xref: /dragonfly/sys/net/if.c (revision 2983445f)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg_base base;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 static  if_com_alloc_t *if_com_alloc[256];
133 static  if_com_free_t *if_com_free[256];
134 
135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
138 
139 int			ifqmaxlen = IFQ_MAXLEN;
140 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
141 
142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
143 static int		ifq_dispatch_schedonly = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
145            &ifq_dispatch_schedonly, 0, "");
146 
147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
148 static int		ifq_dispatch_schednochk = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
150            &ifq_dispatch_schednochk, 0, "");
151 
152 /* In if_devstart(), try to do direct ifnet.if_start first */
153 static int		if_devstart_schedonly = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
155            &if_devstart_schedonly, 0, "");
156 
157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
158 static int		if_devstart_schednochk = 0;
159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
160            &if_devstart_schednochk, 0, "");
161 
162 #ifdef SMP
163 /* Schedule ifnet.if_start on the current CPU */
164 static int		if_start_oncpu_sched = 0;
165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
166            &if_start_oncpu_sched, 0, "");
167 #endif
168 
169 struct callout		if_slowtimo_timer;
170 
171 int			if_index = 0;
172 struct ifnet		**ifindex2ifnet = NULL;
173 static struct thread	ifnet_threads[MAXCPU];
174 
175 #define IFQ_KTR_STRING		"ifq=%p"
176 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
177 #ifndef KTR_IFQ
178 #define KTR_IFQ			KTR_ALL
179 #endif
180 KTR_INFO_MASTER(ifq);
181 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
182 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
183 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
184 
185 #define IF_START_KTR_STRING	"ifp=%p"
186 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
187 #ifndef KTR_IF_START
188 #define KTR_IF_START		KTR_ALL
189 #endif
190 KTR_INFO_MASTER(if_start);
191 KTR_INFO(KTR_IF_START, if_start, run, 0,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, sched, 1,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
198 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
199 #ifdef SMP
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
202 #endif
203 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
204 
205 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
206 
207 /*
208  * Network interface utility routines.
209  *
210  * Routines with ifa_ifwith* names take sockaddr *'s as
211  * parameters.
212  */
213 /* ARGSUSED*/
214 void
215 ifinit(void *dummy)
216 {
217 	struct ifnet *ifp;
218 
219 	callout_init(&if_slowtimo_timer);
220 
221 	crit_enter();
222 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
223 		if (ifp->if_snd.ifq_maxlen == 0) {
224 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
225 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
226 		}
227 	}
228 	crit_exit();
229 
230 	if_slowtimo(0);
231 }
232 
233 static int
234 if_start_cpuid(struct ifnet *ifp)
235 {
236 	return ifp->if_cpuid;
237 }
238 
239 #ifdef DEVICE_POLLING
240 static int
241 if_start_cpuid_poll(struct ifnet *ifp)
242 {
243 	int poll_cpuid = ifp->if_poll_cpuid;
244 
245 	if (poll_cpuid >= 0)
246 		return poll_cpuid;
247 	else
248 		return ifp->if_cpuid;
249 }
250 #endif
251 
252 static void
253 if_start_ipifunc(void *arg)
254 {
255 	struct ifnet *ifp = arg;
256 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg;
257 
258 	crit_enter();
259 	if (lmsg->ms_flags & MSGF_DONE)
260 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
261 	crit_exit();
262 }
263 
264 /*
265  * Schedule ifnet.if_start on ifnet's CPU
266  */
267 static void
268 if_start_schedule(struct ifnet *ifp)
269 {
270 #ifdef SMP
271 	int cpu;
272 
273 	if (if_start_oncpu_sched)
274 		cpu = mycpuid;
275 	else
276 		cpu = ifp->if_start_cpuid(ifp);
277 
278 	if (cpu != mycpuid)
279 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
280 	else
281 #endif
282 	if_start_ipifunc(ifp);
283 }
284 
285 /*
286  * NOTE:
287  * This function will release ifnet.if_start interlock,
288  * if ifnet.if_start does not need to be scheduled
289  */
290 static __inline int
291 if_start_need_schedule(struct ifaltq *ifq, int running)
292 {
293 	if (!running || ifq_is_empty(ifq)
294 #ifdef ALTQ
295 	    || ifq->altq_tbr != NULL
296 #endif
297 	) {
298 		ALTQ_LOCK(ifq);
299 		/*
300 		 * ifnet.if_start interlock is released, if:
301 		 * 1) Hardware can not take any packets, due to
302 		 *    o  interface is marked down
303 		 *    o  hardware queue is full (IFF_OACTIVE)
304 		 *    Under the second situation, hardware interrupt
305 		 *    or polling(4) will call/schedule ifnet.if_start
306 		 *    when hardware queue is ready
307 		 * 2) There is not packet in the ifnet.if_snd.
308 		 *    Further ifq_dispatch or ifq_handoff will call/
309 		 *    schedule ifnet.if_start
310 		 * 3) TBR is used and it does not allow further
311 		 *    dequeueing.
312 		 *    TBR callout will call ifnet.if_start
313 		 */
314 		if (!running || !ifq_data_ready(ifq)) {
315 			ifq->altq_started = 0;
316 			ALTQ_UNLOCK(ifq);
317 			return 0;
318 		}
319 		ALTQ_UNLOCK(ifq);
320 	}
321 	return 1;
322 }
323 
324 static void
325 if_start_dispatch(netmsg_t msg)
326 {
327 	struct lwkt_msg *lmsg = &msg->base.lmsg;
328 	struct ifnet *ifp = lmsg->u.ms_resultp;
329 	struct ifaltq *ifq = &ifp->if_snd;
330 	int running = 0;
331 
332 	crit_enter();
333 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
334 	crit_exit();
335 
336 #ifdef SMP
337 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
338 		/*
339 		 * If the ifnet is still up, we need to
340 		 * chase its CPU change.
341 		 */
342 		if (ifp->if_flags & IFF_UP) {
343 			logifstart(chase_sched, ifp);
344 			if_start_schedule(ifp);
345 			return;
346 		} else {
347 			goto check;
348 		}
349 	}
350 #endif
351 
352 	if (ifp->if_flags & IFF_UP) {
353 		ifnet_serialize_tx(ifp); /* XXX try? */
354 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
355 			logifstart(run, ifp);
356 			ifp->if_start(ifp);
357 			if ((ifp->if_flags &
358 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
359 				running = 1;
360 		}
361 		ifnet_deserialize_tx(ifp);
362 	}
363 #ifdef SMP
364 check:
365 #endif
366 	if (if_start_need_schedule(ifq, running)) {
367 		crit_enter();
368 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
369 			logifstart(sched, ifp);
370 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
371 		}
372 		crit_exit();
373 	}
374 }
375 
376 /* Device driver ifnet.if_start helper function */
377 void
378 if_devstart(struct ifnet *ifp)
379 {
380 	struct ifaltq *ifq = &ifp->if_snd;
381 	int running = 0;
382 
383 	ASSERT_IFNET_SERIALIZED_TX(ifp);
384 
385 	ALTQ_LOCK(ifq);
386 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
387 		logifstart(avoid, ifp);
388 		ALTQ_UNLOCK(ifq);
389 		return;
390 	}
391 	ifq->altq_started = 1;
392 	ALTQ_UNLOCK(ifq);
393 
394 	if (if_devstart_schedonly) {
395 		/*
396 		 * Always schedule ifnet.if_start on ifnet's CPU,
397 		 * short circuit the rest of this function.
398 		 */
399 		logifstart(sched, ifp);
400 		if_start_schedule(ifp);
401 		return;
402 	}
403 
404 	logifstart(run, ifp);
405 	ifp->if_start(ifp);
406 
407 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
408 		running = 1;
409 
410 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
411 		/*
412 		 * More data need to be transmitted, ifnet.if_start is
413 		 * scheduled on ifnet's CPU, and we keep going.
414 		 * NOTE: ifnet.if_start interlock is not released.
415 		 */
416 		logifstart(sched, ifp);
417 		if_start_schedule(ifp);
418 	}
419 }
420 
421 static void
422 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
423 {
424 	lwkt_serialize_enter(ifp->if_serializer);
425 }
426 
427 static void
428 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
429 {
430 	lwkt_serialize_exit(ifp->if_serializer);
431 }
432 
433 static int
434 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
435 {
436 	return lwkt_serialize_try(ifp->if_serializer);
437 }
438 
439 #ifdef INVARIANTS
440 static void
441 if_default_serialize_assert(struct ifnet *ifp,
442 			    enum ifnet_serialize slz __unused,
443 			    boolean_t serialized)
444 {
445 	if (serialized)
446 		ASSERT_SERIALIZED(ifp->if_serializer);
447 	else
448 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
449 }
450 #endif
451 
452 /*
453  * Attach an interface to the list of "active" interfaces.
454  *
455  * The serializer is optional.  If non-NULL access to the interface
456  * may be MPSAFE.
457  */
458 void
459 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
460 {
461 	unsigned socksize, ifasize;
462 	int namelen, masklen;
463 	struct sockaddr_dl *sdl;
464 	struct ifaddr *ifa;
465 	struct ifaltq *ifq;
466 	int i;
467 
468 	static int if_indexlim = 8;
469 
470 	if (ifp->if_serialize != NULL) {
471 		KASSERT(ifp->if_deserialize != NULL &&
472 			ifp->if_tryserialize != NULL &&
473 			ifp->if_serialize_assert != NULL,
474 			("serialize functions are partially setup\n"));
475 
476 		/*
477 		 * If the device supplies serialize functions,
478 		 * then clear if_serializer to catch any invalid
479 		 * usage of this field.
480 		 */
481 		KASSERT(serializer == NULL,
482 			("both serialize functions and default serializer "
483 			 "are supplied\n"));
484 		ifp->if_serializer = NULL;
485 	} else {
486 		KASSERT(ifp->if_deserialize == NULL &&
487 			ifp->if_tryserialize == NULL &&
488 			ifp->if_serialize_assert == NULL,
489 			("serialize functions are partially setup\n"));
490 		ifp->if_serialize = if_default_serialize;
491 		ifp->if_deserialize = if_default_deserialize;
492 		ifp->if_tryserialize = if_default_tryserialize;
493 #ifdef INVARIANTS
494 		ifp->if_serialize_assert = if_default_serialize_assert;
495 #endif
496 
497 		/*
498 		 * The serializer can be passed in from the device,
499 		 * allowing the same serializer to be used for both
500 		 * the interrupt interlock and the device queue.
501 		 * If not specified, the netif structure will use an
502 		 * embedded serializer.
503 		 */
504 		if (serializer == NULL) {
505 			serializer = &ifp->if_default_serializer;
506 			lwkt_serialize_init(serializer);
507 		}
508 		ifp->if_serializer = serializer;
509 	}
510 
511 	ifp->if_start_cpuid = if_start_cpuid;
512 	ifp->if_cpuid = 0;
513 
514 #ifdef DEVICE_POLLING
515 	/* Device is not in polling mode by default */
516 	ifp->if_poll_cpuid = -1;
517 	if (ifp->if_poll != NULL)
518 		ifp->if_start_cpuid = if_start_cpuid_poll;
519 #endif
520 
521 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg),
522 				     M_LWKTMSG, M_WAITOK);
523 	for (i = 0; i < ncpus; ++i) {
524 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
525 			    0, if_start_dispatch);
526 		ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp;
527 	}
528 
529 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
530 	ifp->if_index = ++if_index;
531 
532 	/*
533 	 * XXX -
534 	 * The old code would work if the interface passed a pre-existing
535 	 * chain of ifaddrs to this code.  We don't trust our callers to
536 	 * properly initialize the tailq, however, so we no longer allow
537 	 * this unlikely case.
538 	 */
539 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
540 				    M_IFADDR, M_WAITOK | M_ZERO);
541 	for (i = 0; i < ncpus; ++i)
542 		TAILQ_INIT(&ifp->if_addrheads[i]);
543 
544 	TAILQ_INIT(&ifp->if_prefixhead);
545 	TAILQ_INIT(&ifp->if_multiaddrs);
546 	TAILQ_INIT(&ifp->if_groups);
547 	getmicrotime(&ifp->if_lastchange);
548 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
549 		unsigned int n;
550 		struct ifnet **q;
551 
552 		if_indexlim <<= 1;
553 
554 		/* grow ifindex2ifnet */
555 		n = if_indexlim * sizeof(*q);
556 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
557 		if (ifindex2ifnet) {
558 			bcopy(ifindex2ifnet, q, n/2);
559 			kfree(ifindex2ifnet, M_IFADDR);
560 		}
561 		ifindex2ifnet = q;
562 	}
563 
564 	ifindex2ifnet[if_index] = ifp;
565 
566 	/*
567 	 * create a Link Level name for this device
568 	 */
569 	namelen = strlen(ifp->if_xname);
570 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
571 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
572 	socksize = masklen + ifp->if_addrlen;
573 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
574 	if (socksize < sizeof(*sdl))
575 		socksize = sizeof(*sdl);
576 	socksize = ROUNDUP(socksize);
577 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
578 	ifa = ifa_create(ifasize, M_WAITOK);
579 	sdl = (struct sockaddr_dl *)(ifa + 1);
580 	sdl->sdl_len = socksize;
581 	sdl->sdl_family = AF_LINK;
582 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
583 	sdl->sdl_nlen = namelen;
584 	sdl->sdl_index = ifp->if_index;
585 	sdl->sdl_type = ifp->if_type;
586 	ifp->if_lladdr = ifa;
587 	ifa->ifa_ifp = ifp;
588 	ifa->ifa_rtrequest = link_rtrequest;
589 	ifa->ifa_addr = (struct sockaddr *)sdl;
590 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
591 	ifa->ifa_netmask = (struct sockaddr *)sdl;
592 	sdl->sdl_len = masklen;
593 	while (namelen != 0)
594 		sdl->sdl_data[--namelen] = 0xff;
595 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
596 
597 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
598 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
599 
600 	ifq = &ifp->if_snd;
601 	ifq->altq_type = 0;
602 	ifq->altq_disc = NULL;
603 	ifq->altq_flags &= ALTQF_CANTCHANGE;
604 	ifq->altq_tbr = NULL;
605 	ifq->altq_ifp = ifp;
606 	ifq->altq_started = 0;
607 	ifq->altq_prepended = NULL;
608 	ALTQ_LOCK_INIT(ifq);
609 	ifq_set_classic(ifq);
610 
611 	if (!SLIST_EMPTY(&domains))
612 		if_attachdomain1(ifp);
613 
614 	/* Announce the interface. */
615 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
616 }
617 
618 static void
619 if_attachdomain(void *dummy)
620 {
621 	struct ifnet *ifp;
622 
623 	crit_enter();
624 	TAILQ_FOREACH(ifp, &ifnet, if_list)
625 		if_attachdomain1(ifp);
626 	crit_exit();
627 }
628 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
629 	if_attachdomain, NULL);
630 
631 static void
632 if_attachdomain1(struct ifnet *ifp)
633 {
634 	struct domain *dp;
635 
636 	crit_enter();
637 
638 	/* address family dependent data region */
639 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
640 	SLIST_FOREACH(dp, &domains, dom_next)
641 		if (dp->dom_ifattach)
642 			ifp->if_afdata[dp->dom_family] =
643 				(*dp->dom_ifattach)(ifp);
644 	crit_exit();
645 }
646 
647 /*
648  * Purge all addresses whose type is _not_ AF_LINK
649  */
650 void
651 if_purgeaddrs_nolink(struct ifnet *ifp)
652 {
653 	struct ifaddr_container *ifac, *next;
654 
655 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
656 			      ifa_link, next) {
657 		struct ifaddr *ifa = ifac->ifa;
658 
659 		/* Leave link ifaddr as it is */
660 		if (ifa->ifa_addr->sa_family == AF_LINK)
661 			continue;
662 #ifdef INET
663 		/* XXX: Ugly!! ad hoc just for INET */
664 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
665 			struct ifaliasreq ifr;
666 #ifdef IFADDR_DEBUG_VERBOSE
667 			int i;
668 
669 			kprintf("purge in4 addr %p: ", ifa);
670 			for (i = 0; i < ncpus; ++i)
671 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
672 			kprintf("\n");
673 #endif
674 
675 			bzero(&ifr, sizeof ifr);
676 			ifr.ifra_addr = *ifa->ifa_addr;
677 			if (ifa->ifa_dstaddr)
678 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
679 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
680 				       NULL) == 0)
681 				continue;
682 		}
683 #endif /* INET */
684 #ifdef INET6
685 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
686 #ifdef IFADDR_DEBUG_VERBOSE
687 			int i;
688 
689 			kprintf("purge in6 addr %p: ", ifa);
690 			for (i = 0; i < ncpus; ++i)
691 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
692 			kprintf("\n");
693 #endif
694 
695 			in6_purgeaddr(ifa);
696 			/* ifp_addrhead is already updated */
697 			continue;
698 		}
699 #endif /* INET6 */
700 		ifa_ifunlink(ifa, ifp);
701 		ifa_destroy(ifa);
702 	}
703 }
704 
705 /*
706  * Detach an interface, removing it from the
707  * list of "active" interfaces.
708  */
709 void
710 if_detach(struct ifnet *ifp)
711 {
712 	struct radix_node_head	*rnh;
713 	int i;
714 	int cpu, origcpu;
715 	struct domain *dp;
716 
717 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
718 
719 	/*
720 	 * Remove routes and flush queues.
721 	 */
722 	crit_enter();
723 #ifdef DEVICE_POLLING
724 	if (ifp->if_flags & IFF_POLLING)
725 		ether_poll_deregister(ifp);
726 #endif
727 #ifdef IFPOLL_ENABLE
728 	if (ifp->if_flags & IFF_NPOLLING)
729 		ifpoll_deregister(ifp);
730 #endif
731 	if_down(ifp);
732 
733 #ifdef ALTQ
734 	if (ifq_is_enabled(&ifp->if_snd))
735 		altq_disable(&ifp->if_snd);
736 	if (ifq_is_attached(&ifp->if_snd))
737 		altq_detach(&ifp->if_snd);
738 #endif
739 
740 	/*
741 	 * Clean up all addresses.
742 	 */
743 	ifp->if_lladdr = NULL;
744 
745 	if_purgeaddrs_nolink(ifp);
746 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
747 		struct ifaddr *ifa;
748 
749 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
750 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
751 			("non-link ifaddr is left on if_addrheads"));
752 
753 		ifa_ifunlink(ifa, ifp);
754 		ifa_destroy(ifa);
755 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
756 			("there are still ifaddrs left on if_addrheads"));
757 	}
758 
759 #ifdef INET
760 	/*
761 	 * Remove all IPv4 kernel structures related to ifp.
762 	 */
763 	in_ifdetach(ifp);
764 #endif
765 
766 #ifdef INET6
767 	/*
768 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
769 	 * before removing routing entries below, since IPv6 interface direct
770 	 * routes are expected to be removed by the IPv6-specific kernel API.
771 	 * Otherwise, the kernel will detect some inconsistency and bark it.
772 	 */
773 	in6_ifdetach(ifp);
774 #endif
775 
776 	/*
777 	 * Delete all remaining routes using this interface
778 	 * Unfortuneatly the only way to do this is to slog through
779 	 * the entire routing table looking for routes which point
780 	 * to this interface...oh well...
781 	 */
782 	origcpu = mycpuid;
783 	for (cpu = 0; cpu < ncpus2; cpu++) {
784 		lwkt_migratecpu(cpu);
785 		for (i = 1; i <= AF_MAX; i++) {
786 			if ((rnh = rt_tables[cpu][i]) == NULL)
787 				continue;
788 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
789 		}
790 	}
791 	lwkt_migratecpu(origcpu);
792 
793 	/* Announce that the interface is gone. */
794 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
795 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
796 
797 	SLIST_FOREACH(dp, &domains, dom_next)
798 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
799 			(*dp->dom_ifdetach)(ifp,
800 				ifp->if_afdata[dp->dom_family]);
801 
802 	/*
803 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
804 	 */
805 	ifindex2ifnet[ifp->if_index] = NULL;
806 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
807 		if_index--;
808 
809 	TAILQ_REMOVE(&ifnet, ifp, if_link);
810 	kfree(ifp->if_addrheads, M_IFADDR);
811 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
812 	crit_exit();
813 }
814 
815 /*
816  * Create interface group without members
817  */
818 struct ifg_group *
819 if_creategroup(const char *groupname)
820 {
821         struct ifg_group        *ifg = NULL;
822 
823         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
824             M_TEMP, M_NOWAIT)) == NULL)
825                 return (NULL);
826 
827         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
828         ifg->ifg_refcnt = 0;
829         ifg->ifg_carp_demoted = 0;
830         TAILQ_INIT(&ifg->ifg_members);
831 #if NPF > 0
832         pfi_attach_ifgroup(ifg);
833 #endif
834         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
835 
836         return (ifg);
837 }
838 
839 /*
840  * Add a group to an interface
841  */
842 int
843 if_addgroup(struct ifnet *ifp, const char *groupname)
844 {
845 	struct ifg_list		*ifgl;
846 	struct ifg_group	*ifg = NULL;
847 	struct ifg_member	*ifgm;
848 
849 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
850 	    groupname[strlen(groupname) - 1] <= '9')
851 		return (EINVAL);
852 
853 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
854 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
855 			return (EEXIST);
856 
857 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
858 		return (ENOMEM);
859 
860 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
861 		kfree(ifgl, M_TEMP);
862 		return (ENOMEM);
863 	}
864 
865 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
866 		if (!strcmp(ifg->ifg_group, groupname))
867 			break;
868 
869 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
870 		kfree(ifgl, M_TEMP);
871 		kfree(ifgm, M_TEMP);
872 		return (ENOMEM);
873 	}
874 
875 	ifg->ifg_refcnt++;
876 	ifgl->ifgl_group = ifg;
877 	ifgm->ifgm_ifp = ifp;
878 
879 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
880 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
881 
882 #if NPF > 0
883 	pfi_group_change(groupname);
884 #endif
885 
886 	return (0);
887 }
888 
889 /*
890  * Remove a group from an interface
891  */
892 int
893 if_delgroup(struct ifnet *ifp, const char *groupname)
894 {
895 	struct ifg_list		*ifgl;
896 	struct ifg_member	*ifgm;
897 
898 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
899 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
900 			break;
901 	if (ifgl == NULL)
902 		return (ENOENT);
903 
904 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
905 
906 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
907 		if (ifgm->ifgm_ifp == ifp)
908 			break;
909 
910 	if (ifgm != NULL) {
911 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
912 		kfree(ifgm, M_TEMP);
913 	}
914 
915 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
916 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
917 #if NPF > 0
918 		pfi_detach_ifgroup(ifgl->ifgl_group);
919 #endif
920 		kfree(ifgl->ifgl_group, M_TEMP);
921 	}
922 
923 	kfree(ifgl, M_TEMP);
924 
925 #if NPF > 0
926 	pfi_group_change(groupname);
927 #endif
928 
929 	return (0);
930 }
931 
932 /*
933  * Stores all groups from an interface in memory pointed
934  * to by data
935  */
936 int
937 if_getgroup(caddr_t data, struct ifnet *ifp)
938 {
939 	int			 len, error;
940 	struct ifg_list		*ifgl;
941 	struct ifg_req		 ifgrq, *ifgp;
942 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
943 
944 	if (ifgr->ifgr_len == 0) {
945 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
946 			ifgr->ifgr_len += sizeof(struct ifg_req);
947 		return (0);
948 	}
949 
950 	len = ifgr->ifgr_len;
951 	ifgp = ifgr->ifgr_groups;
952 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
953 		if (len < sizeof(ifgrq))
954 			return (EINVAL);
955 		bzero(&ifgrq, sizeof ifgrq);
956 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
957 		    sizeof(ifgrq.ifgrq_group));
958 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
959 		    sizeof(struct ifg_req))))
960 			return (error);
961 		len -= sizeof(ifgrq);
962 		ifgp++;
963 	}
964 
965 	return (0);
966 }
967 
968 /*
969  * Stores all members of a group in memory pointed to by data
970  */
971 int
972 if_getgroupmembers(caddr_t data)
973 {
974 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
975 	struct ifg_group	*ifg;
976 	struct ifg_member	*ifgm;
977 	struct ifg_req		 ifgrq, *ifgp;
978 	int			 len, error;
979 
980 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
981 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
982 			break;
983 	if (ifg == NULL)
984 		return (ENOENT);
985 
986 	if (ifgr->ifgr_len == 0) {
987 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
988 			ifgr->ifgr_len += sizeof(ifgrq);
989 		return (0);
990 	}
991 
992 	len = ifgr->ifgr_len;
993 	ifgp = ifgr->ifgr_groups;
994 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
995 		if (len < sizeof(ifgrq))
996 			return (EINVAL);
997 		bzero(&ifgrq, sizeof ifgrq);
998 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
999 		    sizeof(ifgrq.ifgrq_member));
1000 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1001 		    sizeof(struct ifg_req))))
1002 			return (error);
1003 		len -= sizeof(ifgrq);
1004 		ifgp++;
1005 	}
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Delete Routes for a Network Interface
1012  *
1013  * Called for each routing entry via the rnh->rnh_walktree() call above
1014  * to delete all route entries referencing a detaching network interface.
1015  *
1016  * Arguments:
1017  *	rn	pointer to node in the routing table
1018  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1019  *
1020  * Returns:
1021  *	0	successful
1022  *	errno	failed - reason indicated
1023  *
1024  */
1025 static int
1026 if_rtdel(struct radix_node *rn, void *arg)
1027 {
1028 	struct rtentry	*rt = (struct rtentry *)rn;
1029 	struct ifnet	*ifp = arg;
1030 	int		err;
1031 
1032 	if (rt->rt_ifp == ifp) {
1033 
1034 		/*
1035 		 * Protect (sorta) against walktree recursion problems
1036 		 * with cloned routes
1037 		 */
1038 		if (!(rt->rt_flags & RTF_UP))
1039 			return (0);
1040 
1041 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1042 				rt_mask(rt), rt->rt_flags,
1043 				NULL);
1044 		if (err) {
1045 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1046 		}
1047 	}
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Locate an interface based on a complete address.
1054  */
1055 struct ifaddr *
1056 ifa_ifwithaddr(struct sockaddr *addr)
1057 {
1058 	struct ifnet *ifp;
1059 
1060 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1061 		struct ifaddr_container *ifac;
1062 
1063 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1064 			struct ifaddr *ifa = ifac->ifa;
1065 
1066 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1067 				continue;
1068 			if (sa_equal(addr, ifa->ifa_addr))
1069 				return (ifa);
1070 			if ((ifp->if_flags & IFF_BROADCAST) &&
1071 			    ifa->ifa_broadaddr &&
1072 			    /* IPv6 doesn't have broadcast */
1073 			    ifa->ifa_broadaddr->sa_len != 0 &&
1074 			    sa_equal(ifa->ifa_broadaddr, addr))
1075 				return (ifa);
1076 		}
1077 	}
1078 	return (NULL);
1079 }
1080 /*
1081  * Locate the point to point interface with a given destination address.
1082  */
1083 struct ifaddr *
1084 ifa_ifwithdstaddr(struct sockaddr *addr)
1085 {
1086 	struct ifnet *ifp;
1087 
1088 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1089 		struct ifaddr_container *ifac;
1090 
1091 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1092 			continue;
1093 
1094 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1095 			struct ifaddr *ifa = ifac->ifa;
1096 
1097 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1098 				continue;
1099 			if (ifa->ifa_dstaddr &&
1100 			    sa_equal(addr, ifa->ifa_dstaddr))
1101 				return (ifa);
1102 		}
1103 	}
1104 	return (NULL);
1105 }
1106 
1107 /*
1108  * Find an interface on a specific network.  If many, choice
1109  * is most specific found.
1110  */
1111 struct ifaddr *
1112 ifa_ifwithnet(struct sockaddr *addr)
1113 {
1114 	struct ifnet *ifp;
1115 	struct ifaddr *ifa_maybe = NULL;
1116 	u_int af = addr->sa_family;
1117 	char *addr_data = addr->sa_data, *cplim;
1118 
1119 	/*
1120 	 * AF_LINK addresses can be looked up directly by their index number,
1121 	 * so do that if we can.
1122 	 */
1123 	if (af == AF_LINK) {
1124 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1125 
1126 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1127 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1128 	}
1129 
1130 	/*
1131 	 * Scan though each interface, looking for ones that have
1132 	 * addresses in this address family.
1133 	 */
1134 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1135 		struct ifaddr_container *ifac;
1136 
1137 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1138 			struct ifaddr *ifa = ifac->ifa;
1139 			char *cp, *cp2, *cp3;
1140 
1141 			if (ifa->ifa_addr->sa_family != af)
1142 next:				continue;
1143 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1144 				/*
1145 				 * This is a bit broken as it doesn't
1146 				 * take into account that the remote end may
1147 				 * be a single node in the network we are
1148 				 * looking for.
1149 				 * The trouble is that we don't know the
1150 				 * netmask for the remote end.
1151 				 */
1152 				if (ifa->ifa_dstaddr != NULL &&
1153 				    sa_equal(addr, ifa->ifa_dstaddr))
1154 					return (ifa);
1155 			} else {
1156 				/*
1157 				 * if we have a special address handler,
1158 				 * then use it instead of the generic one.
1159 				 */
1160 				if (ifa->ifa_claim_addr) {
1161 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1162 						return (ifa);
1163 					} else {
1164 						continue;
1165 					}
1166 				}
1167 
1168 				/*
1169 				 * Scan all the bits in the ifa's address.
1170 				 * If a bit dissagrees with what we are
1171 				 * looking for, mask it with the netmask
1172 				 * to see if it really matters.
1173 				 * (A byte at a time)
1174 				 */
1175 				if (ifa->ifa_netmask == 0)
1176 					continue;
1177 				cp = addr_data;
1178 				cp2 = ifa->ifa_addr->sa_data;
1179 				cp3 = ifa->ifa_netmask->sa_data;
1180 				cplim = ifa->ifa_netmask->sa_len +
1181 					(char *)ifa->ifa_netmask;
1182 				while (cp3 < cplim)
1183 					if ((*cp++ ^ *cp2++) & *cp3++)
1184 						goto next; /* next address! */
1185 				/*
1186 				 * If the netmask of what we just found
1187 				 * is more specific than what we had before
1188 				 * (if we had one) then remember the new one
1189 				 * before continuing to search
1190 				 * for an even better one.
1191 				 */
1192 				if (ifa_maybe == 0 ||
1193 				    rn_refines((char *)ifa->ifa_netmask,
1194 					       (char *)ifa_maybe->ifa_netmask))
1195 					ifa_maybe = ifa;
1196 			}
1197 		}
1198 	}
1199 	return (ifa_maybe);
1200 }
1201 
1202 /*
1203  * Find an interface address specific to an interface best matching
1204  * a given address.
1205  */
1206 struct ifaddr *
1207 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1208 {
1209 	struct ifaddr_container *ifac;
1210 	char *cp, *cp2, *cp3;
1211 	char *cplim;
1212 	struct ifaddr *ifa_maybe = 0;
1213 	u_int af = addr->sa_family;
1214 
1215 	if (af >= AF_MAX)
1216 		return (0);
1217 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1218 		struct ifaddr *ifa = ifac->ifa;
1219 
1220 		if (ifa->ifa_addr->sa_family != af)
1221 			continue;
1222 		if (ifa_maybe == 0)
1223 			ifa_maybe = ifa;
1224 		if (ifa->ifa_netmask == NULL) {
1225 			if (sa_equal(addr, ifa->ifa_addr) ||
1226 			    (ifa->ifa_dstaddr != NULL &&
1227 			     sa_equal(addr, ifa->ifa_dstaddr)))
1228 				return (ifa);
1229 			continue;
1230 		}
1231 		if (ifp->if_flags & IFF_POINTOPOINT) {
1232 			if (sa_equal(addr, ifa->ifa_dstaddr))
1233 				return (ifa);
1234 		} else {
1235 			cp = addr->sa_data;
1236 			cp2 = ifa->ifa_addr->sa_data;
1237 			cp3 = ifa->ifa_netmask->sa_data;
1238 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1239 			for (; cp3 < cplim; cp3++)
1240 				if ((*cp++ ^ *cp2++) & *cp3)
1241 					break;
1242 			if (cp3 == cplim)
1243 				return (ifa);
1244 		}
1245 	}
1246 	return (ifa_maybe);
1247 }
1248 
1249 /*
1250  * Default action when installing a route with a Link Level gateway.
1251  * Lookup an appropriate real ifa to point to.
1252  * This should be moved to /sys/net/link.c eventually.
1253  */
1254 static void
1255 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1256 {
1257 	struct ifaddr *ifa;
1258 	struct sockaddr *dst;
1259 	struct ifnet *ifp;
1260 
1261 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1262 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1263 		return;
1264 	ifa = ifaof_ifpforaddr(dst, ifp);
1265 	if (ifa != NULL) {
1266 		IFAFREE(rt->rt_ifa);
1267 		IFAREF(ifa);
1268 		rt->rt_ifa = ifa;
1269 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1270 			ifa->ifa_rtrequest(cmd, rt, info);
1271 	}
1272 }
1273 
1274 /*
1275  * Mark an interface down and notify protocols of
1276  * the transition.
1277  * NOTE: must be called at splnet or eqivalent.
1278  */
1279 void
1280 if_unroute(struct ifnet *ifp, int flag, int fam)
1281 {
1282 	struct ifaddr_container *ifac;
1283 
1284 	ifp->if_flags &= ~flag;
1285 	getmicrotime(&ifp->if_lastchange);
1286 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1287 		struct ifaddr *ifa = ifac->ifa;
1288 
1289 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1290 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1291 	}
1292 	ifq_purge(&ifp->if_snd);
1293 	rt_ifmsg(ifp);
1294 }
1295 
1296 /*
1297  * Mark an interface up and notify protocols of
1298  * the transition.
1299  * NOTE: must be called at splnet or eqivalent.
1300  */
1301 void
1302 if_route(struct ifnet *ifp, int flag, int fam)
1303 {
1304 	struct ifaddr_container *ifac;
1305 
1306 	ifq_purge(&ifp->if_snd);
1307 	ifp->if_flags |= flag;
1308 	getmicrotime(&ifp->if_lastchange);
1309 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1310 		struct ifaddr *ifa = ifac->ifa;
1311 
1312 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1313 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1314 	}
1315 	rt_ifmsg(ifp);
1316 #ifdef INET6
1317 	in6_if_up(ifp);
1318 #endif
1319 }
1320 
1321 /*
1322  * Mark an interface down and notify protocols of the transition.  An
1323  * interface going down is also considered to be a synchronizing event.
1324  * We must ensure that all packet processing related to the interface
1325  * has completed before we return so e.g. the caller can free the ifnet
1326  * structure that the mbufs may be referencing.
1327  *
1328  * NOTE: must be called at splnet or eqivalent.
1329  */
1330 void
1331 if_down(struct ifnet *ifp)
1332 {
1333 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1334 	netmsg_service_sync();
1335 }
1336 
1337 /*
1338  * Mark an interface up and notify protocols of
1339  * the transition.
1340  * NOTE: must be called at splnet or eqivalent.
1341  */
1342 void
1343 if_up(struct ifnet *ifp)
1344 {
1345 	if_route(ifp, IFF_UP, AF_UNSPEC);
1346 }
1347 
1348 /*
1349  * Process a link state change.
1350  * NOTE: must be called at splsoftnet or equivalent.
1351  */
1352 void
1353 if_link_state_change(struct ifnet *ifp)
1354 {
1355 	int link_state = ifp->if_link_state;
1356 
1357 	rt_ifmsg(ifp);
1358 	devctl_notify("IFNET", ifp->if_xname,
1359 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1360 }
1361 
1362 /*
1363  * Handle interface watchdog timer routines.  Called
1364  * from softclock, we decrement timers (if set) and
1365  * call the appropriate interface routine on expiration.
1366  */
1367 static void
1368 if_slowtimo(void *arg)
1369 {
1370 	struct ifnet *ifp;
1371 
1372 	crit_enter();
1373 
1374 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1375 		if (ifp->if_timer == 0 || --ifp->if_timer)
1376 			continue;
1377 		if (ifp->if_watchdog) {
1378 			if (ifnet_tryserialize_all(ifp)) {
1379 				(*ifp->if_watchdog)(ifp);
1380 				ifnet_deserialize_all(ifp);
1381 			} else {
1382 				/* try again next timeout */
1383 				++ifp->if_timer;
1384 			}
1385 		}
1386 	}
1387 
1388 	crit_exit();
1389 
1390 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1391 }
1392 
1393 /*
1394  * Map interface name to
1395  * interface structure pointer.
1396  */
1397 struct ifnet *
1398 ifunit(const char *name)
1399 {
1400 	struct ifnet *ifp;
1401 
1402 	/*
1403 	 * Search all the interfaces for this name/number
1404 	 */
1405 
1406 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1407 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1408 			break;
1409 	}
1410 	return (ifp);
1411 }
1412 
1413 
1414 /*
1415  * Map interface name in a sockaddr_dl to
1416  * interface structure pointer.
1417  */
1418 struct ifnet *
1419 if_withname(struct sockaddr *sa)
1420 {
1421 	char ifname[IFNAMSIZ+1];
1422 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1423 
1424 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1425 	     (sdl->sdl_nlen > IFNAMSIZ) )
1426 		return NULL;
1427 
1428 	/*
1429 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1430 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1431 	 * and there might not be room to put the trailing null anyway, so we
1432 	 * make a local copy that we know we can null terminate safely.
1433 	 */
1434 
1435 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1436 	ifname[sdl->sdl_nlen] = '\0';
1437 	return ifunit(ifname);
1438 }
1439 
1440 
1441 /*
1442  * Interface ioctls.
1443  */
1444 int
1445 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1446 {
1447 	struct ifnet *ifp;
1448 	struct ifreq *ifr;
1449 	struct ifstat *ifs;
1450 	int error;
1451 	short oif_flags;
1452 	int new_flags;
1453 	size_t namelen, onamelen;
1454 	char new_name[IFNAMSIZ];
1455 	struct ifaddr *ifa;
1456 	struct sockaddr_dl *sdl;
1457 
1458 	switch (cmd) {
1459 
1460 	case SIOCGIFCONF:
1461 	case OSIOCGIFCONF:
1462 		return (ifconf(cmd, data, cred));
1463 	}
1464 	ifr = (struct ifreq *)data;
1465 
1466 	switch (cmd) {
1467 	case SIOCIFCREATE:
1468 	case SIOCIFCREATE2:
1469 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1470 			return (error);
1471 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1472 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1473 	case SIOCIFDESTROY:
1474 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1475 			return (error);
1476 		return (if_clone_destroy(ifr->ifr_name));
1477 
1478 	case SIOCIFGCLONERS:
1479 		return (if_clone_list((struct if_clonereq *)data));
1480 	}
1481 
1482 	ifp = ifunit(ifr->ifr_name);
1483 	if (ifp == 0)
1484 		return (ENXIO);
1485 	switch (cmd) {
1486 
1487 	case SIOCGIFINDEX:
1488 		ifr->ifr_index = ifp->if_index;
1489 		break;
1490 
1491 	case SIOCGIFFLAGS:
1492 		ifr->ifr_flags = ifp->if_flags;
1493 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1494 		break;
1495 
1496 	case SIOCGIFCAP:
1497 		ifr->ifr_reqcap = ifp->if_capabilities;
1498 		ifr->ifr_curcap = ifp->if_capenable;
1499 		break;
1500 
1501 	case SIOCGIFMETRIC:
1502 		ifr->ifr_metric = ifp->if_metric;
1503 		break;
1504 
1505 	case SIOCGIFMTU:
1506 		ifr->ifr_mtu = ifp->if_mtu;
1507 		break;
1508 
1509 	case SIOCGIFDATA:
1510 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1511 		    sizeof(ifp->if_data));
1512 		break;
1513 
1514 
1515 	case SIOCGIFPHYS:
1516 		ifr->ifr_phys = ifp->if_physical;
1517 		break;
1518 
1519 	case SIOCGIFPOLLCPU:
1520 #ifdef DEVICE_POLLING
1521 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1522 #else
1523 		ifr->ifr_pollcpu = -1;
1524 #endif
1525 		break;
1526 
1527 	case SIOCSIFPOLLCPU:
1528 #ifdef DEVICE_POLLING
1529 		if ((ifp->if_flags & IFF_POLLING) == 0)
1530 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1531 #endif
1532 		break;
1533 
1534 	case SIOCSIFFLAGS:
1535 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1536 		if (error)
1537 			return (error);
1538 		new_flags = (ifr->ifr_flags & 0xffff) |
1539 		    (ifr->ifr_flagshigh << 16);
1540 		if (ifp->if_flags & IFF_SMART) {
1541 			/* Smart drivers twiddle their own routes */
1542 		} else if (ifp->if_flags & IFF_UP &&
1543 		    (new_flags & IFF_UP) == 0) {
1544 			crit_enter();
1545 			if_down(ifp);
1546 			crit_exit();
1547 		} else if (new_flags & IFF_UP &&
1548 		    (ifp->if_flags & IFF_UP) == 0) {
1549 			crit_enter();
1550 			if_up(ifp);
1551 			crit_exit();
1552 		}
1553 
1554 #ifdef DEVICE_POLLING
1555 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1556 			if (new_flags & IFF_POLLING) {
1557 				ether_poll_register(ifp);
1558 			} else {
1559 				ether_poll_deregister(ifp);
1560 			}
1561 		}
1562 #endif
1563 #ifdef IFPOLL_ENABLE
1564 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1565 			if (new_flags & IFF_NPOLLING)
1566 				ifpoll_register(ifp);
1567 			else
1568 				ifpoll_deregister(ifp);
1569 		}
1570 #endif
1571 
1572 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1573 			(new_flags &~ IFF_CANTCHANGE);
1574 		if (new_flags & IFF_PPROMISC) {
1575 			/* Permanently promiscuous mode requested */
1576 			ifp->if_flags |= IFF_PROMISC;
1577 		} else if (ifp->if_pcount == 0) {
1578 			ifp->if_flags &= ~IFF_PROMISC;
1579 		}
1580 		if (ifp->if_ioctl) {
1581 			ifnet_serialize_all(ifp);
1582 			ifp->if_ioctl(ifp, cmd, data, cred);
1583 			ifnet_deserialize_all(ifp);
1584 		}
1585 		getmicrotime(&ifp->if_lastchange);
1586 		break;
1587 
1588 	case SIOCSIFCAP:
1589 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1590 		if (error)
1591 			return (error);
1592 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1593 			return (EINVAL);
1594 		ifnet_serialize_all(ifp);
1595 		ifp->if_ioctl(ifp, cmd, data, cred);
1596 		ifnet_deserialize_all(ifp);
1597 		break;
1598 
1599 	case SIOCSIFNAME:
1600 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1601 		if (error != 0)
1602 			return (error);
1603 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1604 		if (error != 0)
1605 			return (error);
1606 		if (new_name[0] == '\0')
1607 			return (EINVAL);
1608 		if (ifunit(new_name) != NULL)
1609 			return (EEXIST);
1610 
1611 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1612 
1613 		/* Announce the departure of the interface. */
1614 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1615 
1616 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1617 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1618 		/* XXX IFA_LOCK(ifa); */
1619 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1620 		namelen = strlen(new_name);
1621 		onamelen = sdl->sdl_nlen;
1622 		/*
1623 		 * Move the address if needed.  This is safe because we
1624 		 * allocate space for a name of length IFNAMSIZ when we
1625 		 * create this in if_attach().
1626 		 */
1627 		if (namelen != onamelen) {
1628 			bcopy(sdl->sdl_data + onamelen,
1629 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1630 		}
1631 		bcopy(new_name, sdl->sdl_data, namelen);
1632 		sdl->sdl_nlen = namelen;
1633 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1634 		bzero(sdl->sdl_data, onamelen);
1635 		while (namelen != 0)
1636 			sdl->sdl_data[--namelen] = 0xff;
1637 		/* XXX IFA_UNLOCK(ifa) */
1638 
1639 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1640 
1641 		/* Announce the return of the interface. */
1642 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1643 		break;
1644 
1645 	case SIOCSIFMETRIC:
1646 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1647 		if (error)
1648 			return (error);
1649 		ifp->if_metric = ifr->ifr_metric;
1650 		getmicrotime(&ifp->if_lastchange);
1651 		break;
1652 
1653 	case SIOCSIFPHYS:
1654 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1655 		if (error)
1656 			return error;
1657 		if (!ifp->if_ioctl)
1658 		        return EOPNOTSUPP;
1659 		ifnet_serialize_all(ifp);
1660 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1661 		ifnet_deserialize_all(ifp);
1662 		if (error == 0)
1663 			getmicrotime(&ifp->if_lastchange);
1664 		return (error);
1665 
1666 	case SIOCSIFMTU:
1667 	{
1668 		u_long oldmtu = ifp->if_mtu;
1669 
1670 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1671 		if (error)
1672 			return (error);
1673 		if (ifp->if_ioctl == NULL)
1674 			return (EOPNOTSUPP);
1675 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1676 			return (EINVAL);
1677 		ifnet_serialize_all(ifp);
1678 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1679 		ifnet_deserialize_all(ifp);
1680 		if (error == 0) {
1681 			getmicrotime(&ifp->if_lastchange);
1682 			rt_ifmsg(ifp);
1683 		}
1684 		/*
1685 		 * If the link MTU changed, do network layer specific procedure.
1686 		 */
1687 		if (ifp->if_mtu != oldmtu) {
1688 #ifdef INET6
1689 			nd6_setmtu(ifp);
1690 #endif
1691 		}
1692 		return (error);
1693 	}
1694 
1695 	case SIOCADDMULTI:
1696 	case SIOCDELMULTI:
1697 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1698 		if (error)
1699 			return (error);
1700 
1701 		/* Don't allow group membership on non-multicast interfaces. */
1702 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1703 			return EOPNOTSUPP;
1704 
1705 		/* Don't let users screw up protocols' entries. */
1706 		if (ifr->ifr_addr.sa_family != AF_LINK)
1707 			return EINVAL;
1708 
1709 		if (cmd == SIOCADDMULTI) {
1710 			struct ifmultiaddr *ifma;
1711 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1712 		} else {
1713 			error = if_delmulti(ifp, &ifr->ifr_addr);
1714 		}
1715 		if (error == 0)
1716 			getmicrotime(&ifp->if_lastchange);
1717 		return error;
1718 
1719 	case SIOCSIFPHYADDR:
1720 	case SIOCDIFPHYADDR:
1721 #ifdef INET6
1722 	case SIOCSIFPHYADDR_IN6:
1723 #endif
1724 	case SIOCSLIFPHYADDR:
1725         case SIOCSIFMEDIA:
1726 	case SIOCSIFGENERIC:
1727 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1728 		if (error)
1729 			return (error);
1730 		if (ifp->if_ioctl == 0)
1731 			return (EOPNOTSUPP);
1732 		ifnet_serialize_all(ifp);
1733 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1734 		ifnet_deserialize_all(ifp);
1735 		if (error == 0)
1736 			getmicrotime(&ifp->if_lastchange);
1737 		return error;
1738 
1739 	case SIOCGIFSTATUS:
1740 		ifs = (struct ifstat *)data;
1741 		ifs->ascii[0] = '\0';
1742 
1743 	case SIOCGIFPSRCADDR:
1744 	case SIOCGIFPDSTADDR:
1745 	case SIOCGLIFPHYADDR:
1746 	case SIOCGIFMEDIA:
1747 	case SIOCGIFGENERIC:
1748 		if (ifp->if_ioctl == NULL)
1749 			return (EOPNOTSUPP);
1750 		ifnet_serialize_all(ifp);
1751 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1752 		ifnet_deserialize_all(ifp);
1753 		return (error);
1754 
1755 	case SIOCSIFLLADDR:
1756 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1757 		if (error)
1758 			return (error);
1759 		error = if_setlladdr(ifp,
1760 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1761 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1762 		return (error);
1763 
1764 	default:
1765 		oif_flags = ifp->if_flags;
1766 		if (so->so_proto == 0)
1767 			return (EOPNOTSUPP);
1768 #ifndef COMPAT_43
1769 		error = so_pru_control_direct(so, cmd, data, ifp);
1770 #else
1771 	    {
1772 		int ocmd = cmd;
1773 
1774 		switch (cmd) {
1775 
1776 		case SIOCSIFDSTADDR:
1777 		case SIOCSIFADDR:
1778 		case SIOCSIFBRDADDR:
1779 		case SIOCSIFNETMASK:
1780 #if BYTE_ORDER != BIG_ENDIAN
1781 			if (ifr->ifr_addr.sa_family == 0 &&
1782 			    ifr->ifr_addr.sa_len < 16) {
1783 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1784 				ifr->ifr_addr.sa_len = 16;
1785 			}
1786 #else
1787 			if (ifr->ifr_addr.sa_len == 0)
1788 				ifr->ifr_addr.sa_len = 16;
1789 #endif
1790 			break;
1791 
1792 		case OSIOCGIFADDR:
1793 			cmd = SIOCGIFADDR;
1794 			break;
1795 
1796 		case OSIOCGIFDSTADDR:
1797 			cmd = SIOCGIFDSTADDR;
1798 			break;
1799 
1800 		case OSIOCGIFBRDADDR:
1801 			cmd = SIOCGIFBRDADDR;
1802 			break;
1803 
1804 		case OSIOCGIFNETMASK:
1805 			cmd = SIOCGIFNETMASK;
1806 		}
1807 
1808 		error = so_pru_control_direct(so, cmd, data, ifp);
1809 
1810 		switch (ocmd) {
1811 		case OSIOCGIFADDR:
1812 		case OSIOCGIFDSTADDR:
1813 		case OSIOCGIFBRDADDR:
1814 		case OSIOCGIFNETMASK:
1815 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1816 			break;
1817 		}
1818 	    }
1819 #endif /* COMPAT_43 */
1820 
1821 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1822 #ifdef INET6
1823 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1824 			if (ifp->if_flags & IFF_UP) {
1825 				crit_enter();
1826 				in6_if_up(ifp);
1827 				crit_exit();
1828 			}
1829 #endif
1830 		}
1831 		return (error);
1832 
1833 	}
1834 	return (0);
1835 }
1836 
1837 /*
1838  * Set/clear promiscuous mode on interface ifp based on the truth value
1839  * of pswitch.  The calls are reference counted so that only the first
1840  * "on" request actually has an effect, as does the final "off" request.
1841  * Results are undefined if the "off" and "on" requests are not matched.
1842  */
1843 int
1844 ifpromisc(struct ifnet *ifp, int pswitch)
1845 {
1846 	struct ifreq ifr;
1847 	int error;
1848 	int oldflags;
1849 
1850 	oldflags = ifp->if_flags;
1851 	if (ifp->if_flags & IFF_PPROMISC) {
1852 		/* Do nothing if device is in permanently promiscuous mode */
1853 		ifp->if_pcount += pswitch ? 1 : -1;
1854 		return (0);
1855 	}
1856 	if (pswitch) {
1857 		/*
1858 		 * If the device is not configured up, we cannot put it in
1859 		 * promiscuous mode.
1860 		 */
1861 		if ((ifp->if_flags & IFF_UP) == 0)
1862 			return (ENETDOWN);
1863 		if (ifp->if_pcount++ != 0)
1864 			return (0);
1865 		ifp->if_flags |= IFF_PROMISC;
1866 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1867 		    ifp->if_xname);
1868 	} else {
1869 		if (--ifp->if_pcount > 0)
1870 			return (0);
1871 		ifp->if_flags &= ~IFF_PROMISC;
1872 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1873 		    ifp->if_xname);
1874 	}
1875 	ifr.ifr_flags = ifp->if_flags;
1876 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1877 	ifnet_serialize_all(ifp);
1878 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1879 	ifnet_deserialize_all(ifp);
1880 	if (error == 0)
1881 		rt_ifmsg(ifp);
1882 	else
1883 		ifp->if_flags = oldflags;
1884 	return error;
1885 }
1886 
1887 /*
1888  * Return interface configuration
1889  * of system.  List may be used
1890  * in later ioctl's (above) to get
1891  * other information.
1892  */
1893 static int
1894 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1895 {
1896 	struct ifconf *ifc = (struct ifconf *)data;
1897 	struct ifnet *ifp;
1898 	struct sockaddr *sa;
1899 	struct ifreq ifr, *ifrp;
1900 	int space = ifc->ifc_len, error = 0;
1901 
1902 	ifrp = ifc->ifc_req;
1903 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1904 		struct ifaddr_container *ifac;
1905 		int addrs;
1906 
1907 		if (space <= sizeof ifr)
1908 			break;
1909 
1910 		/*
1911 		 * Zero the stack declared structure first to prevent
1912 		 * memory disclosure.
1913 		 */
1914 		bzero(&ifr, sizeof(ifr));
1915 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1916 		    >= sizeof(ifr.ifr_name)) {
1917 			error = ENAMETOOLONG;
1918 			break;
1919 		}
1920 
1921 		addrs = 0;
1922 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1923 			struct ifaddr *ifa = ifac->ifa;
1924 
1925 			if (space <= sizeof ifr)
1926 				break;
1927 			sa = ifa->ifa_addr;
1928 			if (cred->cr_prison &&
1929 			    prison_if(cred, sa))
1930 				continue;
1931 			addrs++;
1932 #ifdef COMPAT_43
1933 			if (cmd == OSIOCGIFCONF) {
1934 				struct osockaddr *osa =
1935 					 (struct osockaddr *)&ifr.ifr_addr;
1936 				ifr.ifr_addr = *sa;
1937 				osa->sa_family = sa->sa_family;
1938 				error = copyout(&ifr, ifrp, sizeof ifr);
1939 				ifrp++;
1940 			} else
1941 #endif
1942 			if (sa->sa_len <= sizeof(*sa)) {
1943 				ifr.ifr_addr = *sa;
1944 				error = copyout(&ifr, ifrp, sizeof ifr);
1945 				ifrp++;
1946 			} else {
1947 				if (space < (sizeof ifr) + sa->sa_len -
1948 					    sizeof(*sa))
1949 					break;
1950 				space -= sa->sa_len - sizeof(*sa);
1951 				error = copyout(&ifr, ifrp,
1952 						sizeof ifr.ifr_name);
1953 				if (error == 0)
1954 					error = copyout(sa, &ifrp->ifr_addr,
1955 							sa->sa_len);
1956 				ifrp = (struct ifreq *)
1957 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1958 			}
1959 			if (error)
1960 				break;
1961 			space -= sizeof ifr;
1962 		}
1963 		if (error)
1964 			break;
1965 		if (!addrs) {
1966 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1967 			error = copyout(&ifr, ifrp, sizeof ifr);
1968 			if (error)
1969 				break;
1970 			space -= sizeof ifr;
1971 			ifrp++;
1972 		}
1973 	}
1974 	ifc->ifc_len -= space;
1975 	return (error);
1976 }
1977 
1978 /*
1979  * Just like if_promisc(), but for all-multicast-reception mode.
1980  */
1981 int
1982 if_allmulti(struct ifnet *ifp, int onswitch)
1983 {
1984 	int error = 0;
1985 	struct ifreq ifr;
1986 
1987 	crit_enter();
1988 
1989 	if (onswitch) {
1990 		if (ifp->if_amcount++ == 0) {
1991 			ifp->if_flags |= IFF_ALLMULTI;
1992 			ifr.ifr_flags = ifp->if_flags;
1993 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1994 			ifnet_serialize_all(ifp);
1995 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1996 					      NULL);
1997 			ifnet_deserialize_all(ifp);
1998 		}
1999 	} else {
2000 		if (ifp->if_amcount > 1) {
2001 			ifp->if_amcount--;
2002 		} else {
2003 			ifp->if_amcount = 0;
2004 			ifp->if_flags &= ~IFF_ALLMULTI;
2005 			ifr.ifr_flags = ifp->if_flags;
2006 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2007 			ifnet_serialize_all(ifp);
2008 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2009 					      NULL);
2010 			ifnet_deserialize_all(ifp);
2011 		}
2012 	}
2013 
2014 	crit_exit();
2015 
2016 	if (error == 0)
2017 		rt_ifmsg(ifp);
2018 	return error;
2019 }
2020 
2021 /*
2022  * Add a multicast listenership to the interface in question.
2023  * The link layer provides a routine which converts
2024  */
2025 int
2026 if_addmulti(
2027 	struct ifnet *ifp,	/* interface to manipulate */
2028 	struct sockaddr *sa,	/* address to add */
2029 	struct ifmultiaddr **retifma)
2030 {
2031 	struct sockaddr *llsa, *dupsa;
2032 	int error;
2033 	struct ifmultiaddr *ifma;
2034 
2035 	/*
2036 	 * If the matching multicast address already exists
2037 	 * then don't add a new one, just add a reference
2038 	 */
2039 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2040 		if (sa_equal(sa, ifma->ifma_addr)) {
2041 			ifma->ifma_refcount++;
2042 			if (retifma)
2043 				*retifma = ifma;
2044 			return 0;
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * Give the link layer a chance to accept/reject it, and also
2050 	 * find out which AF_LINK address this maps to, if it isn't one
2051 	 * already.
2052 	 */
2053 	if (ifp->if_resolvemulti) {
2054 		ifnet_serialize_all(ifp);
2055 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2056 		ifnet_deserialize_all(ifp);
2057 		if (error)
2058 			return error;
2059 	} else {
2060 		llsa = 0;
2061 	}
2062 
2063 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
2064 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
2065 	bcopy(sa, dupsa, sa->sa_len);
2066 
2067 	ifma->ifma_addr = dupsa;
2068 	ifma->ifma_lladdr = llsa;
2069 	ifma->ifma_ifp = ifp;
2070 	ifma->ifma_refcount = 1;
2071 	ifma->ifma_protospec = 0;
2072 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2073 
2074 	/*
2075 	 * Some network interfaces can scan the address list at
2076 	 * interrupt time; lock them out.
2077 	 */
2078 	crit_enter();
2079 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2080 	crit_exit();
2081 	if (retifma)
2082 		*retifma = ifma;
2083 
2084 	if (llsa != 0) {
2085 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2086 			if (sa_equal(ifma->ifma_addr, llsa))
2087 				break;
2088 		}
2089 		if (ifma) {
2090 			ifma->ifma_refcount++;
2091 		} else {
2092 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
2093 			       M_IFMADDR, M_WAITOK);
2094 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
2095 			       M_IFMADDR, M_WAITOK);
2096 			bcopy(llsa, dupsa, llsa->sa_len);
2097 			ifma->ifma_addr = dupsa;
2098 			ifma->ifma_ifp = ifp;
2099 			ifma->ifma_refcount = 1;
2100 			crit_enter();
2101 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2102 			crit_exit();
2103 		}
2104 	}
2105 	/*
2106 	 * We are certain we have added something, so call down to the
2107 	 * interface to let them know about it.
2108 	 */
2109 	crit_enter();
2110 	ifnet_serialize_all(ifp);
2111 	if (ifp->if_ioctl)
2112 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2113 	ifnet_deserialize_all(ifp);
2114 	crit_exit();
2115 
2116 	return 0;
2117 }
2118 
2119 /*
2120  * Remove a reference to a multicast address on this interface.  Yell
2121  * if the request does not match an existing membership.
2122  */
2123 int
2124 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2125 {
2126 	struct ifmultiaddr *ifma;
2127 
2128 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2129 		if (sa_equal(sa, ifma->ifma_addr))
2130 			break;
2131 	if (ifma == 0)
2132 		return ENOENT;
2133 
2134 	if (ifma->ifma_refcount > 1) {
2135 		ifma->ifma_refcount--;
2136 		return 0;
2137 	}
2138 
2139 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2140 	sa = ifma->ifma_lladdr;
2141 	crit_enter();
2142 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2143 	/*
2144 	 * Make sure the interface driver is notified
2145 	 * in the case of a link layer mcast group being left.
2146 	 */
2147 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
2148 		ifnet_serialize_all(ifp);
2149 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2150 		ifnet_deserialize_all(ifp);
2151 	}
2152 	crit_exit();
2153 	kfree(ifma->ifma_addr, M_IFMADDR);
2154 	kfree(ifma, M_IFMADDR);
2155 	if (sa == 0)
2156 		return 0;
2157 
2158 	/*
2159 	 * Now look for the link-layer address which corresponds to
2160 	 * this network address.  It had been squirreled away in
2161 	 * ifma->ifma_lladdr for this purpose (so we don't have
2162 	 * to call ifp->if_resolvemulti() again), and we saved that
2163 	 * value in sa above.  If some nasty deleted the
2164 	 * link-layer address out from underneath us, we can deal because
2165 	 * the address we stored was is not the same as the one which was
2166 	 * in the record for the link-layer address.  (So we don't complain
2167 	 * in that case.)
2168 	 */
2169 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2170 		if (sa_equal(sa, ifma->ifma_addr))
2171 			break;
2172 	if (ifma == 0)
2173 		return 0;
2174 
2175 	if (ifma->ifma_refcount > 1) {
2176 		ifma->ifma_refcount--;
2177 		return 0;
2178 	}
2179 
2180 	crit_enter();
2181 	ifnet_serialize_all(ifp);
2182 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2183 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2184 	ifnet_deserialize_all(ifp);
2185 	crit_exit();
2186 	kfree(ifma->ifma_addr, M_IFMADDR);
2187 	kfree(sa, M_IFMADDR);
2188 	kfree(ifma, M_IFMADDR);
2189 
2190 	return 0;
2191 }
2192 
2193 /*
2194  * Delete all multicast group membership for an interface.
2195  * Should be used to quickly flush all multicast filters.
2196  */
2197 void
2198 if_delallmulti(struct ifnet *ifp)
2199 {
2200 	struct ifmultiaddr *ifma;
2201 	struct ifmultiaddr *next;
2202 
2203 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2204 		if_delmulti(ifp, ifma->ifma_addr);
2205 }
2206 
2207 
2208 /*
2209  * Set the link layer address on an interface.
2210  *
2211  * At this time we only support certain types of interfaces,
2212  * and we don't allow the length of the address to change.
2213  */
2214 int
2215 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2216 {
2217 	struct sockaddr_dl *sdl;
2218 	struct ifreq ifr;
2219 
2220 	sdl = IF_LLSOCKADDR(ifp);
2221 	if (sdl == NULL)
2222 		return (EINVAL);
2223 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2224 		return (EINVAL);
2225 	switch (ifp->if_type) {
2226 	case IFT_ETHER:			/* these types use struct arpcom */
2227 	case IFT_XETHER:
2228 	case IFT_L2VLAN:
2229 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2230 		bcopy(lladdr, LLADDR(sdl), len);
2231 		break;
2232 	default:
2233 		return (ENODEV);
2234 	}
2235 	/*
2236 	 * If the interface is already up, we need
2237 	 * to re-init it in order to reprogram its
2238 	 * address filter.
2239 	 */
2240 	ifnet_serialize_all(ifp);
2241 	if ((ifp->if_flags & IFF_UP) != 0) {
2242 		struct ifaddr_container *ifac;
2243 
2244 		ifp->if_flags &= ~IFF_UP;
2245 		ifr.ifr_flags = ifp->if_flags;
2246 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2247 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2248 			      NULL);
2249 		ifp->if_flags |= IFF_UP;
2250 		ifr.ifr_flags = ifp->if_flags;
2251 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2252 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2253 				 NULL);
2254 #ifdef INET
2255 		/*
2256 		 * Also send gratuitous ARPs to notify other nodes about
2257 		 * the address change.
2258 		 */
2259 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2260 			struct ifaddr *ifa = ifac->ifa;
2261 
2262 			if (ifa->ifa_addr != NULL &&
2263 			    ifa->ifa_addr->sa_family == AF_INET)
2264 				arp_ifinit(ifp, ifa);
2265 		}
2266 #endif
2267 	}
2268 	ifnet_deserialize_all(ifp);
2269 	return (0);
2270 }
2271 
2272 struct ifmultiaddr *
2273 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2274 {
2275 	struct ifmultiaddr *ifma;
2276 
2277 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2278 		if (sa_equal(ifma->ifma_addr, sa))
2279 			break;
2280 
2281 	return ifma;
2282 }
2283 
2284 /*
2285  * This function locates the first real ethernet MAC from a network
2286  * card and loads it into node, returning 0 on success or ENOENT if
2287  * no suitable interfaces were found.  It is used by the uuid code to
2288  * generate a unique 6-byte number.
2289  */
2290 int
2291 if_getanyethermac(uint16_t *node, int minlen)
2292 {
2293 	struct ifnet *ifp;
2294 	struct sockaddr_dl *sdl;
2295 
2296 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2297 		if (ifp->if_type != IFT_ETHER)
2298 			continue;
2299 		sdl = IF_LLSOCKADDR(ifp);
2300 		if (sdl->sdl_alen < minlen)
2301 			continue;
2302 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2303 		      minlen);
2304 		return(0);
2305 	}
2306 	return (ENOENT);
2307 }
2308 
2309 /*
2310  * The name argument must be a pointer to storage which will last as
2311  * long as the interface does.  For physical devices, the result of
2312  * device_get_name(dev) is a good choice and for pseudo-devices a
2313  * static string works well.
2314  */
2315 void
2316 if_initname(struct ifnet *ifp, const char *name, int unit)
2317 {
2318 	ifp->if_dname = name;
2319 	ifp->if_dunit = unit;
2320 	if (unit != IF_DUNIT_NONE)
2321 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2322 	else
2323 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2324 }
2325 
2326 int
2327 if_printf(struct ifnet *ifp, const char *fmt, ...)
2328 {
2329 	__va_list ap;
2330 	int retval;
2331 
2332 	retval = kprintf("%s: ", ifp->if_xname);
2333 	__va_start(ap, fmt);
2334 	retval += kvprintf(fmt, ap);
2335 	__va_end(ap);
2336 	return (retval);
2337 }
2338 
2339 struct ifnet *
2340 if_alloc(uint8_t type)
2341 {
2342         struct ifnet *ifp;
2343 	size_t size;
2344 
2345 	/*
2346 	 * XXX temporary hack until arpcom is setup in if_l2com
2347 	 */
2348 	if (type == IFT_ETHER)
2349 		size = sizeof(struct arpcom);
2350 	else
2351 		size = sizeof(struct ifnet);
2352 
2353 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2354 
2355 	ifp->if_type = type;
2356 
2357 	if (if_com_alloc[type] != NULL) {
2358 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2359 		if (ifp->if_l2com == NULL) {
2360 			kfree(ifp, M_IFNET);
2361 			return (NULL);
2362 		}
2363 	}
2364 	return (ifp);
2365 }
2366 
2367 void
2368 if_free(struct ifnet *ifp)
2369 {
2370 	kfree(ifp, M_IFNET);
2371 }
2372 
2373 void
2374 ifq_set_classic(struct ifaltq *ifq)
2375 {
2376 	ifq->altq_enqueue = ifq_classic_enqueue;
2377 	ifq->altq_dequeue = ifq_classic_dequeue;
2378 	ifq->altq_request = ifq_classic_request;
2379 }
2380 
2381 int
2382 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2383 		    struct altq_pktattr *pa __unused)
2384 {
2385 	logifq(enqueue, ifq);
2386 	if (IF_QFULL(ifq)) {
2387 		m_freem(m);
2388 		return(ENOBUFS);
2389 	} else {
2390 		IF_ENQUEUE(ifq, m);
2391 		return(0);
2392 	}
2393 }
2394 
2395 struct mbuf *
2396 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2397 {
2398 	struct mbuf *m;
2399 
2400 	switch (op) {
2401 	case ALTDQ_POLL:
2402 		IF_POLL(ifq, m);
2403 		break;
2404 	case ALTDQ_REMOVE:
2405 		logifq(dequeue, ifq);
2406 		IF_DEQUEUE(ifq, m);
2407 		break;
2408 	default:
2409 		panic("unsupported ALTQ dequeue op: %d", op);
2410 	}
2411 	KKASSERT(mpolled == NULL || mpolled == m);
2412 	return(m);
2413 }
2414 
2415 int
2416 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2417 {
2418 	switch (req) {
2419 	case ALTRQ_PURGE:
2420 		IF_DRAIN(ifq);
2421 		break;
2422 	default:
2423 		panic("unsupported ALTQ request: %d", req);
2424 	}
2425 	return(0);
2426 }
2427 
2428 int
2429 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2430 {
2431 	struct ifaltq *ifq = &ifp->if_snd;
2432 	int running = 0, error, start = 0;
2433 
2434 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2435 
2436 	ALTQ_LOCK(ifq);
2437 	error = ifq_enqueue_locked(ifq, m, pa);
2438 	if (error) {
2439 		ALTQ_UNLOCK(ifq);
2440 		return error;
2441 	}
2442 	if (!ifq->altq_started) {
2443 		/*
2444 		 * Hold the interlock of ifnet.if_start
2445 		 */
2446 		ifq->altq_started = 1;
2447 		start = 1;
2448 	}
2449 	ALTQ_UNLOCK(ifq);
2450 
2451 	ifp->if_obytes += m->m_pkthdr.len;
2452 	if (m->m_flags & M_MCAST)
2453 		ifp->if_omcasts++;
2454 
2455 	if (!start) {
2456 		logifstart(avoid, ifp);
2457 		return 0;
2458 	}
2459 
2460 	if (ifq_dispatch_schedonly) {
2461 		/*
2462 		 * Always schedule ifnet.if_start on ifnet's CPU,
2463 		 * short circuit the rest of this function.
2464 		 */
2465 		logifstart(sched, ifp);
2466 		if_start_schedule(ifp);
2467 		return 0;
2468 	}
2469 
2470 	/*
2471 	 * Try to do direct ifnet.if_start first, if there is
2472 	 * contention on ifnet's serializer, ifnet.if_start will
2473 	 * be scheduled on ifnet's CPU.
2474 	 */
2475 	if (!ifnet_tryserialize_tx(ifp)) {
2476 		/*
2477 		 * ifnet serializer contention happened,
2478 		 * ifnet.if_start is scheduled on ifnet's
2479 		 * CPU, and we keep going.
2480 		 */
2481 		logifstart(contend_sched, ifp);
2482 		if_start_schedule(ifp);
2483 		return 0;
2484 	}
2485 
2486 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2487 		logifstart(run, ifp);
2488 		ifp->if_start(ifp);
2489 		if ((ifp->if_flags &
2490 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2491 			running = 1;
2492 	}
2493 
2494 	ifnet_deserialize_tx(ifp);
2495 
2496 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2497 		/*
2498 		 * More data need to be transmitted, ifnet.if_start is
2499 		 * scheduled on ifnet's CPU, and we keep going.
2500 		 * NOTE: ifnet.if_start interlock is not released.
2501 		 */
2502 		logifstart(sched, ifp);
2503 		if_start_schedule(ifp);
2504 	}
2505 	return 0;
2506 }
2507 
2508 void *
2509 ifa_create(int size, int flags)
2510 {
2511 	struct ifaddr *ifa;
2512 	int i;
2513 
2514 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2515 
2516 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2517 	if (ifa == NULL)
2518 		return NULL;
2519 
2520 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2521 				      M_IFADDR, M_WAITOK | M_ZERO);
2522 	ifa->ifa_ncnt = ncpus;
2523 	for (i = 0; i < ncpus; ++i) {
2524 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2525 
2526 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2527 		ifac->ifa = ifa;
2528 		ifac->ifa_refcnt = 1;
2529 	}
2530 #ifdef IFADDR_DEBUG
2531 	kprintf("alloc ifa %p %d\n", ifa, size);
2532 #endif
2533 	return ifa;
2534 }
2535 
2536 void
2537 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2538 {
2539 	struct ifaddr *ifa = ifac->ifa;
2540 
2541 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2542 	KKASSERT(ifac->ifa_refcnt == 0);
2543 	KASSERT(ifac->ifa_listmask == 0,
2544 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2545 
2546 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2547 
2548 #ifdef IFADDR_DEBUG_VERBOSE
2549 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2550 #endif
2551 
2552 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2553 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2554 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2555 #ifdef IFADDR_DEBUG
2556 		kprintf("free ifa %p\n", ifa);
2557 #endif
2558 		kfree(ifa->ifa_containers, M_IFADDR);
2559 		kfree(ifa, M_IFADDR);
2560 	}
2561 }
2562 
2563 static void
2564 ifa_iflink_dispatch(netmsg_t nmsg)
2565 {
2566 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2567 	struct ifaddr *ifa = msg->ifa;
2568 	struct ifnet *ifp = msg->ifp;
2569 	int cpu = mycpuid;
2570 	struct ifaddr_container *ifac;
2571 
2572 	crit_enter();
2573 
2574 	ifac = &ifa->ifa_containers[cpu];
2575 	ASSERT_IFAC_VALID(ifac);
2576 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2577 		("ifaddr is on if_addrheads\n"));
2578 
2579 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2580 	if (msg->tail)
2581 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2582 	else
2583 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2584 
2585 	crit_exit();
2586 
2587 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2588 }
2589 
2590 void
2591 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2592 {
2593 	struct netmsg_ifaddr msg;
2594 
2595 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2596 		    0, ifa_iflink_dispatch);
2597 	msg.ifa = ifa;
2598 	msg.ifp = ifp;
2599 	msg.tail = tail;
2600 
2601 	ifa_domsg(&msg.base.lmsg, 0);
2602 }
2603 
2604 static void
2605 ifa_ifunlink_dispatch(netmsg_t nmsg)
2606 {
2607 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2608 	struct ifaddr *ifa = msg->ifa;
2609 	struct ifnet *ifp = msg->ifp;
2610 	int cpu = mycpuid;
2611 	struct ifaddr_container *ifac;
2612 
2613 	crit_enter();
2614 
2615 	ifac = &ifa->ifa_containers[cpu];
2616 	ASSERT_IFAC_VALID(ifac);
2617 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2618 		("ifaddr is not on if_addrhead\n"));
2619 
2620 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2621 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2622 
2623 	crit_exit();
2624 
2625 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2626 }
2627 
2628 void
2629 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2630 {
2631 	struct netmsg_ifaddr msg;
2632 
2633 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2634 		    0, ifa_ifunlink_dispatch);
2635 	msg.ifa = ifa;
2636 	msg.ifp = ifp;
2637 
2638 	ifa_domsg(&msg.base.lmsg, 0);
2639 }
2640 
2641 static void
2642 ifa_destroy_dispatch(netmsg_t nmsg)
2643 {
2644 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2645 
2646 	IFAFREE(msg->ifa);
2647 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2648 }
2649 
2650 void
2651 ifa_destroy(struct ifaddr *ifa)
2652 {
2653 	struct netmsg_ifaddr msg;
2654 
2655 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2656 		    0, ifa_destroy_dispatch);
2657 	msg.ifa = ifa;
2658 
2659 	ifa_domsg(&msg.base.lmsg, 0);
2660 }
2661 
2662 struct lwkt_port *
2663 ifnet_portfn(int cpu)
2664 {
2665 	return &ifnet_threads[cpu].td_msgport;
2666 }
2667 
2668 void
2669 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2670 {
2671 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2672 
2673 	if (next_cpu < ncpus)
2674 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2675 	else
2676 		lwkt_replymsg(lmsg, 0);
2677 }
2678 
2679 int
2680 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2681 {
2682 	KKASSERT(cpu < ncpus);
2683 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2684 }
2685 
2686 void
2687 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2688 {
2689 	KKASSERT(cpu < ncpus);
2690 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2691 }
2692 
2693 /*
2694  * Generic netmsg service loop.  Some protocols may roll their own but all
2695  * must do the basic command dispatch function call done here.
2696  */
2697 static void
2698 ifnet_service_loop(void *arg __unused)
2699 {
2700 	netmsg_t msg;
2701 
2702 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2703 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2704 		msg->base.nm_dispatch(msg);
2705 	}
2706 }
2707 
2708 static void
2709 ifnetinit(void *dummy __unused)
2710 {
2711 	int i;
2712 
2713 	for (i = 0; i < ncpus; ++i) {
2714 		struct thread *thr = &ifnet_threads[i];
2715 
2716 		lwkt_create(ifnet_service_loop, NULL, NULL,
2717 			    thr, TDF_STOPREQ, i, "ifnet %d", i);
2718 		netmsg_service_port_init(&thr->td_msgport);
2719 		lwkt_schedule(thr);
2720 	}
2721 }
2722 
2723 struct ifnet *
2724 ifnet_byindex(unsigned short idx)
2725 {
2726 	if (idx > if_index)
2727 		return NULL;
2728 	return ifindex2ifnet[idx];
2729 }
2730 
2731 struct ifaddr *
2732 ifaddr_byindex(unsigned short idx)
2733 {
2734 	struct ifnet *ifp;
2735 
2736 	ifp = ifnet_byindex(idx);
2737 	if (!ifp)
2738 		return NULL;
2739 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2740 }
2741 
2742 void
2743 if_register_com_alloc(u_char type,
2744     if_com_alloc_t *a, if_com_free_t *f)
2745 {
2746 
2747         KASSERT(if_com_alloc[type] == NULL,
2748             ("if_register_com_alloc: %d already registered", type));
2749         KASSERT(if_com_free[type] == NULL,
2750             ("if_register_com_alloc: %d free already registered", type));
2751 
2752         if_com_alloc[type] = a;
2753         if_com_free[type] = f;
2754 }
2755 
2756 void
2757 if_deregister_com_alloc(u_char type)
2758 {
2759 
2760         KASSERT(if_com_alloc[type] != NULL,
2761             ("if_deregister_com_alloc: %d not registered", type));
2762         KASSERT(if_com_free[type] != NULL,
2763             ("if_deregister_com_alloc: %d free not registered", type));
2764         if_com_alloc[type] = NULL;
2765         if_com_free[type] = NULL;
2766 }
2767