
980 	in_ifdetach(ifp);
981 #endif
982 
983 #ifdef INET6
984 	/*
985 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
986 	 * before removing routing entries below, since IPv6 interface direct
987 	 * routes are expected to be removed by the IPv6-specific kernel API.
988 	 * Otherwise, the kernel will detect some inconsistency and bark it.
989 	 */
990 	in6_ifdetach(ifp);
991 #endif
992 
993 	/*
994 	 * Delete all remaining routes using this interface
995 	 */
996 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
997 	    if_rtdel_dispatch);
998 	msg.ifp = ifp;
999 	rt_domsg_global(&msg.base);
1000 
1001 	SLIST_FOREACH(dp, &domains, dom_next)
1002 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1003 			(*dp->dom_ifdetach)(ifp,
1004 				ifp->if_afdata[dp->dom_family]);
1005 
1006 	kfree(ifp->if_addrheads, M_IFADDR);
1007 
1008 	lwkt_synchronize_ipiqs("if_detach");
1009 	ifq_stage_detach(&ifp->if_snd);
1010 
1011 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1012 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1013 
1014 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1015 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1016 	}
1017 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1018 
1019 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1020 
1021 	crit_exit();
1022 }
1023 
1024 /*
1025  * Create interface group without members
1026  */
1027 struct ifg_group *
1028 if_creategroup(const char *groupname)
1029 {
1030         struct ifg_group        *ifg = NULL;
1031 
1032         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1033             M_TEMP, M_NOWAIT)) == NULL)
1034                 return (NULL);
1035 
1036         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1037         ifg->ifg_refcnt = 0;
1038         ifg->ifg_carp_demoted = 0;
1039         TAILQ_INIT(&ifg->ifg_members);
1040 #if NPF > 0
1041         pfi_attach_ifgroup(ifg);
1042 #endif
1043         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1044 
1045         return (ifg);
1046 }
1047 
1048 /*
1049  * Add a group to an interface
1050  */
1051 int
1052 if_addgroup(struct ifnet *ifp, const char *groupname)
1053 {
1054 	struct ifg_list		*ifgl;
1055 	struct ifg_group	*ifg = NULL;
1056 	struct ifg_member	*ifgm;
1057 
1058 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1059 	    groupname[strlen(groupname) - 1] <= '9')
1060 		return (EINVAL);
1061 
1062 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1063 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1064 			return (EEXIST);
1065 
1066 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1067 		return (ENOMEM);
1068 
1069 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1070 		kfree(ifgl, M_TEMP);
1071 		return (ENOMEM);
1072 	}
1073 
1074 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1075 		if (!strcmp(ifg->ifg_group, groupname))
1076 			break;
1077 
1078 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1079 		kfree(ifgl, M_TEMP);
1080 		kfree(ifgm, M_TEMP);
1081 		return (ENOMEM);
1082 	}
1083 
1084 	ifg->ifg_refcnt++;
1085 	ifgl->ifgl_group = ifg;
1086 	ifgm->ifgm_ifp = ifp;
1087 
1088 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1089 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1090 
1091 #if NPF > 0
1092 	pfi_group_change(groupname);
1093 #endif
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Remove a group from an interface
1100  */
1101 int
1102 if_delgroup(struct ifnet *ifp, const char *groupname)
1103 {
1104 	struct ifg_list		*ifgl;
1105 	struct ifg_member	*ifgm;
1106 
1107 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1108 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1109 			break;
1110 	if (ifgl == NULL)
1111 		return (ENOENT);
1112 
1113 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1114 
1115 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1116 		if (ifgm->ifgm_ifp == ifp)
1117 			break;
1118 
1119 	if (ifgm != NULL) {
1120 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1121 		kfree(ifgm, M_TEMP);
1122 	}
1123 
1124 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1125 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1126 #if NPF > 0
1127 		pfi_detach_ifgroup(ifgl->ifgl_group);
1128 #endif
1129 		kfree(ifgl->ifgl_group, M_TEMP);
1130 	}
1131 
1132 	kfree(ifgl, M_TEMP);
1133 
1134 #if NPF > 0
1135 	pfi_group_change(groupname);
1136 #endif
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Stores all groups from an interface in memory pointed
1143  * to by data
1144  */
1145 int
1146 if_getgroup(caddr_t data, struct ifnet *ifp)
1147 {
1148 	int			 len, error;
1149 	struct ifg_list		*ifgl;
1150 	struct ifg_req		 ifgrq, *ifgp;
1151 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1152 
1153 	if (ifgr->ifgr_len == 0) {
1154 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1155 			ifgr->ifgr_len += sizeof(struct ifg_req);
1156 		return (0);
1157 	}
1158 
1159 	len = ifgr->ifgr_len;
1160 	ifgp = ifgr->ifgr_groups;
1161 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1162 		if (len < sizeof(ifgrq))
1163 			return (EINVAL);
1164 		bzero(&ifgrq, sizeof ifgrq);
1165 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1166 		    sizeof(ifgrq.ifgrq_group));
1167 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1168 		    sizeof(struct ifg_req))))
1169 			return (error);
1170 		len -= sizeof(ifgrq);
1171 		ifgp++;
1172 	}
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Stores all members of a group in memory pointed to by data
1179  */
1180 int
1181 if_getgroupmembers(caddr_t data)
1182 {
1183 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1184 	struct ifg_group	*ifg;
1185 	struct ifg_member	*ifgm;
1186 	struct ifg_req		 ifgrq, *ifgp;
1187 	int			 len, error;
1188 
1189 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1190 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1191 			break;
1192 	if (ifg == NULL)
1193 		return (ENOENT);
1194 
1195 	if (ifgr->ifgr_len == 0) {
1196 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1197 			ifgr->ifgr_len += sizeof(ifgrq);
1198 		return (0);
1199 	}
1200 
1201 	len = ifgr->ifgr_len;
1202 	ifgp = ifgr->ifgr_groups;
1203 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1204 		if (len < sizeof(ifgrq))
1205 			return (EINVAL);
1206 		bzero(&ifgrq, sizeof ifgrq);
1207 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1208 		    sizeof(ifgrq.ifgrq_member));
1209 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1210 		    sizeof(struct ifg_req))))
1211 			return (error);
1212 		len -= sizeof(ifgrq);
1213 		ifgp++;
1214 	}
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Delete Routes for a Network Interface
1221  *
1222  * Called for each routing entry via the rnh->rnh_walktree() call above
1223  * to delete all route entries referencing a detaching network interface.
1224  *
1225  * Arguments:
1226  *	rn	pointer to node in the routing table
1227  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1228  *
1229  * Returns:
1230  *	0	successful
1231  *	errno	failed - reason indicated
1232  *
1233  */
1234 static int
1235 if_rtdel(struct radix_node *rn, void *arg)
1236 {
1237 	struct rtentry	*rt = (struct rtentry *)rn;
1238 	struct ifnet	*ifp = arg;
1239 	int		err;
1240 
1241 	if (rt->rt_ifp == ifp) {
1242 
1243 		/*
1244 		 * Protect (sorta) against walktree recursion problems
1245 		 * with cloned routes
1246 		 */
1247 		if (!(rt->rt_flags & RTF_UP))
1248 			return (0);
1249 
1250 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1251 				rt_mask(rt), rt->rt_flags,
1252 				NULL);
1253 		if (err) {
1254 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 static __inline boolean_t
1262 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1263 {
1264 	if (old_ifa == NULL)
1265 		return TRUE;
1266 
1267 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1268 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1269 		return TRUE;
1270 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1271 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1272 		return TRUE;
1273 	return FALSE;
1274 }
1275 
1276 /*
1277  * Locate an interface based on a complete address.
1278  */
1279 struct ifaddr *
1280 ifa_ifwithaddr(struct sockaddr *addr)
1281 {
1282 	const struct ifnet_array *arr;
1283 	int i;
1284 
1285 	arr = ifnet_array_get();
1286 	for (i = 0; i < arr->ifnet_count; ++i) {
1287 		struct ifnet *ifp = arr->ifnet_arr[i];
1288 		struct ifaddr_container *ifac;
1289 
1290 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1291 			struct ifaddr *ifa = ifac->ifa;
1292 
1293 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1294 				continue;
1295 			if (sa_equal(addr, ifa->ifa_addr))
1296 				return (ifa);
1297 			if ((ifp->if_flags & IFF_BROADCAST) &&
1298 			    ifa->ifa_broadaddr &&
1299 			    /* IPv6 doesn't have broadcast */
1300 			    ifa->ifa_broadaddr->sa_len != 0 &&
1301 			    sa_equal(ifa->ifa_broadaddr, addr))
1302 				return (ifa);
1303 		}
1304 	}
1305 	return (NULL);
1306 }
1307 
1308 /*
1309  * Locate the point to point interface with a given destination address.
1310  */
1311 struct ifaddr *
1312 ifa_ifwithdstaddr(struct sockaddr *addr)
1313 {
1314 	const struct ifnet_array *arr;
1315 	int i;
1316 
1317 	arr = ifnet_array_get();
1318 	for (i = 0; i < arr->ifnet_count; ++i) {
1319 		struct ifnet *ifp = arr->ifnet_arr[i];
1320 		struct ifaddr_container *ifac;
1321 
1322 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1323 			continue;
1324 
1325 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1326 			struct ifaddr *ifa = ifac->ifa;
1327 
1328 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1329 				continue;
1330 			if (ifa->ifa_dstaddr &&
1331 			    sa_equal(addr, ifa->ifa_dstaddr))
1332 				return (ifa);
1333 		}
1334 	}
1335 	return (NULL);
1336 }
1337 
1338 /*
1339  * Find an interface on a specific network.  If many, choice
1340  * is most specific found.
1341  */
1342 struct ifaddr *
1343 ifa_ifwithnet(struct sockaddr *addr)
1344 {
1345 	struct ifaddr *ifa_maybe = NULL;
1346 	u_int af = addr->sa_family;
1347 	char *addr_data = addr->sa_data, *cplim;
1348 	const struct ifnet_array *arr;
1349 	int i;
1350 
1351 	/*
1352 	 * AF_LINK addresses can be looked up directly by their index number,
1353 	 * so do that if we can.
1354 	 */
1355 	if (af == AF_LINK) {
1356 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1357 
1358 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1359 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1360 	}
1361 
1362 	/*
1363 	 * Scan though each interface, looking for ones that have
1364 	 * addresses in this address family.
1365 	 */
1366 	arr = ifnet_array_get();
1367 	for (i = 0; i < arr->ifnet_count; ++i) {
1368 		struct ifnet *ifp = arr->ifnet_arr[i];
1369 		struct ifaddr_container *ifac;
1370 
1371 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1372 			struct ifaddr *ifa = ifac->ifa;
1373 			char *cp, *cp2, *cp3;
1374 
1375 			if (ifa->ifa_addr->sa_family != af)
1376 next:				continue;
1377 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1378 				/*
1379 				 * This is a bit broken as it doesn't
1380 				 * take into account that the remote end may
1381 				 * be a single node in the network we are
1382 				 * looking for.
1383 				 * The trouble is that we don't know the
1384 				 * netmask for the remote end.
1385 				 */
1386 				if (ifa->ifa_dstaddr != NULL &&
1387 				    sa_equal(addr, ifa->ifa_dstaddr))
1388 					return (ifa);
1389 			} else {
1390 				/*
1391 				 * if we have a special address handler,
1392 				 * then use it instead of the generic one.
1393 				 */
1394 				if (ifa->ifa_claim_addr) {
1395 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1396 						return (ifa);
1397 					} else {
1398 						continue;
1399 					}
1400 				}
1401 
1402 				/*
1403 				 * Scan all the bits in the ifa's address.
1404 				 * If a bit dissagrees with what we are
1405 				 * looking for, mask it with the netmask
1406 				 * to see if it really matters.
1407 				 * (A byte at a time)
1408 				 */
1409 				if (ifa->ifa_netmask == 0)
1410 					continue;
1411 				cp = addr_data;
1412 				cp2 = ifa->ifa_addr->sa_data;
1413 				cp3 = ifa->ifa_netmask->sa_data;
1414 				cplim = ifa->ifa_netmask->sa_len +
1415 					(char *)ifa->ifa_netmask;
1416 				while (cp3 < cplim)
1417 					if ((*cp++ ^ *cp2++) & *cp3++)
1418 						goto next; /* next address! */
1419 				/*
1420 				 * If the netmask of what we just found
1421 				 * is more specific than what we had before
1422 				 * (if we had one) then remember the new one
1423 				 * before continuing to search for an even
1424 				 * better one.  If the netmasks are equal,
1425 				 * we prefer the this ifa based on the result
1426 				 * of ifa_prefer().
1427 				 */
1428 				if (ifa_maybe == NULL ||
1429 				    rn_refines((char *)ifa->ifa_netmask,
1430 				        (char *)ifa_maybe->ifa_netmask) ||
1431 				    (sa_equal(ifa_maybe->ifa_netmask,
1432 				        ifa->ifa_netmask) &&
1433 				     ifa_prefer(ifa, ifa_maybe)))
1434 					ifa_maybe = ifa;
1435 			}
1436 		}
1437 	}
1438 	return (ifa_maybe);
1439 }
1440 
1441 /*
1442  * Find an interface address specific to an interface best matching
1443  * a given address.
1444  */
1445 struct ifaddr *
1446 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1447 {
1448 	struct ifaddr_container *ifac;
1449 	char *cp, *cp2, *cp3;
1450 	char *cplim;
1451 	struct ifaddr *ifa_maybe = NULL;
1452 	u_int af = addr->sa_family;
1453 
1454 	if (af >= AF_MAX)
1455 		return (0);
1456 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1457 		struct ifaddr *ifa = ifac->ifa;
1458 
1459 		if (ifa->ifa_addr->sa_family != af)
1460 			continue;
1461 		if (ifa_maybe == NULL)
1462 			ifa_maybe = ifa;
1463 		if (ifa->ifa_netmask == NULL) {
1464 			if (sa_equal(addr, ifa->ifa_addr) ||
1465 			    (ifa->ifa_dstaddr != NULL &&
1466 			     sa_equal(addr, ifa->ifa_dstaddr)))
1467 				return (ifa);
1468 			continue;
1469 		}
1470 		if (ifp->if_flags & IFF_POINTOPOINT) {
1471 			if (sa_equal(addr, ifa->ifa_dstaddr))
1472 				return (ifa);
1473 		} else {
1474 			cp = addr->sa_data;
1475 			cp2 = ifa->ifa_addr->sa_data;
1476 			cp3 = ifa->ifa_netmask->sa_data;
1477 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1478 			for (; cp3 < cplim; cp3++)
1479 				if ((*cp++ ^ *cp2++) & *cp3)
1480 					break;
1481 			if (cp3 == cplim)
1482 				return (ifa);
1483 		}
1484 	}
1485 	return (ifa_maybe);
1486 }
1487 
1488 /*
1489  * Default action when installing a route with a Link Level gateway.
1490  * Lookup an appropriate real ifa to point to.
1491  * This should be moved to /sys/net/link.c eventually.
1492  */
1493 static void
1494 link_rtrequest(int cmd, struct rtentry *rt)
1495 {
1496 	struct ifaddr *ifa;
1497 	struct sockaddr *dst;
1498 	struct ifnet *ifp;
1499 
1500 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1501 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1502 		return;
1503 	ifa = ifaof_ifpforaddr(dst, ifp);
1504 	if (ifa != NULL) {
1505 		IFAFREE(rt->rt_ifa);
1506 		IFAREF(ifa);
1507 		rt->rt_ifa = ifa;
1508 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1509 			ifa->ifa_rtrequest(cmd, rt);
1510 	}
1511 }
1512 
1513 struct netmsg_ifroute {
1514 	struct netmsg_base	base;
1515 	struct ifnet		*ifp;
1516 	int			flag;
1517 	int			fam;
1518 };
1519 
1520 /*
1521  * Mark an interface down and notify protocols of the transition.
1522  */
1523 static void
1524 if_unroute_dispatch(netmsg_t nmsg)
1525 {
1526 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1527 	struct ifnet *ifp = msg->ifp;
1528 	int flag = msg->flag, fam = msg->fam;
1529 	struct ifaddr_container *ifac;
1530 
1531 	ifp->if_flags &= ~flag;
1532 	getmicrotime(&ifp->if_lastchange);
1533 	/*
1534 	 * The ifaddr processing in the following loop will block,
1535 	 * however, this function is called in netisr0, in which
1536 	 * ifaddr list changes happen, so we don't care about the
1537 	 * blockness of the ifaddr processing here.
1538 	 */
1539 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1540 		struct ifaddr *ifa = ifac->ifa;
1541 
1542 		/* Ignore marker */
1543 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1544 			continue;
1545 
1546 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1547 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1548 	}
1549 	ifq_purge_all(&ifp->if_snd);
1550 	rt_ifmsg(ifp);
1551 
1552 	lwkt_replymsg(&nmsg->lmsg, 0);
1553 }
1554 
1555 void
1556 if_unroute(struct ifnet *ifp, int flag, int fam)
1557 {
1558 	struct netmsg_ifroute msg;
1559 
1560 	ASSERT_CANDOMSG_NETISR0(curthread);
1561 
1562 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1563 	    if_unroute_dispatch);
1564 	msg.ifp = ifp;
1565 	msg.flag = flag;
1566 	msg.fam = fam;
1567 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1568 }
1569 
1570 /*
1571  * Mark an interface up and notify protocols of the transition.
1572  */
1573 static void
1574 if_route_dispatch(netmsg_t nmsg)
1575 {
1576 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1577 	struct ifnet *ifp = msg->ifp;
1578 	int flag = msg->flag, fam = msg->fam;
1579 	struct ifaddr_container *ifac;
1580 
1581 	ifq_purge_all(&ifp->if_snd);
1582 	ifp->if_flags |= flag;
1583 	getmicrotime(&ifp->if_lastchange);
1584 	/*
1585 	 * The ifaddr processing in the following loop will block,
1586 	 * however, this function is called in netisr0, in which
1587 	 * ifaddr list changes happen, so we don't care about the
1588 	 * blockness of the ifaddr processing here.
1589 	 */
1590 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1591 		struct ifaddr *ifa = ifac->ifa;
1592 
1593 		/* Ignore marker */
1594 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1595 			continue;
1596 
1597 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1598 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1599 	}
1600 	rt_ifmsg(ifp);
1601 #ifdef INET6
1602 	in6_if_up(ifp);
1603 #endif
1604 
1605 	lwkt_replymsg(&nmsg->lmsg, 0);
1606 }
1607 
1608 void
1609 if_route(struct ifnet *ifp, int flag, int fam)
1610 {
1611 	struct netmsg_ifroute msg;
1612 
1613 	ASSERT_CANDOMSG_NETISR0(curthread);
1614 
1615 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1616 	    if_route_dispatch);
1617 	msg.ifp = ifp;
1618 	msg.flag = flag;
1619 	msg.fam = fam;
1620 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1621 }
1622 
1623 /*
1624  * Mark an interface down and notify protocols of the transition.  An
1625  * interface going down is also considered to be a synchronizing event.
1626  * We must ensure that all packet processing related to the interface
1627  * has completed before we return so e.g. the caller can free the ifnet
1628  * structure that the mbufs may be referencing.
1629  *
1630  * NOTE: must be called at splnet or eqivalent.
1631  */
1632 void
1633 if_down(struct ifnet *ifp)
1634 {
1635 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1636 	netmsg_service_sync();
1637 }
1638 
1639 /*
1640  * Mark an interface up and notify protocols of
1641  * the transition.
1642  * NOTE: must be called at splnet or eqivalent.
1643  */
1644 void
1645 if_up(struct ifnet *ifp)
1646 {
1647 	if_route(ifp, IFF_UP, AF_UNSPEC);
1648 }
1649 
1650 /*
1651  * Process a link state change.
1652  * NOTE: must be called at splsoftnet or equivalent.
1653  */
1654 void
1655 if_link_state_change(struct ifnet *ifp)
1656 {
1657 	int link_state = ifp->if_link_state;
1658 
1659 	rt_ifmsg(ifp);
1660 	devctl_notify("IFNET", ifp->if_xname,
1661 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1662 }
1663 
1664 /*
1665  * Handle interface watchdog timer routines.  Called
1666  * from softclock, we decrement timers (if set) and
1667  * call the appropriate interface routine on expiration.
1668  */
1669 static void
1670 if_slowtimo_dispatch(netmsg_t nmsg)
1671 {
1672 	struct globaldata *gd = mycpu;
1673 	const struct ifnet_array *arr;
1674 	int i;
1675 
1676 	ASSERT_IN_NETISR(0);
1677 
1678 	crit_enter_gd(gd);
1679 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1680 	crit_exit_gd(gd);
1681 
1682 	arr = ifnet_array_get();
1683 	for (i = 0; i < arr->ifnet_count; ++i) {
1684 		struct ifnet *ifp = arr->ifnet_arr[i];
1685 
1686 		crit_enter_gd(gd);
1687 
1688 		if (if_stats_compat) {
1689 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1690 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1691 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1692 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1693 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1694 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1695 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1696 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1697 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1698 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1699 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1700 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1701 		}
1702 
1703 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1704 			crit_exit_gd(gd);
1705 			continue;
1706 		}
1707 		if (ifp->if_watchdog) {
1708 			if (ifnet_tryserialize_all(ifp)) {
1709 				(*ifp->if_watchdog)(ifp);
1710 				ifnet_deserialize_all(ifp);
1711 			} else {
1712 				/* try again next timeout */
1713 				++ifp->if_timer;
1714 			}
1715 		}
1716 
1717 		crit_exit_gd(gd);
1718 	}
1719 
1720 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1721 }
1722 
1723 static void
1724 if_slowtimo(void *arg __unused)
1725 {
1726 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1727 
1728 	KASSERT(mycpuid == 0, ("not on cpu0"));
1729 	crit_enter();
1730 	if (lmsg->ms_flags & MSGF_DONE)
1731 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1732 	crit_exit();
1733 }
1734 
1735 /*
1736  * Map interface name to
1737  * interface structure pointer.
1738  */
1739 struct ifnet *
1740 ifunit(const char *name)
1741 {
1742 	struct ifnet *ifp;
1743 
1744 	/*
1745 	 * Search all the interfaces for this name/number
1746 	 */
1747 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1748 
1749 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1750 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1751 			break;
1752 	}
1753 	return (ifp);
1754 }
1755 
1756 struct ifnet *
1757 ifunit_netisr(const char *name)
1758 {
1759 	const struct ifnet_array *arr;
1760 	int i;
1761 
1762 	/*
1763 	 * Search all the interfaces for this name/number
1764 	 */
1765 
1766 	arr = ifnet_array_get();
1767 	for (i = 0; i < arr->ifnet_count; ++i) {
1768 		struct ifnet *ifp = arr->ifnet_arr[i];
1769 
1770 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1771 			return ifp;
1772 	}
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Interface ioctls.
1778  */
1779 int
1780 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1781 {
1782 	struct ifnet *ifp;
1783 	struct ifreq *ifr;
1784 	struct ifstat *ifs;
1785 	int error;
1786 	short oif_flags;
1787 	int new_flags;
1788 #ifdef COMPAT_43
1789 	int ocmd;
1790 #endif
1791 	size_t namelen, onamelen;
1792 	char new_name[IFNAMSIZ];
1793 	struct ifaddr *ifa;
1794 	struct sockaddr_dl *sdl;
1795 
1796 	switch (cmd) {
1797 	case SIOCGIFCONF:
1798 	case OSIOCGIFCONF:
1799 		return (ifconf(cmd, data, cred));
1800 	default:
1801 		break;
1802 	}
1803 
1804 	ifr = (struct ifreq *)data;
1805 
1806 	switch (cmd) {
1807 	case SIOCIFCREATE:
1808 	case SIOCIFCREATE2:
1809 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1810 			return (error);
1811 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1812 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1813 	case SIOCIFDESTROY:
1814 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1815 			return (error);
1816 		return (if_clone_destroy(ifr->ifr_name));
1817 	case SIOCIFGCLONERS:
1818 		return (if_clone_list((struct if_clonereq *)data));
1819 	default:
1820 		break;
1821 	}
1822 
1823 	/*
1824 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1825 	 * lock to serialize the ifconfig ioctl operation.
1826 	 */
1827 	ifnet_lock();
1828 
1829 	ifp = ifunit(ifr->ifr_name);
1830 	if (ifp == NULL) {
1831 		ifnet_unlock();
1832 		return (ENXIO);
1833 	}
1834 	error = 0;
1835 
1836 	switch (cmd) {
1837 	case SIOCGIFINDEX:
1838 		ifr->ifr_index = ifp->if_index;
1839 		break;
1840 
1841 	case SIOCGIFFLAGS:
1842 		ifr->ifr_flags = ifp->if_flags;
1843 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1844 		break;
1845 
1846 	case SIOCGIFCAP:
1847 		ifr->ifr_reqcap = ifp->if_capabilities;
1848 		ifr->ifr_curcap = ifp->if_capenable;
1849 		break;
1850 
1851 	case SIOCGIFMETRIC:
1852 		ifr->ifr_metric = ifp->if_metric;
1853 		break;
1854 
1855 	case SIOCGIFMTU:
1856 		ifr->ifr_mtu = ifp->if_mtu;
1857 		break;
1858 
1859 	case SIOCGIFTSOLEN:
1860 		ifr->ifr_tsolen = ifp->if_tsolen;
1861 		break;
1862 
1863 	case SIOCGIFDATA:
1864 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1865 				sizeof(ifp->if_data));
1866 		break;
1867 
1868 	case SIOCGIFPHYS:
1869 		ifr->ifr_phys = ifp->if_physical;
1870 		break;
1871 
1872 	case SIOCGIFPOLLCPU:
1873 		ifr->ifr_pollcpu = -1;
1874 		break;
1875 
1876 	case SIOCSIFPOLLCPU:
1877 		break;
1878 
1879 	case SIOCSIFFLAGS:
1880 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1881 		if (error)
1882 			break;
1883 		new_flags = (ifr->ifr_flags & 0xffff) |
1884 		    (ifr->ifr_flagshigh << 16);
1885 		if (ifp->if_flags & IFF_SMART) {
1886 			/* Smart drivers twiddle their own routes */
1887 		} else if (ifp->if_flags & IFF_UP &&
1888 		    (new_flags & IFF_UP) == 0) {
1889 			crit_enter();
1890 			if_down(ifp);
1891 			crit_exit();
1892 		} else if (new_flags & IFF_UP &&
1893 		    (ifp->if_flags & IFF_UP) == 0) {
1894 			crit_enter();
1895 			if_up(ifp);
1896 			crit_exit();
1897 		}
1898 
1899 #ifdef IFPOLL_ENABLE
1900 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1901 			if (new_flags & IFF_NPOLLING)
1902 				ifpoll_register(ifp);
1903 			else
1904 				ifpoll_deregister(ifp);
1905 		}
1906 #endif
1907 
1908 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1909 			(new_flags &~ IFF_CANTCHANGE);
1910 		if (new_flags & IFF_PPROMISC) {
1911 			/* Permanently promiscuous mode requested */
1912 			ifp->if_flags |= IFF_PROMISC;
1913 		} else if (ifp->if_pcount == 0) {
1914 			ifp->if_flags &= ~IFF_PROMISC;
1915 		}
1916 		if (ifp->if_ioctl) {
1917 			ifnet_serialize_all(ifp);
1918 			ifp->if_ioctl(ifp, cmd, data, cred);
1919 			ifnet_deserialize_all(ifp);
1920 		}
1921 		getmicrotime(&ifp->if_lastchange);
1922 		break;
1923 
1924 	case SIOCSIFCAP:
1925 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1926 		if (error)
1927 			break;
1928 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1929 			error = EINVAL;
1930 			break;
1931 		}
1932 		ifnet_serialize_all(ifp);
1933 		ifp->if_ioctl(ifp, cmd, data, cred);
1934 		ifnet_deserialize_all(ifp);
1935 		break;
1936 
1937 	case SIOCSIFNAME:
1938 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1939 		if (error)
1940 			break;
1941 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1942 		if (error)
1943 			break;
1944 		if (new_name[0] == '\0') {
1945 			error = EINVAL;
1946 			break;
1947 		}
1948 		if (ifunit(new_name) != NULL) {
1949 			error = EEXIST;
1950 			break;
1951 		}
1952 
1953 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1954 
1955 		/* Announce the departure of the interface. */
1956 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1957 
1958 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1959 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1960 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1961 		namelen = strlen(new_name);
1962 		onamelen = sdl->sdl_nlen;
1963 		/*
1964 		 * Move the address if needed.  This is safe because we
1965 		 * allocate space for a name of length IFNAMSIZ when we
1966 		 * create this in if_attach().
1967 		 */
1968 		if (namelen != onamelen) {
1969 			bcopy(sdl->sdl_data + onamelen,
1970 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1971 		}
1972 		bcopy(new_name, sdl->sdl_data, namelen);
1973 		sdl->sdl_nlen = namelen;
1974 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1975 		bzero(sdl->sdl_data, onamelen);
1976 		while (namelen != 0)
1977 			sdl->sdl_data[--namelen] = 0xff;
1978 
1979 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1980 
1981 		/* Announce the return of the interface. */
1982 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1983 		break;
1984 
1985 	case SIOCSIFMETRIC:
1986 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1987 		if (error)
1988 			break;
1989 		ifp->if_metric = ifr->ifr_metric;
1990 		getmicrotime(&ifp->if_lastchange);
1991 		break;
1992 
1993 	case SIOCSIFPHYS:
1994 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1995 		if (error)
1996 			break;
1997 		if (ifp->if_ioctl == NULL) {
1998 		        error = EOPNOTSUPP;
1999 			break;
2000 		}
2001 		ifnet_serialize_all(ifp);
2002 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2003 		ifnet_deserialize_all(ifp);
2004 		if (error == 0)
2005 			getmicrotime(&ifp->if_lastchange);
2006 		break;
2007 
2008 	case SIOCSIFMTU:
2009 	{
2010 		u_long oldmtu = ifp->if_mtu;
2011 
2012 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2013 		if (error)
2014 			break;
2015 		if (ifp->if_ioctl == NULL) {
2016 			error = EOPNOTSUPP;
2017 			break;
2018 		}
2019 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2020 			error = EINVAL;
2021 			break;
2022 		}
2023 		ifnet_serialize_all(ifp);
2024 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2025 		ifnet_deserialize_all(ifp);
2026 		if (error == 0) {
2027 			getmicrotime(&ifp->if_lastchange);
2028 			rt_ifmsg(ifp);
2029 		}
2030 		/*
2031 		 * If the link MTU changed, do network layer specific procedure.
2032 		 */
2033 		if (ifp->if_mtu != oldmtu) {
2034 #ifdef INET6
2035 			nd6_setmtu(ifp);
2036 #endif
2037 		}
2038 		break;
2039 	}
2040 
2041 	case SIOCSIFTSOLEN:
2042 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2043 		if (error)
2044 			break;
2045 
2046 		/* XXX need driver supplied upper limit */
2047 		if (ifr->ifr_tsolen <= 0) {
2048 			error = EINVAL;
2049 			break;
2050 		}
2051 		ifp->if_tsolen = ifr->ifr_tsolen;
2052 		break;
2053 
2054 	case SIOCADDMULTI:
2055 	case SIOCDELMULTI:
2056 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2057 		if (error)
2058 			break;
2059 
2060 		/* Don't allow group membership on non-multicast interfaces. */
2061 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2062 			error = EOPNOTSUPP;
2063 			break;
2064 		}
2065 
2066 		/* Don't let users screw up protocols' entries. */
2067 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2068 			error = EINVAL;
2069 			break;
2070 		}
2071 
2072 		if (cmd == SIOCADDMULTI) {
2073 			struct ifmultiaddr *ifma;
2074 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2075 		} else {
2076 			error = if_delmulti(ifp, &ifr->ifr_addr);
2077 		}
2078 		if (error == 0)
2079 			getmicrotime(&ifp->if_lastchange);
2080 		break;
2081 
2082 	case SIOCSIFPHYADDR:
2083 	case SIOCDIFPHYADDR:
2084 #ifdef INET6
2085 	case SIOCSIFPHYADDR_IN6:
2086 #endif
2087 	case SIOCSLIFPHYADDR:
2088         case SIOCSIFMEDIA:
2089 	case SIOCSIFGENERIC:
2090 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2091 		if (error)
2092 			break;
2093 		if (ifp->if_ioctl == 0) {
2094 			error = EOPNOTSUPP;
2095 			break;
2096 		}
2097 		ifnet_serialize_all(ifp);
2098 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2099 		ifnet_deserialize_all(ifp);
2100 		if (error == 0)
2101 			getmicrotime(&ifp->if_lastchange);
2102 		break;
2103 
2104 	case SIOCGIFSTATUS:
2105 		ifs = (struct ifstat *)data;
2106 		ifs->ascii[0] = '\0';
2107 		/* fall through */
2108 	case SIOCGIFPSRCADDR:
2109 	case SIOCGIFPDSTADDR:
2110 	case SIOCGLIFPHYADDR:
2111 	case SIOCGIFMEDIA:
2112 	case SIOCGIFGENERIC:
2113 		if (ifp->if_ioctl == NULL) {
2114 			error = EOPNOTSUPP;
2115 			break;
2116 		}
2117 		ifnet_serialize_all(ifp);
2118 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2119 		ifnet_deserialize_all(ifp);
2120 		break;
2121 
2122 	case SIOCSIFLLADDR:
2123 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2124 		if (error)
2125 			break;
2126 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2127 				     ifr->ifr_addr.sa_len);
2128 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2129 		break;
2130 
2131 	default:
2132 		oif_flags = ifp->if_flags;
2133 		if (so->so_proto == 0) {
2134 			error = EOPNOTSUPP;
2135 			break;
2136 		}
2137 #ifndef COMPAT_43
2138 		error = so_pru_control_direct(so, cmd, data, ifp);
2139 #else
2140 		ocmd = cmd;
2141 
2142 		switch (cmd) {
2143 		case SIOCSIFDSTADDR:
2144 		case SIOCSIFADDR:
2145 		case SIOCSIFBRDADDR:
2146 		case SIOCSIFNETMASK:
2147 #if BYTE_ORDER != BIG_ENDIAN
2148 			if (ifr->ifr_addr.sa_family == 0 &&
2149 			    ifr->ifr_addr.sa_len < 16) {
2150 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
2151 				ifr->ifr_addr.sa_len = 16;
2152 			}
2153 #else
2154 			if (ifr->ifr_addr.sa_len == 0)
2155 				ifr->ifr_addr.sa_len = 16;
2156 #endif
2157 			break;
2158 		case OSIOCGIFADDR:
2159 			cmd = SIOCGIFADDR;
2160 			break;
2161 		case OSIOCGIFDSTADDR:
2162 			cmd = SIOCGIFDSTADDR;
2163 			break;
2164 		case OSIOCGIFBRDADDR:
2165 			cmd = SIOCGIFBRDADDR;
2166 			break;
2167 		case OSIOCGIFNETMASK:
2168 			cmd = SIOCGIFNETMASK;
2169 			break;
2170 		default:
2171 			break;
2172 		}
2173 
2174 		error = so_pru_control_direct(so, cmd, data, ifp);
2175 
2176 		switch (ocmd) {
2177 		case OSIOCGIFADDR:
2178 		case OSIOCGIFDSTADDR:
2179 		case OSIOCGIFBRDADDR:
2180 		case OSIOCGIFNETMASK:
2181 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
2182 			break;
2183 		}
2184 #endif /* COMPAT_43 */
2185 
2186 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2187 #ifdef INET6
2188 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2189 			if (ifp->if_flags & IFF_UP) {
2190 				crit_enter();
2191 				in6_if_up(ifp);
2192 				crit_exit();
2193 			}
2194 #endif
2195 		}
2196 		break;
2197 	}
2198 
2199 	ifnet_unlock();
2200 	return (error);
2201 }
2202 
2203 /*
2204  * Set/clear promiscuous mode on interface ifp based on the truth value
2205  * of pswitch.  The calls are reference counted so that only the first
2206  * "on" request actually has an effect, as does the final "off" request.
2207  * Results are undefined if the "off" and "on" requests are not matched.
2208  */
2209 int
2210 ifpromisc(struct ifnet *ifp, int pswitch)
2211 {
2212 	struct ifreq ifr;
2213 	int error;
2214 	int oldflags;
2215 
2216 	oldflags = ifp->if_flags;
2217 	if (ifp->if_flags & IFF_PPROMISC) {
2218 		/* Do nothing if device is in permanently promiscuous mode */
2219 		ifp->if_pcount += pswitch ? 1 : -1;
2220 		return (0);
2221 	}
2222 	if (pswitch) {
2223 		/*
2224 		 * If the device is not configured up, we cannot put it in
2225 		 * promiscuous mode.
2226 		 */
2227 		if ((ifp->if_flags & IFF_UP) == 0)
2228 			return (ENETDOWN);
2229 		if (ifp->if_pcount++ != 0)
2230 			return (0);
2231 		ifp->if_flags |= IFF_PROMISC;
2232 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2233 		    ifp->if_xname);
2234 	} else {
2235 		if (--ifp->if_pcount > 0)
2236 			return (0);
2237 		ifp->if_flags &= ~IFF_PROMISC;
2238 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2239 		    ifp->if_xname);
2240 	}
2241 	ifr.ifr_flags = ifp->if_flags;
2242 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2243 	ifnet_serialize_all(ifp);
2244 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2245 	ifnet_deserialize_all(ifp);
2246 	if (error == 0)
2247 		rt_ifmsg(ifp);
2248 	else
2249 		ifp->if_flags = oldflags;
2250 	return error;
2251 }
2252 
2253 /*
2254  * Return interface configuration
2255  * of system.  List may be used
2256  * in later ioctl's (above) to get
2257  * other information.
2258  */
2259 static int
2260 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2261 {
2262 	struct ifconf *ifc = (struct ifconf *)data;
2263 	struct ifnet *ifp;
2264 	struct sockaddr *sa;
2265 	struct ifreq ifr, *ifrp;
2266 	int space = ifc->ifc_len, error = 0;
2267 
2268 	ifrp = ifc->ifc_req;
2269 
2270 	ifnet_lock();
2271 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2272 		struct ifaddr_container *ifac, *ifac_mark;
2273 		struct ifaddr_marker mark;
2274 		struct ifaddrhead *head;
2275 		int addrs;
2276 
2277 		if (space <= sizeof ifr)
2278 			break;
2279 
2280 		/*
2281 		 * Zero the stack declared structure first to prevent
2282 		 * memory disclosure.
2283 		 */
2284 		bzero(&ifr, sizeof(ifr));
2285 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2286 		    >= sizeof(ifr.ifr_name)) {
2287 			error = ENAMETOOLONG;
2288 			break;
2289 		}
2290 
2291 		/*
2292 		 * Add a marker, since copyout() could block and during that
2293 		 * period the list could be changed.  Inserting the marker to
2294 		 * the header of the list will not cause trouble for the code
2295 		 * assuming that the first element of the list is AF_LINK; the
2296 		 * marker will be moved to the next position w/o blocking.
2297 		 */
2298 		ifa_marker_init(&mark, ifp);
2299 		ifac_mark = &mark.ifac;
2300 		head = &ifp->if_addrheads[mycpuid];
2301 
2302 		addrs = 0;
2303 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2304 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2305 			struct ifaddr *ifa = ifac->ifa;
2306 
2307 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2308 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2309 
2310 			/* Ignore marker */
2311 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2312 				continue;
2313 
2314 			if (space <= sizeof ifr)
2315 				break;
2316 			sa = ifa->ifa_addr;
2317 			if (cred->cr_prison &&
2318 			    prison_if(cred, sa))
2319 				continue;
2320 			addrs++;
2321 			/*
2322 			 * Keep a reference on this ifaddr, so that it will
2323 			 * not be destroyed when its address is copied to
2324 			 * the userland, which could block.
2325 			 */
2326 			IFAREF(ifa);
2327 #ifdef COMPAT_43
2328 			if (cmd == OSIOCGIFCONF) {
2329 				struct osockaddr *osa =
2330 					 (struct osockaddr *)&ifr.ifr_addr;
2331 				ifr.ifr_addr = *sa;
2332 				osa->sa_family = sa->sa_family;
2333 				error = copyout(&ifr, ifrp, sizeof ifr);
2334 				ifrp++;
2335 			} else
2336 #endif
2337 			if (sa->sa_len <= sizeof(*sa)) {
2338 				ifr.ifr_addr = *sa;
2339 				error = copyout(&ifr, ifrp, sizeof ifr);
2340 				ifrp++;
2341 			} else {
2342 				if (space < (sizeof ifr) + sa->sa_len -
2343 					    sizeof(*sa)) {
2344 					IFAFREE(ifa);
2345 					break;
2346 				}
2347 				space -= sa->sa_len - sizeof(*sa);
2348 				error = copyout(&ifr, ifrp,
2349 						sizeof ifr.ifr_name);
2350 				if (error == 0)
2351 					error = copyout(sa, &ifrp->ifr_addr,
2352 							sa->sa_len);
2353 				ifrp = (struct ifreq *)
2354 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2355 			}
2356 			IFAFREE(ifa);
2357 			if (error)
2358 				break;
2359 			space -= sizeof ifr;
2360 		}
2361 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2362 		if (error)
2363 			break;
2364 		if (!addrs) {
2365 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2366 			error = copyout(&ifr, ifrp, sizeof ifr);
2367 			if (error)
2368 				break;
2369 			space -= sizeof ifr;
2370 			ifrp++;
2371 		}
2372 	}
2373 	ifnet_unlock();
2374 
2375 	ifc->ifc_len -= space;
2376 	return (error);
2377 }
2378 
2379 /*
2380  * Just like if_promisc(), but for all-multicast-reception mode.
2381  */
2382 int
2383 if_allmulti(struct ifnet *ifp, int onswitch)
2384 {
2385 	int error = 0;
2386 	struct ifreq ifr;
2387 
2388 	crit_enter();
2389 
2390 	if (onswitch) {
2391 		if (ifp->if_amcount++ == 0) {
2392 			ifp->if_flags |= IFF_ALLMULTI;
2393 			ifr.ifr_flags = ifp->if_flags;
2394 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2395 			ifnet_serialize_all(ifp);
2396 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2397 					      NULL);
2398 			ifnet_deserialize_all(ifp);
2399 		}
2400 	} else {
2401 		if (ifp->if_amcount > 1) {
2402 			ifp->if_amcount--;
2403 		} else {
2404 			ifp->if_amcount = 0;
2405 			ifp->if_flags &= ~IFF_ALLMULTI;
2406 			ifr.ifr_flags = ifp->if_flags;
2407 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2408 			ifnet_serialize_all(ifp);
2409 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2410 					      NULL);
2411 			ifnet_deserialize_all(ifp);
2412 		}
2413 	}
2414 
2415 	crit_exit();
2416 
2417 	if (error == 0)
2418 		rt_ifmsg(ifp);
2419 	return error;
2420 }
2421 
2422 /*
2423  * Add a multicast listenership to the interface in question.
2424  * The link layer provides a routine which converts
2425  */
2426 int
2427 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2428     struct ifmultiaddr **retifma)
2429 {
2430 	struct sockaddr *llsa, *dupsa;
2431 	int error;
2432 	struct ifmultiaddr *ifma;
2433 
2434 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2435 
2436 	/*
2437 	 * If the matching multicast address already exists
2438 	 * then don't add a new one, just add a reference
2439 	 */
2440 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2441 		if (sa_equal(sa, ifma->ifma_addr)) {
2442 			ifma->ifma_refcount++;
2443 			if (retifma)
2444 				*retifma = ifma;
2445 			return 0;
2446 		}
2447 	}
2448 
2449 	/*
2450 	 * Give the link layer a chance to accept/reject it, and also
2451 	 * find out which AF_LINK address this maps to, if it isn't one
2452 	 * already.
2453 	 */
2454 	if (ifp->if_resolvemulti) {
2455 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2456 		if (error)
2457 			return error;
2458 	} else {
2459 		llsa = NULL;
2460 	}
2461 
2462 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2463 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2464 	bcopy(sa, dupsa, sa->sa_len);
2465 
2466 	ifma->ifma_addr = dupsa;
2467 	ifma->ifma_lladdr = llsa;
2468 	ifma->ifma_ifp = ifp;
2469 	ifma->ifma_refcount = 1;
2470 	ifma->ifma_protospec = NULL;
2471 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2472 
2473 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2474 	if (retifma)
2475 		*retifma = ifma;
2476 
2477 	if (llsa != NULL) {
2478 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2479 			if (sa_equal(ifma->ifma_addr, llsa))
2480 				break;
2481 		}
2482 		if (ifma) {
2483 			ifma->ifma_refcount++;
2484 		} else {
2485 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2486 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2487 			bcopy(llsa, dupsa, llsa->sa_len);
2488 			ifma->ifma_addr = dupsa;
2489 			ifma->ifma_ifp = ifp;
2490 			ifma->ifma_refcount = 1;
2491 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2492 		}
2493 	}
2494 	/*
2495 	 * We are certain we have added something, so call down to the
2496 	 * interface to let them know about it.
2497 	 */
2498 	if (ifp->if_ioctl)
2499 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2500 
2501 	return 0;
2502 }
2503 
2504 int
2505 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2506     struct ifmultiaddr **retifma)
2507 {
2508 	int error;
2509 
2510 	ifnet_serialize_all(ifp);
2511 	error = if_addmulti_serialized(ifp, sa, retifma);
2512 	ifnet_deserialize_all(ifp);
2513 
2514 	return error;
2515 }
2516 
2517 /*
2518  * Remove a reference to a multicast address on this interface.  Yell
2519  * if the request does not match an existing membership.
2520  */
2521 static int
2522 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2523 {
2524 	struct ifmultiaddr *ifma;
2525 
2526 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2527 
2528 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2529 		if (sa_equal(sa, ifma->ifma_addr))
2530 			break;
2531 	if (ifma == NULL)
2532 		return ENOENT;
2533 
2534 	if (ifma->ifma_refcount > 1) {
2535 		ifma->ifma_refcount--;
2536 		return 0;
2537 	}
2538 
2539 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2540 	sa = ifma->ifma_lladdr;
2541 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2542 	/*
2543 	 * Make sure the interface driver is notified
2544 	 * in the case of a link layer mcast group being left.
2545 	 */
2546 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2547 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2548 	kfree(ifma->ifma_addr, M_IFMADDR);
2549 	kfree(ifma, M_IFMADDR);
2550 	if (sa == NULL)
2551 		return 0;
2552 
2553 	/*
2554 	 * Now look for the link-layer address which corresponds to
2555 	 * this network address.  It had been squirreled away in
2556 	 * ifma->ifma_lladdr for this purpose (so we don't have
2557 	 * to call ifp->if_resolvemulti() again), and we saved that
2558 	 * value in sa above.  If some nasty deleted the
2559 	 * link-layer address out from underneath us, we can deal because
2560 	 * the address we stored was is not the same as the one which was
2561 	 * in the record for the link-layer address.  (So we don't complain
2562 	 * in that case.)
2563 	 */
2564 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2565 		if (sa_equal(sa, ifma->ifma_addr))
2566 			break;
2567 	if (ifma == NULL)
2568 		return 0;
2569 
2570 	if (ifma->ifma_refcount > 1) {
2571 		ifma->ifma_refcount--;
2572 		return 0;
2573 	}
2574 
2575 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2576 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2577 	kfree(ifma->ifma_addr, M_IFMADDR);
2578 	kfree(sa, M_IFMADDR);
2579 	kfree(ifma, M_IFMADDR);
2580 
2581 	return 0;
2582 }
2583 
2584 int
2585 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2586 {
2587 	int error;
2588 
2589 	ifnet_serialize_all(ifp);
2590 	error = if_delmulti_serialized(ifp, sa);
2591 	ifnet_deserialize_all(ifp);
2592 
2593 	return error;
2594 }
2595 
2596 /*
2597  * Delete all multicast group membership for an interface.
2598  * Should be used to quickly flush all multicast filters.
2599  */
2600 void
2601 if_delallmulti_serialized(struct ifnet *ifp)
2602 {
2603 	struct ifmultiaddr *ifma, mark;
2604 	struct sockaddr sa;
2605 
2606 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2607 
2608 	bzero(&sa, sizeof(sa));
2609 	sa.sa_family = AF_UNSPEC;
2610 	sa.sa_len = sizeof(sa);
2611 
2612 	bzero(&mark, sizeof(mark));
2613 	mark.ifma_addr = &sa;
2614 
2615 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2616 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2617 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2618 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2619 		    ifma_link);
2620 
2621 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2622 			continue;
2623 
2624 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2625 	}
2626 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2627 }
2628 
2629 
2630 /*
2631  * Set the link layer address on an interface.
2632  *
2633  * At this time we only support certain types of interfaces,
2634  * and we don't allow the length of the address to change.
2635  */
2636 int
2637 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2638 {
2639 	struct sockaddr_dl *sdl;
2640 	struct ifreq ifr;
2641 
2642 	sdl = IF_LLSOCKADDR(ifp);
2643 	if (sdl == NULL)
2644 		return (EINVAL);
2645 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2646 		return (EINVAL);
2647 	switch (ifp->if_type) {
2648 	case IFT_ETHER:			/* these types use struct arpcom */
2649 	case IFT_XETHER:
2650 	case IFT_L2VLAN:
2651 	case IFT_IEEE8023ADLAG:
2652 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2653 		bcopy(lladdr, LLADDR(sdl), len);
2654 		break;
2655 	default:
2656 		return (ENODEV);
2657 	}
2658 	/*
2659 	 * If the interface is already up, we need
2660 	 * to re-init it in order to reprogram its
2661 	 * address filter.
2662 	 */
2663 	ifnet_serialize_all(ifp);
2664 	if ((ifp->if_flags & IFF_UP) != 0) {
2665 #ifdef INET
2666 		struct ifaddr_container *ifac;
2667 #endif
2668 
2669 		ifp->if_flags &= ~IFF_UP;
2670 		ifr.ifr_flags = ifp->if_flags;
2671 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2672 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2673 			      NULL);
2674 		ifp->if_flags |= IFF_UP;
2675 		ifr.ifr_flags = ifp->if_flags;
2676 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2677 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2678 				 NULL);
2679 #ifdef INET
2680 		/*
2681 		 * Also send gratuitous ARPs to notify other nodes about
2682 		 * the address change.
2683 		 */
2684 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2685 			struct ifaddr *ifa = ifac->ifa;
2686 
2687 			if (ifa->ifa_addr != NULL &&
2688 			    ifa->ifa_addr->sa_family == AF_INET)
2689 				arp_gratuitous(ifp, ifa);
2690 		}
2691 #endif
2692 	}
2693 	ifnet_deserialize_all(ifp);
2694 	return (0);
2695 }
2696 
2697 struct ifmultiaddr *
2698 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2699 {
2700 	struct ifmultiaddr *ifma;
2701 
2702 	/* TODO: need ifnet_serialize_main */
2703 	ifnet_serialize_all(ifp);
2704 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2705 		if (sa_equal(ifma->ifma_addr, sa))
2706 			break;
2707 	ifnet_deserialize_all(ifp);
2708 
2709 	return ifma;
2710 }
2711 
2712 /*
2713  * This function locates the first real ethernet MAC from a network
2714  * card and loads it into node, returning 0 on success or ENOENT if
2715  * no suitable interfaces were found.  It is used by the uuid code to
2716  * generate a unique 6-byte number.
2717  */
2718 int
2719 if_getanyethermac(uint16_t *node, int minlen)
2720 {
2721 	struct ifnet *ifp;
2722 	struct sockaddr_dl *sdl;
2723 
2724 	ifnet_lock();
2725 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2726 		if (ifp->if_type != IFT_ETHER)
2727 			continue;
2728 		sdl = IF_LLSOCKADDR(ifp);
2729 		if (sdl->sdl_alen < minlen)
2730 			continue;
2731 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2732 		      minlen);
2733 		ifnet_unlock();
2734 		return(0);
2735 	}
2736 	ifnet_unlock();
2737 	return (ENOENT);
2738 }
2739 
2740 /*
2741  * The name argument must be a pointer to storage which will last as
2742  * long as the interface does.  For physical devices, the result of
2743  * device_get_name(dev) is a good choice and for pseudo-devices a
2744  * static string works well.
2745  */
2746 void
2747 if_initname(struct ifnet *ifp, const char *name, int unit)
2748 {
2749 	ifp->if_dname = name;
2750 	ifp->if_dunit = unit;
2751 	if (unit != IF_DUNIT_NONE)
2752 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2753 	else
2754 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2755 }
2756 
2757 int
2758 if_printf(struct ifnet *ifp, const char *fmt, ...)
2759 {
2760 	__va_list ap;
2761 	int retval;
2762 
2763 	retval = kprintf("%s: ", ifp->if_xname);
2764 	__va_start(ap, fmt);
2765 	retval += kvprintf(fmt, ap);
2766 	__va_end(ap);
2767 	return (retval);
2768 }
2769 
2770 struct ifnet *
2771 if_alloc(uint8_t type)
2772 {
2773         struct ifnet *ifp;
2774 	size_t size;
2775 
2776 	/*
2777 	 * XXX temporary hack until arpcom is setup in if_l2com
2778 	 */
2779 	if (type == IFT_ETHER)
2780 		size = sizeof(struct arpcom);
2781 	else
2782 		size = sizeof(struct ifnet);
2783 
2784 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2785 
2786 	ifp->if_type = type;
2787 
2788 	if (if_com_alloc[type] != NULL) {
2789 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2790 		if (ifp->if_l2com == NULL) {
2791 			kfree(ifp, M_IFNET);
2792 			return (NULL);
2793 		}
2794 	}
2795 	return (ifp);
2796 }
2797 
2798 void
2799 if_free(struct ifnet *ifp)
2800 {
2801 	kfree(ifp, M_IFNET);
2802 }
2803 
2804 void
2805 ifq_set_classic(struct ifaltq *ifq)
2806 {
2807 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2808 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2809 }
2810 
2811 void
2812 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2813     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2814 {
2815 	int q;
2816 
2817 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2818 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2819 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2820 	KASSERT(request != NULL, ("request is not specified"));
2821 
2822 	ifq->altq_mapsubq = mapsubq;
2823 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2824 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2825 
2826 		ifsq->ifsq_enqueue = enqueue;
2827 		ifsq->ifsq_dequeue = dequeue;
2828 		ifsq->ifsq_request = request;
2829 	}
2830 }
2831 
2832 static void
2833 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2834 {
2835 	m->m_nextpkt = NULL;
2836 	if (ifsq->ifsq_norm_tail == NULL)
2837 		ifsq->ifsq_norm_head = m;
2838 	else
2839 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2840 	ifsq->ifsq_norm_tail = m;
2841 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2842 }
2843 
2844 static void
2845 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2846 {
2847 	m->m_nextpkt = NULL;
2848 	if (ifsq->ifsq_prio_tail == NULL)
2849 		ifsq->ifsq_prio_head = m;
2850 	else
2851 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2852 	ifsq->ifsq_prio_tail = m;
2853 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2854 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2855 }
2856 
2857 static struct mbuf *
2858 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2859 {
2860 	struct mbuf *m;
2861 
2862 	m = ifsq->ifsq_norm_head;
2863 	if (m != NULL) {
2864 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2865 			ifsq->ifsq_norm_tail = NULL;
2866 		m->m_nextpkt = NULL;
2867 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2868 	}
2869 	return m;
2870 }
2871 
2872 static struct mbuf *
2873 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2874 {
2875 	struct mbuf *m;
2876 
2877 	m = ifsq->ifsq_prio_head;
2878 	if (m != NULL) {
2879 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2880 			ifsq->ifsq_prio_tail = NULL;
2881 		m->m_nextpkt = NULL;
2882 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2883 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2884 	}
2885 	return m;
2886 }
2887 
2888 int
2889 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2890     struct altq_pktattr *pa __unused)
2891 {
2892 	M_ASSERTPKTHDR(m);
2893 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2894 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2895 		if ((m->m_flags & M_PRIO) &&
2896 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2897 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2898 			struct mbuf *m_drop;
2899 
2900 			/*
2901 			 * Perform drop-head on normal queue
2902 			 */
2903 			m_drop = ifsq_norm_dequeue(ifsq);
2904 			if (m_drop != NULL) {
2905 				m_freem(m_drop);
2906 				ifsq_prio_enqueue(ifsq, m);
2907 				return 0;
2908 			}
2909 			/* XXX nothing could be dropped? */
2910 		}
2911 		m_freem(m);
2912 		return ENOBUFS;
2913 	} else {
2914 		if (m->m_flags & M_PRIO)
2915 			ifsq_prio_enqueue(ifsq, m);
2916 		else
2917 			ifsq_norm_enqueue(ifsq, m);
2918 		return 0;
2919 	}
2920 }
2921 
2922 struct mbuf *
2923 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2924 {
2925 	struct mbuf *m;
2926 
2927 	switch (op) {
2928 	case ALTDQ_POLL:
2929 		m = ifsq->ifsq_prio_head;
2930 		if (m == NULL)
2931 			m = ifsq->ifsq_norm_head;
2932 		break;
2933 
2934 	case ALTDQ_REMOVE:
2935 		m = ifsq_prio_dequeue(ifsq);
2936 		if (m == NULL)
2937 			m = ifsq_norm_dequeue(ifsq);
2938 		break;
2939 
2940 	default:
2941 		panic("unsupported ALTQ dequeue op: %d", op);
2942 	}
2943 	return m;
2944 }
2945 
2946 int
2947 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2948 {
2949 	switch (req) {
2950 	case ALTRQ_PURGE:
2951 		for (;;) {
2952 			struct mbuf *m;
2953 
2954 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2955 			if (m == NULL)
2956 				break;
2957 			m_freem(m);
2958 		}
2959 		break;
2960 
2961 	default:
2962 		panic("unsupported ALTQ request: %d", req);
2963 	}
2964 	return 0;
2965 }
2966 
2967 static void
2968 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2969 {
2970 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2971 	int running = 0, need_sched;
2972 
2973 	/*
2974 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2975 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2976 	 * the subqueue will be scheduled on the subqueue owner CPU.
2977 	 */
2978 	if (!ifsq_tryserialize_hw(ifsq)) {
2979 		/*
2980 		 * Subqueue hardware serializer contention happened,
2981 		 * ifnet.if_start on the subqueue is scheduled on
2982 		 * the subqueue owner CPU, and we keep going.
2983 		 */
2984 		ifsq_ifstart_schedule(ifsq, 1);
2985 		return;
2986 	}
2987 
2988 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2989 		ifp->if_start(ifp, ifsq);
2990 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2991 			running = 1;
2992 	}
2993 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2994 
2995 	ifsq_deserialize_hw(ifsq);
2996 
2997 	if (need_sched) {
2998 		/*
2999 		 * More data need to be transmitted, ifnet.if_start on the
3000 		 * subqueue is scheduled on the subqueue owner CPU, and we
3001 		 * keep going.
3002 		 * NOTE: ifnet.if_start subqueue interlock is not released.
3003 		 */
3004 		ifsq_ifstart_schedule(ifsq, force_sched);
3005 	}
3006 }
3007 
3008 /*
3009  * Subqeue packets staging mechanism:
3010  *
3011  * The packets enqueued into the subqueue are staged to a certain amount
3012  * before the ifnet.if_start on the subqueue is called.  In this way, the
3013  * driver could avoid writing to hardware registers upon every packet,
3014  * instead, hardware registers could be written when certain amount of
3015  * packets are put onto hardware TX ring.  The measurement on several modern
3016  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
3017  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
3018  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
3019  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
3020  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
3021  *
3022  * Subqueue packets staging is performed for two entry points into drivers'
3023  * transmission function:
3024  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3025  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3026  *
3027  * Subqueue packets staging will be stopped upon any of the following
3028  * conditions:
3029  * - If the count of packets enqueued on the current CPU is great than or
3030  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3031  * - If the total length of packets enqueued on the current CPU is great
3032  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
3033  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3034  *   is usually less than hardware's MTU.
3035  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3036  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3037  *   released.
3038  * - The if_start_rollup(), which is registered as low priority netisr
3039  *   rollup function, is called; probably because no more work is pending
3040  *   for netisr.
3041  *
3042  * NOTE:
3043  * Currently subqueue packet staging is only performed in netisr threads.
3044  */
3045 int
3046 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3047 {
3048 	struct ifaltq *ifq = &ifp->if_snd;
3049 	struct ifaltq_subque *ifsq;
3050 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3051 	struct ifsubq_stage_head *head = NULL;
3052 	struct ifsubq_stage *stage = NULL;
3053 	struct globaldata *gd = mycpu;
3054 	struct thread *td = gd->gd_curthread;
3055 
3056 	crit_enter_quick(td);
3057 
3058 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3059 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3060 
3061 	len = m->m_pkthdr.len;
3062 	if (m->m_flags & M_MCAST)
3063 		mcast = 1;
3064 
3065 	if (td->td_type == TD_TYPE_NETISR) {
3066 		head = &ifsubq_stage_heads[mycpuid];
3067 		stage = ifsq_get_stage(ifsq, mycpuid);
3068 
3069 		stage->stg_cnt++;
3070 		stage->stg_len += len;
3071 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3072 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3073 			avoid_start = 1;
3074 	}
3075 
3076 	ALTQ_SQ_LOCK(ifsq);
3077 	error = ifsq_enqueue_locked(ifsq, m, pa);
3078 	if (error) {
3079 		IFNET_STAT_INC(ifp, oqdrops, 1);
3080 		if (!ifsq_data_ready(ifsq)) {
3081 			ALTQ_SQ_UNLOCK(ifsq);
3082 			crit_exit_quick(td);
3083 			return error;
3084 		}
3085 		avoid_start = 0;
3086 	}
3087 	if (!ifsq_is_started(ifsq)) {
3088 		if (avoid_start) {
3089 			ALTQ_SQ_UNLOCK(ifsq);
3090 
3091 			KKASSERT(!error);
3092 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3093 				ifsq_stage_insert(head, stage);
3094 
3095 			IFNET_STAT_INC(ifp, obytes, len);
3096 			if (mcast)
3097 				IFNET_STAT_INC(ifp, omcasts, 1);
3098 			crit_exit_quick(td);
3099 			return error;
3100 		}
3101 
3102 		/*
3103 		 * Hold the subqueue interlock of ifnet.if_start
3104 		 */
3105 		ifsq_set_started(ifsq);
3106 		start = 1;
3107 	}
3108 	ALTQ_SQ_UNLOCK(ifsq);
3109 
3110 	if (!error) {
3111 		IFNET_STAT_INC(ifp, obytes, len);
3112 		if (mcast)
3113 			IFNET_STAT_INC(ifp, omcasts, 1);
3114 	}
3115 
3116 	if (stage != NULL) {
3117 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3118 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3119 			if (!avoid_start) {
3120 				ifsq_stage_remove(head, stage);
3121 				ifsq_ifstart_schedule(ifsq, 1);
3122 			}
3123 			crit_exit_quick(td);
3124 			return error;
3125 		}
3126 
3127 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3128 			ifsq_stage_remove(head, stage);
3129 		} else {
3130 			stage->stg_cnt = 0;
3131 			stage->stg_len = 0;
3132 		}
3133 	}
3134 
3135 	if (!start) {
3136 		crit_exit_quick(td);
3137 		return error;
3138 	}
3139 
3140 	ifsq_ifstart_try(ifsq, 0);
3141 
3142 	crit_exit_quick(td);
3143 	return error;
3144 }
3145 
3146 void *
3147 ifa_create(int size)
3148 {
3149 	struct ifaddr *ifa;
3150 	int i;
3151 
3152 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3153 
3154 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3155 	ifa->ifa_containers =
3156 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3157 	        M_IFADDR, M_INTWAIT | M_ZERO);
3158 
3159 	ifa->ifa_ncnt = ncpus;
3160 	for (i = 0; i < ncpus; ++i) {
3161 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3162 
3163 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3164 		ifac->ifa = ifa;
3165 		ifac->ifa_refcnt = 1;
3166 	}
3167 #ifdef IFADDR_DEBUG
3168 	kprintf("alloc ifa %p %d\n", ifa, size);
3169 #endif
3170 	return ifa;
3171 }
3172 
3173 void
3174 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3175 {
3176 	struct ifaddr *ifa = ifac->ifa;
3177 
3178 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3179 	KKASSERT(ifac->ifa_refcnt == 0);
3180 	KASSERT(ifac->ifa_listmask == 0,
3181 		("ifa is still on %#x lists", ifac->ifa_listmask));
3182 
3183 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3184 
3185 #ifdef IFADDR_DEBUG_VERBOSE
3186 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3187 #endif
3188 
3189 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3190 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3191 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3192 #ifdef IFADDR_DEBUG
3193 		kprintf("free ifa %p\n", ifa);
3194 #endif
3195 		kfree(ifa->ifa_containers, M_IFADDR);
3196 		kfree(ifa, M_IFADDR);
3197 	}
3198 }
3199 
3200 static void
3201 ifa_iflink_dispatch(netmsg_t nmsg)
3202 {
3203 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3204 	struct ifaddr *ifa = msg->ifa;
3205 	struct ifnet *ifp = msg->ifp;
3206 	int cpu = mycpuid;
3207 	struct ifaddr_container *ifac;
3208 
3209 	crit_enter();
3210 
3211 	ifac = &ifa->ifa_containers[cpu];
3212 	ASSERT_IFAC_VALID(ifac);
3213 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3214 		("ifaddr is on if_addrheads"));
3215 
3216 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3217 	if (msg->tail)
3218 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3219 	else
3220 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3221 
3222 	crit_exit();
3223 
3224 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3225 }
3226 
3227 void
3228 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3229 {
3230 	struct netmsg_ifaddr msg;
3231 
3232 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3233 		    0, ifa_iflink_dispatch);
3234 	msg.ifa = ifa;
3235 	msg.ifp = ifp;
3236 	msg.tail = tail;
3237 
3238 	ifa_domsg(&msg.base.lmsg, 0);
3239 }
3240 
3241 static void
3242 ifa_ifunlink_dispatch(netmsg_t nmsg)
3243 {
3244 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3245 	struct ifaddr *ifa = msg->ifa;
3246 	struct ifnet *ifp = msg->ifp;
3247 	int cpu = mycpuid;
3248 	struct ifaddr_container *ifac;
3249 
3250 	crit_enter();
3251 
3252 	ifac = &ifa->ifa_containers[cpu];
3253 	ASSERT_IFAC_VALID(ifac);
3254 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3255 		("ifaddr is not on if_addrhead"));
3256 
3257 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3258 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3259 
3260 	crit_exit();
3261 
3262 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3263 }
3264 
3265 void
3266 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3267 {
3268 	struct netmsg_ifaddr msg;
3269 
3270 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3271 		    0, ifa_ifunlink_dispatch);
3272 	msg.ifa = ifa;
3273 	msg.ifp = ifp;
3274 
3275 	ifa_domsg(&msg.base.lmsg, 0);
3276 }
3277 
3278 static void
3279 ifa_destroy_dispatch(netmsg_t nmsg)
3280 {
3281 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3282 
3283 	IFAFREE(msg->ifa);
3284 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3285 }
3286 
3287 void
3288 ifa_destroy(struct ifaddr *ifa)
3289 {
3290 	struct netmsg_ifaddr msg;
3291 
3292 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3293 		    0, ifa_destroy_dispatch);
3294 	msg.ifa = ifa;
3295 
3296 	ifa_domsg(&msg.base.lmsg, 0);
3297 }
3298 
3299 struct lwkt_port *
3300 ifnet_portfn(int cpu)
3301 {
3302 	return &ifnet_threads[cpu]->td_msgport;
3303 }
3304 
3305 void
3306 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3307 {
3308 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3309 
3310 	if (next_cpu < ncpus)
3311 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3312 	else
3313 		lwkt_replymsg(lmsg, 0);
3314 }
3315 
3316 int
3317 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3318 {
3319 	KKASSERT(cpu < ncpus);
3320 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3321 }
3322 
3323 void
3324 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3325 {
3326 	KKASSERT(cpu < ncpus);
3327 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3328 }
3329 
3330 /*
3331  * Generic netmsg service loop.  Some protocols may roll their own but all
3332  * must do the basic command dispatch function call done here.
3333  */
3334 static void
3335 ifnet_service_loop(void *arg __unused)
3336 {
3337 	netmsg_t msg;
3338 
3339 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3340 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3341 		msg->base.nm_dispatch(msg);
3342 	}
3343 }
3344 
3345 static void
3346 if_start_rollup(void)
3347 {
3348 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3349 	struct ifsubq_stage *stage;
3350 
3351 	crit_enter();
3352 
3353 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3354 		struct ifaltq_subque *ifsq = stage->stg_subq;
3355 		int is_sched = 0;
3356 
3357 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3358 			is_sched = 1;
3359 		ifsq_stage_remove(head, stage);
3360 
3361 		if (is_sched) {
3362 			ifsq_ifstart_schedule(ifsq, 1);
3363 		} else {
3364 			int start = 0;
3365 
3366 			ALTQ_SQ_LOCK(ifsq);
3367 			if (!ifsq_is_started(ifsq)) {
3368 				/*
3369 				 * Hold the subqueue interlock of
3370 				 * ifnet.if_start
3371 				 */
3372 				ifsq_set_started(ifsq);
3373 				start = 1;
3374 			}
3375 			ALTQ_SQ_UNLOCK(ifsq);
3376 
3377 			if (start)
3378 				ifsq_ifstart_try(ifsq, 1);
3379 		}
3380 		KKASSERT((stage->stg_flags &
3381 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3382 	}
3383 
3384 	crit_exit();
3385 }
3386 
3387 static void
3388 ifnetinit(void *dummy __unused)
3389 {
3390 	int i;
3391 
3392 	for (i = 0; i < ncpus; ++i) {
3393 		struct thread **thr = &ifnet_threads[i];
3394 
3395 		lwkt_create(ifnet_service_loop, NULL, thr, NULL,
3396 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3397 			    i, "ifnet %d", i);
3398 		netmsg_service_port_init(&(*thr)->td_msgport);
3399 		lwkt_schedule(*thr);
3400 	}
3401 
3402 	for (i = 0; i < ncpus; ++i)
3403 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3404 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3405 }
3406 
3407 void
3408 if_register_com_alloc(u_char type,
3409     if_com_alloc_t *a, if_com_free_t *f)
3410 {
3411 
3412         KASSERT(if_com_alloc[type] == NULL,
3413             ("if_register_com_alloc: %d already registered", type));
3414         KASSERT(if_com_free[type] == NULL,
3415             ("if_register_com_alloc: %d free already registered", type));
3416 
3417         if_com_alloc[type] = a;
3418         if_com_free[type] = f;
3419 }
3420 
3421 void
3422 if_deregister_com_alloc(u_char type)
3423 {
3424 
3425         KASSERT(if_com_alloc[type] != NULL,
3426             ("if_deregister_com_alloc: %d not registered", type));
3427         KASSERT(if_com_free[type] != NULL,
3428             ("if_deregister_com_alloc: %d free not registered", type));
3429         if_com_alloc[type] = NULL;
3430         if_com_free[type] = NULL;
3431 }
3432 
3433 int
3434 if_ring_count2(int cnt, int cnt_max)
3435 {
3436 	int shift = 0;
3437 
3438 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3439 	    ("invalid ring count max %d", cnt_max));
3440 
3441 	if (cnt <= 0)
3442 		cnt = cnt_max;
3443 	if (cnt > ncpus2)
3444 		cnt = ncpus2;
3445 	if (cnt > cnt_max)
3446 		cnt = cnt_max;
3447 
3448 	while ((1 << (shift + 1)) <= cnt)
3449 		++shift;
3450 	cnt = 1 << shift;
3451 
3452 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3453 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3454 	     cnt, ncpus2, cnt_max));
3455 	return cnt;
3456 }
3457 
3458 void
3459 ifq_set_maxlen(struct ifaltq *ifq, int len)
3460 {
3461 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3462 }
3463 
3464 int
3465 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3466 {
3467 	return ALTQ_SUBQ_INDEX_DEFAULT;
3468 }
3469 
3470 int
3471 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3472 {
3473 	return (cpuid & ifq->altq_subq_mask);
3474 }
3475 
3476 static void
3477 ifsq_watchdog(void *arg)
3478 {
3479 	struct ifsubq_watchdog *wd = arg;
3480 	struct ifnet *ifp;
3481 
3482 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3483 		goto done;
3484 
3485 	ifp = ifsq_get_ifp(wd->wd_subq);
3486 	if (ifnet_tryserialize_all(ifp)) {
3487 		wd->wd_watchdog(wd->wd_subq);
3488 		ifnet_deserialize_all(ifp);
3489 	} else {
3490 		/* try again next timeout */
3491 		wd->wd_timer = 1;
3492 	}
3493 done:
3494 	ifsq_watchdog_reset(wd);
3495 }
3496 
3497 static void
3498 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3499 {
3500 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3501 	    ifsq_get_cpuid(wd->wd_subq));
3502 }
3503 
3504 void
3505 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3506     ifsq_watchdog_t watchdog)
3507 {
3508 	callout_init_mp(&wd->wd_callout);
3509 	wd->wd_timer = 0;
3510 	wd->wd_subq = ifsq;
3511 	wd->wd_watchdog = watchdog;
3512 }
3513 
3514 void
3515 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3516 {
3517 	wd->wd_timer = 0;
3518 	ifsq_watchdog_reset(wd);
3519 }
3520 
3521 void
3522 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3523 {
3524 	wd->wd_timer = 0;
3525 	callout_stop(&wd->wd_callout);
3526 }
3527 
3528 void
3529 ifnet_lock(void)
3530 {
3531 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3532 	    ("try holding ifnet lock in netisr"));
3533 	mtx_lock(&ifnet_mtx);
3534 }
3535 
3536 void
3537 ifnet_unlock(void)
3538 {
3539 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3540 	    ("try holding ifnet lock in netisr"));
3541 	mtx_unlock(&ifnet_mtx);
3542 }
3543 
3544 static struct ifnet_array *
3545 ifnet_array_alloc(int count)
3546 {
3547 	struct ifnet_array *arr;
3548 
3549 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3550 	    M_IFNET, M_WAITOK);
3551 	arr->ifnet_count = count;
3552 
3553 	return arr;
3554 }
3555 
3556 static void
3557 ifnet_array_free(struct ifnet_array *arr)
3558 {
3559 	if (arr == &ifnet_array0)
3560 		return;
3561 	kfree(arr, M_IFNET);
3562 }
3563 
3564 static struct ifnet_array *
3565 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3566 {
3567 	struct ifnet_array *arr;
3568 	int count, i;
3569 
3570 	KASSERT(old_arr->ifnet_count >= 0,
3571 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3572 	count = old_arr->ifnet_count + 1;
3573 	arr = ifnet_array_alloc(count);
3574 
3575 	/*
3576 	 * Save the old ifnet array and append this ifp to the end of
3577 	 * the new ifnet array.
3578 	 */
3579 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3580 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3581 		    ("%s is already in ifnet array", ifp->if_xname));
3582 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3583 	}
3584 	KASSERT(i == count - 1,
3585 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3586 	     ifp->if_xname, count - 1, i));
3587 	arr->ifnet_arr[i] = ifp;
3588 
3589 	return arr;
3590 }
3591 
3592 static struct ifnet_array *
3593 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3594 {
3595 	struct ifnet_array *arr;
3596 	int count, i, idx, found = 0;
3597 
3598 	KASSERT(old_arr->ifnet_count > 0,
3599 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3600 	count = old_arr->ifnet_count - 1;
3601 	arr = ifnet_array_alloc(count);
3602 
3603 	/*
3604 	 * Save the old ifnet array, but skip this ifp.
3605 	 */
3606 	idx = 0;
3607 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3608 		if (old_arr->ifnet_arr[i] == ifp) {
3609 			KASSERT(!found,
3610 			    ("dup %s is in ifnet array", ifp->if_xname));
3611 			found = 1;
3612 			continue;
3613 		}
3614 		KASSERT(idx < count,
3615 		    ("invalid ifnet array index %d, count %d", idx, count));
3616 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3617 		++idx;
3618 	}
3619 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3620 	KASSERT(idx == count,
3621 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3622 	     ifp->if_xname, count, idx));
3623 
3624 	return arr;
3625 }
3626 
3627 const struct ifnet_array *
3628 ifnet_array_get(void)
3629 {
3630 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3631 	return ifnet_array;
3632 }
3633 
3634 int
3635 ifnet_array_isempty(void)
3636 {
3637 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3638 	if (ifnet_array->ifnet_count == 0)
3639 		return 1;
3640 	else
3641 		return 0;
3642 }
3643 
3644 void
3645 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3646 {
3647 	struct ifaddr *ifa;
3648 
3649 	memset(mark, 0, sizeof(*mark));
3650 	ifa = &mark->ifa;
3651 
3652 	mark->ifac.ifa = ifa;
3653 
3654 	ifa->ifa_addr = &mark->addr;
3655 	ifa->ifa_dstaddr = &mark->dstaddr;
3656 	ifa->ifa_netmask = &mark->netmask;
3657 	ifa->ifa_ifp = ifp;
3658 }
3659