xref: /dragonfly/sys/net/if.c (revision 3ea159d2)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/lock.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 #include <sys/jail.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/msgport2.h>
62 #include <sys/mutex2.h>
63 
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/if_var.h>
69 #include <net/if_ringmap.h>
70 #include <net/ifq_var.h>
71 #include <net/radix.h>
72 #include <net/route.h>
73 #include <net/if_clone.h>
74 #include <net/netisr2.h>
75 #include <net/netmsg2.h>
76 
77 #include <machine/atomic.h>
78 #include <machine/stdarg.h>
79 #include <machine/smp.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #ifdef INET6
86 #include <netinet6/in6_var.h>
87 #include <netinet6/in6_ifattach.h>
88 #endif /* INET6 */
89 #endif /* INET || INET6 */
90 
91 struct netmsg_ifaddr {
92 	struct netmsg_base base;
93 	struct ifaddr	*ifa;
94 	struct ifnet	*ifp;
95 	int		tail;
96 };
97 
98 struct ifsubq_stage_head {
99 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
100 } __cachealign;
101 
102 struct if_ringmap {
103 	int		rm_cnt;
104 	int		rm_grid;
105 	int		rm_cpumap[];
106 };
107 
108 #define RINGMAP_FLAG_NONE		0x0
109 #define RINGMAP_FLAG_POWEROF2		0x1
110 
111 /*
112  * System initialization
113  */
114 static void	if_attachdomain(void *);
115 static void	if_attachdomain1(struct ifnet *);
116 static int	ifconf(u_long, caddr_t, struct ucred *);
117 static void	ifinit(void *);
118 static void	ifnetinit(void *);
119 static void	if_slowtimo(void *);
120 static void	link_rtrequest(int, struct rtentry *);
121 static int	if_rtdel(struct radix_node *, void *);
122 static void	if_slowtimo_dispatch(netmsg_t);
123 
124 /* Helper functions */
125 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
126 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
127 static struct ifnet_array *ifnet_array_alloc(int);
128 static void	ifnet_array_free(struct ifnet_array *);
129 static struct ifnet_array *ifnet_array_add(struct ifnet *,
130 		    const struct ifnet_array *);
131 static struct ifnet_array *ifnet_array_del(struct ifnet *,
132 		    const struct ifnet_array *);
133 static struct ifg_group *if_creategroup(const char *);
134 static int	if_destroygroup(struct ifg_group *);
135 static int	if_delgroup_locked(struct ifnet *, const char *);
136 static int	if_getgroups(struct ifgroupreq *, struct ifnet *);
137 static int	if_getgroupmembers(struct ifgroupreq *);
138 
139 #ifdef INET6
140 /*
141  * XXX: declare here to avoid to include many inet6 related files..
142  * should be more generalized?
143  */
144 extern void	nd6_setmtu(struct ifnet *);
145 #endif
146 
147 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
148 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
149 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
150 
151 static int ifsq_stage_cntmax = 16;
152 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
153 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
154     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
155 
156 static int if_stats_compat = 0;
157 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
158     &if_stats_compat, 0, "Compat the old ifnet stats");
159 
160 static int if_ringmap_dumprdr = 0;
161 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
162     &if_ringmap_dumprdr, 0, "dump redirect table");
163 
164 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
165 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
166 
167 static if_com_alloc_t *if_com_alloc[256];
168 static if_com_free_t *if_com_free[256];
169 
170 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
171 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
172 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
173 
174 int			ifqmaxlen = IFQ_MAXLEN;
175 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
176 struct ifgrouphead	ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
177 static struct lock	ifgroup_lock;
178 
179 static struct ifnet_array	ifnet_array0;
180 static struct ifnet_array	*ifnet_array = &ifnet_array0;
181 
182 static struct callout		if_slowtimo_timer;
183 static struct netmsg_base	if_slowtimo_netmsg;
184 
185 int			if_index = 0;
186 struct ifnet		**ifindex2ifnet = NULL;
187 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
188 
189 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
190 
191 #ifdef notyet
192 #define IFQ_KTR_STRING		"ifq=%p"
193 #define IFQ_KTR_ARGS		struct ifaltq *ifq
194 #ifndef KTR_IFQ
195 #define KTR_IFQ			KTR_ALL
196 #endif
197 KTR_INFO_MASTER(ifq);
198 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
199 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
200 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
201 
202 #define IF_START_KTR_STRING	"ifp=%p"
203 #define IF_START_KTR_ARGS	struct ifnet *ifp
204 #ifndef KTR_IF_START
205 #define KTR_IF_START		KTR_ALL
206 #endif
207 KTR_INFO_MASTER(if_start);
208 KTR_INFO(KTR_IF_START, if_start, run, 0,
209 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
210 KTR_INFO(KTR_IF_START, if_start, sched, 1,
211 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
212 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
213 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
214 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
215 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
216 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
217 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
218 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
219 #endif /* notyet */
220 
221 /*
222  * Network interface utility routines.
223  *
224  * Routines with ifa_ifwith* names take sockaddr *'s as
225  * parameters.
226  */
227 /* ARGSUSED */
228 static void
229 ifinit(void *dummy)
230 {
231 	lockinit(&ifgroup_lock, "ifgroup", 0, 0);
232 
233 	callout_init_mp(&if_slowtimo_timer);
234 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
235 	    MSGF_PRIORITY, if_slowtimo_dispatch);
236 
237 	/* Start if_slowtimo */
238 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
239 }
240 
241 static void
242 ifsq_ifstart_ipifunc(void *arg)
243 {
244 	struct ifaltq_subque *ifsq = arg;
245 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
246 
247 	crit_enter();
248 	if (lmsg->ms_flags & MSGF_DONE)
249 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
250 	crit_exit();
251 }
252 
253 static __inline void
254 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
255 {
256 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
257 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
258 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
259 	stage->stg_cnt = 0;
260 	stage->stg_len = 0;
261 }
262 
263 static __inline void
264 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
265 {
266 	KKASSERT((stage->stg_flags &
267 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
268 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
269 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
270 }
271 
272 /*
273  * Schedule ifnet.if_start on the subqueue owner CPU
274  */
275 static void
276 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
277 {
278 	int cpu;
279 
280 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
281 	    ifsq_stage_cntmax > 0) {
282 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
283 
284 		stage->stg_cnt = 0;
285 		stage->stg_len = 0;
286 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
287 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
288 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
289 		return;
290 	}
291 
292 	cpu = ifsq_get_cpuid(ifsq);
293 	if (cpu != mycpuid)
294 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
295 	else
296 		ifsq_ifstart_ipifunc(ifsq);
297 }
298 
299 /*
300  * NOTE:
301  * This function will release ifnet.if_start subqueue interlock,
302  * if ifnet.if_start for the subqueue does not need to be scheduled
303  */
304 static __inline int
305 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
306 {
307 	if (!running || ifsq_is_empty(ifsq)
308 #ifdef ALTQ
309 	    || ifsq->ifsq_altq->altq_tbr != NULL
310 #endif
311 	) {
312 		ALTQ_SQ_LOCK(ifsq);
313 		/*
314 		 * ifnet.if_start subqueue interlock is released, if:
315 		 * 1) Hardware can not take any packets, due to
316 		 *    o  interface is marked down
317 		 *    o  hardware queue is full (ifsq_is_oactive)
318 		 *    Under the second situation, hardware interrupt
319 		 *    or polling(4) will call/schedule ifnet.if_start
320 		 *    on the subqueue when hardware queue is ready
321 		 * 2) There is no packet in the subqueue.
322 		 *    Further ifq_dispatch or ifq_handoff will call/
323 		 *    schedule ifnet.if_start on the subqueue.
324 		 * 3) TBR is used and it does not allow further
325 		 *    dequeueing.
326 		 *    TBR callout will call ifnet.if_start on the
327 		 *    subqueue.
328 		 */
329 		if (!running || !ifsq_data_ready(ifsq)) {
330 			ifsq_clr_started(ifsq);
331 			ALTQ_SQ_UNLOCK(ifsq);
332 			return 0;
333 		}
334 		ALTQ_SQ_UNLOCK(ifsq);
335 	}
336 	return 1;
337 }
338 
339 static void
340 ifsq_ifstart_dispatch(netmsg_t msg)
341 {
342 	struct lwkt_msg *lmsg = &msg->base.lmsg;
343 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
344 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
345 	struct globaldata *gd = mycpu;
346 	int running = 0, need_sched;
347 
348 	crit_enter_gd(gd);
349 
350 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
351 
352 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
353 		/*
354 		 * We need to chase the subqueue owner CPU change.
355 		 */
356 		ifsq_ifstart_schedule(ifsq, 1);
357 		crit_exit_gd(gd);
358 		return;
359 	}
360 
361 	ifsq_serialize_hw(ifsq);
362 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
363 		ifp->if_start(ifp, ifsq);
364 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
365 			running = 1;
366 	}
367 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
368 	ifsq_deserialize_hw(ifsq);
369 
370 	if (need_sched) {
371 		/*
372 		 * More data need to be transmitted, ifnet.if_start is
373 		 * scheduled on the subqueue owner CPU, and we keep going.
374 		 * NOTE: ifnet.if_start subqueue interlock is not released.
375 		 */
376 		ifsq_ifstart_schedule(ifsq, 0);
377 	}
378 
379 	crit_exit_gd(gd);
380 }
381 
382 /* Device driver ifnet.if_start helper function */
383 void
384 ifsq_devstart(struct ifaltq_subque *ifsq)
385 {
386 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
387 	int running = 0;
388 
389 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
390 
391 	ALTQ_SQ_LOCK(ifsq);
392 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
393 		ALTQ_SQ_UNLOCK(ifsq);
394 		return;
395 	}
396 	ifsq_set_started(ifsq);
397 	ALTQ_SQ_UNLOCK(ifsq);
398 
399 	ifp->if_start(ifp, ifsq);
400 
401 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
402 		running = 1;
403 
404 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
405 		/*
406 		 * More data need to be transmitted, ifnet.if_start is
407 		 * scheduled on ifnet's CPU, and we keep going.
408 		 * NOTE: ifnet.if_start interlock is not released.
409 		 */
410 		ifsq_ifstart_schedule(ifsq, 0);
411 	}
412 }
413 
414 void
415 if_devstart(struct ifnet *ifp)
416 {
417 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
418 }
419 
420 /* Device driver ifnet.if_start schedule helper function */
421 void
422 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
423 {
424 	ifsq_ifstart_schedule(ifsq, 1);
425 }
426 
427 void
428 if_devstart_sched(struct ifnet *ifp)
429 {
430 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
431 }
432 
433 static void
434 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
435 {
436 	lwkt_serialize_enter(ifp->if_serializer);
437 }
438 
439 static void
440 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
441 {
442 	lwkt_serialize_exit(ifp->if_serializer);
443 }
444 
445 static int
446 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
447 {
448 	return lwkt_serialize_try(ifp->if_serializer);
449 }
450 
451 #ifdef INVARIANTS
452 static void
453 if_default_serialize_assert(struct ifnet *ifp,
454 			    enum ifnet_serialize slz __unused,
455 			    boolean_t serialized)
456 {
457 	if (serialized)
458 		ASSERT_SERIALIZED(ifp->if_serializer);
459 	else
460 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
461 }
462 #endif
463 
464 /*
465  * Attach an interface to the list of "active" interfaces.
466  *
467  * The serializer is optional.
468  */
469 void
470 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
471 {
472 	unsigned socksize;
473 	int namelen, masklen;
474 	struct sockaddr_dl *sdl, *sdl_addr;
475 	struct ifaddr *ifa;
476 	struct ifaltq *ifq;
477 	struct ifnet **old_ifindex2ifnet = NULL;
478 	struct ifnet_array *old_ifnet_array;
479 	int i, q, qlen;
480 	char qlenname[64];
481 
482 	static int if_indexlim = 8;
483 
484 	if (ifp->if_serialize != NULL) {
485 		KASSERT(ifp->if_deserialize != NULL &&
486 			ifp->if_tryserialize != NULL &&
487 			ifp->if_serialize_assert != NULL,
488 			("serialize functions are partially setup"));
489 
490 		/*
491 		 * If the device supplies serialize functions,
492 		 * then clear if_serializer to catch any invalid
493 		 * usage of this field.
494 		 */
495 		KASSERT(serializer == NULL,
496 			("both serialize functions and default serializer "
497 			 "are supplied"));
498 		ifp->if_serializer = NULL;
499 	} else {
500 		KASSERT(ifp->if_deserialize == NULL &&
501 			ifp->if_tryserialize == NULL &&
502 			ifp->if_serialize_assert == NULL,
503 			("serialize functions are partially setup"));
504 		ifp->if_serialize = if_default_serialize;
505 		ifp->if_deserialize = if_default_deserialize;
506 		ifp->if_tryserialize = if_default_tryserialize;
507 #ifdef INVARIANTS
508 		ifp->if_serialize_assert = if_default_serialize_assert;
509 #endif
510 
511 		/*
512 		 * The serializer can be passed in from the device,
513 		 * allowing the same serializer to be used for both
514 		 * the interrupt interlock and the device queue.
515 		 * If not specified, the netif structure will use an
516 		 * embedded serializer.
517 		 */
518 		if (serializer == NULL) {
519 			serializer = &ifp->if_default_serializer;
520 			lwkt_serialize_init(serializer);
521 		}
522 		ifp->if_serializer = serializer;
523 	}
524 
525 	/*
526 	 * Make if_addrhead available on all CPUs, since they
527 	 * could be accessed by any threads.
528 	 */
529 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
530 				    M_IFADDR, M_WAITOK | M_ZERO);
531 	for (i = 0; i < ncpus; ++i)
532 		TAILQ_INIT(&ifp->if_addrheads[i]);
533 
534 	TAILQ_INIT(&ifp->if_multiaddrs);
535 	TAILQ_INIT(&ifp->if_groups);
536 	getmicrotime(&ifp->if_lastchange);
537 	if_addgroup(ifp, IFG_ALL);
538 
539 	/*
540 	 * create a Link Level name for this device
541 	 */
542 	namelen = strlen(ifp->if_xname);
543 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
544 	socksize = masklen + ifp->if_addrlen;
545 	if (socksize < sizeof(*sdl))
546 		socksize = sizeof(*sdl);
547 	socksize = RT_ROUNDUP(socksize);
548 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
549 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
550 	sdl->sdl_len = socksize;
551 	sdl->sdl_family = AF_LINK;
552 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
553 	sdl->sdl_nlen = namelen;
554 	sdl->sdl_type = ifp->if_type;
555 	ifp->if_lladdr = ifa;
556 	ifa->ifa_ifp = ifp;
557 	ifa->ifa_rtrequest = link_rtrequest;
558 	ifa->ifa_addr = (struct sockaddr *)sdl;
559 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
560 	ifa->ifa_netmask = (struct sockaddr *)sdl;
561 	sdl->sdl_len = masklen;
562 	while (namelen != 0)
563 		sdl->sdl_data[--namelen] = 0xff;
564 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
565 
566 	/*
567 	 * Make if_data available on all CPUs, since they could
568 	 * be updated by hardware interrupt routing, which could
569 	 * be bound to any CPU.
570 	 */
571 	ifp->if_data_pcpu = kmalloc(ncpus * sizeof(struct ifdata_pcpu),
572 				    M_DEVBUF,
573 				    M_WAITOK | M_ZERO | M_CACHEALIGN);
574 
575 	if (ifp->if_mapsubq == NULL)
576 		ifp->if_mapsubq = ifq_mapsubq_default;
577 
578 	ifq = &ifp->if_snd;
579 	ifq->altq_type = 0;
580 	ifq->altq_disc = NULL;
581 	ifq->altq_flags &= ALTQF_CANTCHANGE;
582 	ifq->altq_tbr = NULL;
583 	ifq->altq_ifp = ifp;
584 
585 	if (ifq->altq_subq_cnt <= 0)
586 		ifq->altq_subq_cnt = 1;
587 	ifq->altq_subq =
588 		kmalloc(ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
589 			M_DEVBUF,
590 			M_WAITOK | M_ZERO | M_CACHEALIGN);
591 
592 	if (ifq->altq_maxlen == 0) {
593 		if_printf(ifp, "driver didn't set altq_maxlen\n");
594 		ifq_set_maxlen(ifq, ifqmaxlen);
595 	}
596 
597 	/* Allow user to override driver's setting. */
598 	ksnprintf(qlenname, sizeof(qlenname), "net.%s.qlenmax", ifp->if_xname);
599 	qlen = -1;
600 	TUNABLE_INT_FETCH(qlenname, &qlen);
601 	if (qlen > 0) {
602 		if_printf(ifp, "qlenmax -> %d\n", qlen);
603 		ifq_set_maxlen(ifq, qlen);
604 	}
605 
606 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
607 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
608 
609 		ALTQ_SQ_LOCK_INIT(ifsq);
610 		ifsq->ifsq_index = q;
611 
612 		ifsq->ifsq_altq = ifq;
613 		ifsq->ifsq_ifp = ifp;
614 
615 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
616 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
617 		ifsq->ifsq_prepended = NULL;
618 		ifsq->ifsq_started = 0;
619 		ifsq->ifsq_hw_oactive = 0;
620 		ifsq_set_cpuid(ifsq, 0);
621 		if (ifp->if_serializer != NULL)
622 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
623 
624 		/* XXX: netisr_ncpus */
625 		ifsq->ifsq_stage =
626 			kmalloc(ncpus * sizeof(struct ifsubq_stage),
627 				M_DEVBUF,
628 				M_WAITOK | M_ZERO | M_CACHEALIGN);
629 		for (i = 0; i < ncpus; ++i)
630 			ifsq->ifsq_stage[i].stg_subq = ifsq;
631 
632 		/*
633 		 * Allocate one if_start message for each CPU, since
634 		 * the hardware TX ring could be assigned to any CPU.
635 		 *
636 		 * NOTE:
637 		 * If the hardware TX ring polling CPU and the hardware
638 		 * TX ring interrupt CPU are same, one if_start message
639 		 * should be enough.
640 		 */
641 		ifsq->ifsq_ifstart_nmsg =
642 		    kmalloc(ncpus * sizeof(struct netmsg_base),
643 		    M_LWKTMSG, M_WAITOK);
644 		for (i = 0; i < ncpus; ++i) {
645 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
646 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
647 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
648 		}
649 	}
650 	ifq_set_classic(ifq);
651 
652 	/*
653 	 * Increase mbuf cluster/jcluster limits for the mbufs that
654 	 * could sit on the device queues for quite some time.
655 	 */
656 	if (ifp->if_nmbclusters > 0)
657 		mcl_inclimit(ifp->if_nmbclusters);
658 	if (ifp->if_nmbjclusters > 0)
659 		mjcl_inclimit(ifp->if_nmbjclusters);
660 
661 	/*
662 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
663 	 * array after it is setup.
664 	 *
665 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
666 	 * by ifnet lock, so that non-netisr threads could get a
667 	 * consistent view.
668 	 */
669 	ifnet_lock();
670 
671 	/* Don't update if_index until ifindex2ifnet is setup */
672 	ifp->if_index = if_index + 1;
673 	sdl_addr->sdl_index = ifp->if_index;
674 
675 	/*
676 	 * Install this ifp into ifindex2ifnet
677 	 */
678 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
679 		unsigned int n;
680 		struct ifnet **q;
681 
682 		/*
683 		 * Grow ifindex2ifnet
684 		 */
685 		if_indexlim <<= 1;
686 		n = if_indexlim * sizeof(*q);
687 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
688 		if (ifindex2ifnet != NULL) {
689 			bcopy(ifindex2ifnet, q, n/2);
690 			/* Free old ifindex2ifnet after sync all netisrs */
691 			old_ifindex2ifnet = ifindex2ifnet;
692 		}
693 		ifindex2ifnet = q;
694 	}
695 	ifindex2ifnet[ifp->if_index] = ifp;
696 	/*
697 	 * Update if_index after this ifp is installed into ifindex2ifnet,
698 	 * so that netisrs could get a consistent view of ifindex2ifnet.
699 	 */
700 	cpu_sfence();
701 	if_index = ifp->if_index;
702 
703 	/*
704 	 * Install this ifp into ifnet array.
705 	 */
706 	/* Free old ifnet array after sync all netisrs */
707 	old_ifnet_array = ifnet_array;
708 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
709 
710 	/*
711 	 * Install this ifp into ifnet queue.
712 	 */
713 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
714 
715 	ifnet_unlock();
716 
717 	/*
718 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
719 	 * are no longer accessed and we can free them safely later on.
720 	 */
721 	netmsg_service_sync();
722 	if (old_ifindex2ifnet != NULL)
723 		kfree(old_ifindex2ifnet, M_IFADDR);
724 	ifnet_array_free(old_ifnet_array);
725 
726 	if (!SLIST_EMPTY(&domains))
727 		if_attachdomain1(ifp);
728 
729 	/* Announce the interface. */
730 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
731 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
732 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
733 }
734 
735 static void
736 if_attachdomain(void *dummy)
737 {
738 	struct ifnet *ifp;
739 
740 	ifnet_lock();
741 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
742 		if_attachdomain1(ifp);
743 	ifnet_unlock();
744 }
745 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
746 	if_attachdomain, NULL);
747 
748 static void
749 if_attachdomain1(struct ifnet *ifp)
750 {
751 	struct domain *dp;
752 
753 	crit_enter();
754 
755 	/* address family dependent data region */
756 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
757 	SLIST_FOREACH(dp, &domains, dom_next)
758 		if (dp->dom_ifattach)
759 			ifp->if_afdata[dp->dom_family] =
760 				(*dp->dom_ifattach)(ifp);
761 	crit_exit();
762 }
763 
764 /*
765  * Purge all addresses whose type is _not_ AF_LINK
766  */
767 static void
768 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
769 {
770 	struct ifnet *ifp = nmsg->lmsg.u.ms_resultp;
771 	struct ifaddr_container *ifac, *next;
772 
773 	ASSERT_NETISR0;
774 
775 	/*
776 	 * The ifaddr processing in the following loop will block,
777 	 * however, this function is called in netisr0, in which
778 	 * ifaddr list changes happen, so we don't care about the
779 	 * blockness of the ifaddr processing here.
780 	 */
781 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
782 			      ifa_link, next) {
783 		struct ifaddr *ifa = ifac->ifa;
784 
785 		/* Ignore marker */
786 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
787 			continue;
788 
789 		/* Leave link ifaddr as it is */
790 		if (ifa->ifa_addr->sa_family == AF_LINK)
791 			continue;
792 #ifdef INET
793 		/* XXX: Ugly!! ad hoc just for INET */
794 		if (ifa->ifa_addr->sa_family == AF_INET) {
795 			struct ifaliasreq ifr;
796 			struct sockaddr_in saved_addr, saved_dst;
797 #ifdef IFADDR_DEBUG_VERBOSE
798 			int i;
799 
800 			kprintf("purge in4 addr %p: ", ifa);
801 			for (i = 0; i < ncpus; ++i) {
802 				kprintf("%d ",
803 				    ifa->ifa_containers[i].ifa_refcnt);
804 			}
805 			kprintf("\n");
806 #endif
807 
808 			/* Save information for panic. */
809 			memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
810 			if (ifa->ifa_dstaddr != NULL) {
811 				memcpy(&saved_dst, ifa->ifa_dstaddr,
812 				    sizeof(saved_dst));
813 			} else {
814 				memset(&saved_dst, 0, sizeof(saved_dst));
815 			}
816 
817 			bzero(&ifr, sizeof ifr);
818 			ifr.ifra_addr = *ifa->ifa_addr;
819 			if (ifa->ifa_dstaddr)
820 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
821 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
822 				       NULL) == 0)
823 				continue;
824 
825 			/* MUST NOT HAPPEN */
826 			panic("%s: in_control failed %x, dst %x", ifp->if_xname,
827 			    ntohl(saved_addr.sin_addr.s_addr),
828 			    ntohl(saved_dst.sin_addr.s_addr));
829 		}
830 #endif /* INET */
831 #ifdef INET6
832 		if (ifa->ifa_addr->sa_family == AF_INET6) {
833 #ifdef IFADDR_DEBUG_VERBOSE
834 			int i;
835 
836 			kprintf("purge in6 addr %p: ", ifa);
837 			for (i = 0; i < ncpus; ++i) {
838 				kprintf("%d ",
839 				    ifa->ifa_containers[i].ifa_refcnt);
840 			}
841 			kprintf("\n");
842 #endif
843 
844 			in6_purgeaddr(ifa);
845 			/* ifp_addrhead is already updated */
846 			continue;
847 		}
848 #endif /* INET6 */
849 		if_printf(ifp, "destroy ifaddr family %d\n",
850 		    ifa->ifa_addr->sa_family);
851 		ifa_ifunlink(ifa, ifp);
852 		ifa_destroy(ifa);
853 	}
854 
855 	netisr_replymsg(&nmsg->base, 0);
856 }
857 
858 void
859 if_purgeaddrs_nolink(struct ifnet *ifp)
860 {
861 	struct netmsg_base nmsg;
862 
863 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
864 	    if_purgeaddrs_nolink_dispatch);
865 	nmsg.lmsg.u.ms_resultp = ifp;
866 	netisr_domsg(&nmsg, 0);
867 }
868 
869 static void
870 ifq_stage_detach_handler(netmsg_t nmsg)
871 {
872 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
873 	int q;
874 
875 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
876 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
877 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
878 
879 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
880 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
881 	}
882 	lwkt_replymsg(&nmsg->lmsg, 0);
883 }
884 
885 static void
886 ifq_stage_detach(struct ifaltq *ifq)
887 {
888 	struct netmsg_base base;
889 	int cpu;
890 
891 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
892 	    ifq_stage_detach_handler);
893 	base.lmsg.u.ms_resultp = ifq;
894 
895 	/* XXX netisr_ncpus */
896 	for (cpu = 0; cpu < ncpus; ++cpu)
897 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
898 }
899 
900 struct netmsg_if_rtdel {
901 	struct netmsg_base	base;
902 	struct ifnet		*ifp;
903 };
904 
905 static void
906 if_rtdel_dispatch(netmsg_t msg)
907 {
908 	struct netmsg_if_rtdel *rmsg = (void *)msg;
909 	int i, cpu;
910 
911 	cpu = mycpuid;
912 	ASSERT_NETISR_NCPUS(cpu);
913 
914 	for (i = 1; i <= AF_MAX; i++) {
915 		struct radix_node_head	*rnh;
916 
917 		if ((rnh = rt_tables[cpu][i]) == NULL)
918 			continue;
919 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
920 	}
921 	netisr_forwardmsg(&msg->base, cpu + 1);
922 }
923 
924 /*
925  * Detach an interface, removing it from the
926  * list of "active" interfaces.
927  */
928 void
929 if_detach(struct ifnet *ifp)
930 {
931 	struct ifnet_array *old_ifnet_array;
932 	struct ifg_list *ifgl;
933 	struct netmsg_if_rtdel msg;
934 	struct domain *dp;
935 	int q;
936 
937 	/* Announce that the interface is gone. */
938 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
939 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
940 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
941 
942 	/*
943 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
944 	 * array before it is whacked.
945 	 *
946 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
947 	 * by ifnet lock, so that non-netisr threads could get a
948 	 * consistent view.
949 	 */
950 	ifnet_lock();
951 
952 	/*
953 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
954 	 */
955 	ifindex2ifnet[ifp->if_index] = NULL;
956 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
957 		if_index--;
958 
959 	/*
960 	 * Remove this ifp from ifnet queue.
961 	 */
962 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
963 
964 	/*
965 	 * Remove this ifp from ifnet array.
966 	 */
967 	/* Free old ifnet array after sync all netisrs */
968 	old_ifnet_array = ifnet_array;
969 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
970 
971 	ifnet_unlock();
972 
973 	ifgroup_lockmgr(LK_EXCLUSIVE);
974 	while ((ifgl = TAILQ_FIRST(&ifp->if_groups)) != NULL)
975 		if_delgroup_locked(ifp, ifgl->ifgl_group->ifg_group);
976 	ifgroup_lockmgr(LK_RELEASE);
977 
978 	/*
979 	 * Sync all netisrs so that the old ifnet array is no longer
980 	 * accessed and we can free it safely later on.
981 	 */
982 	netmsg_service_sync();
983 	ifnet_array_free(old_ifnet_array);
984 
985 	/*
986 	 * Remove routes and flush queues.
987 	 */
988 	crit_enter();
989 #ifdef IFPOLL_ENABLE
990 	if (ifp->if_flags & IFF_NPOLLING)
991 		ifpoll_deregister(ifp);
992 #endif
993 	if_down(ifp);
994 
995 	/* Decrease the mbuf clusters/jclusters limits increased by us */
996 	if (ifp->if_nmbclusters > 0)
997 		mcl_inclimit(-ifp->if_nmbclusters);
998 	if (ifp->if_nmbjclusters > 0)
999 		mjcl_inclimit(-ifp->if_nmbjclusters);
1000 
1001 #ifdef ALTQ
1002 	if (ifq_is_enabled(&ifp->if_snd))
1003 		altq_disable(&ifp->if_snd);
1004 	if (ifq_is_attached(&ifp->if_snd))
1005 		altq_detach(&ifp->if_snd);
1006 #endif
1007 
1008 	/*
1009 	 * Clean up all addresses.
1010 	 */
1011 	ifp->if_lladdr = NULL;
1012 
1013 	if_purgeaddrs_nolink(ifp);
1014 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1015 		struct ifaddr *ifa;
1016 
1017 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1018 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
1019 			("non-link ifaddr is left on if_addrheads"));
1020 
1021 		ifa_ifunlink(ifa, ifp);
1022 		ifa_destroy(ifa);
1023 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1024 			("there are still ifaddrs left on if_addrheads"));
1025 	}
1026 
1027 #ifdef INET
1028 	/*
1029 	 * Remove all IPv4 kernel structures related to ifp.
1030 	 */
1031 	in_ifdetach(ifp);
1032 #endif
1033 
1034 #ifdef INET6
1035 	/*
1036 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1037 	 * before removing routing entries below, since IPv6 interface direct
1038 	 * routes are expected to be removed by the IPv6-specific kernel API.
1039 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1040 	 */
1041 	in6_ifdetach(ifp);
1042 #endif
1043 
1044 	/*
1045 	 * Delete all remaining routes using this interface
1046 	 */
1047 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1048 	    if_rtdel_dispatch);
1049 	msg.ifp = ifp;
1050 	netisr_domsg_global(&msg.base);
1051 
1052 	SLIST_FOREACH(dp, &domains, dom_next) {
1053 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1054 			(*dp->dom_ifdetach)(ifp,
1055 				ifp->if_afdata[dp->dom_family]);
1056 	}
1057 
1058 	kfree(ifp->if_addrheads, M_IFADDR);
1059 
1060 	lwkt_synchronize_ipiqs("if_detach");
1061 	ifq_stage_detach(&ifp->if_snd);
1062 
1063 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1064 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1065 
1066 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1067 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1068 	}
1069 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1070 
1071 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1072 
1073 	crit_exit();
1074 }
1075 
1076 int
1077 ifgroup_lockmgr(u_int flags)
1078 {
1079 	return lockmgr(&ifgroup_lock, flags);
1080 }
1081 
1082 /*
1083  * Create an empty interface group.
1084  */
1085 static struct ifg_group *
1086 if_creategroup(const char *groupname)
1087 {
1088 	struct ifg_group *ifg;
1089 
1090 	ifg = kmalloc(sizeof(*ifg), M_IFNET, M_WAITOK);
1091 	strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1092 	ifg->ifg_refcnt = 0;
1093 	ifg->ifg_carp_demoted = 0;
1094 	TAILQ_INIT(&ifg->ifg_members);
1095 
1096 	ifgroup_lockmgr(LK_EXCLUSIVE);
1097 	TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1098 	ifgroup_lockmgr(LK_RELEASE);
1099 
1100 	EVENTHANDLER_INVOKE(group_attach_event, ifg);
1101 
1102 	return (ifg);
1103 }
1104 
1105 /*
1106  * Destroy an empty interface group.
1107  */
1108 static int
1109 if_destroygroup(struct ifg_group *ifg)
1110 {
1111 	KASSERT(ifg->ifg_refcnt == 0,
1112 		("trying to delete a non-empty interface group"));
1113 
1114 	ifgroup_lockmgr(LK_EXCLUSIVE);
1115 	TAILQ_REMOVE(&ifg_head, ifg, ifg_next);
1116 	ifgroup_lockmgr(LK_RELEASE);
1117 
1118 	EVENTHANDLER_INVOKE(group_detach_event, ifg);
1119 	kfree(ifg, M_IFNET);
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Add the interface to a group.
1126  * The target group will be created if it doesn't exist.
1127  */
1128 int
1129 if_addgroup(struct ifnet *ifp, const char *groupname)
1130 {
1131 	struct ifg_list *ifgl;
1132 	struct ifg_group *ifg;
1133 	struct ifg_member *ifgm;
1134 
1135 	if (groupname[0] &&
1136 	    groupname[strlen(groupname) - 1] >= '0' &&
1137 	    groupname[strlen(groupname) - 1] <= '9')
1138 		return (EINVAL);
1139 
1140 	ifgroup_lockmgr(LK_SHARED);
1141 
1142 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1143 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) {
1144 			ifgroup_lockmgr(LK_RELEASE);
1145 			return (EEXIST);
1146 		}
1147 	}
1148 
1149 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1150 		if (strcmp(ifg->ifg_group, groupname) == 0)
1151 			break;
1152 	}
1153 
1154 	ifgroup_lockmgr(LK_RELEASE);
1155 
1156 	if (ifg == NULL)
1157 		ifg = if_creategroup(groupname);
1158 
1159 	ifgl = kmalloc(sizeof(*ifgl), M_IFNET, M_WAITOK);
1160 	ifgm = kmalloc(sizeof(*ifgm), M_IFNET, M_WAITOK);
1161 	ifgl->ifgl_group = ifg;
1162 	ifgm->ifgm_ifp = ifp;
1163 	ifg->ifg_refcnt++;
1164 
1165 	ifgroup_lockmgr(LK_EXCLUSIVE);
1166 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1167 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1168 	ifgroup_lockmgr(LK_RELEASE);
1169 
1170 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Remove the interface from a group.
1177  * The group will be destroyed if it becomes empty.
1178  *
1179  * The 'ifgroup_lock' must be hold exclusively when calling this.
1180  */
1181 static int
1182 if_delgroup_locked(struct ifnet *ifp, const char *groupname)
1183 {
1184 	struct ifg_list *ifgl;
1185 	struct ifg_member *ifgm;
1186 
1187 	KKASSERT(lockstatus(&ifgroup_lock, curthread) == LK_EXCLUSIVE);
1188 
1189 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1190 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1191 			break;
1192 	}
1193 	if (ifgl == NULL)
1194 		return (ENOENT);
1195 
1196 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1197 
1198 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1199 		if (ifgm->ifgm_ifp == ifp)
1200 			break;
1201 	}
1202 
1203 	if (ifgm != NULL) {
1204 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1205 
1206 		ifgroup_lockmgr(LK_RELEASE);
1207 		EVENTHANDLER_INVOKE(group_change_event, groupname);
1208 		ifgroup_lockmgr(LK_EXCLUSIVE);
1209 
1210 		kfree(ifgm, M_IFNET);
1211 		ifgl->ifgl_group->ifg_refcnt--;
1212 	}
1213 
1214 	if (ifgl->ifgl_group->ifg_refcnt == 0) {
1215 		ifgroup_lockmgr(LK_RELEASE);
1216 		if_destroygroup(ifgl->ifgl_group);
1217 		ifgroup_lockmgr(LK_EXCLUSIVE);
1218 	}
1219 
1220 	kfree(ifgl, M_IFNET);
1221 
1222 	return (0);
1223 }
1224 
1225 int
1226 if_delgroup(struct ifnet *ifp, const char *groupname)
1227 {
1228 	int error;
1229 
1230 	ifgroup_lockmgr(LK_EXCLUSIVE);
1231 	error = if_delgroup_locked(ifp, groupname);
1232 	ifgroup_lockmgr(LK_RELEASE);
1233 
1234 	return (error);
1235 }
1236 
1237 /*
1238  * Store all the groups that the interface belongs to in memory
1239  * pointed to by data.
1240  */
1241 static int
1242 if_getgroups(struct ifgroupreq *ifgr, struct ifnet *ifp)
1243 {
1244 	struct ifg_list *ifgl;
1245 	struct ifg_req *ifgrq, *p;
1246 	int len, error;
1247 
1248 	len = 0;
1249 	ifgroup_lockmgr(LK_SHARED);
1250 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1251 		len += sizeof(struct ifg_req);
1252 	ifgroup_lockmgr(LK_RELEASE);
1253 
1254 	if (ifgr->ifgr_len == 0) {
1255 		/*
1256 		 * Caller is asking how much memory should be allocated in
1257 		 * the next request in order to hold all the groups.
1258 		 */
1259 		ifgr->ifgr_len = len;
1260 		return (0);
1261 	} else if (ifgr->ifgr_len != len) {
1262 		return (EINVAL);
1263 	}
1264 
1265 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1266 	if (ifgrq == NULL)
1267 		return (ENOMEM);
1268 
1269 	ifgroup_lockmgr(LK_SHARED);
1270 	p = ifgrq;
1271 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1272 		if (len < sizeof(struct ifg_req)) {
1273 			ifgroup_lockmgr(LK_RELEASE);
1274 			error = EINVAL;
1275 			goto failed;
1276 		}
1277 
1278 		strlcpy(p->ifgrq_group, ifgl->ifgl_group->ifg_group,
1279 			sizeof(ifgrq->ifgrq_group));
1280 		len -= sizeof(struct ifg_req);
1281 		p++;
1282 	}
1283 	ifgroup_lockmgr(LK_RELEASE);
1284 
1285 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1286 failed:
1287 	kfree(ifgrq, M_TEMP);
1288 	return error;
1289 }
1290 
1291 /*
1292  * Store all the members of a group in memory pointed to by data.
1293  */
1294 static int
1295 if_getgroupmembers(struct ifgroupreq *ifgr)
1296 {
1297 	struct ifg_group *ifg;
1298 	struct ifg_member *ifgm;
1299 	struct ifg_req *ifgrq, *p;
1300 	int len, error;
1301 
1302 	ifgroup_lockmgr(LK_SHARED);
1303 
1304 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1305 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1306 			break;
1307 	}
1308 	if (ifg == NULL) {
1309 		ifgroup_lockmgr(LK_RELEASE);
1310 		return (ENOENT);
1311 	}
1312 
1313 	len = 0;
1314 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1315 		len += sizeof(struct ifg_req);
1316 
1317 	ifgroup_lockmgr(LK_RELEASE);
1318 
1319 	if (ifgr->ifgr_len == 0) {
1320 		ifgr->ifgr_len = len;
1321 		return (0);
1322 	} else if (ifgr->ifgr_len != len) {
1323 		return (EINVAL);
1324 	}
1325 
1326 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1327 	if (ifgrq == NULL)
1328 		return (ENOMEM);
1329 
1330 	ifgroup_lockmgr(LK_SHARED);
1331 	p = ifgrq;
1332 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1333 		if (len < sizeof(struct ifg_req)) {
1334 			ifgroup_lockmgr(LK_RELEASE);
1335 			error = EINVAL;
1336 			goto failed;
1337 		}
1338 
1339 		strlcpy(p->ifgrq_member, ifgm->ifgm_ifp->if_xname,
1340 			sizeof(p->ifgrq_member));
1341 		len -= sizeof(struct ifg_req);
1342 		p++;
1343 	}
1344 	ifgroup_lockmgr(LK_RELEASE);
1345 
1346 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1347 failed:
1348 	kfree(ifgrq, M_TEMP);
1349 	return error;
1350 }
1351 
1352 /*
1353  * Delete Routes for a Network Interface
1354  *
1355  * Called for each routing entry via the rnh->rnh_walktree() call above
1356  * to delete all route entries referencing a detaching network interface.
1357  *
1358  * Arguments:
1359  *	rn	pointer to node in the routing table
1360  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1361  *
1362  * Returns:
1363  *	0	successful
1364  *	errno	failed - reason indicated
1365  *
1366  */
1367 static int
1368 if_rtdel(struct radix_node *rn, void *arg)
1369 {
1370 	struct rtentry	*rt = (struct rtentry *)rn;
1371 	struct ifnet	*ifp = arg;
1372 	int		err;
1373 
1374 	if (rt->rt_ifp == ifp) {
1375 
1376 		/*
1377 		 * Protect (sorta) against walktree recursion problems
1378 		 * with cloned routes
1379 		 */
1380 		if (!(rt->rt_flags & RTF_UP))
1381 			return (0);
1382 
1383 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1384 				rt_mask(rt), rt->rt_flags,
1385 				NULL);
1386 		if (err) {
1387 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1388 		}
1389 	}
1390 
1391 	return (0);
1392 }
1393 
1394 static __inline boolean_t
1395 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1396 {
1397 	if (old_ifa == NULL)
1398 		return TRUE;
1399 
1400 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1401 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1402 		return TRUE;
1403 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1404 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1405 		return TRUE;
1406 	return FALSE;
1407 }
1408 
1409 /*
1410  * Locate an interface based on a complete address.
1411  */
1412 struct ifaddr *
1413 ifa_ifwithaddr(struct sockaddr *addr)
1414 {
1415 	const struct ifnet_array *arr;
1416 	int i;
1417 
1418 	arr = ifnet_array_get();
1419 	for (i = 0; i < arr->ifnet_count; ++i) {
1420 		struct ifnet *ifp = arr->ifnet_arr[i];
1421 		struct ifaddr_container *ifac;
1422 
1423 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1424 			struct ifaddr *ifa = ifac->ifa;
1425 
1426 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1427 				continue;
1428 			if (sa_equal(addr, ifa->ifa_addr))
1429 				return (ifa);
1430 			if ((ifp->if_flags & IFF_BROADCAST) &&
1431 			    ifa->ifa_broadaddr &&
1432 			    /* IPv6 doesn't have broadcast */
1433 			    ifa->ifa_broadaddr->sa_len != 0 &&
1434 			    sa_equal(ifa->ifa_broadaddr, addr))
1435 				return (ifa);
1436 		}
1437 	}
1438 	return (NULL);
1439 }
1440 
1441 /*
1442  * Locate the point to point interface with a given destination address.
1443  */
1444 struct ifaddr *
1445 ifa_ifwithdstaddr(struct sockaddr *addr)
1446 {
1447 	const struct ifnet_array *arr;
1448 	int i;
1449 
1450 	arr = ifnet_array_get();
1451 	for (i = 0; i < arr->ifnet_count; ++i) {
1452 		struct ifnet *ifp = arr->ifnet_arr[i];
1453 		struct ifaddr_container *ifac;
1454 
1455 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1456 			continue;
1457 
1458 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1459 			struct ifaddr *ifa = ifac->ifa;
1460 
1461 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1462 				continue;
1463 			if (ifa->ifa_dstaddr &&
1464 			    sa_equal(addr, ifa->ifa_dstaddr))
1465 				return (ifa);
1466 		}
1467 	}
1468 	return (NULL);
1469 }
1470 
1471 /*
1472  * Find an interface on a specific network.  If many, choice
1473  * is most specific found.
1474  */
1475 struct ifaddr *
1476 ifa_ifwithnet(struct sockaddr *addr)
1477 {
1478 	struct ifaddr *ifa_maybe = NULL;
1479 	u_int af = addr->sa_family;
1480 	char *addr_data = addr->sa_data, *cplim;
1481 	const struct ifnet_array *arr;
1482 	int i;
1483 
1484 	/*
1485 	 * AF_LINK addresses can be looked up directly by their index number,
1486 	 * so do that if we can.
1487 	 */
1488 	if (af == AF_LINK) {
1489 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1490 
1491 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1492 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1493 	}
1494 
1495 	/*
1496 	 * Scan though each interface, looking for ones that have
1497 	 * addresses in this address family.
1498 	 */
1499 	arr = ifnet_array_get();
1500 	for (i = 0; i < arr->ifnet_count; ++i) {
1501 		struct ifnet *ifp = arr->ifnet_arr[i];
1502 		struct ifaddr_container *ifac;
1503 
1504 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1505 			struct ifaddr *ifa = ifac->ifa;
1506 			char *cp, *cp2, *cp3;
1507 
1508 			if (ifa->ifa_addr->sa_family != af)
1509 next:				continue;
1510 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1511 				/*
1512 				 * This is a bit broken as it doesn't
1513 				 * take into account that the remote end may
1514 				 * be a single node in the network we are
1515 				 * looking for.
1516 				 * The trouble is that we don't know the
1517 				 * netmask for the remote end.
1518 				 */
1519 				if (ifa->ifa_dstaddr != NULL &&
1520 				    sa_equal(addr, ifa->ifa_dstaddr))
1521 					return (ifa);
1522 			} else {
1523 				/*
1524 				 * if we have a special address handler,
1525 				 * then use it instead of the generic one.
1526 				 */
1527 				if (ifa->ifa_claim_addr) {
1528 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1529 						return (ifa);
1530 					} else {
1531 						continue;
1532 					}
1533 				}
1534 
1535 				/*
1536 				 * Scan all the bits in the ifa's address.
1537 				 * If a bit dissagrees with what we are
1538 				 * looking for, mask it with the netmask
1539 				 * to see if it really matters.
1540 				 * (A byte at a time)
1541 				 */
1542 				if (ifa->ifa_netmask == 0)
1543 					continue;
1544 				cp = addr_data;
1545 				cp2 = ifa->ifa_addr->sa_data;
1546 				cp3 = ifa->ifa_netmask->sa_data;
1547 				cplim = ifa->ifa_netmask->sa_len +
1548 					(char *)ifa->ifa_netmask;
1549 				while (cp3 < cplim)
1550 					if ((*cp++ ^ *cp2++) & *cp3++)
1551 						goto next; /* next address! */
1552 				/*
1553 				 * If the netmask of what we just found
1554 				 * is more specific than what we had before
1555 				 * (if we had one) then remember the new one
1556 				 * before continuing to search for an even
1557 				 * better one.  If the netmasks are equal,
1558 				 * we prefer the this ifa based on the result
1559 				 * of ifa_prefer().
1560 				 */
1561 				if (ifa_maybe == NULL ||
1562 				    rn_refines((char *)ifa->ifa_netmask,
1563 				        (char *)ifa_maybe->ifa_netmask) ||
1564 				    (sa_equal(ifa_maybe->ifa_netmask,
1565 				        ifa->ifa_netmask) &&
1566 				     ifa_prefer(ifa, ifa_maybe)))
1567 					ifa_maybe = ifa;
1568 			}
1569 		}
1570 	}
1571 	return (ifa_maybe);
1572 }
1573 
1574 /*
1575  * Find an interface address specific to an interface best matching
1576  * a given address.
1577  */
1578 struct ifaddr *
1579 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1580 {
1581 	struct ifaddr_container *ifac;
1582 	char *cp, *cp2, *cp3;
1583 	char *cplim;
1584 	struct ifaddr *ifa_maybe = NULL;
1585 	u_int af = addr->sa_family;
1586 
1587 	if (af >= AF_MAX)
1588 		return (0);
1589 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1590 		struct ifaddr *ifa = ifac->ifa;
1591 
1592 		if (ifa->ifa_addr->sa_family != af)
1593 			continue;
1594 		if (ifa_maybe == NULL)
1595 			ifa_maybe = ifa;
1596 		if (ifa->ifa_netmask == NULL) {
1597 			if (sa_equal(addr, ifa->ifa_addr) ||
1598 			    (ifa->ifa_dstaddr != NULL &&
1599 			     sa_equal(addr, ifa->ifa_dstaddr)))
1600 				return (ifa);
1601 			continue;
1602 		}
1603 		if (ifp->if_flags & IFF_POINTOPOINT) {
1604 			if (sa_equal(addr, ifa->ifa_dstaddr))
1605 				return (ifa);
1606 		} else {
1607 			cp = addr->sa_data;
1608 			cp2 = ifa->ifa_addr->sa_data;
1609 			cp3 = ifa->ifa_netmask->sa_data;
1610 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1611 			for (; cp3 < cplim; cp3++)
1612 				if ((*cp++ ^ *cp2++) & *cp3)
1613 					break;
1614 			if (cp3 == cplim)
1615 				return (ifa);
1616 		}
1617 	}
1618 	return (ifa_maybe);
1619 }
1620 
1621 /*
1622  * Default action when installing a route with a Link Level gateway.
1623  * Lookup an appropriate real ifa to point to.
1624  * This should be moved to /sys/net/link.c eventually.
1625  */
1626 static void
1627 link_rtrequest(int cmd, struct rtentry *rt)
1628 {
1629 	struct ifaddr *ifa;
1630 	struct sockaddr *dst;
1631 	struct ifnet *ifp;
1632 
1633 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1634 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1635 		return;
1636 	ifa = ifaof_ifpforaddr(dst, ifp);
1637 	if (ifa != NULL) {
1638 		IFAFREE(rt->rt_ifa);
1639 		IFAREF(ifa);
1640 		rt->rt_ifa = ifa;
1641 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1642 			ifa->ifa_rtrequest(cmd, rt);
1643 	}
1644 }
1645 
1646 struct netmsg_if {
1647 	struct netmsg_base	base;
1648 	struct ifnet		*ifp;
1649 };
1650 
1651 /*
1652  * Mark an interface down and notify protocols of the transition.
1653  */
1654 static void
1655 if_down_dispatch(netmsg_t nmsg)
1656 {
1657 	struct netmsg_if *msg = (struct netmsg_if *)nmsg;
1658 	struct ifnet *ifp = msg->ifp;
1659 	struct ifaddr_container *ifac;
1660 	struct domain *dp;
1661 
1662 	ASSERT_NETISR0;
1663 
1664 	ifp->if_flags &= ~IFF_UP;
1665 	getmicrotime(&ifp->if_lastchange);
1666 	rt_ifmsg(ifp);
1667 
1668 	/*
1669 	 * The ifaddr processing in the following loop will block,
1670 	 * however, this function is called in netisr0, in which
1671 	 * ifaddr list changes happen, so we don't care about the
1672 	 * blockness of the ifaddr processing here.
1673 	 */
1674 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1675 		struct ifaddr *ifa = ifac->ifa;
1676 
1677 		/* Ignore marker */
1678 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1679 			continue;
1680 
1681 		kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1682 	}
1683 
1684 	SLIST_FOREACH(dp, &domains, dom_next)
1685 		if (dp->dom_if_down != NULL)
1686 			dp->dom_if_down(ifp);
1687 
1688 	ifq_purge_all(&ifp->if_snd);
1689 	netisr_replymsg(&nmsg->base, 0);
1690 }
1691 
1692 /*
1693  * Mark an interface up and notify protocols of the transition.
1694  */
1695 static void
1696 if_up_dispatch(netmsg_t nmsg)
1697 {
1698 	struct netmsg_if *msg = (struct netmsg_if *)nmsg;
1699 	struct ifnet *ifp = msg->ifp;
1700 	struct ifaddr_container *ifac;
1701 	struct domain *dp;
1702 
1703 	ASSERT_NETISR0;
1704 
1705 	ifq_purge_all(&ifp->if_snd);
1706 	ifp->if_flags |= IFF_UP;
1707 	getmicrotime(&ifp->if_lastchange);
1708 	rt_ifmsg(ifp);
1709 
1710 	/*
1711 	 * The ifaddr processing in the following loop will block,
1712 	 * however, this function is called in netisr0, in which
1713 	 * ifaddr list changes happen, so we don't care about the
1714 	 * blockness of the ifaddr processing here.
1715 	 */
1716 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1717 		struct ifaddr *ifa = ifac->ifa;
1718 
1719 		/* Ignore marker */
1720 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1721 			continue;
1722 
1723 		kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1724 	}
1725 
1726 	SLIST_FOREACH(dp, &domains, dom_next)
1727 		if (dp->dom_if_up != NULL)
1728 			dp->dom_if_up(ifp);
1729 
1730 	netisr_replymsg(&nmsg->base, 0);
1731 }
1732 
1733 /*
1734  * Mark an interface down and notify protocols of the transition.  An
1735  * interface going down is also considered to be a synchronizing event.
1736  * We must ensure that all packet processing related to the interface
1737  * has completed before we return so e.g. the caller can free the ifnet
1738  * structure that the mbufs may be referencing.
1739  *
1740  * NOTE: must be called at splnet or eqivalent.
1741  */
1742 void
1743 if_down(struct ifnet *ifp)
1744 {
1745 	struct netmsg_if msg;
1746 
1747 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
1748 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1749 	    if_down_dispatch);
1750 	msg.ifp = ifp;
1751 	netisr_domsg(&msg.base, 0);
1752 	netmsg_service_sync();
1753 }
1754 
1755 /*
1756  * Mark an interface up and notify protocols of
1757  * the transition.
1758  * NOTE: must be called at splnet or eqivalent.
1759  */
1760 void
1761 if_up(struct ifnet *ifp)
1762 {
1763 	struct netmsg_if msg;
1764 
1765 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1766 	    if_up_dispatch);
1767 	msg.ifp = ifp;
1768 	netisr_domsg(&msg.base, 0);
1769 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
1770 }
1771 
1772 /*
1773  * Process a link state change.
1774  * NOTE: must be called at splsoftnet or equivalent.
1775  */
1776 void
1777 if_link_state_change(struct ifnet *ifp)
1778 {
1779 	int link_state = ifp->if_link_state;
1780 
1781 	rt_ifmsg(ifp);
1782 	devctl_notify("IFNET", ifp->if_xname,
1783 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1784 
1785 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
1786 }
1787 
1788 /*
1789  * Handle interface watchdog timer routines.  Called
1790  * from softclock, we decrement timers (if set) and
1791  * call the appropriate interface routine on expiration.
1792  */
1793 static void
1794 if_slowtimo_dispatch(netmsg_t nmsg)
1795 {
1796 	struct globaldata *gd = mycpu;
1797 	const struct ifnet_array *arr;
1798 	int i;
1799 
1800 	ASSERT_NETISR0;
1801 
1802 	crit_enter_gd(gd);
1803 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1804 	crit_exit_gd(gd);
1805 
1806 	arr = ifnet_array_get();
1807 	for (i = 0; i < arr->ifnet_count; ++i) {
1808 		struct ifnet *ifp = arr->ifnet_arr[i];
1809 
1810 		crit_enter_gd(gd);
1811 
1812 		if (if_stats_compat) {
1813 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1814 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1815 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1816 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1817 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1818 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1819 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1820 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1821 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1822 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1823 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1824 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1825 		}
1826 
1827 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1828 			crit_exit_gd(gd);
1829 			continue;
1830 		}
1831 		if (ifp->if_watchdog) {
1832 			if (ifnet_tryserialize_all(ifp)) {
1833 				(*ifp->if_watchdog)(ifp);
1834 				ifnet_deserialize_all(ifp);
1835 			} else {
1836 				/* try again next timeout */
1837 				++ifp->if_timer;
1838 			}
1839 		}
1840 
1841 		crit_exit_gd(gd);
1842 	}
1843 
1844 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1845 }
1846 
1847 static void
1848 if_slowtimo(void *arg __unused)
1849 {
1850 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1851 
1852 	KASSERT(mycpuid == 0, ("not on cpu0"));
1853 	crit_enter();
1854 	if (lmsg->ms_flags & MSGF_DONE)
1855 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1856 	crit_exit();
1857 }
1858 
1859 /*
1860  * Map interface name to
1861  * interface structure pointer.
1862  */
1863 struct ifnet *
1864 ifunit(const char *name)
1865 {
1866 	struct ifnet *ifp;
1867 
1868 	/*
1869 	 * Search all the interfaces for this name/number
1870 	 */
1871 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1872 
1873 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1874 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1875 			break;
1876 	}
1877 	return (ifp);
1878 }
1879 
1880 struct ifnet *
1881 ifunit_netisr(const char *name)
1882 {
1883 	const struct ifnet_array *arr;
1884 	int i;
1885 
1886 	/*
1887 	 * Search all the interfaces for this name/number
1888 	 */
1889 
1890 	arr = ifnet_array_get();
1891 	for (i = 0; i < arr->ifnet_count; ++i) {
1892 		struct ifnet *ifp = arr->ifnet_arr[i];
1893 
1894 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1895 			return ifp;
1896 	}
1897 	return NULL;
1898 }
1899 
1900 /*
1901  * Interface ioctls.
1902  */
1903 int
1904 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1905 {
1906 	struct ifnet *ifp;
1907 	struct ifgroupreq *ifgr;
1908 	struct ifreq *ifr;
1909 	struct ifstat *ifs;
1910 	int error, do_ifup = 0;
1911 	short oif_flags;
1912 	int new_flags;
1913 	size_t namelen, onamelen;
1914 	char new_name[IFNAMSIZ];
1915 	struct ifaddr *ifa;
1916 	struct sockaddr_dl *sdl;
1917 
1918 	switch (cmd) {
1919 	case SIOCGIFCONF:
1920 		return (ifconf(cmd, data, cred));
1921 	default:
1922 		break;
1923 	}
1924 
1925 	ifr = (struct ifreq *)data;
1926 
1927 	switch (cmd) {
1928 	case SIOCIFCREATE:
1929 	case SIOCIFCREATE2:
1930 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1931 			return (error);
1932 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1933 			(cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL), NULL));
1934 	case SIOCIFDESTROY:
1935 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1936 			return (error);
1937 		return (if_clone_destroy(ifr->ifr_name));
1938 	case SIOCIFGCLONERS:
1939 		return (if_clone_list((struct if_clonereq *)data));
1940 	case SIOCGIFGMEMB:
1941 		return (if_getgroupmembers((struct ifgroupreq *)data));
1942 	default:
1943 		break;
1944 	}
1945 
1946 	/*
1947 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1948 	 * lock to serialize the ifconfig ioctl operation.
1949 	 */
1950 	ifnet_lock();
1951 
1952 	ifp = ifunit(ifr->ifr_name);
1953 	if (ifp == NULL) {
1954 		ifnet_unlock();
1955 		return (ENXIO);
1956 	}
1957 	error = 0;
1958 
1959 	switch (cmd) {
1960 	case SIOCGIFINDEX:
1961 		ifr->ifr_index = ifp->if_index;
1962 		break;
1963 
1964 	case SIOCGIFFLAGS:
1965 		ifr->ifr_flags = ifp->if_flags;
1966 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1967 		break;
1968 
1969 	case SIOCGIFCAP:
1970 		ifr->ifr_reqcap = ifp->if_capabilities;
1971 		ifr->ifr_curcap = ifp->if_capenable;
1972 		break;
1973 
1974 	case SIOCGIFMETRIC:
1975 		ifr->ifr_metric = ifp->if_metric;
1976 		break;
1977 
1978 	case SIOCGIFMTU:
1979 		ifr->ifr_mtu = ifp->if_mtu;
1980 		break;
1981 
1982 	case SIOCGIFTSOLEN:
1983 		ifr->ifr_tsolen = ifp->if_tsolen;
1984 		break;
1985 
1986 	case SIOCGIFDATA:
1987 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1988 				sizeof(ifp->if_data));
1989 		break;
1990 
1991 	case SIOCGIFPHYS:
1992 		ifr->ifr_phys = ifp->if_physical;
1993 		break;
1994 
1995 	case SIOCGIFPOLLCPU:
1996 		ifr->ifr_pollcpu = -1;
1997 		break;
1998 
1999 	case SIOCSIFPOLLCPU:
2000 		break;
2001 
2002 	case SIOCSIFFLAGS:
2003 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2004 		if (error)
2005 			break;
2006 		new_flags = (ifr->ifr_flags & 0xffff) |
2007 		    (ifr->ifr_flagshigh << 16);
2008 		if (ifp->if_flags & IFF_SMART) {
2009 			/* Smart drivers twiddle their own routes */
2010 		} else if (ifp->if_flags & IFF_UP &&
2011 		    (new_flags & IFF_UP) == 0) {
2012 			if_down(ifp);
2013 		} else if (new_flags & IFF_UP &&
2014 		    (ifp->if_flags & IFF_UP) == 0) {
2015 			do_ifup = 1;
2016 		}
2017 
2018 #ifdef IFPOLL_ENABLE
2019 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
2020 			if (new_flags & IFF_NPOLLING)
2021 				ifpoll_register(ifp);
2022 			else
2023 				ifpoll_deregister(ifp);
2024 		}
2025 #endif
2026 
2027 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2028 			(new_flags &~ IFF_CANTCHANGE);
2029 		if (new_flags & IFF_PPROMISC) {
2030 			/* Permanently promiscuous mode requested */
2031 			ifp->if_flags |= IFF_PROMISC;
2032 		} else if (ifp->if_pcount == 0) {
2033 			ifp->if_flags &= ~IFF_PROMISC;
2034 		}
2035 		if (ifp->if_ioctl) {
2036 			ifnet_serialize_all(ifp);
2037 			ifp->if_ioctl(ifp, cmd, data, cred);
2038 			ifnet_deserialize_all(ifp);
2039 		}
2040 		if (do_ifup)
2041 			if_up(ifp);
2042 		getmicrotime(&ifp->if_lastchange);
2043 		break;
2044 
2045 	case SIOCSIFCAP:
2046 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2047 		if (error)
2048 			break;
2049 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
2050 			error = EINVAL;
2051 			break;
2052 		}
2053 		ifnet_serialize_all(ifp);
2054 		ifp->if_ioctl(ifp, cmd, data, cred);
2055 		ifnet_deserialize_all(ifp);
2056 		break;
2057 
2058 	case SIOCSIFNAME:
2059 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2060 		if (error)
2061 			break;
2062 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
2063 		if (error)
2064 			break;
2065 		if (new_name[0] == '\0') {
2066 			error = EINVAL;
2067 			break;
2068 		}
2069 		if (ifunit(new_name) != NULL) {
2070 			error = EEXIST;
2071 			break;
2072 		}
2073 
2074 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
2075 
2076 		/* Announce the departure of the interface. */
2077 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
2078 
2079 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
2080 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2081 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
2082 		namelen = strlen(new_name);
2083 		onamelen = sdl->sdl_nlen;
2084 		/*
2085 		 * Move the address if needed.  This is safe because we
2086 		 * allocate space for a name of length IFNAMSIZ when we
2087 		 * create this in if_attach().
2088 		 */
2089 		if (namelen != onamelen) {
2090 			bcopy(sdl->sdl_data + onamelen,
2091 			    sdl->sdl_data + namelen, sdl->sdl_alen);
2092 		}
2093 		bcopy(new_name, sdl->sdl_data, namelen);
2094 		sdl->sdl_nlen = namelen;
2095 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2096 		bzero(sdl->sdl_data, onamelen);
2097 		while (namelen != 0)
2098 			sdl->sdl_data[--namelen] = 0xff;
2099 
2100 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2101 
2102 		/* Announce the return of the interface. */
2103 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2104 		break;
2105 
2106 	case SIOCSIFMETRIC:
2107 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2108 		if (error)
2109 			break;
2110 		ifp->if_metric = ifr->ifr_metric;
2111 		getmicrotime(&ifp->if_lastchange);
2112 		break;
2113 
2114 	case SIOCSIFPHYS:
2115 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2116 		if (error)
2117 			break;
2118 		if (ifp->if_ioctl == NULL) {
2119 		        error = EOPNOTSUPP;
2120 			break;
2121 		}
2122 		ifnet_serialize_all(ifp);
2123 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2124 		ifnet_deserialize_all(ifp);
2125 		if (error == 0)
2126 			getmicrotime(&ifp->if_lastchange);
2127 		break;
2128 
2129 	case SIOCSIFMTU:
2130 	{
2131 		u_long oldmtu = ifp->if_mtu;
2132 
2133 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2134 		if (error)
2135 			break;
2136 		if (ifp->if_ioctl == NULL) {
2137 			error = EOPNOTSUPP;
2138 			break;
2139 		}
2140 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2141 			error = EINVAL;
2142 			break;
2143 		}
2144 		ifnet_serialize_all(ifp);
2145 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2146 		ifnet_deserialize_all(ifp);
2147 		if (error == 0) {
2148 			getmicrotime(&ifp->if_lastchange);
2149 			rt_ifmsg(ifp);
2150 		}
2151 		/*
2152 		 * If the link MTU changed, do network layer specific procedure.
2153 		 */
2154 		if (ifp->if_mtu != oldmtu) {
2155 #ifdef INET6
2156 			nd6_setmtu(ifp);
2157 #endif
2158 		}
2159 		break;
2160 	}
2161 
2162 	case SIOCSIFTSOLEN:
2163 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2164 		if (error)
2165 			break;
2166 
2167 		/* XXX need driver supplied upper limit */
2168 		if (ifr->ifr_tsolen <= 0) {
2169 			error = EINVAL;
2170 			break;
2171 		}
2172 		ifp->if_tsolen = ifr->ifr_tsolen;
2173 		break;
2174 
2175 	case SIOCADDMULTI:
2176 	case SIOCDELMULTI:
2177 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2178 		if (error)
2179 			break;
2180 
2181 		/* Don't allow group membership on non-multicast interfaces. */
2182 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2183 			error = EOPNOTSUPP;
2184 			break;
2185 		}
2186 
2187 		/* Don't let users screw up protocols' entries. */
2188 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2189 			error = EINVAL;
2190 			break;
2191 		}
2192 
2193 		if (cmd == SIOCADDMULTI) {
2194 			struct ifmultiaddr *ifma;
2195 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2196 		} else {
2197 			error = if_delmulti(ifp, &ifr->ifr_addr);
2198 		}
2199 		if (error == 0)
2200 			getmicrotime(&ifp->if_lastchange);
2201 		break;
2202 
2203 	case SIOCSIFPHYADDR:
2204 	case SIOCDIFPHYADDR:
2205 #ifdef INET6
2206 	case SIOCSIFPHYADDR_IN6:
2207 #endif
2208 	case SIOCSLIFPHYADDR:
2209 	case SIOCSIFMEDIA:
2210 	case SIOCSIFGENERIC:
2211 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2212 		if (error)
2213 			break;
2214 		if (ifp->if_ioctl == NULL) {
2215 			error = EOPNOTSUPP;
2216 			break;
2217 		}
2218 		ifnet_serialize_all(ifp);
2219 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2220 		ifnet_deserialize_all(ifp);
2221 		if (error == 0)
2222 			getmicrotime(&ifp->if_lastchange);
2223 		break;
2224 
2225 	case SIOCGIFSTATUS:
2226 		ifs = (struct ifstat *)data;
2227 		ifs->ascii[0] = '\0';
2228 		/* fall through */
2229 	case SIOCGIFPSRCADDR:
2230 	case SIOCGIFPDSTADDR:
2231 	case SIOCGLIFPHYADDR:
2232 	case SIOCGIFMEDIA:
2233 	case SIOCGIFXMEDIA:
2234 	case SIOCGIFGENERIC:
2235 		if (ifp->if_ioctl == NULL) {
2236 			error = EOPNOTSUPP;
2237 			break;
2238 		}
2239 		ifnet_serialize_all(ifp);
2240 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2241 		ifnet_deserialize_all(ifp);
2242 		break;
2243 
2244 	case SIOCSIFLLADDR:
2245 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2246 		if (error)
2247 			break;
2248 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2249 				     ifr->ifr_addr.sa_len);
2250 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2251 		break;
2252 
2253 	case SIOCAIFGROUP:
2254 		ifgr = (struct ifgroupreq *)ifr;
2255 		if ((error = priv_check_cred(cred, PRIV_NET_ADDIFGROUP, 0)))
2256 			return (error);
2257 		if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
2258 			return (error);
2259 		break;
2260 
2261 	case SIOCDIFGROUP:
2262 		ifgr = (struct ifgroupreq *)ifr;
2263 		if ((error = priv_check_cred(cred, PRIV_NET_DELIFGROUP, 0)))
2264 			return (error);
2265 		if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
2266 			return (error);
2267 		break;
2268 
2269 	case SIOCGIFGROUP:
2270 		ifgr = (struct ifgroupreq *)ifr;
2271 		if ((error = if_getgroups(ifgr, ifp)))
2272 			return (error);
2273 		break;
2274 
2275 	default:
2276 		oif_flags = ifp->if_flags;
2277 		if (so->so_proto == 0) {
2278 			error = EOPNOTSUPP;
2279 			break;
2280 		}
2281 		error = so_pru_control_direct(so, cmd, data, ifp);
2282 
2283 		/*
2284 		 * If the socket control method returns EOPNOTSUPP, pass the
2285 		 * request directly to the interface.
2286 		 *
2287 		 * Exclude the SIOCSIF{ADDR,BRDADDR,DSTADDR,NETMASK} ioctls,
2288 		 * because drivers may trust these ioctls to come from an
2289 		 * already privileged layer and thus do not perform credentials
2290 		 * checks or input validation.
2291 		 */
2292 		if (error == EOPNOTSUPP &&
2293 		    ifp->if_ioctl != NULL &&
2294 		    cmd != SIOCSIFADDR &&
2295 		    cmd != SIOCSIFBRDADDR &&
2296 		    cmd != SIOCSIFDSTADDR &&
2297 		    cmd != SIOCSIFNETMASK) {
2298 			ifnet_serialize_all(ifp);
2299 			error = ifp->if_ioctl(ifp, cmd, data, cred);
2300 			ifnet_deserialize_all(ifp);
2301 		}
2302 
2303 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2304 #ifdef INET6
2305 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2306 			if (ifp->if_flags & IFF_UP) {
2307 				crit_enter();
2308 				in6_if_up(ifp);
2309 				crit_exit();
2310 			}
2311 #endif
2312 		}
2313 		break;
2314 	}
2315 
2316 	ifnet_unlock();
2317 	return (error);
2318 }
2319 
2320 /*
2321  * Set/clear promiscuous mode on interface ifp based on the truth value
2322  * of pswitch.  The calls are reference counted so that only the first
2323  * "on" request actually has an effect, as does the final "off" request.
2324  * Results are undefined if the "off" and "on" requests are not matched.
2325  */
2326 int
2327 ifpromisc(struct ifnet *ifp, int pswitch)
2328 {
2329 	struct ifreq ifr;
2330 	int error;
2331 	int oldflags;
2332 
2333 	oldflags = ifp->if_flags;
2334 	if (ifp->if_flags & IFF_PPROMISC) {
2335 		/* Do nothing if device is in permanently promiscuous mode */
2336 		ifp->if_pcount += pswitch ? 1 : -1;
2337 		return (0);
2338 	}
2339 	if (pswitch) {
2340 		/*
2341 		 * If the device is not configured up, we cannot put it in
2342 		 * promiscuous mode.
2343 		 */
2344 		if ((ifp->if_flags & IFF_UP) == 0)
2345 			return (ENETDOWN);
2346 		if (ifp->if_pcount++ != 0)
2347 			return (0);
2348 		ifp->if_flags |= IFF_PROMISC;
2349 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2350 		    ifp->if_xname);
2351 	} else {
2352 		if (--ifp->if_pcount > 0)
2353 			return (0);
2354 		ifp->if_flags &= ~IFF_PROMISC;
2355 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2356 		    ifp->if_xname);
2357 	}
2358 	ifr.ifr_flags = ifp->if_flags;
2359 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2360 	ifnet_serialize_all(ifp);
2361 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2362 	ifnet_deserialize_all(ifp);
2363 	if (error == 0)
2364 		rt_ifmsg(ifp);
2365 	else
2366 		ifp->if_flags = oldflags;
2367 	return error;
2368 }
2369 
2370 /*
2371  * Return interface configuration
2372  * of system.  List may be used
2373  * in later ioctl's (above) to get
2374  * other information.
2375  */
2376 static int
2377 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2378 {
2379 	struct ifconf *ifc = (struct ifconf *)data;
2380 	struct ifnet *ifp;
2381 	struct sockaddr *sa;
2382 	struct ifreq ifr, *ifrp;
2383 	int space = ifc->ifc_len, error = 0;
2384 
2385 	ifrp = ifc->ifc_req;
2386 
2387 	ifnet_lock();
2388 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2389 		struct ifaddr_container *ifac, *ifac_mark;
2390 		struct ifaddr_marker mark;
2391 		struct ifaddrhead *head;
2392 		int addrs;
2393 
2394 		if (space <= sizeof ifr)
2395 			break;
2396 
2397 		/*
2398 		 * Zero the stack declared structure first to prevent
2399 		 * memory disclosure.
2400 		 */
2401 		bzero(&ifr, sizeof(ifr));
2402 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2403 		    >= sizeof(ifr.ifr_name)) {
2404 			error = ENAMETOOLONG;
2405 			break;
2406 		}
2407 
2408 		/*
2409 		 * Add a marker, since copyout() could block and during that
2410 		 * period the list could be changed.  Inserting the marker to
2411 		 * the header of the list will not cause trouble for the code
2412 		 * assuming that the first element of the list is AF_LINK; the
2413 		 * marker will be moved to the next position w/o blocking.
2414 		 */
2415 		ifa_marker_init(&mark, ifp);
2416 		ifac_mark = &mark.ifac;
2417 		head = &ifp->if_addrheads[mycpuid];
2418 
2419 		addrs = 0;
2420 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2421 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2422 			struct ifaddr *ifa = ifac->ifa;
2423 
2424 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2425 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2426 
2427 			/* Ignore marker */
2428 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2429 				continue;
2430 
2431 			if (space <= sizeof ifr)
2432 				break;
2433 			sa = ifa->ifa_addr;
2434 			if (cred->cr_prison && prison_if(cred, sa))
2435 				continue;
2436 			addrs++;
2437 			/*
2438 			 * Keep a reference on this ifaddr, so that it will
2439 			 * not be destroyed when its address is copied to
2440 			 * the userland, which could block.
2441 			 */
2442 			IFAREF(ifa);
2443 			if (sa->sa_len <= sizeof(*sa)) {
2444 				ifr.ifr_addr = *sa;
2445 				error = copyout(&ifr, ifrp, sizeof ifr);
2446 				ifrp++;
2447 			} else {
2448 				if (space < (sizeof ifr) + sa->sa_len -
2449 					    sizeof(*sa)) {
2450 					IFAFREE(ifa);
2451 					break;
2452 				}
2453 				space -= sa->sa_len - sizeof(*sa);
2454 				error = copyout(&ifr, ifrp,
2455 						sizeof ifr.ifr_name);
2456 				if (error == 0)
2457 					error = copyout(sa, &ifrp->ifr_addr,
2458 							sa->sa_len);
2459 				ifrp = (struct ifreq *)
2460 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2461 			}
2462 			IFAFREE(ifa);
2463 			if (error)
2464 				break;
2465 			space -= sizeof ifr;
2466 		}
2467 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2468 		if (error)
2469 			break;
2470 		if (!addrs) {
2471 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2472 			error = copyout(&ifr, ifrp, sizeof ifr);
2473 			if (error)
2474 				break;
2475 			space -= sizeof ifr;
2476 			ifrp++;
2477 		}
2478 	}
2479 	ifnet_unlock();
2480 
2481 	ifc->ifc_len -= space;
2482 	return (error);
2483 }
2484 
2485 /*
2486  * Just like if_promisc(), but for all-multicast-reception mode.
2487  */
2488 int
2489 if_allmulti(struct ifnet *ifp, int onswitch)
2490 {
2491 	int error = 0;
2492 	struct ifreq ifr;
2493 
2494 	crit_enter();
2495 
2496 	if (onswitch) {
2497 		if (ifp->if_amcount++ == 0) {
2498 			ifp->if_flags |= IFF_ALLMULTI;
2499 			ifr.ifr_flags = ifp->if_flags;
2500 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2501 			ifnet_serialize_all(ifp);
2502 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2503 					      NULL);
2504 			ifnet_deserialize_all(ifp);
2505 		}
2506 	} else {
2507 		if (ifp->if_amcount > 1) {
2508 			ifp->if_amcount--;
2509 		} else {
2510 			ifp->if_amcount = 0;
2511 			ifp->if_flags &= ~IFF_ALLMULTI;
2512 			ifr.ifr_flags = ifp->if_flags;
2513 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2514 			ifnet_serialize_all(ifp);
2515 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2516 					      NULL);
2517 			ifnet_deserialize_all(ifp);
2518 		}
2519 	}
2520 
2521 	crit_exit();
2522 
2523 	if (error == 0)
2524 		rt_ifmsg(ifp);
2525 	return error;
2526 }
2527 
2528 /*
2529  * Add a multicast listenership to the interface in question.
2530  * The link layer provides a routine which converts
2531  */
2532 int
2533 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2534     struct ifmultiaddr **retifma)
2535 {
2536 	struct sockaddr *llsa, *dupsa;
2537 	int error;
2538 	struct ifmultiaddr *ifma;
2539 
2540 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2541 
2542 	/*
2543 	 * If the matching multicast address already exists
2544 	 * then don't add a new one, just add a reference
2545 	 */
2546 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2547 		if (sa_equal(sa, ifma->ifma_addr)) {
2548 			ifma->ifma_refcount++;
2549 			if (retifma)
2550 				*retifma = ifma;
2551 			return 0;
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * Give the link layer a chance to accept/reject it, and also
2557 	 * find out which AF_LINK address this maps to, if it isn't one
2558 	 * already.
2559 	 */
2560 	if (ifp->if_resolvemulti) {
2561 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2562 		if (error)
2563 			return error;
2564 	} else {
2565 		llsa = NULL;
2566 	}
2567 
2568 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2569 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2570 	bcopy(sa, dupsa, sa->sa_len);
2571 
2572 	ifma->ifma_addr = dupsa;
2573 	ifma->ifma_lladdr = llsa;
2574 	ifma->ifma_ifp = ifp;
2575 	ifma->ifma_refcount = 1;
2576 	ifma->ifma_protospec = NULL;
2577 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2578 
2579 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2580 	if (retifma)
2581 		*retifma = ifma;
2582 
2583 	if (llsa != NULL) {
2584 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2585 			if (sa_equal(ifma->ifma_addr, llsa))
2586 				break;
2587 		}
2588 		if (ifma) {
2589 			ifma->ifma_refcount++;
2590 		} else {
2591 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2592 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2593 			bcopy(llsa, dupsa, llsa->sa_len);
2594 			ifma->ifma_addr = dupsa;
2595 			ifma->ifma_ifp = ifp;
2596 			ifma->ifma_refcount = 1;
2597 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2598 		}
2599 	}
2600 	/*
2601 	 * We are certain we have added something, so call down to the
2602 	 * interface to let them know about it.
2603 	 */
2604 	if (ifp->if_ioctl)
2605 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2606 
2607 	return 0;
2608 }
2609 
2610 int
2611 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2612     struct ifmultiaddr **retifma)
2613 {
2614 	int error;
2615 
2616 	ifnet_serialize_all(ifp);
2617 	error = if_addmulti_serialized(ifp, sa, retifma);
2618 	ifnet_deserialize_all(ifp);
2619 
2620 	return error;
2621 }
2622 
2623 /*
2624  * Remove a reference to a multicast address on this interface.  Yell
2625  * if the request does not match an existing membership.
2626  */
2627 static int
2628 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2629 {
2630 	struct ifmultiaddr *ifma;
2631 
2632 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2633 
2634 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2635 		if (sa_equal(sa, ifma->ifma_addr))
2636 			break;
2637 	if (ifma == NULL)
2638 		return ENOENT;
2639 
2640 	if (ifma->ifma_refcount > 1) {
2641 		ifma->ifma_refcount--;
2642 		return 0;
2643 	}
2644 
2645 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2646 	sa = ifma->ifma_lladdr;
2647 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2648 	/*
2649 	 * Make sure the interface driver is notified
2650 	 * in the case of a link layer mcast group being left.
2651 	 */
2652 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2653 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2654 	kfree(ifma->ifma_addr, M_IFMADDR);
2655 	kfree(ifma, M_IFMADDR);
2656 	if (sa == NULL)
2657 		return 0;
2658 
2659 	/*
2660 	 * Now look for the link-layer address which corresponds to
2661 	 * this network address.  It had been squirreled away in
2662 	 * ifma->ifma_lladdr for this purpose (so we don't have
2663 	 * to call ifp->if_resolvemulti() again), and we saved that
2664 	 * value in sa above.  If some nasty deleted the
2665 	 * link-layer address out from underneath us, we can deal because
2666 	 * the address we stored was is not the same as the one which was
2667 	 * in the record for the link-layer address.  (So we don't complain
2668 	 * in that case.)
2669 	 */
2670 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2671 		if (sa_equal(sa, ifma->ifma_addr))
2672 			break;
2673 	if (ifma == NULL)
2674 		return 0;
2675 
2676 	if (ifma->ifma_refcount > 1) {
2677 		ifma->ifma_refcount--;
2678 		return 0;
2679 	}
2680 
2681 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2682 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2683 	kfree(ifma->ifma_addr, M_IFMADDR);
2684 	kfree(sa, M_IFMADDR);
2685 	kfree(ifma, M_IFMADDR);
2686 
2687 	return 0;
2688 }
2689 
2690 int
2691 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2692 {
2693 	int error;
2694 
2695 	ifnet_serialize_all(ifp);
2696 	error = if_delmulti_serialized(ifp, sa);
2697 	ifnet_deserialize_all(ifp);
2698 
2699 	return error;
2700 }
2701 
2702 /*
2703  * Delete all multicast group membership for an interface.
2704  * Should be used to quickly flush all multicast filters.
2705  */
2706 void
2707 if_delallmulti_serialized(struct ifnet *ifp)
2708 {
2709 	struct ifmultiaddr *ifma, mark;
2710 	struct sockaddr sa;
2711 
2712 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2713 
2714 	bzero(&sa, sizeof(sa));
2715 	sa.sa_family = AF_UNSPEC;
2716 	sa.sa_len = sizeof(sa);
2717 
2718 	bzero(&mark, sizeof(mark));
2719 	mark.ifma_addr = &sa;
2720 
2721 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2722 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2723 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2724 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2725 		    ifma_link);
2726 
2727 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2728 			continue;
2729 
2730 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2731 	}
2732 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2733 }
2734 
2735 
2736 /*
2737  * Set the link layer address on an interface.
2738  *
2739  * At this time we only support certain types of interfaces,
2740  * and we don't allow the length of the address to change.
2741  */
2742 int
2743 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2744 {
2745 	struct sockaddr_dl *sdl;
2746 	struct ifreq ifr;
2747 
2748 	sdl = IF_LLSOCKADDR(ifp);
2749 	if (sdl == NULL)
2750 		return (EINVAL);
2751 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2752 		return (EINVAL);
2753 	switch (ifp->if_type) {
2754 	case IFT_ETHER:			/* these types use struct arpcom */
2755 	case IFT_XETHER:
2756 	case IFT_L2VLAN:
2757 	case IFT_IEEE8023ADLAG:
2758 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2759 		bcopy(lladdr, LLADDR(sdl), len);
2760 		break;
2761 	default:
2762 		return (ENODEV);
2763 	}
2764 	/*
2765 	 * If the interface is already up, we need
2766 	 * to re-init it in order to reprogram its
2767 	 * address filter.
2768 	 */
2769 	ifnet_serialize_all(ifp);
2770 	if ((ifp->if_flags & IFF_UP) != 0) {
2771 #ifdef INET
2772 		struct ifaddr_container *ifac;
2773 #endif
2774 
2775 		ifp->if_flags &= ~IFF_UP;
2776 		ifr.ifr_flags = ifp->if_flags;
2777 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2778 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2779 			      NULL);
2780 		ifp->if_flags |= IFF_UP;
2781 		ifr.ifr_flags = ifp->if_flags;
2782 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2783 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2784 				 NULL);
2785 #ifdef INET
2786 		/*
2787 		 * Also send gratuitous ARPs to notify other nodes about
2788 		 * the address change.
2789 		 */
2790 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2791 			struct ifaddr *ifa = ifac->ifa;
2792 
2793 			if (ifa->ifa_addr != NULL &&
2794 			    ifa->ifa_addr->sa_family == AF_INET)
2795 				arp_gratuitous(ifp, ifa);
2796 		}
2797 #endif
2798 	}
2799 	ifnet_deserialize_all(ifp);
2800 	return (0);
2801 }
2802 
2803 
2804 /*
2805  * Locate an interface based on a complete address.
2806  */
2807 struct ifnet *
2808 if_bylla(const void *lla, unsigned char lla_len)
2809 {
2810 	const struct ifnet_array *arr;
2811 	struct ifnet *ifp;
2812 	struct sockaddr_dl *sdl;
2813 	int i;
2814 
2815 	arr = ifnet_array_get();
2816 	for (i = 0; i < arr->ifnet_count; ++i) {
2817 		ifp = arr->ifnet_arr[i];
2818 		if (ifp->if_addrlen != lla_len)
2819 			continue;
2820 
2821 		sdl = IF_LLSOCKADDR(ifp);
2822 		if (memcmp(lla, LLADDR(sdl), lla_len) == 0)
2823 			return (ifp);
2824 	}
2825 	return (NULL);
2826 }
2827 
2828 struct ifmultiaddr *
2829 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2830 {
2831 	struct ifmultiaddr *ifma;
2832 
2833 	/* TODO: need ifnet_serialize_main */
2834 	ifnet_serialize_all(ifp);
2835 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2836 		if (sa_equal(ifma->ifma_addr, sa))
2837 			break;
2838 	ifnet_deserialize_all(ifp);
2839 
2840 	return ifma;
2841 }
2842 
2843 /*
2844  * This function locates the first real ethernet MAC from a network
2845  * card and loads it into node, returning 0 on success or ENOENT if
2846  * no suitable interfaces were found.  It is used by the uuid code to
2847  * generate a unique 6-byte number.
2848  */
2849 int
2850 if_getanyethermac(uint16_t *node, int minlen)
2851 {
2852 	struct ifnet *ifp;
2853 	struct sockaddr_dl *sdl;
2854 
2855 	ifnet_lock();
2856 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2857 		if (ifp->if_type != IFT_ETHER)
2858 			continue;
2859 		sdl = IF_LLSOCKADDR(ifp);
2860 		if (sdl->sdl_alen < minlen)
2861 			continue;
2862 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2863 		      minlen);
2864 		ifnet_unlock();
2865 		return(0);
2866 	}
2867 	ifnet_unlock();
2868 	return (ENOENT);
2869 }
2870 
2871 /*
2872  * The name argument must be a pointer to storage which will last as
2873  * long as the interface does.  For physical devices, the result of
2874  * device_get_name(dev) is a good choice and for pseudo-devices a
2875  * static string works well.
2876  */
2877 void
2878 if_initname(struct ifnet *ifp, const char *name, int unit)
2879 {
2880 	ifp->if_dname = name;
2881 	ifp->if_dunit = unit;
2882 	if (unit != IF_DUNIT_NONE)
2883 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2884 	else
2885 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2886 }
2887 
2888 int
2889 if_printf(struct ifnet *ifp, const char *fmt, ...)
2890 {
2891 	__va_list ap;
2892 	int retval;
2893 
2894 	retval = kprintf("%s: ", ifp->if_xname);
2895 	__va_start(ap, fmt);
2896 	retval += kvprintf(fmt, ap);
2897 	__va_end(ap);
2898 	return (retval);
2899 }
2900 
2901 struct ifnet *
2902 if_alloc(uint8_t type)
2903 {
2904 	struct ifnet *ifp;
2905 	size_t size;
2906 
2907 	/*
2908 	 * XXX temporary hack until arpcom is setup in if_l2com
2909 	 */
2910 	if (type == IFT_ETHER)
2911 		size = sizeof(struct arpcom);
2912 	else
2913 		size = sizeof(struct ifnet);
2914 
2915 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2916 
2917 	ifp->if_type = type;
2918 
2919 	if (if_com_alloc[type] != NULL) {
2920 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2921 		if (ifp->if_l2com == NULL) {
2922 			kfree(ifp, M_IFNET);
2923 			return (NULL);
2924 		}
2925 	}
2926 	return (ifp);
2927 }
2928 
2929 void
2930 if_free(struct ifnet *ifp)
2931 {
2932 	kfree(ifp, M_IFNET);
2933 }
2934 
2935 void
2936 ifq_set_classic(struct ifaltq *ifq)
2937 {
2938 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2939 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2940 }
2941 
2942 void
2943 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2944     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2945 {
2946 	int q;
2947 
2948 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2949 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2950 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2951 	KASSERT(request != NULL, ("request is not specified"));
2952 
2953 	ifq->altq_mapsubq = mapsubq;
2954 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2955 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2956 
2957 		ifsq->ifsq_enqueue = enqueue;
2958 		ifsq->ifsq_dequeue = dequeue;
2959 		ifsq->ifsq_request = request;
2960 	}
2961 }
2962 
2963 static void
2964 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2965 {
2966 
2967 	classq_add(&ifsq->ifsq_norm, m);
2968 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2969 }
2970 
2971 static void
2972 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2973 {
2974 
2975 	classq_add(&ifsq->ifsq_prio, m);
2976 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2977 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2978 }
2979 
2980 static struct mbuf *
2981 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2982 {
2983 	struct mbuf *m;
2984 
2985 	m = classq_get(&ifsq->ifsq_norm);
2986 	if (m != NULL)
2987 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2988 	return (m);
2989 }
2990 
2991 static struct mbuf *
2992 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2993 {
2994 	struct mbuf *m;
2995 
2996 	m = classq_get(&ifsq->ifsq_prio);
2997 	if (m != NULL) {
2998 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2999 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
3000 	}
3001 	return (m);
3002 }
3003 
3004 int
3005 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
3006     struct altq_pktattr *pa __unused)
3007 {
3008 
3009 	M_ASSERTPKTHDR(m);
3010 again:
3011 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
3012 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
3013 		struct mbuf *m_drop;
3014 
3015 		if (m->m_flags & M_PRIO) {
3016 			m_drop = NULL;
3017 			if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
3018 			    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
3019 				/* Try dropping some from normal queue. */
3020 				m_drop = ifsq_norm_dequeue(ifsq);
3021 			}
3022 			if (m_drop == NULL)
3023 				m_drop = ifsq_prio_dequeue(ifsq);
3024 		} else {
3025 			m_drop = ifsq_norm_dequeue(ifsq);
3026 		}
3027 		if (m_drop != NULL) {
3028 			IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
3029 			m_freem(m_drop);
3030 			goto again;
3031 		}
3032 		/*
3033 		 * No old packets could be dropped!
3034 		 * NOTE: Caller increases oqdrops.
3035 		 */
3036 		m_freem(m);
3037 		return (ENOBUFS);
3038 	} else {
3039 		if (m->m_flags & M_PRIO)
3040 			ifsq_prio_enqueue(ifsq, m);
3041 		else
3042 			ifsq_norm_enqueue(ifsq, m);
3043 		return (0);
3044 	}
3045 }
3046 
3047 struct mbuf *
3048 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
3049 {
3050 	struct mbuf *m;
3051 
3052 	switch (op) {
3053 	case ALTDQ_POLL:
3054 		m = classq_head(&ifsq->ifsq_prio);
3055 		if (m == NULL)
3056 			m = classq_head(&ifsq->ifsq_norm);
3057 		break;
3058 
3059 	case ALTDQ_REMOVE:
3060 		m = ifsq_prio_dequeue(ifsq);
3061 		if (m == NULL)
3062 			m = ifsq_norm_dequeue(ifsq);
3063 		break;
3064 
3065 	default:
3066 		panic("unsupported ALTQ dequeue op: %d", op);
3067 	}
3068 	return m;
3069 }
3070 
3071 int
3072 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
3073 {
3074 	switch (req) {
3075 	case ALTRQ_PURGE:
3076 		for (;;) {
3077 			struct mbuf *m;
3078 
3079 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
3080 			if (m == NULL)
3081 				break;
3082 			m_freem(m);
3083 		}
3084 		break;
3085 
3086 	default:
3087 		panic("unsupported ALTQ request: %d", req);
3088 	}
3089 	return 0;
3090 }
3091 
3092 static void
3093 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
3094 {
3095 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3096 	int running = 0, need_sched;
3097 
3098 	/*
3099 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
3100 	 * contention on the subqueue hardware serializer, ifnet.if_start on
3101 	 * the subqueue will be scheduled on the subqueue owner CPU.
3102 	 */
3103 	if (!ifsq_tryserialize_hw(ifsq)) {
3104 		/*
3105 		 * Subqueue hardware serializer contention happened,
3106 		 * ifnet.if_start on the subqueue is scheduled on
3107 		 * the subqueue owner CPU, and we keep going.
3108 		 */
3109 		ifsq_ifstart_schedule(ifsq, 1);
3110 		return;
3111 	}
3112 
3113 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
3114 		ifp->if_start(ifp, ifsq);
3115 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
3116 			running = 1;
3117 	}
3118 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
3119 
3120 	ifsq_deserialize_hw(ifsq);
3121 
3122 	if (need_sched) {
3123 		/*
3124 		 * More data need to be transmitted, ifnet.if_start on the
3125 		 * subqueue is scheduled on the subqueue owner CPU, and we
3126 		 * keep going.
3127 		 * NOTE: ifnet.if_start subqueue interlock is not released.
3128 		 */
3129 		ifsq_ifstart_schedule(ifsq, force_sched);
3130 	}
3131 }
3132 
3133 /*
3134  * Subqeue packets staging mechanism:
3135  *
3136  * The packets enqueued into the subqueue are staged to a certain amount
3137  * before the ifnet.if_start on the subqueue is called.  In this way, the
3138  * driver could avoid writing to hardware registers upon every packet,
3139  * instead, hardware registers could be written when certain amount of
3140  * packets are put onto hardware TX ring.  The measurement on several modern
3141  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
3142  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
3143  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
3144  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
3145  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
3146  *
3147  * Subqueue packets staging is performed for two entry points into drivers'
3148  * transmission function:
3149  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3150  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3151  *
3152  * Subqueue packets staging will be stopped upon any of the following
3153  * conditions:
3154  * - If the count of packets enqueued on the current CPU is great than or
3155  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3156  * - If the total length of packets enqueued on the current CPU is great
3157  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
3158  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3159  *   is usually less than hardware's MTU.
3160  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3161  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3162  *   released.
3163  * - The if_start_rollup(), which is registered as low priority netisr
3164  *   rollup function, is called; probably because no more work is pending
3165  *   for netisr.
3166  *
3167  * NOTE:
3168  * Currently subqueue packet staging is only performed in netisr threads.
3169  */
3170 int
3171 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3172 {
3173 	struct ifaltq *ifq = &ifp->if_snd;
3174 	struct ifaltq_subque *ifsq;
3175 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3176 	struct ifsubq_stage_head *head = NULL;
3177 	struct ifsubq_stage *stage = NULL;
3178 	struct globaldata *gd = mycpu;
3179 	struct thread *td = gd->gd_curthread;
3180 
3181 	crit_enter_quick(td);
3182 
3183 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3184 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3185 
3186 	len = m->m_pkthdr.len;
3187 	if (m->m_flags & M_MCAST)
3188 		mcast = 1;
3189 
3190 	if (td->td_type == TD_TYPE_NETISR) {
3191 		head = &ifsubq_stage_heads[mycpuid];
3192 		stage = ifsq_get_stage(ifsq, mycpuid);
3193 
3194 		stage->stg_cnt++;
3195 		stage->stg_len += len;
3196 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3197 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3198 			avoid_start = 1;
3199 	}
3200 
3201 	ALTQ_SQ_LOCK(ifsq);
3202 	error = ifsq_enqueue_locked(ifsq, m, pa);
3203 	if (error) {
3204 		IFNET_STAT_INC(ifp, oqdrops, 1);
3205 		if (!ifsq_data_ready(ifsq)) {
3206 			ALTQ_SQ_UNLOCK(ifsq);
3207 			crit_exit_quick(td);
3208 			return error;
3209 		}
3210 		avoid_start = 0;
3211 	}
3212 	if (!ifsq_is_started(ifsq)) {
3213 		if (avoid_start) {
3214 			ALTQ_SQ_UNLOCK(ifsq);
3215 
3216 			KKASSERT(!error);
3217 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3218 				ifsq_stage_insert(head, stage);
3219 
3220 			IFNET_STAT_INC(ifp, obytes, len);
3221 			if (mcast)
3222 				IFNET_STAT_INC(ifp, omcasts, 1);
3223 			crit_exit_quick(td);
3224 			return error;
3225 		}
3226 
3227 		/*
3228 		 * Hold the subqueue interlock of ifnet.if_start
3229 		 */
3230 		ifsq_set_started(ifsq);
3231 		start = 1;
3232 	}
3233 	ALTQ_SQ_UNLOCK(ifsq);
3234 
3235 	if (!error) {
3236 		IFNET_STAT_INC(ifp, obytes, len);
3237 		if (mcast)
3238 			IFNET_STAT_INC(ifp, omcasts, 1);
3239 	}
3240 
3241 	if (stage != NULL) {
3242 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3243 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3244 			if (!avoid_start) {
3245 				ifsq_stage_remove(head, stage);
3246 				ifsq_ifstart_schedule(ifsq, 1);
3247 			}
3248 			crit_exit_quick(td);
3249 			return error;
3250 		}
3251 
3252 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3253 			ifsq_stage_remove(head, stage);
3254 		} else {
3255 			stage->stg_cnt = 0;
3256 			stage->stg_len = 0;
3257 		}
3258 	}
3259 
3260 	if (!start) {
3261 		crit_exit_quick(td);
3262 		return error;
3263 	}
3264 
3265 	ifsq_ifstart_try(ifsq, 0);
3266 
3267 	crit_exit_quick(td);
3268 	return error;
3269 }
3270 
3271 void *
3272 ifa_create(int size)
3273 {
3274 	struct ifaddr *ifa;
3275 	int i;
3276 
3277 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3278 
3279 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3280 
3281 	/*
3282 	 * Make ifa_container availabel on all CPUs, since they
3283 	 * could be accessed by any threads.
3284 	 */
3285 	ifa->ifa_containers =
3286 		kmalloc(ncpus * sizeof(struct ifaddr_container),
3287 			M_IFADDR,
3288 			M_INTWAIT | M_ZERO | M_CACHEALIGN);
3289 
3290 	ifa->ifa_ncnt = ncpus;
3291 	for (i = 0; i < ncpus; ++i) {
3292 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3293 
3294 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3295 		ifac->ifa = ifa;
3296 		ifac->ifa_refcnt = 1;
3297 	}
3298 #ifdef IFADDR_DEBUG
3299 	kprintf("alloc ifa %p %d\n", ifa, size);
3300 #endif
3301 	return ifa;
3302 }
3303 
3304 void
3305 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3306 {
3307 	struct ifaddr *ifa = ifac->ifa;
3308 
3309 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3310 	KKASSERT(ifac->ifa_refcnt == 0);
3311 	KASSERT(ifac->ifa_listmask == 0,
3312 		("ifa is still on %#x lists", ifac->ifa_listmask));
3313 
3314 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3315 
3316 #ifdef IFADDR_DEBUG_VERBOSE
3317 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3318 #endif
3319 
3320 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3321 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3322 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3323 #ifdef IFADDR_DEBUG
3324 		kprintf("free ifa %p\n", ifa);
3325 #endif
3326 		kfree(ifa->ifa_containers, M_IFADDR);
3327 		kfree(ifa, M_IFADDR);
3328 	}
3329 }
3330 
3331 static void
3332 ifa_iflink_dispatch(netmsg_t nmsg)
3333 {
3334 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3335 	struct ifaddr *ifa = msg->ifa;
3336 	struct ifnet *ifp = msg->ifp;
3337 	int cpu = mycpuid;
3338 	struct ifaddr_container *ifac;
3339 
3340 	crit_enter();
3341 
3342 	ifac = &ifa->ifa_containers[cpu];
3343 	ASSERT_IFAC_VALID(ifac);
3344 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3345 		("ifaddr is on if_addrheads"));
3346 
3347 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3348 	if (msg->tail)
3349 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3350 	else
3351 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3352 
3353 	crit_exit();
3354 
3355 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3356 }
3357 
3358 void
3359 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3360 {
3361 	struct netmsg_ifaddr msg;
3362 
3363 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3364 		    0, ifa_iflink_dispatch);
3365 	msg.ifa = ifa;
3366 	msg.ifp = ifp;
3367 	msg.tail = tail;
3368 
3369 	netisr_domsg(&msg.base, 0);
3370 }
3371 
3372 static void
3373 ifa_ifunlink_dispatch(netmsg_t nmsg)
3374 {
3375 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3376 	struct ifaddr *ifa = msg->ifa;
3377 	struct ifnet *ifp = msg->ifp;
3378 	int cpu = mycpuid;
3379 	struct ifaddr_container *ifac;
3380 
3381 	crit_enter();
3382 
3383 	ifac = &ifa->ifa_containers[cpu];
3384 	ASSERT_IFAC_VALID(ifac);
3385 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3386 		("ifaddr is not on if_addrhead"));
3387 
3388 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3389 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3390 
3391 	crit_exit();
3392 
3393 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3394 }
3395 
3396 void
3397 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3398 {
3399 	struct netmsg_ifaddr msg;
3400 
3401 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3402 		    0, ifa_ifunlink_dispatch);
3403 	msg.ifa = ifa;
3404 	msg.ifp = ifp;
3405 
3406 	netisr_domsg(&msg.base, 0);
3407 }
3408 
3409 static void
3410 ifa_destroy_dispatch(netmsg_t nmsg)
3411 {
3412 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3413 
3414 	IFAFREE(msg->ifa);
3415 	netisr_forwardmsg_all(&nmsg->base, mycpuid + 1);
3416 }
3417 
3418 void
3419 ifa_destroy(struct ifaddr *ifa)
3420 {
3421 	struct netmsg_ifaddr msg;
3422 
3423 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3424 		    0, ifa_destroy_dispatch);
3425 	msg.ifa = ifa;
3426 
3427 	netisr_domsg(&msg.base, 0);
3428 }
3429 
3430 static void
3431 if_start_rollup(void)
3432 {
3433 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3434 	struct ifsubq_stage *stage;
3435 
3436 	crit_enter();
3437 
3438 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3439 		struct ifaltq_subque *ifsq = stage->stg_subq;
3440 		int is_sched = 0;
3441 
3442 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3443 			is_sched = 1;
3444 		ifsq_stage_remove(head, stage);
3445 
3446 		if (is_sched) {
3447 			ifsq_ifstart_schedule(ifsq, 1);
3448 		} else {
3449 			int start = 0;
3450 
3451 			ALTQ_SQ_LOCK(ifsq);
3452 			if (!ifsq_is_started(ifsq)) {
3453 				/*
3454 				 * Hold the subqueue interlock of
3455 				 * ifnet.if_start
3456 				 */
3457 				ifsq_set_started(ifsq);
3458 				start = 1;
3459 			}
3460 			ALTQ_SQ_UNLOCK(ifsq);
3461 
3462 			if (start)
3463 				ifsq_ifstart_try(ifsq, 1);
3464 		}
3465 		KKASSERT((stage->stg_flags &
3466 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3467 	}
3468 
3469 	crit_exit();
3470 }
3471 
3472 static void
3473 ifnetinit(void *dummy __unused)
3474 {
3475 	int i;
3476 
3477 	/* XXX netisr_ncpus */
3478 	for (i = 0; i < ncpus; ++i)
3479 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3480 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3481 }
3482 
3483 void
3484 if_register_com_alloc(u_char type,
3485     if_com_alloc_t *a, if_com_free_t *f)
3486 {
3487 
3488         KASSERT(if_com_alloc[type] == NULL,
3489             ("if_register_com_alloc: %d already registered", type));
3490         KASSERT(if_com_free[type] == NULL,
3491             ("if_register_com_alloc: %d free already registered", type));
3492 
3493         if_com_alloc[type] = a;
3494         if_com_free[type] = f;
3495 }
3496 
3497 void
3498 if_deregister_com_alloc(u_char type)
3499 {
3500 
3501         KASSERT(if_com_alloc[type] != NULL,
3502             ("if_deregister_com_alloc: %d not registered", type));
3503         KASSERT(if_com_free[type] != NULL,
3504             ("if_deregister_com_alloc: %d free not registered", type));
3505         if_com_alloc[type] = NULL;
3506         if_com_free[type] = NULL;
3507 }
3508 
3509 void
3510 ifq_set_maxlen(struct ifaltq *ifq, int len)
3511 {
3512 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3513 }
3514 
3515 int
3516 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3517 {
3518 	return ALTQ_SUBQ_INDEX_DEFAULT;
3519 }
3520 
3521 int
3522 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3523 {
3524 
3525 	return (cpuid % ifq->altq_subq_mappriv);
3526 }
3527 
3528 /*
3529  * Watchdog timeout.  Process callback as appropriate.  If we cannot
3530  * serialize the ifnet just try again on the next timeout.
3531  *
3532  * NOTE: The ifnet can adjust wd_timer while holding the serializer.  We
3533  *	 can only safely adjust it under the same circumstances.
3534  */
3535 static void
3536 ifsq_watchdog(void *arg)
3537 {
3538 	struct ifsubq_watchdog *wd = arg;
3539 	struct ifnet *ifp;
3540 	int count;
3541 
3542 	/*
3543 	 * Fast track.  Try to avoid acquiring the serializer when not
3544 	 * near the terminal count, unless asked to.  If the atomic op
3545 	 * to decrement the count fails just retry on the next callout.
3546 	 */
3547 	count = wd->wd_timer;
3548 	cpu_ccfence();
3549 	if (count == 0)
3550 		goto done;
3551 	if (count > 2 && (wd->wd_flags & IF_WDOG_ALLTICKS) == 0) {
3552 		(void)atomic_cmpset_int(&wd->wd_timer, count, count - 1);
3553 		goto done;
3554 	}
3555 
3556 	/*
3557 	 * Obtain the serializer and then re-test all wd_timer conditions
3558 	 * as it may have changed.  NICs do not mess with wd_timer without
3559 	 * holding the serializer.
3560 	 *
3561 	 * If we are unable to obtain the serializer just retry the same
3562 	 * count on the next callout.
3563 	 *
3564 	 * - call watchdog in terminal count (0)
3565 	 * - call watchdog on last tick (1) if requested
3566 	 * - call watchdog on all ticks if requested
3567 	 */
3568 	ifp = ifsq_get_ifp(wd->wd_subq);
3569 	if (ifnet_tryserialize_all(ifp) == 0)
3570 		goto done;
3571 	if (atomic_cmpset_int(&wd->wd_timer, count, count - 1)) {
3572 		--count;
3573 		if (count == 0 ||
3574 		    (wd->wd_flags & IF_WDOG_ALLTICKS) ||
3575 		    ((wd->wd_flags & IF_WDOG_LASTTICK) && count == 1)) {
3576 			wd->wd_watchdog(wd->wd_subq);
3577 		}
3578 	}
3579 	ifnet_deserialize_all(ifp);
3580 done:
3581 	ifsq_watchdog_reset(wd);
3582 }
3583 
3584 static void
3585 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3586 {
3587 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3588 	    ifsq_get_cpuid(wd->wd_subq));
3589 }
3590 
3591 void
3592 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3593 		   ifsq_watchdog_t watchdog, int flags)
3594 {
3595 	callout_init_mp(&wd->wd_callout);
3596 	wd->wd_timer = 0;
3597 	wd->wd_flags = flags;
3598 	wd->wd_subq = ifsq;
3599 	wd->wd_watchdog = watchdog;
3600 }
3601 
3602 void
3603 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3604 {
3605 	atomic_swap_int(&wd->wd_timer, 0);
3606 	ifsq_watchdog_reset(wd);
3607 }
3608 
3609 void
3610 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3611 {
3612 	atomic_swap_int(&wd->wd_timer, 0);
3613 	callout_stop(&wd->wd_callout);
3614 }
3615 
3616 void
3617 ifsq_watchdog_set_count(struct ifsubq_watchdog *wd, int count)
3618 {
3619 	atomic_swap_int(&wd->wd_timer, count);
3620 }
3621 
3622 void
3623 ifnet_lock(void)
3624 {
3625 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3626 	    ("try holding ifnet lock in netisr"));
3627 	mtx_lock(&ifnet_mtx);
3628 }
3629 
3630 void
3631 ifnet_unlock(void)
3632 {
3633 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3634 	    ("try holding ifnet lock in netisr"));
3635 	mtx_unlock(&ifnet_mtx);
3636 }
3637 
3638 static struct ifnet_array *
3639 ifnet_array_alloc(int count)
3640 {
3641 	struct ifnet_array *arr;
3642 
3643 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3644 	    M_IFNET, M_WAITOK);
3645 	arr->ifnet_count = count;
3646 
3647 	return arr;
3648 }
3649 
3650 static void
3651 ifnet_array_free(struct ifnet_array *arr)
3652 {
3653 	if (arr == &ifnet_array0)
3654 		return;
3655 	kfree(arr, M_IFNET);
3656 }
3657 
3658 static struct ifnet_array *
3659 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3660 {
3661 	struct ifnet_array *arr;
3662 	int count, i;
3663 
3664 	KASSERT(old_arr->ifnet_count >= 0,
3665 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3666 	count = old_arr->ifnet_count + 1;
3667 	arr = ifnet_array_alloc(count);
3668 
3669 	/*
3670 	 * Save the old ifnet array and append this ifp to the end of
3671 	 * the new ifnet array.
3672 	 */
3673 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3674 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3675 		    ("%s is already in ifnet array", ifp->if_xname));
3676 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3677 	}
3678 	KASSERT(i == count - 1,
3679 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3680 	     ifp->if_xname, count - 1, i));
3681 	arr->ifnet_arr[i] = ifp;
3682 
3683 	return arr;
3684 }
3685 
3686 static struct ifnet_array *
3687 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3688 {
3689 	struct ifnet_array *arr;
3690 	int count, i, idx, found = 0;
3691 
3692 	KASSERT(old_arr->ifnet_count > 0,
3693 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3694 	count = old_arr->ifnet_count - 1;
3695 	arr = ifnet_array_alloc(count);
3696 
3697 	/*
3698 	 * Save the old ifnet array, but skip this ifp.
3699 	 */
3700 	idx = 0;
3701 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3702 		if (old_arr->ifnet_arr[i] == ifp) {
3703 			KASSERT(!found,
3704 			    ("dup %s is in ifnet array", ifp->if_xname));
3705 			found = 1;
3706 			continue;
3707 		}
3708 		KASSERT(idx < count,
3709 		    ("invalid ifnet array index %d, count %d", idx, count));
3710 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3711 		++idx;
3712 	}
3713 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3714 	KASSERT(idx == count,
3715 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3716 	     ifp->if_xname, count, idx));
3717 
3718 	return arr;
3719 }
3720 
3721 const struct ifnet_array *
3722 ifnet_array_get(void)
3723 {
3724 	const struct ifnet_array *ret;
3725 
3726 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3727 	ret = ifnet_array;
3728 	/* Make sure 'ret' is really used. */
3729 	cpu_ccfence();
3730 	return (ret);
3731 }
3732 
3733 int
3734 ifnet_array_isempty(void)
3735 {
3736 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3737 	if (ifnet_array->ifnet_count == 0)
3738 		return 1;
3739 	else
3740 		return 0;
3741 }
3742 
3743 void
3744 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3745 {
3746 	struct ifaddr *ifa;
3747 
3748 	memset(mark, 0, sizeof(*mark));
3749 	ifa = &mark->ifa;
3750 
3751 	mark->ifac.ifa = ifa;
3752 
3753 	ifa->ifa_addr = &mark->addr;
3754 	ifa->ifa_dstaddr = &mark->dstaddr;
3755 	ifa->ifa_netmask = &mark->netmask;
3756 	ifa->ifa_ifp = ifp;
3757 }
3758 
3759 static int
3760 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3761 {
3762 
3763 	KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3764 
3765 	if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3766 		ring_cnt = ring_cntmax;
3767 	if (ring_cnt > netisr_ncpus)
3768 		ring_cnt = netisr_ncpus;
3769 	return (ring_cnt);
3770 }
3771 
3772 static void
3773 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3774 {
3775 	int i, offset;
3776 
3777 	KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3778 	KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3779 	    grid, rm->rm_cnt));
3780 	rm->rm_grid = grid;
3781 
3782 	offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3783 	for (i = 0; i < rm->rm_cnt; ++i) {
3784 		rm->rm_cpumap[i] = offset + i;
3785 		KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3786 		    ("invalid cpumap[%d] = %d, offset %d", i,
3787 		     rm->rm_cpumap[i], offset));
3788 	}
3789 }
3790 
3791 static struct if_ringmap *
3792 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3793     uint32_t flags)
3794 {
3795 	struct if_ringmap *rm;
3796 	int i, grid = 0, prev_grid;
3797 
3798 	ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3799 	rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3800 	    M_DEVBUF, M_WAITOK | M_ZERO);
3801 
3802 	rm->rm_cnt = ring_cnt;
3803 	if (flags & RINGMAP_FLAG_POWEROF2)
3804 		rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3805 
3806 	prev_grid = netisr_ncpus;
3807 	for (i = 0; i < netisr_ncpus; ++i) {
3808 		if (netisr_ncpus % (i + 1) != 0)
3809 			continue;
3810 
3811 		grid = netisr_ncpus / (i + 1);
3812 		if (rm->rm_cnt > grid) {
3813 			grid = prev_grid;
3814 			break;
3815 		}
3816 
3817 		if (rm->rm_cnt > netisr_ncpus / (i + 2))
3818 			break;
3819 		prev_grid = grid;
3820 	}
3821 	if_ringmap_set_grid(dev, rm, grid);
3822 
3823 	return (rm);
3824 }
3825 
3826 struct if_ringmap *
3827 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3828 {
3829 
3830 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3831 	    RINGMAP_FLAG_NONE));
3832 }
3833 
3834 struct if_ringmap *
3835 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3836 {
3837 
3838 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3839 	    RINGMAP_FLAG_POWEROF2));
3840 }
3841 
3842 void
3843 if_ringmap_free(struct if_ringmap *rm)
3844 {
3845 
3846 	kfree(rm, M_DEVBUF);
3847 }
3848 
3849 /*
3850  * Align the two ringmaps.
3851  *
3852  * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3853  *
3854  * Before:
3855  *
3856  * CPU      0  1  2  3   4  5  6  7
3857  * NIC_RX               n0 n1 n2 n3
3858  * NIC_TX        N0 N1
3859  *
3860  * After:
3861  *
3862  * CPU      0  1  2  3   4  5  6  7
3863  * NIC_RX               n0 n1 n2 n3
3864  * NIC_TX               N0 N1
3865  */
3866 void
3867 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3868 {
3869 
3870 	if (rm0->rm_grid > rm1->rm_grid)
3871 		if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
3872 	else if (rm0->rm_grid < rm1->rm_grid)
3873 		if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
3874 }
3875 
3876 void
3877 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3878 {
3879 	int subset_grid, cnt, divisor, mod, offset, i;
3880 	struct if_ringmap *subset_rm, *rm;
3881 	int old_rm0_grid, old_rm1_grid;
3882 
3883 	if (rm0->rm_grid == rm1->rm_grid)
3884 		return;
3885 
3886 	/* Save grid for later use */
3887 	old_rm0_grid = rm0->rm_grid;
3888 	old_rm1_grid = rm1->rm_grid;
3889 
3890 	if_ringmap_align(dev, rm0, rm1);
3891 
3892 	/*
3893 	 * Re-shuffle rings to get more even distribution.
3894 	 *
3895 	 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3896 	 *
3897 	 * CPU       0  1  2  3   4  5  6  7   8  9 10 11
3898 	 *
3899 	 * NIC_RX   a0 a1 a2 a3  b0 b1 b2 b3  c0 c1 c2 c3
3900 	 * NIC_TX   A0 A1        B0 B1        C0 C1
3901 	 *
3902 	 * NIC_RX   d0 d1 d2 d3  e0 e1 e2 e3  f0 f1 f2 f3
3903 	 * NIC_TX         D0 D1        E0 E1        F0 F1
3904 	 */
3905 
3906 	if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
3907 		cnt = rm0->rm_cnt;
3908 		subset_grid = old_rm1_grid;
3909 		subset_rm = rm1;
3910 		rm = rm0;
3911 	} else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
3912 		cnt = rm1->rm_cnt;
3913 		subset_grid = old_rm0_grid;
3914 		subset_rm = rm0;
3915 		rm = rm1;
3916 	} else {
3917 		/* No space to shuffle. */
3918 		return;
3919 	}
3920 
3921 	mod = cnt / subset_grid;
3922 	KKASSERT(mod >= 2);
3923 	divisor = netisr_ncpus / rm->rm_grid;
3924 	offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
3925 
3926 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3927 		subset_rm->rm_cpumap[i] += offset;
3928 		KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
3929 		    ("match: invalid cpumap[%d] = %d, offset %d",
3930 		     i, subset_rm->rm_cpumap[i], offset));
3931 	}
3932 #ifdef INVARIANTS
3933 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3934 		int j;
3935 
3936 		for (j = 0; j < rm->rm_cnt; ++j) {
3937 			if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
3938 				break;
3939 		}
3940 		KASSERT(j < rm->rm_cnt,
3941 		    ("subset cpumap[%d] = %d not found in superset",
3942 		     i, subset_rm->rm_cpumap[i]));
3943 	}
3944 #endif
3945 }
3946 
3947 int
3948 if_ringmap_count(const struct if_ringmap *rm)
3949 {
3950 
3951 	return (rm->rm_cnt);
3952 }
3953 
3954 int
3955 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
3956 {
3957 
3958 	KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
3959 	return (rm->rm_cpumap[ring]);
3960 }
3961 
3962 void
3963 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
3964 {
3965 	int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
3966 
3967 	KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
3968 	    ("invalid redirect table entries %d", table_nent));
3969 
3970 	grid_idx = 0;
3971 	for (i = 0; i < NETISR_CPUMAX; ++i) {
3972 		table[i] = grid_idx++ % rm->rm_cnt;
3973 
3974 		if (grid_idx == rm->rm_grid)
3975 			grid_idx = 0;
3976 	}
3977 
3978 	/*
3979 	 * Make the ring distributed more evenly for the remainder
3980 	 * of each grid.
3981 	 *
3982 	 * e.g. 12 netisrs, rm contains 8 rings.
3983 	 *
3984 	 * Redirect table before:
3985 	 *
3986 	 *  0  1  2  3  4  5  6  7  0  1  2  3  0  1  2  3
3987 	 *  4  5  6  7  0  1  2  3  0  1  2  3  4  5  6  7
3988 	 *  0  1  2  3  0  1  2  3  4  5  6  7  0  1  2  3
3989 	 *  ....
3990 	 *
3991 	 * Redirect table after being patched (pX, patched entries):
3992 	 *
3993 	 *  0  1  2  3  4  5  6  7 p0 p1 p2 p3  0  1  2  3
3994 	 *  4  5  6  7 p4 p5 p6 p7  0  1  2  3  4  5  6  7
3995 	 * p0 p1 p2 p3  0  1  2  3  4  5  6  7 p4 p5 p6 p7
3996 	 *  ....
3997 	 */
3998 	patch_cnt = rm->rm_grid % rm->rm_cnt;
3999 	if (patch_cnt == 0)
4000 		goto done;
4001 	patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
4002 
4003 	grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
4004 	grid_idx = 0;
4005 	for (i = 0; i < grid_cnt; ++i) {
4006 		int j;
4007 
4008 		for (j = 0; j < patch_cnt; ++j) {
4009 			int fix_idx;
4010 
4011 			fix_idx = (i * rm->rm_grid) + patch_off + j;
4012 			if (fix_idx >= NETISR_CPUMAX)
4013 				goto done;
4014 			table[fix_idx] = grid_idx++ % rm->rm_cnt;
4015 		}
4016 	}
4017 done:
4018 	/*
4019 	 * If the device supports larger redirect table, duplicate
4020 	 * the first NETISR_CPUMAX entries to the rest of the table,
4021 	 * so that it matches upper layer's expectation:
4022 	 * (hash & NETISR_CPUMASK) % netisr_ncpus
4023 	 */
4024 	ncopy = table_nent / NETISR_CPUMAX;
4025 	for (i = 1; i < ncopy; ++i) {
4026 		memcpy(&table[i * NETISR_CPUMAX], table,
4027 		    NETISR_CPUMAX * sizeof(table[0]));
4028 	}
4029 	if (if_ringmap_dumprdr) {
4030 		for (i = 0; i < table_nent; ++i) {
4031 			if (i != 0 && i % 16 == 0)
4032 				kprintf("\n");
4033 			kprintf("%03d ", table[i]);
4034 		}
4035 		kprintf("\n");
4036 	}
4037 }
4038 
4039 int
4040 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
4041 {
4042 	struct if_ringmap *rm = arg1;
4043 	int i, error = 0;
4044 
4045 	for (i = 0; i < rm->rm_cnt; ++i) {
4046 		int cpu = rm->rm_cpumap[i];
4047 
4048 		error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
4049 		if (error)
4050 			break;
4051 	}
4052 	return (error);
4053 }
4054