xref: /dragonfly/sys/net/if.c (revision 6ab64ab6)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
61 
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/ifq_var.h>
68 #include <net/radix.h>
69 #include <net/route.h>
70 #include <net/if_clone.h>
71 #include <net/netisr2.h>
72 #include <net/netmsg2.h>
73 
74 #include <machine/atomic.h>
75 #include <machine/stdarg.h>
76 #include <machine/smp.h>
77 
78 #if defined(INET) || defined(INET6)
79 /*XXX*/
80 #include <netinet/in.h>
81 #include <netinet/in_var.h>
82 #include <netinet/if_ether.h>
83 #ifdef INET6
84 #include <netinet6/in6_var.h>
85 #include <netinet6/in6_ifattach.h>
86 #endif
87 #endif
88 
89 struct netmsg_ifaddr {
90 	struct netmsg_base base;
91 	struct ifaddr	*ifa;
92 	struct ifnet	*ifp;
93 	int		tail;
94 };
95 
96 struct ifsubq_stage_head {
97 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
98 } __cachealign;
99 
100 /*
101  * System initialization
102  */
103 static void	if_attachdomain(void *);
104 static void	if_attachdomain1(struct ifnet *);
105 static int	ifconf(u_long, caddr_t, struct ucred *);
106 static void	ifinit(void *);
107 static void	ifnetinit(void *);
108 static void	if_slowtimo(void *);
109 static void	link_rtrequest(int, struct rtentry *);
110 static int	if_rtdel(struct radix_node *, void *);
111 static void	if_slowtimo_dispatch(netmsg_t);
112 
113 /* Helper functions */
114 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
115 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
116 static struct ifnet_array *ifnet_array_alloc(int);
117 static void	ifnet_array_free(struct ifnet_array *);
118 static struct ifnet_array *ifnet_array_add(struct ifnet *,
119 		    const struct ifnet_array *);
120 static struct ifnet_array *ifnet_array_del(struct ifnet *,
121 		    const struct ifnet_array *);
122 
123 #ifdef INET6
124 /*
125  * XXX: declare here to avoid to include many inet6 related files..
126  * should be more generalized?
127  */
128 extern void	nd6_setmtu(struct ifnet *);
129 #endif
130 
131 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
132 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
133 
134 static int ifsq_stage_cntmax = 4;
135 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
136 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
137     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
138 
139 static int if_stats_compat = 0;
140 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
141     &if_stats_compat, 0, "Compat the old ifnet stats");
142 
143 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
144 /* Must be after netisr_init */
145 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
146 
147 static  if_com_alloc_t *if_com_alloc[256];
148 static  if_com_free_t *if_com_free[256];
149 
150 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
151 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
152 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
153 
154 int			ifqmaxlen = IFQ_MAXLEN;
155 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
156 
157 static struct ifnet_array	ifnet_array0;
158 static struct ifnet_array	*ifnet_array = &ifnet_array0;
159 
160 static struct callout		if_slowtimo_timer;
161 static struct netmsg_base	if_slowtimo_netmsg;
162 
163 int			if_index = 0;
164 struct ifnet		**ifindex2ifnet = NULL;
165 static struct thread	*ifnet_threads[MAXCPU];
166 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
167 
168 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
169 
170 #ifdef notyet
171 #define IFQ_KTR_STRING		"ifq=%p"
172 #define IFQ_KTR_ARGS	struct ifaltq *ifq
173 #ifndef KTR_IFQ
174 #define KTR_IFQ			KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
179 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
180 
181 #define IF_START_KTR_STRING	"ifp=%p"
182 #define IF_START_KTR_ARGS	struct ifnet *ifp
183 #ifndef KTR_IF_START
184 #define KTR_IF_START		KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
197 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
198 #endif
199 
200 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
201 
202 /*
203  * Network interface utility routines.
204  *
205  * Routines with ifa_ifwith* names take sockaddr *'s as
206  * parameters.
207  */
208 /* ARGSUSED*/
209 static void
210 ifinit(void *dummy)
211 {
212 	struct ifnet *ifp;
213 
214 	callout_init_mp(&if_slowtimo_timer);
215 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
216 	    MSGF_PRIORITY, if_slowtimo_dispatch);
217 
218 	/* XXX is this necessary? */
219 	ifnet_lock();
220 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
221 		if (ifp->if_snd.altq_maxlen == 0) {
222 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
223 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
224 		}
225 	}
226 	ifnet_unlock();
227 
228 	/* Start if_slowtimo */
229 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
230 }
231 
232 static void
233 ifsq_ifstart_ipifunc(void *arg)
234 {
235 	struct ifaltq_subque *ifsq = arg;
236 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
237 
238 	crit_enter();
239 	if (lmsg->ms_flags & MSGF_DONE)
240 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
241 	crit_exit();
242 }
243 
244 static __inline void
245 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
246 {
247 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
248 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
249 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
250 	stage->stg_cnt = 0;
251 	stage->stg_len = 0;
252 }
253 
254 static __inline void
255 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
256 {
257 	KKASSERT((stage->stg_flags &
258 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
259 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
260 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
261 }
262 
263 /*
264  * Schedule ifnet.if_start on the subqueue owner CPU
265  */
266 static void
267 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
268 {
269 	int cpu;
270 
271 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
272 	    ifsq_stage_cntmax > 0) {
273 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
274 
275 		stage->stg_cnt = 0;
276 		stage->stg_len = 0;
277 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
278 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
279 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
280 		return;
281 	}
282 
283 	cpu = ifsq_get_cpuid(ifsq);
284 	if (cpu != mycpuid)
285 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
286 	else
287 		ifsq_ifstart_ipifunc(ifsq);
288 }
289 
290 /*
291  * NOTE:
292  * This function will release ifnet.if_start subqueue interlock,
293  * if ifnet.if_start for the subqueue does not need to be scheduled
294  */
295 static __inline int
296 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
297 {
298 	if (!running || ifsq_is_empty(ifsq)
299 #ifdef ALTQ
300 	    || ifsq->ifsq_altq->altq_tbr != NULL
301 #endif
302 	) {
303 		ALTQ_SQ_LOCK(ifsq);
304 		/*
305 		 * ifnet.if_start subqueue interlock is released, if:
306 		 * 1) Hardware can not take any packets, due to
307 		 *    o  interface is marked down
308 		 *    o  hardware queue is full (ifsq_is_oactive)
309 		 *    Under the second situation, hardware interrupt
310 		 *    or polling(4) will call/schedule ifnet.if_start
311 		 *    on the subqueue when hardware queue is ready
312 		 * 2) There is no packet in the subqueue.
313 		 *    Further ifq_dispatch or ifq_handoff will call/
314 		 *    schedule ifnet.if_start on the subqueue.
315 		 * 3) TBR is used and it does not allow further
316 		 *    dequeueing.
317 		 *    TBR callout will call ifnet.if_start on the
318 		 *    subqueue.
319 		 */
320 		if (!running || !ifsq_data_ready(ifsq)) {
321 			ifsq_clr_started(ifsq);
322 			ALTQ_SQ_UNLOCK(ifsq);
323 			return 0;
324 		}
325 		ALTQ_SQ_UNLOCK(ifsq);
326 	}
327 	return 1;
328 }
329 
330 static void
331 ifsq_ifstart_dispatch(netmsg_t msg)
332 {
333 	struct lwkt_msg *lmsg = &msg->base.lmsg;
334 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
335 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
336 	struct globaldata *gd = mycpu;
337 	int running = 0, need_sched;
338 
339 	crit_enter_gd(gd);
340 
341 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
342 
343 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
344 		/*
345 		 * We need to chase the subqueue owner CPU change.
346 		 */
347 		ifsq_ifstart_schedule(ifsq, 1);
348 		crit_exit_gd(gd);
349 		return;
350 	}
351 
352 	ifsq_serialize_hw(ifsq);
353 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
354 		ifp->if_start(ifp, ifsq);
355 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
356 			running = 1;
357 	}
358 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
359 	ifsq_deserialize_hw(ifsq);
360 
361 	if (need_sched) {
362 		/*
363 		 * More data need to be transmitted, ifnet.if_start is
364 		 * scheduled on the subqueue owner CPU, and we keep going.
365 		 * NOTE: ifnet.if_start subqueue interlock is not released.
366 		 */
367 		ifsq_ifstart_schedule(ifsq, 0);
368 	}
369 
370 	crit_exit_gd(gd);
371 }
372 
373 /* Device driver ifnet.if_start helper function */
374 void
375 ifsq_devstart(struct ifaltq_subque *ifsq)
376 {
377 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
378 	int running = 0;
379 
380 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
381 
382 	ALTQ_SQ_LOCK(ifsq);
383 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
384 		ALTQ_SQ_UNLOCK(ifsq);
385 		return;
386 	}
387 	ifsq_set_started(ifsq);
388 	ALTQ_SQ_UNLOCK(ifsq);
389 
390 	ifp->if_start(ifp, ifsq);
391 
392 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
393 		running = 1;
394 
395 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
396 		/*
397 		 * More data need to be transmitted, ifnet.if_start is
398 		 * scheduled on ifnet's CPU, and we keep going.
399 		 * NOTE: ifnet.if_start interlock is not released.
400 		 */
401 		ifsq_ifstart_schedule(ifsq, 0);
402 	}
403 }
404 
405 void
406 if_devstart(struct ifnet *ifp)
407 {
408 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
409 }
410 
411 /* Device driver ifnet.if_start schedule helper function */
412 void
413 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
414 {
415 	ifsq_ifstart_schedule(ifsq, 1);
416 }
417 
418 void
419 if_devstart_sched(struct ifnet *ifp)
420 {
421 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
422 }
423 
424 static void
425 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427 	lwkt_serialize_enter(ifp->if_serializer);
428 }
429 
430 static void
431 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
432 {
433 	lwkt_serialize_exit(ifp->if_serializer);
434 }
435 
436 static int
437 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
438 {
439 	return lwkt_serialize_try(ifp->if_serializer);
440 }
441 
442 #ifdef INVARIANTS
443 static void
444 if_default_serialize_assert(struct ifnet *ifp,
445 			    enum ifnet_serialize slz __unused,
446 			    boolean_t serialized)
447 {
448 	if (serialized)
449 		ASSERT_SERIALIZED(ifp->if_serializer);
450 	else
451 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
452 }
453 #endif
454 
455 /*
456  * Attach an interface to the list of "active" interfaces.
457  *
458  * The serializer is optional.
459  */
460 void
461 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
462 {
463 	unsigned socksize;
464 	int namelen, masklen;
465 	struct sockaddr_dl *sdl, *sdl_addr;
466 	struct ifaddr *ifa;
467 	struct ifaltq *ifq;
468 	struct ifnet **old_ifindex2ifnet = NULL;
469 	struct ifnet_array *old_ifnet_array;
470 	int i, q;
471 
472 	static int if_indexlim = 8;
473 
474 	if (ifp->if_serialize != NULL) {
475 		KASSERT(ifp->if_deserialize != NULL &&
476 			ifp->if_tryserialize != NULL &&
477 			ifp->if_serialize_assert != NULL,
478 			("serialize functions are partially setup"));
479 
480 		/*
481 		 * If the device supplies serialize functions,
482 		 * then clear if_serializer to catch any invalid
483 		 * usage of this field.
484 		 */
485 		KASSERT(serializer == NULL,
486 			("both serialize functions and default serializer "
487 			 "are supplied"));
488 		ifp->if_serializer = NULL;
489 	} else {
490 		KASSERT(ifp->if_deserialize == NULL &&
491 			ifp->if_tryserialize == NULL &&
492 			ifp->if_serialize_assert == NULL,
493 			("serialize functions are partially setup"));
494 		ifp->if_serialize = if_default_serialize;
495 		ifp->if_deserialize = if_default_deserialize;
496 		ifp->if_tryserialize = if_default_tryserialize;
497 #ifdef INVARIANTS
498 		ifp->if_serialize_assert = if_default_serialize_assert;
499 #endif
500 
501 		/*
502 		 * The serializer can be passed in from the device,
503 		 * allowing the same serializer to be used for both
504 		 * the interrupt interlock and the device queue.
505 		 * If not specified, the netif structure will use an
506 		 * embedded serializer.
507 		 */
508 		if (serializer == NULL) {
509 			serializer = &ifp->if_default_serializer;
510 			lwkt_serialize_init(serializer);
511 		}
512 		ifp->if_serializer = serializer;
513 	}
514 
515 	/*
516 	 * XXX -
517 	 * The old code would work if the interface passed a pre-existing
518 	 * chain of ifaddrs to this code.  We don't trust our callers to
519 	 * properly initialize the tailq, however, so we no longer allow
520 	 * this unlikely case.
521 	 */
522 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
523 				    M_IFADDR, M_WAITOK | M_ZERO);
524 	for (i = 0; i < ncpus; ++i)
525 		TAILQ_INIT(&ifp->if_addrheads[i]);
526 
527 	TAILQ_INIT(&ifp->if_multiaddrs);
528 	TAILQ_INIT(&ifp->if_groups);
529 	getmicrotime(&ifp->if_lastchange);
530 
531 	/*
532 	 * create a Link Level name for this device
533 	 */
534 	namelen = strlen(ifp->if_xname);
535 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
536 	socksize = masklen + ifp->if_addrlen;
537 	if (socksize < sizeof(*sdl))
538 		socksize = sizeof(*sdl);
539 	socksize = RT_ROUNDUP(socksize);
540 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
541 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
542 	sdl->sdl_len = socksize;
543 	sdl->sdl_family = AF_LINK;
544 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
545 	sdl->sdl_nlen = namelen;
546 	sdl->sdl_type = ifp->if_type;
547 	ifp->if_lladdr = ifa;
548 	ifa->ifa_ifp = ifp;
549 	ifa->ifa_rtrequest = link_rtrequest;
550 	ifa->ifa_addr = (struct sockaddr *)sdl;
551 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
552 	ifa->ifa_netmask = (struct sockaddr *)sdl;
553 	sdl->sdl_len = masklen;
554 	while (namelen != 0)
555 		sdl->sdl_data[--namelen] = 0xff;
556 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
557 
558 	ifp->if_data_pcpu = kmalloc_cachealign(
559 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
560 
561 	if (ifp->if_mapsubq == NULL)
562 		ifp->if_mapsubq = ifq_mapsubq_default;
563 
564 	ifq = &ifp->if_snd;
565 	ifq->altq_type = 0;
566 	ifq->altq_disc = NULL;
567 	ifq->altq_flags &= ALTQF_CANTCHANGE;
568 	ifq->altq_tbr = NULL;
569 	ifq->altq_ifp = ifp;
570 
571 	if (ifq->altq_subq_cnt <= 0)
572 		ifq->altq_subq_cnt = 1;
573 	ifq->altq_subq = kmalloc_cachealign(
574 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
575 	    M_DEVBUF, M_WAITOK | M_ZERO);
576 
577 	if (ifq->altq_maxlen == 0) {
578 		if_printf(ifp, "driver didn't set altq_maxlen\n");
579 		ifq_set_maxlen(ifq, ifqmaxlen);
580 	}
581 
582 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
583 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
584 
585 		ALTQ_SQ_LOCK_INIT(ifsq);
586 		ifsq->ifsq_index = q;
587 
588 		ifsq->ifsq_altq = ifq;
589 		ifsq->ifsq_ifp = ifp;
590 
591 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
592 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
593 		ifsq->ifsq_prepended = NULL;
594 		ifsq->ifsq_started = 0;
595 		ifsq->ifsq_hw_oactive = 0;
596 		ifsq_set_cpuid(ifsq, 0);
597 		if (ifp->if_serializer != NULL)
598 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
599 
600 		ifsq->ifsq_stage =
601 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
602 		    M_DEVBUF, M_WAITOK | M_ZERO);
603 		for (i = 0; i < ncpus; ++i)
604 			ifsq->ifsq_stage[i].stg_subq = ifsq;
605 
606 		ifsq->ifsq_ifstart_nmsg =
607 		    kmalloc(ncpus * sizeof(struct netmsg_base),
608 		    M_LWKTMSG, M_WAITOK);
609 		for (i = 0; i < ncpus; ++i) {
610 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
611 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
612 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
613 		}
614 	}
615 	ifq_set_classic(ifq);
616 
617 	/*
618 	 * Increase mbuf cluster/jcluster limits for the mbufs that
619 	 * could sit on the device queues for quite some time.
620 	 */
621 	if (ifp->if_nmbclusters > 0)
622 		mcl_inclimit(ifp->if_nmbclusters);
623 	if (ifp->if_nmbjclusters > 0)
624 		mjcl_inclimit(ifp->if_nmbjclusters);
625 
626 	/*
627 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
628 	 * array after it is setup.
629 	 *
630 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
631 	 * by ifnet lock, so that non-netisr threads could get a
632 	 * consistent view.
633 	 */
634 	ifnet_lock();
635 
636 	/* Don't update if_index until ifindex2ifnet is setup */
637 	ifp->if_index = if_index + 1;
638 	sdl_addr->sdl_index = ifp->if_index;
639 
640 	/*
641 	 * Install this ifp into ifindex2ifnet
642 	 */
643 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
644 		unsigned int n;
645 		struct ifnet **q;
646 
647 		/*
648 		 * Grow ifindex2ifnet
649 		 */
650 		if_indexlim <<= 1;
651 		n = if_indexlim * sizeof(*q);
652 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
653 		if (ifindex2ifnet != NULL) {
654 			bcopy(ifindex2ifnet, q, n/2);
655 			/* Free old ifindex2ifnet after sync all netisrs */
656 			old_ifindex2ifnet = ifindex2ifnet;
657 		}
658 		ifindex2ifnet = q;
659 	}
660 	ifindex2ifnet[ifp->if_index] = ifp;
661 	/*
662 	 * Update if_index after this ifp is installed into ifindex2ifnet,
663 	 * so that netisrs could get a consistent view of ifindex2ifnet.
664 	 */
665 	cpu_sfence();
666 	if_index = ifp->if_index;
667 
668 	/*
669 	 * Install this ifp into ifnet array.
670 	 */
671 	/* Free old ifnet array after sync all netisrs */
672 	old_ifnet_array = ifnet_array;
673 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
674 
675 	/*
676 	 * Install this ifp into ifnet queue.
677 	 */
678 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
679 
680 	ifnet_unlock();
681 
682 	/*
683 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
684 	 * are no longer accessed and we can free them safely later on.
685 	 */
686 	netmsg_service_sync();
687 	if (old_ifindex2ifnet != NULL)
688 		kfree(old_ifindex2ifnet, M_IFADDR);
689 	ifnet_array_free(old_ifnet_array);
690 
691 	if (!SLIST_EMPTY(&domains))
692 		if_attachdomain1(ifp);
693 
694 	/* Announce the interface. */
695 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
696 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
697 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
698 }
699 
700 static void
701 if_attachdomain(void *dummy)
702 {
703 	struct ifnet *ifp;
704 
705 	ifnet_lock();
706 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
707 		if_attachdomain1(ifp);
708 	ifnet_unlock();
709 }
710 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
711 	if_attachdomain, NULL);
712 
713 static void
714 if_attachdomain1(struct ifnet *ifp)
715 {
716 	struct domain *dp;
717 
718 	crit_enter();
719 
720 	/* address family dependent data region */
721 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
722 	SLIST_FOREACH(dp, &domains, dom_next)
723 		if (dp->dom_ifattach)
724 			ifp->if_afdata[dp->dom_family] =
725 				(*dp->dom_ifattach)(ifp);
726 	crit_exit();
727 }
728 
729 /*
730  * Purge all addresses whose type is _not_ AF_LINK
731  */
732 static void
733 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
734 {
735 	struct lwkt_msg *lmsg = &nmsg->lmsg;
736 	struct ifnet *ifp = lmsg->u.ms_resultp;
737 	struct ifaddr_container *ifac, *next;
738 
739 	ASSERT_IN_NETISR(0);
740 
741 	/*
742 	 * The ifaddr processing in the following loop will block,
743 	 * however, this function is called in netisr0, in which
744 	 * ifaddr list changes happen, so we don't care about the
745 	 * blockness of the ifaddr processing here.
746 	 */
747 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
748 			      ifa_link, next) {
749 		struct ifaddr *ifa = ifac->ifa;
750 
751 		/* Ignore marker */
752 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
753 			continue;
754 
755 		/* Leave link ifaddr as it is */
756 		if (ifa->ifa_addr->sa_family == AF_LINK)
757 			continue;
758 #ifdef INET
759 		/* XXX: Ugly!! ad hoc just for INET */
760 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
761 			struct ifaliasreq ifr;
762 #ifdef IFADDR_DEBUG_VERBOSE
763 			int i;
764 
765 			kprintf("purge in4 addr %p: ", ifa);
766 			for (i = 0; i < ncpus; ++i)
767 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
768 			kprintf("\n");
769 #endif
770 
771 			bzero(&ifr, sizeof ifr);
772 			ifr.ifra_addr = *ifa->ifa_addr;
773 			if (ifa->ifa_dstaddr)
774 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
775 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
776 				       NULL) == 0)
777 				continue;
778 		}
779 #endif /* INET */
780 #ifdef INET6
781 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
782 #ifdef IFADDR_DEBUG_VERBOSE
783 			int i;
784 
785 			kprintf("purge in6 addr %p: ", ifa);
786 			for (i = 0; i < ncpus; ++i)
787 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
788 			kprintf("\n");
789 #endif
790 
791 			in6_purgeaddr(ifa);
792 			/* ifp_addrhead is already updated */
793 			continue;
794 		}
795 #endif /* INET6 */
796 		ifa_ifunlink(ifa, ifp);
797 		ifa_destroy(ifa);
798 	}
799 
800 	lwkt_replymsg(lmsg, 0);
801 }
802 
803 void
804 if_purgeaddrs_nolink(struct ifnet *ifp)
805 {
806 	struct netmsg_base nmsg;
807 	struct lwkt_msg *lmsg = &nmsg.lmsg;
808 
809 	ASSERT_CANDOMSG_NETISR0(curthread);
810 
811 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
812 	    if_purgeaddrs_nolink_dispatch);
813 	lmsg->u.ms_resultp = ifp;
814 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
815 }
816 
817 static void
818 ifq_stage_detach_handler(netmsg_t nmsg)
819 {
820 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
821 	int q;
822 
823 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
824 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
825 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
826 
827 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
828 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
829 	}
830 	lwkt_replymsg(&nmsg->lmsg, 0);
831 }
832 
833 static void
834 ifq_stage_detach(struct ifaltq *ifq)
835 {
836 	struct netmsg_base base;
837 	int cpu;
838 
839 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
840 	    ifq_stage_detach_handler);
841 	base.lmsg.u.ms_resultp = ifq;
842 
843 	for (cpu = 0; cpu < ncpus; ++cpu)
844 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
845 }
846 
847 struct netmsg_if_rtdel {
848 	struct netmsg_base	base;
849 	struct ifnet		*ifp;
850 };
851 
852 static void
853 if_rtdel_dispatch(netmsg_t msg)
854 {
855 	struct netmsg_if_rtdel *rmsg = (void *)msg;
856 	int i, nextcpu, cpu;
857 
858 	cpu = mycpuid;
859 	for (i = 1; i <= AF_MAX; i++) {
860 		struct radix_node_head	*rnh;
861 
862 		if ((rnh = rt_tables[cpu][i]) == NULL)
863 			continue;
864 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
865 	}
866 
867 	nextcpu = cpu + 1;
868 	if (nextcpu < ncpus)
869 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
870 	else
871 		lwkt_replymsg(&rmsg->base.lmsg, 0);
872 }
873 
874 /*
875  * Detach an interface, removing it from the
876  * list of "active" interfaces.
877  */
878 void
879 if_detach(struct ifnet *ifp)
880 {
881 	struct ifnet_array *old_ifnet_array;
882 	struct netmsg_if_rtdel msg;
883 	struct domain *dp;
884 	int q;
885 
886 	/* Announce that the interface is gone. */
887 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
888 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
889 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
890 
891 	/*
892 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
893 	 * array before it is whacked.
894 	 *
895 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
896 	 * by ifnet lock, so that non-netisr threads could get a
897 	 * consistent view.
898 	 */
899 	ifnet_lock();
900 
901 	/*
902 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
903 	 */
904 	ifindex2ifnet[ifp->if_index] = NULL;
905 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
906 		if_index--;
907 
908 	/*
909 	 * Remove this ifp from ifnet queue.
910 	 */
911 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
912 
913 	/*
914 	 * Remove this ifp from ifnet array.
915 	 */
916 	/* Free old ifnet array after sync all netisrs */
917 	old_ifnet_array = ifnet_array;
918 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
919 
920 	ifnet_unlock();
921 
922 	/*
923 	 * Sync all netisrs so that the old ifnet array is no longer
924 	 * accessed and we can free it safely later on.
925 	 */
926 	netmsg_service_sync();
927 	ifnet_array_free(old_ifnet_array);
928 
929 	/*
930 	 * Remove routes and flush queues.
931 	 */
932 	crit_enter();
933 #ifdef IFPOLL_ENABLE
934 	if (ifp->if_flags & IFF_NPOLLING)
935 		ifpoll_deregister(ifp);
936 #endif
937 	if_down(ifp);
938 
939 	/* Decrease the mbuf clusters/jclusters limits increased by us */
940 	if (ifp->if_nmbclusters > 0)
941 		mcl_inclimit(-ifp->if_nmbclusters);
942 	if (ifp->if_nmbjclusters > 0)
943 		mjcl_inclimit(-ifp->if_nmbjclusters);
944 
945 #ifdef ALTQ
946 	if (ifq_is_enabled(&ifp->if_snd))
947 		altq_disable(&ifp->if_snd);
948 	if (ifq_is_attached(&ifp->if_snd))
949 		altq_detach(&ifp->if_snd);
950 #endif
951 
952 	/*
953 	 * Clean up all addresses.
954 	 */
955 	ifp->if_lladdr = NULL;
956 
957 	if_purgeaddrs_nolink(ifp);
958 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
959 		struct ifaddr *ifa;
960 
961 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
962 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
963 			("non-link ifaddr is left on if_addrheads"));
964 
965 		ifa_ifunlink(ifa, ifp);
966 		ifa_destroy(ifa);
967 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
968 			("there are still ifaddrs left on if_addrheads"));
969 	}
970 
971 #ifdef INET
972 	/*
973 	 * Remove all IPv4 kernel structures related to ifp.
974 	 */
975 	in_ifdetach(ifp);
976 #endif
977 
978 #ifdef INET6
979 	/*
980 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
981 	 * before removing routing entries below, since IPv6 interface direct
982 	 * routes are expected to be removed by the IPv6-specific kernel API.
983 	 * Otherwise, the kernel will detect some inconsistency and bark it.
984 	 */
985 	in6_ifdetach(ifp);
986 #endif
987 
988 	/*
989 	 * Delete all remaining routes using this interface
990 	 */
991 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
992 	    if_rtdel_dispatch);
993 	msg.ifp = ifp;
994 	rt_domsg_global(&msg.base);
995 
996 	SLIST_FOREACH(dp, &domains, dom_next)
997 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
998 			(*dp->dom_ifdetach)(ifp,
999 				ifp->if_afdata[dp->dom_family]);
1000 
1001 	kfree(ifp->if_addrheads, M_IFADDR);
1002 
1003 	lwkt_synchronize_ipiqs("if_detach");
1004 	ifq_stage_detach(&ifp->if_snd);
1005 
1006 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1007 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1008 
1009 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1010 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1011 	}
1012 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1013 
1014 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1015 
1016 	crit_exit();
1017 }
1018 
1019 /*
1020  * Create interface group without members
1021  */
1022 struct ifg_group *
1023 if_creategroup(const char *groupname)
1024 {
1025         struct ifg_group        *ifg = NULL;
1026 
1027         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1028             M_TEMP, M_NOWAIT)) == NULL)
1029                 return (NULL);
1030 
1031         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1032         ifg->ifg_refcnt = 0;
1033         ifg->ifg_carp_demoted = 0;
1034         TAILQ_INIT(&ifg->ifg_members);
1035 #if NPF > 0
1036         pfi_attach_ifgroup(ifg);
1037 #endif
1038         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1039 
1040         return (ifg);
1041 }
1042 
1043 /*
1044  * Add a group to an interface
1045  */
1046 int
1047 if_addgroup(struct ifnet *ifp, const char *groupname)
1048 {
1049 	struct ifg_list		*ifgl;
1050 	struct ifg_group	*ifg = NULL;
1051 	struct ifg_member	*ifgm;
1052 
1053 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1054 	    groupname[strlen(groupname) - 1] <= '9')
1055 		return (EINVAL);
1056 
1057 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1058 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1059 			return (EEXIST);
1060 
1061 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1062 		return (ENOMEM);
1063 
1064 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1065 		kfree(ifgl, M_TEMP);
1066 		return (ENOMEM);
1067 	}
1068 
1069 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1070 		if (!strcmp(ifg->ifg_group, groupname))
1071 			break;
1072 
1073 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1074 		kfree(ifgl, M_TEMP);
1075 		kfree(ifgm, M_TEMP);
1076 		return (ENOMEM);
1077 	}
1078 
1079 	ifg->ifg_refcnt++;
1080 	ifgl->ifgl_group = ifg;
1081 	ifgm->ifgm_ifp = ifp;
1082 
1083 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1084 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1085 
1086 #if NPF > 0
1087 	pfi_group_change(groupname);
1088 #endif
1089 
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Remove a group from an interface
1095  */
1096 int
1097 if_delgroup(struct ifnet *ifp, const char *groupname)
1098 {
1099 	struct ifg_list		*ifgl;
1100 	struct ifg_member	*ifgm;
1101 
1102 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1103 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1104 			break;
1105 	if (ifgl == NULL)
1106 		return (ENOENT);
1107 
1108 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1109 
1110 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1111 		if (ifgm->ifgm_ifp == ifp)
1112 			break;
1113 
1114 	if (ifgm != NULL) {
1115 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1116 		kfree(ifgm, M_TEMP);
1117 	}
1118 
1119 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1120 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1121 #if NPF > 0
1122 		pfi_detach_ifgroup(ifgl->ifgl_group);
1123 #endif
1124 		kfree(ifgl->ifgl_group, M_TEMP);
1125 	}
1126 
1127 	kfree(ifgl, M_TEMP);
1128 
1129 #if NPF > 0
1130 	pfi_group_change(groupname);
1131 #endif
1132 
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Stores all groups from an interface in memory pointed
1138  * to by data
1139  */
1140 int
1141 if_getgroup(caddr_t data, struct ifnet *ifp)
1142 {
1143 	int			 len, error;
1144 	struct ifg_list		*ifgl;
1145 	struct ifg_req		 ifgrq, *ifgp;
1146 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1147 
1148 	if (ifgr->ifgr_len == 0) {
1149 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1150 			ifgr->ifgr_len += sizeof(struct ifg_req);
1151 		return (0);
1152 	}
1153 
1154 	len = ifgr->ifgr_len;
1155 	ifgp = ifgr->ifgr_groups;
1156 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1157 		if (len < sizeof(ifgrq))
1158 			return (EINVAL);
1159 		bzero(&ifgrq, sizeof ifgrq);
1160 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1161 		    sizeof(ifgrq.ifgrq_group));
1162 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1163 		    sizeof(struct ifg_req))))
1164 			return (error);
1165 		len -= sizeof(ifgrq);
1166 		ifgp++;
1167 	}
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Stores all members of a group in memory pointed to by data
1174  */
1175 int
1176 if_getgroupmembers(caddr_t data)
1177 {
1178 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1179 	struct ifg_group	*ifg;
1180 	struct ifg_member	*ifgm;
1181 	struct ifg_req		 ifgrq, *ifgp;
1182 	int			 len, error;
1183 
1184 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1185 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1186 			break;
1187 	if (ifg == NULL)
1188 		return (ENOENT);
1189 
1190 	if (ifgr->ifgr_len == 0) {
1191 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1192 			ifgr->ifgr_len += sizeof(ifgrq);
1193 		return (0);
1194 	}
1195 
1196 	len = ifgr->ifgr_len;
1197 	ifgp = ifgr->ifgr_groups;
1198 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1199 		if (len < sizeof(ifgrq))
1200 			return (EINVAL);
1201 		bzero(&ifgrq, sizeof ifgrq);
1202 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1203 		    sizeof(ifgrq.ifgrq_member));
1204 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1205 		    sizeof(struct ifg_req))))
1206 			return (error);
1207 		len -= sizeof(ifgrq);
1208 		ifgp++;
1209 	}
1210 
1211 	return (0);
1212 }
1213 
1214 /*
1215  * Delete Routes for a Network Interface
1216  *
1217  * Called for each routing entry via the rnh->rnh_walktree() call above
1218  * to delete all route entries referencing a detaching network interface.
1219  *
1220  * Arguments:
1221  *	rn	pointer to node in the routing table
1222  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1223  *
1224  * Returns:
1225  *	0	successful
1226  *	errno	failed - reason indicated
1227  *
1228  */
1229 static int
1230 if_rtdel(struct radix_node *rn, void *arg)
1231 {
1232 	struct rtentry	*rt = (struct rtentry *)rn;
1233 	struct ifnet	*ifp = arg;
1234 	int		err;
1235 
1236 	if (rt->rt_ifp == ifp) {
1237 
1238 		/*
1239 		 * Protect (sorta) against walktree recursion problems
1240 		 * with cloned routes
1241 		 */
1242 		if (!(rt->rt_flags & RTF_UP))
1243 			return (0);
1244 
1245 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1246 				rt_mask(rt), rt->rt_flags,
1247 				NULL);
1248 		if (err) {
1249 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1250 		}
1251 	}
1252 
1253 	return (0);
1254 }
1255 
1256 static __inline boolean_t
1257 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1258 {
1259 	if (old_ifa == NULL)
1260 		return TRUE;
1261 
1262 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1263 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1264 		return TRUE;
1265 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1266 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1267 		return TRUE;
1268 	return FALSE;
1269 }
1270 
1271 /*
1272  * Locate an interface based on a complete address.
1273  */
1274 struct ifaddr *
1275 ifa_ifwithaddr(struct sockaddr *addr)
1276 {
1277 	const struct ifnet_array *arr;
1278 	int i;
1279 
1280 	arr = ifnet_array_get();
1281 	for (i = 0; i < arr->ifnet_count; ++i) {
1282 		struct ifnet *ifp = arr->ifnet_arr[i];
1283 		struct ifaddr_container *ifac;
1284 
1285 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1286 			struct ifaddr *ifa = ifac->ifa;
1287 
1288 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1289 				continue;
1290 			if (sa_equal(addr, ifa->ifa_addr))
1291 				return (ifa);
1292 			if ((ifp->if_flags & IFF_BROADCAST) &&
1293 			    ifa->ifa_broadaddr &&
1294 			    /* IPv6 doesn't have broadcast */
1295 			    ifa->ifa_broadaddr->sa_len != 0 &&
1296 			    sa_equal(ifa->ifa_broadaddr, addr))
1297 				return (ifa);
1298 		}
1299 	}
1300 	return (NULL);
1301 }
1302 
1303 /*
1304  * Locate the point to point interface with a given destination address.
1305  */
1306 struct ifaddr *
1307 ifa_ifwithdstaddr(struct sockaddr *addr)
1308 {
1309 	const struct ifnet_array *arr;
1310 	int i;
1311 
1312 	arr = ifnet_array_get();
1313 	for (i = 0; i < arr->ifnet_count; ++i) {
1314 		struct ifnet *ifp = arr->ifnet_arr[i];
1315 		struct ifaddr_container *ifac;
1316 
1317 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1318 			continue;
1319 
1320 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1321 			struct ifaddr *ifa = ifac->ifa;
1322 
1323 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1324 				continue;
1325 			if (ifa->ifa_dstaddr &&
1326 			    sa_equal(addr, ifa->ifa_dstaddr))
1327 				return (ifa);
1328 		}
1329 	}
1330 	return (NULL);
1331 }
1332 
1333 /*
1334  * Find an interface on a specific network.  If many, choice
1335  * is most specific found.
1336  */
1337 struct ifaddr *
1338 ifa_ifwithnet(struct sockaddr *addr)
1339 {
1340 	struct ifaddr *ifa_maybe = NULL;
1341 	u_int af = addr->sa_family;
1342 	char *addr_data = addr->sa_data, *cplim;
1343 	const struct ifnet_array *arr;
1344 	int i;
1345 
1346 	/*
1347 	 * AF_LINK addresses can be looked up directly by their index number,
1348 	 * so do that if we can.
1349 	 */
1350 	if (af == AF_LINK) {
1351 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1352 
1353 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1354 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1355 	}
1356 
1357 	/*
1358 	 * Scan though each interface, looking for ones that have
1359 	 * addresses in this address family.
1360 	 */
1361 	arr = ifnet_array_get();
1362 	for (i = 0; i < arr->ifnet_count; ++i) {
1363 		struct ifnet *ifp = arr->ifnet_arr[i];
1364 		struct ifaddr_container *ifac;
1365 
1366 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1367 			struct ifaddr *ifa = ifac->ifa;
1368 			char *cp, *cp2, *cp3;
1369 
1370 			if (ifa->ifa_addr->sa_family != af)
1371 next:				continue;
1372 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1373 				/*
1374 				 * This is a bit broken as it doesn't
1375 				 * take into account that the remote end may
1376 				 * be a single node in the network we are
1377 				 * looking for.
1378 				 * The trouble is that we don't know the
1379 				 * netmask for the remote end.
1380 				 */
1381 				if (ifa->ifa_dstaddr != NULL &&
1382 				    sa_equal(addr, ifa->ifa_dstaddr))
1383 					return (ifa);
1384 			} else {
1385 				/*
1386 				 * if we have a special address handler,
1387 				 * then use it instead of the generic one.
1388 				 */
1389 				if (ifa->ifa_claim_addr) {
1390 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1391 						return (ifa);
1392 					} else {
1393 						continue;
1394 					}
1395 				}
1396 
1397 				/*
1398 				 * Scan all the bits in the ifa's address.
1399 				 * If a bit dissagrees with what we are
1400 				 * looking for, mask it with the netmask
1401 				 * to see if it really matters.
1402 				 * (A byte at a time)
1403 				 */
1404 				if (ifa->ifa_netmask == 0)
1405 					continue;
1406 				cp = addr_data;
1407 				cp2 = ifa->ifa_addr->sa_data;
1408 				cp3 = ifa->ifa_netmask->sa_data;
1409 				cplim = ifa->ifa_netmask->sa_len +
1410 					(char *)ifa->ifa_netmask;
1411 				while (cp3 < cplim)
1412 					if ((*cp++ ^ *cp2++) & *cp3++)
1413 						goto next; /* next address! */
1414 				/*
1415 				 * If the netmask of what we just found
1416 				 * is more specific than what we had before
1417 				 * (if we had one) then remember the new one
1418 				 * before continuing to search for an even
1419 				 * better one.  If the netmasks are equal,
1420 				 * we prefer the this ifa based on the result
1421 				 * of ifa_prefer().
1422 				 */
1423 				if (ifa_maybe == NULL ||
1424 				    rn_refines((char *)ifa->ifa_netmask,
1425 				        (char *)ifa_maybe->ifa_netmask) ||
1426 				    (sa_equal(ifa_maybe->ifa_netmask,
1427 				        ifa->ifa_netmask) &&
1428 				     ifa_prefer(ifa, ifa_maybe)))
1429 					ifa_maybe = ifa;
1430 			}
1431 		}
1432 	}
1433 	return (ifa_maybe);
1434 }
1435 
1436 /*
1437  * Find an interface address specific to an interface best matching
1438  * a given address.
1439  */
1440 struct ifaddr *
1441 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1442 {
1443 	struct ifaddr_container *ifac;
1444 	char *cp, *cp2, *cp3;
1445 	char *cplim;
1446 	struct ifaddr *ifa_maybe = NULL;
1447 	u_int af = addr->sa_family;
1448 
1449 	if (af >= AF_MAX)
1450 		return (0);
1451 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1452 		struct ifaddr *ifa = ifac->ifa;
1453 
1454 		if (ifa->ifa_addr->sa_family != af)
1455 			continue;
1456 		if (ifa_maybe == NULL)
1457 			ifa_maybe = ifa;
1458 		if (ifa->ifa_netmask == NULL) {
1459 			if (sa_equal(addr, ifa->ifa_addr) ||
1460 			    (ifa->ifa_dstaddr != NULL &&
1461 			     sa_equal(addr, ifa->ifa_dstaddr)))
1462 				return (ifa);
1463 			continue;
1464 		}
1465 		if (ifp->if_flags & IFF_POINTOPOINT) {
1466 			if (sa_equal(addr, ifa->ifa_dstaddr))
1467 				return (ifa);
1468 		} else {
1469 			cp = addr->sa_data;
1470 			cp2 = ifa->ifa_addr->sa_data;
1471 			cp3 = ifa->ifa_netmask->sa_data;
1472 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1473 			for (; cp3 < cplim; cp3++)
1474 				if ((*cp++ ^ *cp2++) & *cp3)
1475 					break;
1476 			if (cp3 == cplim)
1477 				return (ifa);
1478 		}
1479 	}
1480 	return (ifa_maybe);
1481 }
1482 
1483 /*
1484  * Default action when installing a route with a Link Level gateway.
1485  * Lookup an appropriate real ifa to point to.
1486  * This should be moved to /sys/net/link.c eventually.
1487  */
1488 static void
1489 link_rtrequest(int cmd, struct rtentry *rt)
1490 {
1491 	struct ifaddr *ifa;
1492 	struct sockaddr *dst;
1493 	struct ifnet *ifp;
1494 
1495 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1496 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1497 		return;
1498 	ifa = ifaof_ifpforaddr(dst, ifp);
1499 	if (ifa != NULL) {
1500 		IFAFREE(rt->rt_ifa);
1501 		IFAREF(ifa);
1502 		rt->rt_ifa = ifa;
1503 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1504 			ifa->ifa_rtrequest(cmd, rt);
1505 	}
1506 }
1507 
1508 struct netmsg_ifroute {
1509 	struct netmsg_base	base;
1510 	struct ifnet		*ifp;
1511 	int			flag;
1512 	int			fam;
1513 };
1514 
1515 /*
1516  * Mark an interface down and notify protocols of the transition.
1517  */
1518 static void
1519 if_unroute_dispatch(netmsg_t nmsg)
1520 {
1521 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1522 	struct ifnet *ifp = msg->ifp;
1523 	int flag = msg->flag, fam = msg->fam;
1524 	struct ifaddr_container *ifac;
1525 
1526 	ifp->if_flags &= ~flag;
1527 	getmicrotime(&ifp->if_lastchange);
1528 	/*
1529 	 * The ifaddr processing in the following loop will block,
1530 	 * however, this function is called in netisr0, in which
1531 	 * ifaddr list changes happen, so we don't care about the
1532 	 * blockness of the ifaddr processing here.
1533 	 */
1534 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1535 		struct ifaddr *ifa = ifac->ifa;
1536 
1537 		/* Ignore marker */
1538 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1539 			continue;
1540 
1541 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1542 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1543 	}
1544 	ifq_purge_all(&ifp->if_snd);
1545 	rt_ifmsg(ifp);
1546 
1547 	lwkt_replymsg(&nmsg->lmsg, 0);
1548 }
1549 
1550 void
1551 if_unroute(struct ifnet *ifp, int flag, int fam)
1552 {
1553 	struct netmsg_ifroute msg;
1554 
1555 	ASSERT_CANDOMSG_NETISR0(curthread);
1556 
1557 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1558 	    if_unroute_dispatch);
1559 	msg.ifp = ifp;
1560 	msg.flag = flag;
1561 	msg.fam = fam;
1562 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1563 }
1564 
1565 /*
1566  * Mark an interface up and notify protocols of the transition.
1567  */
1568 static void
1569 if_route_dispatch(netmsg_t nmsg)
1570 {
1571 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1572 	struct ifnet *ifp = msg->ifp;
1573 	int flag = msg->flag, fam = msg->fam;
1574 	struct ifaddr_container *ifac;
1575 
1576 	ifq_purge_all(&ifp->if_snd);
1577 	ifp->if_flags |= flag;
1578 	getmicrotime(&ifp->if_lastchange);
1579 	/*
1580 	 * The ifaddr processing in the following loop will block,
1581 	 * however, this function is called in netisr0, in which
1582 	 * ifaddr list changes happen, so we don't care about the
1583 	 * blockness of the ifaddr processing here.
1584 	 */
1585 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1586 		struct ifaddr *ifa = ifac->ifa;
1587 
1588 		/* Ignore marker */
1589 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1590 			continue;
1591 
1592 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1593 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1594 	}
1595 	rt_ifmsg(ifp);
1596 #ifdef INET6
1597 	in6_if_up(ifp);
1598 #endif
1599 
1600 	lwkt_replymsg(&nmsg->lmsg, 0);
1601 }
1602 
1603 void
1604 if_route(struct ifnet *ifp, int flag, int fam)
1605 {
1606 	struct netmsg_ifroute msg;
1607 
1608 	ASSERT_CANDOMSG_NETISR0(curthread);
1609 
1610 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1611 	    if_route_dispatch);
1612 	msg.ifp = ifp;
1613 	msg.flag = flag;
1614 	msg.fam = fam;
1615 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1616 }
1617 
1618 /*
1619  * Mark an interface down and notify protocols of the transition.  An
1620  * interface going down is also considered to be a synchronizing event.
1621  * We must ensure that all packet processing related to the interface
1622  * has completed before we return so e.g. the caller can free the ifnet
1623  * structure that the mbufs may be referencing.
1624  *
1625  * NOTE: must be called at splnet or eqivalent.
1626  */
1627 void
1628 if_down(struct ifnet *ifp)
1629 {
1630 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1631 	netmsg_service_sync();
1632 }
1633 
1634 /*
1635  * Mark an interface up and notify protocols of
1636  * the transition.
1637  * NOTE: must be called at splnet or eqivalent.
1638  */
1639 void
1640 if_up(struct ifnet *ifp)
1641 {
1642 	if_route(ifp, IFF_UP, AF_UNSPEC);
1643 }
1644 
1645 /*
1646  * Process a link state change.
1647  * NOTE: must be called at splsoftnet or equivalent.
1648  */
1649 void
1650 if_link_state_change(struct ifnet *ifp)
1651 {
1652 	int link_state = ifp->if_link_state;
1653 
1654 	rt_ifmsg(ifp);
1655 	devctl_notify("IFNET", ifp->if_xname,
1656 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1657 }
1658 
1659 /*
1660  * Handle interface watchdog timer routines.  Called
1661  * from softclock, we decrement timers (if set) and
1662  * call the appropriate interface routine on expiration.
1663  */
1664 static void
1665 if_slowtimo_dispatch(netmsg_t nmsg)
1666 {
1667 	struct globaldata *gd = mycpu;
1668 	const struct ifnet_array *arr;
1669 	int i;
1670 
1671 	ASSERT_IN_NETISR(0);
1672 
1673 	crit_enter_gd(gd);
1674 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1675 	crit_exit_gd(gd);
1676 
1677 	arr = ifnet_array_get();
1678 	for (i = 0; i < arr->ifnet_count; ++i) {
1679 		struct ifnet *ifp = arr->ifnet_arr[i];
1680 
1681 		crit_enter_gd(gd);
1682 
1683 		if (if_stats_compat) {
1684 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1685 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1686 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1687 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1688 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1689 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1690 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1691 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1692 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1693 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1694 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1695 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1696 		}
1697 
1698 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1699 			crit_exit_gd(gd);
1700 			continue;
1701 		}
1702 		if (ifp->if_watchdog) {
1703 			if (ifnet_tryserialize_all(ifp)) {
1704 				(*ifp->if_watchdog)(ifp);
1705 				ifnet_deserialize_all(ifp);
1706 			} else {
1707 				/* try again next timeout */
1708 				++ifp->if_timer;
1709 			}
1710 		}
1711 
1712 		crit_exit_gd(gd);
1713 	}
1714 
1715 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1716 }
1717 
1718 static void
1719 if_slowtimo(void *arg __unused)
1720 {
1721 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1722 
1723 	KASSERT(mycpuid == 0, ("not on cpu0"));
1724 	crit_enter();
1725 	if (lmsg->ms_flags & MSGF_DONE)
1726 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1727 	crit_exit();
1728 }
1729 
1730 /*
1731  * Map interface name to
1732  * interface structure pointer.
1733  */
1734 struct ifnet *
1735 ifunit(const char *name)
1736 {
1737 	struct ifnet *ifp;
1738 
1739 	/*
1740 	 * Search all the interfaces for this name/number
1741 	 */
1742 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1743 
1744 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1745 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1746 			break;
1747 	}
1748 	return (ifp);
1749 }
1750 
1751 struct ifnet *
1752 ifunit_netisr(const char *name)
1753 {
1754 	const struct ifnet_array *arr;
1755 	int i;
1756 
1757 	/*
1758 	 * Search all the interfaces for this name/number
1759 	 */
1760 
1761 	arr = ifnet_array_get();
1762 	for (i = 0; i < arr->ifnet_count; ++i) {
1763 		struct ifnet *ifp = arr->ifnet_arr[i];
1764 
1765 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1766 			return ifp;
1767 	}
1768 	return NULL;
1769 }
1770 
1771 /*
1772  * Interface ioctls.
1773  */
1774 int
1775 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1776 {
1777 	struct ifnet *ifp;
1778 	struct ifreq *ifr;
1779 	struct ifstat *ifs;
1780 	int error;
1781 	short oif_flags;
1782 	int new_flags;
1783 	size_t namelen, onamelen;
1784 	char new_name[IFNAMSIZ];
1785 	struct ifaddr *ifa;
1786 	struct sockaddr_dl *sdl;
1787 
1788 	switch (cmd) {
1789 	case SIOCGIFCONF:
1790 	case OSIOCGIFCONF:
1791 		return (ifconf(cmd, data, cred));
1792 	default:
1793 		break;
1794 	}
1795 
1796 	ifr = (struct ifreq *)data;
1797 
1798 	switch (cmd) {
1799 	case SIOCIFCREATE:
1800 	case SIOCIFCREATE2:
1801 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1802 			return (error);
1803 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1804 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1805 	case SIOCIFDESTROY:
1806 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1807 			return (error);
1808 		return (if_clone_destroy(ifr->ifr_name));
1809 	case SIOCIFGCLONERS:
1810 		return (if_clone_list((struct if_clonereq *)data));
1811 	default:
1812 		break;
1813 	}
1814 
1815 	/*
1816 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1817 	 * lock to serialize the ifconfig ioctl operation.
1818 	 */
1819 	ifnet_lock();
1820 
1821 	ifp = ifunit(ifr->ifr_name);
1822 	if (ifp == NULL) {
1823 		ifnet_unlock();
1824 		return (ENXIO);
1825 	}
1826 	error = 0;
1827 
1828 	switch (cmd) {
1829 	case SIOCGIFINDEX:
1830 		ifr->ifr_index = ifp->if_index;
1831 		break;
1832 
1833 	case SIOCGIFFLAGS:
1834 		ifr->ifr_flags = ifp->if_flags;
1835 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1836 		break;
1837 
1838 	case SIOCGIFCAP:
1839 		ifr->ifr_reqcap = ifp->if_capabilities;
1840 		ifr->ifr_curcap = ifp->if_capenable;
1841 		break;
1842 
1843 	case SIOCGIFMETRIC:
1844 		ifr->ifr_metric = ifp->if_metric;
1845 		break;
1846 
1847 	case SIOCGIFMTU:
1848 		ifr->ifr_mtu = ifp->if_mtu;
1849 		break;
1850 
1851 	case SIOCGIFTSOLEN:
1852 		ifr->ifr_tsolen = ifp->if_tsolen;
1853 		break;
1854 
1855 	case SIOCGIFDATA:
1856 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1857 				sizeof(ifp->if_data));
1858 		break;
1859 
1860 	case SIOCGIFPHYS:
1861 		ifr->ifr_phys = ifp->if_physical;
1862 		break;
1863 
1864 	case SIOCGIFPOLLCPU:
1865 		ifr->ifr_pollcpu = -1;
1866 		break;
1867 
1868 	case SIOCSIFPOLLCPU:
1869 		break;
1870 
1871 	case SIOCSIFFLAGS:
1872 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1873 		if (error)
1874 			break;
1875 		new_flags = (ifr->ifr_flags & 0xffff) |
1876 		    (ifr->ifr_flagshigh << 16);
1877 		if (ifp->if_flags & IFF_SMART) {
1878 			/* Smart drivers twiddle their own routes */
1879 		} else if (ifp->if_flags & IFF_UP &&
1880 		    (new_flags & IFF_UP) == 0) {
1881 			crit_enter();
1882 			if_down(ifp);
1883 			crit_exit();
1884 		} else if (new_flags & IFF_UP &&
1885 		    (ifp->if_flags & IFF_UP) == 0) {
1886 			crit_enter();
1887 			if_up(ifp);
1888 			crit_exit();
1889 		}
1890 
1891 #ifdef IFPOLL_ENABLE
1892 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1893 			if (new_flags & IFF_NPOLLING)
1894 				ifpoll_register(ifp);
1895 			else
1896 				ifpoll_deregister(ifp);
1897 		}
1898 #endif
1899 
1900 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1901 			(new_flags &~ IFF_CANTCHANGE);
1902 		if (new_flags & IFF_PPROMISC) {
1903 			/* Permanently promiscuous mode requested */
1904 			ifp->if_flags |= IFF_PROMISC;
1905 		} else if (ifp->if_pcount == 0) {
1906 			ifp->if_flags &= ~IFF_PROMISC;
1907 		}
1908 		if (ifp->if_ioctl) {
1909 			ifnet_serialize_all(ifp);
1910 			ifp->if_ioctl(ifp, cmd, data, cred);
1911 			ifnet_deserialize_all(ifp);
1912 		}
1913 		getmicrotime(&ifp->if_lastchange);
1914 		break;
1915 
1916 	case SIOCSIFCAP:
1917 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1918 		if (error)
1919 			break;
1920 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1921 			error = EINVAL;
1922 			break;
1923 		}
1924 		ifnet_serialize_all(ifp);
1925 		ifp->if_ioctl(ifp, cmd, data, cred);
1926 		ifnet_deserialize_all(ifp);
1927 		break;
1928 
1929 	case SIOCSIFNAME:
1930 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1931 		if (error)
1932 			break;
1933 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1934 		if (error)
1935 			break;
1936 		if (new_name[0] == '\0') {
1937 			error = EINVAL;
1938 			break;
1939 		}
1940 		if (ifunit(new_name) != NULL) {
1941 			error = EEXIST;
1942 			break;
1943 		}
1944 
1945 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1946 
1947 		/* Announce the departure of the interface. */
1948 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1949 
1950 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1951 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1952 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1953 		namelen = strlen(new_name);
1954 		onamelen = sdl->sdl_nlen;
1955 		/*
1956 		 * Move the address if needed.  This is safe because we
1957 		 * allocate space for a name of length IFNAMSIZ when we
1958 		 * create this in if_attach().
1959 		 */
1960 		if (namelen != onamelen) {
1961 			bcopy(sdl->sdl_data + onamelen,
1962 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1963 		}
1964 		bcopy(new_name, sdl->sdl_data, namelen);
1965 		sdl->sdl_nlen = namelen;
1966 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1967 		bzero(sdl->sdl_data, onamelen);
1968 		while (namelen != 0)
1969 			sdl->sdl_data[--namelen] = 0xff;
1970 
1971 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1972 
1973 		/* Announce the return of the interface. */
1974 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1975 		break;
1976 
1977 	case SIOCSIFMETRIC:
1978 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1979 		if (error)
1980 			break;
1981 		ifp->if_metric = ifr->ifr_metric;
1982 		getmicrotime(&ifp->if_lastchange);
1983 		break;
1984 
1985 	case SIOCSIFPHYS:
1986 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1987 		if (error)
1988 			break;
1989 		if (ifp->if_ioctl == NULL) {
1990 		        error = EOPNOTSUPP;
1991 			break;
1992 		}
1993 		ifnet_serialize_all(ifp);
1994 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1995 		ifnet_deserialize_all(ifp);
1996 		if (error == 0)
1997 			getmicrotime(&ifp->if_lastchange);
1998 		break;
1999 
2000 	case SIOCSIFMTU:
2001 	{
2002 		u_long oldmtu = ifp->if_mtu;
2003 
2004 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2005 		if (error)
2006 			break;
2007 		if (ifp->if_ioctl == NULL) {
2008 			error = EOPNOTSUPP;
2009 			break;
2010 		}
2011 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2012 			error = EINVAL;
2013 			break;
2014 		}
2015 		ifnet_serialize_all(ifp);
2016 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2017 		ifnet_deserialize_all(ifp);
2018 		if (error == 0) {
2019 			getmicrotime(&ifp->if_lastchange);
2020 			rt_ifmsg(ifp);
2021 		}
2022 		/*
2023 		 * If the link MTU changed, do network layer specific procedure.
2024 		 */
2025 		if (ifp->if_mtu != oldmtu) {
2026 #ifdef INET6
2027 			nd6_setmtu(ifp);
2028 #endif
2029 		}
2030 		break;
2031 	}
2032 
2033 	case SIOCSIFTSOLEN:
2034 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2035 		if (error)
2036 			break;
2037 
2038 		/* XXX need driver supplied upper limit */
2039 		if (ifr->ifr_tsolen <= 0) {
2040 			error = EINVAL;
2041 			break;
2042 		}
2043 		ifp->if_tsolen = ifr->ifr_tsolen;
2044 		break;
2045 
2046 	case SIOCADDMULTI:
2047 	case SIOCDELMULTI:
2048 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2049 		if (error)
2050 			break;
2051 
2052 		/* Don't allow group membership on non-multicast interfaces. */
2053 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2054 			error = EOPNOTSUPP;
2055 			break;
2056 		}
2057 
2058 		/* Don't let users screw up protocols' entries. */
2059 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2060 			error = EINVAL;
2061 			break;
2062 		}
2063 
2064 		if (cmd == SIOCADDMULTI) {
2065 			struct ifmultiaddr *ifma;
2066 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2067 		} else {
2068 			error = if_delmulti(ifp, &ifr->ifr_addr);
2069 		}
2070 		if (error == 0)
2071 			getmicrotime(&ifp->if_lastchange);
2072 		break;
2073 
2074 	case SIOCSIFPHYADDR:
2075 	case SIOCDIFPHYADDR:
2076 #ifdef INET6
2077 	case SIOCSIFPHYADDR_IN6:
2078 #endif
2079 	case SIOCSLIFPHYADDR:
2080         case SIOCSIFMEDIA:
2081 	case SIOCSIFGENERIC:
2082 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2083 		if (error)
2084 			break;
2085 		if (ifp->if_ioctl == 0) {
2086 			error = EOPNOTSUPP;
2087 			break;
2088 		}
2089 		ifnet_serialize_all(ifp);
2090 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2091 		ifnet_deserialize_all(ifp);
2092 		if (error == 0)
2093 			getmicrotime(&ifp->if_lastchange);
2094 		break;
2095 
2096 	case SIOCGIFSTATUS:
2097 		ifs = (struct ifstat *)data;
2098 		ifs->ascii[0] = '\0';
2099 		/* fall through */
2100 	case SIOCGIFPSRCADDR:
2101 	case SIOCGIFPDSTADDR:
2102 	case SIOCGLIFPHYADDR:
2103 	case SIOCGIFMEDIA:
2104 	case SIOCGIFGENERIC:
2105 		if (ifp->if_ioctl == NULL) {
2106 			error = EOPNOTSUPP;
2107 			break;
2108 		}
2109 		ifnet_serialize_all(ifp);
2110 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2111 		ifnet_deserialize_all(ifp);
2112 		break;
2113 
2114 	case SIOCSIFLLADDR:
2115 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2116 		if (error)
2117 			break;
2118 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2119 				     ifr->ifr_addr.sa_len);
2120 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2121 		break;
2122 
2123 	default:
2124 		oif_flags = ifp->if_flags;
2125 		if (so->so_proto == 0) {
2126 			error = EOPNOTSUPP;
2127 			break;
2128 		}
2129 		error = so_pru_control_direct(so, cmd, data, ifp);
2130 
2131 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2132 #ifdef INET6
2133 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2134 			if (ifp->if_flags & IFF_UP) {
2135 				crit_enter();
2136 				in6_if_up(ifp);
2137 				crit_exit();
2138 			}
2139 #endif
2140 		}
2141 		break;
2142 	}
2143 
2144 	ifnet_unlock();
2145 	return (error);
2146 }
2147 
2148 /*
2149  * Set/clear promiscuous mode on interface ifp based on the truth value
2150  * of pswitch.  The calls are reference counted so that only the first
2151  * "on" request actually has an effect, as does the final "off" request.
2152  * Results are undefined if the "off" and "on" requests are not matched.
2153  */
2154 int
2155 ifpromisc(struct ifnet *ifp, int pswitch)
2156 {
2157 	struct ifreq ifr;
2158 	int error;
2159 	int oldflags;
2160 
2161 	oldflags = ifp->if_flags;
2162 	if (ifp->if_flags & IFF_PPROMISC) {
2163 		/* Do nothing if device is in permanently promiscuous mode */
2164 		ifp->if_pcount += pswitch ? 1 : -1;
2165 		return (0);
2166 	}
2167 	if (pswitch) {
2168 		/*
2169 		 * If the device is not configured up, we cannot put it in
2170 		 * promiscuous mode.
2171 		 */
2172 		if ((ifp->if_flags & IFF_UP) == 0)
2173 			return (ENETDOWN);
2174 		if (ifp->if_pcount++ != 0)
2175 			return (0);
2176 		ifp->if_flags |= IFF_PROMISC;
2177 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2178 		    ifp->if_xname);
2179 	} else {
2180 		if (--ifp->if_pcount > 0)
2181 			return (0);
2182 		ifp->if_flags &= ~IFF_PROMISC;
2183 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2184 		    ifp->if_xname);
2185 	}
2186 	ifr.ifr_flags = ifp->if_flags;
2187 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2188 	ifnet_serialize_all(ifp);
2189 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2190 	ifnet_deserialize_all(ifp);
2191 	if (error == 0)
2192 		rt_ifmsg(ifp);
2193 	else
2194 		ifp->if_flags = oldflags;
2195 	return error;
2196 }
2197 
2198 /*
2199  * Return interface configuration
2200  * of system.  List may be used
2201  * in later ioctl's (above) to get
2202  * other information.
2203  */
2204 static int
2205 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2206 {
2207 	struct ifconf *ifc = (struct ifconf *)data;
2208 	struct ifnet *ifp;
2209 	struct sockaddr *sa;
2210 	struct ifreq ifr, *ifrp;
2211 	int space = ifc->ifc_len, error = 0;
2212 
2213 	ifrp = ifc->ifc_req;
2214 
2215 	ifnet_lock();
2216 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2217 		struct ifaddr_container *ifac, *ifac_mark;
2218 		struct ifaddr_marker mark;
2219 		struct ifaddrhead *head;
2220 		int addrs;
2221 
2222 		if (space <= sizeof ifr)
2223 			break;
2224 
2225 		/*
2226 		 * Zero the stack declared structure first to prevent
2227 		 * memory disclosure.
2228 		 */
2229 		bzero(&ifr, sizeof(ifr));
2230 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2231 		    >= sizeof(ifr.ifr_name)) {
2232 			error = ENAMETOOLONG;
2233 			break;
2234 		}
2235 
2236 		/*
2237 		 * Add a marker, since copyout() could block and during that
2238 		 * period the list could be changed.  Inserting the marker to
2239 		 * the header of the list will not cause trouble for the code
2240 		 * assuming that the first element of the list is AF_LINK; the
2241 		 * marker will be moved to the next position w/o blocking.
2242 		 */
2243 		ifa_marker_init(&mark, ifp);
2244 		ifac_mark = &mark.ifac;
2245 		head = &ifp->if_addrheads[mycpuid];
2246 
2247 		addrs = 0;
2248 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2249 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2250 			struct ifaddr *ifa = ifac->ifa;
2251 
2252 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2253 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2254 
2255 			/* Ignore marker */
2256 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2257 				continue;
2258 
2259 			if (space <= sizeof ifr)
2260 				break;
2261 			sa = ifa->ifa_addr;
2262 			if (cred->cr_prison &&
2263 			    prison_if(cred, sa))
2264 				continue;
2265 			addrs++;
2266 			/*
2267 			 * Keep a reference on this ifaddr, so that it will
2268 			 * not be destroyed when its address is copied to
2269 			 * the userland, which could block.
2270 			 */
2271 			IFAREF(ifa);
2272 			if (sa->sa_len <= sizeof(*sa)) {
2273 				ifr.ifr_addr = *sa;
2274 				error = copyout(&ifr, ifrp, sizeof ifr);
2275 				ifrp++;
2276 			} else {
2277 				if (space < (sizeof ifr) + sa->sa_len -
2278 					    sizeof(*sa)) {
2279 					IFAFREE(ifa);
2280 					break;
2281 				}
2282 				space -= sa->sa_len - sizeof(*sa);
2283 				error = copyout(&ifr, ifrp,
2284 						sizeof ifr.ifr_name);
2285 				if (error == 0)
2286 					error = copyout(sa, &ifrp->ifr_addr,
2287 							sa->sa_len);
2288 				ifrp = (struct ifreq *)
2289 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2290 			}
2291 			IFAFREE(ifa);
2292 			if (error)
2293 				break;
2294 			space -= sizeof ifr;
2295 		}
2296 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2297 		if (error)
2298 			break;
2299 		if (!addrs) {
2300 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2301 			error = copyout(&ifr, ifrp, sizeof ifr);
2302 			if (error)
2303 				break;
2304 			space -= sizeof ifr;
2305 			ifrp++;
2306 		}
2307 	}
2308 	ifnet_unlock();
2309 
2310 	ifc->ifc_len -= space;
2311 	return (error);
2312 }
2313 
2314 /*
2315  * Just like if_promisc(), but for all-multicast-reception mode.
2316  */
2317 int
2318 if_allmulti(struct ifnet *ifp, int onswitch)
2319 {
2320 	int error = 0;
2321 	struct ifreq ifr;
2322 
2323 	crit_enter();
2324 
2325 	if (onswitch) {
2326 		if (ifp->if_amcount++ == 0) {
2327 			ifp->if_flags |= IFF_ALLMULTI;
2328 			ifr.ifr_flags = ifp->if_flags;
2329 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2330 			ifnet_serialize_all(ifp);
2331 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2332 					      NULL);
2333 			ifnet_deserialize_all(ifp);
2334 		}
2335 	} else {
2336 		if (ifp->if_amcount > 1) {
2337 			ifp->if_amcount--;
2338 		} else {
2339 			ifp->if_amcount = 0;
2340 			ifp->if_flags &= ~IFF_ALLMULTI;
2341 			ifr.ifr_flags = ifp->if_flags;
2342 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2343 			ifnet_serialize_all(ifp);
2344 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2345 					      NULL);
2346 			ifnet_deserialize_all(ifp);
2347 		}
2348 	}
2349 
2350 	crit_exit();
2351 
2352 	if (error == 0)
2353 		rt_ifmsg(ifp);
2354 	return error;
2355 }
2356 
2357 /*
2358  * Add a multicast listenership to the interface in question.
2359  * The link layer provides a routine which converts
2360  */
2361 int
2362 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2363     struct ifmultiaddr **retifma)
2364 {
2365 	struct sockaddr *llsa, *dupsa;
2366 	int error;
2367 	struct ifmultiaddr *ifma;
2368 
2369 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2370 
2371 	/*
2372 	 * If the matching multicast address already exists
2373 	 * then don't add a new one, just add a reference
2374 	 */
2375 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2376 		if (sa_equal(sa, ifma->ifma_addr)) {
2377 			ifma->ifma_refcount++;
2378 			if (retifma)
2379 				*retifma = ifma;
2380 			return 0;
2381 		}
2382 	}
2383 
2384 	/*
2385 	 * Give the link layer a chance to accept/reject it, and also
2386 	 * find out which AF_LINK address this maps to, if it isn't one
2387 	 * already.
2388 	 */
2389 	if (ifp->if_resolvemulti) {
2390 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2391 		if (error)
2392 			return error;
2393 	} else {
2394 		llsa = NULL;
2395 	}
2396 
2397 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2398 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2399 	bcopy(sa, dupsa, sa->sa_len);
2400 
2401 	ifma->ifma_addr = dupsa;
2402 	ifma->ifma_lladdr = llsa;
2403 	ifma->ifma_ifp = ifp;
2404 	ifma->ifma_refcount = 1;
2405 	ifma->ifma_protospec = NULL;
2406 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2407 
2408 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2409 	if (retifma)
2410 		*retifma = ifma;
2411 
2412 	if (llsa != NULL) {
2413 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2414 			if (sa_equal(ifma->ifma_addr, llsa))
2415 				break;
2416 		}
2417 		if (ifma) {
2418 			ifma->ifma_refcount++;
2419 		} else {
2420 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2421 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2422 			bcopy(llsa, dupsa, llsa->sa_len);
2423 			ifma->ifma_addr = dupsa;
2424 			ifma->ifma_ifp = ifp;
2425 			ifma->ifma_refcount = 1;
2426 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2427 		}
2428 	}
2429 	/*
2430 	 * We are certain we have added something, so call down to the
2431 	 * interface to let them know about it.
2432 	 */
2433 	if (ifp->if_ioctl)
2434 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2441     struct ifmultiaddr **retifma)
2442 {
2443 	int error;
2444 
2445 	ifnet_serialize_all(ifp);
2446 	error = if_addmulti_serialized(ifp, sa, retifma);
2447 	ifnet_deserialize_all(ifp);
2448 
2449 	return error;
2450 }
2451 
2452 /*
2453  * Remove a reference to a multicast address on this interface.  Yell
2454  * if the request does not match an existing membership.
2455  */
2456 static int
2457 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2458 {
2459 	struct ifmultiaddr *ifma;
2460 
2461 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2462 
2463 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2464 		if (sa_equal(sa, ifma->ifma_addr))
2465 			break;
2466 	if (ifma == NULL)
2467 		return ENOENT;
2468 
2469 	if (ifma->ifma_refcount > 1) {
2470 		ifma->ifma_refcount--;
2471 		return 0;
2472 	}
2473 
2474 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2475 	sa = ifma->ifma_lladdr;
2476 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2477 	/*
2478 	 * Make sure the interface driver is notified
2479 	 * in the case of a link layer mcast group being left.
2480 	 */
2481 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2482 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2483 	kfree(ifma->ifma_addr, M_IFMADDR);
2484 	kfree(ifma, M_IFMADDR);
2485 	if (sa == NULL)
2486 		return 0;
2487 
2488 	/*
2489 	 * Now look for the link-layer address which corresponds to
2490 	 * this network address.  It had been squirreled away in
2491 	 * ifma->ifma_lladdr for this purpose (so we don't have
2492 	 * to call ifp->if_resolvemulti() again), and we saved that
2493 	 * value in sa above.  If some nasty deleted the
2494 	 * link-layer address out from underneath us, we can deal because
2495 	 * the address we stored was is not the same as the one which was
2496 	 * in the record for the link-layer address.  (So we don't complain
2497 	 * in that case.)
2498 	 */
2499 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2500 		if (sa_equal(sa, ifma->ifma_addr))
2501 			break;
2502 	if (ifma == NULL)
2503 		return 0;
2504 
2505 	if (ifma->ifma_refcount > 1) {
2506 		ifma->ifma_refcount--;
2507 		return 0;
2508 	}
2509 
2510 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2511 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2512 	kfree(ifma->ifma_addr, M_IFMADDR);
2513 	kfree(sa, M_IFMADDR);
2514 	kfree(ifma, M_IFMADDR);
2515 
2516 	return 0;
2517 }
2518 
2519 int
2520 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2521 {
2522 	int error;
2523 
2524 	ifnet_serialize_all(ifp);
2525 	error = if_delmulti_serialized(ifp, sa);
2526 	ifnet_deserialize_all(ifp);
2527 
2528 	return error;
2529 }
2530 
2531 /*
2532  * Delete all multicast group membership for an interface.
2533  * Should be used to quickly flush all multicast filters.
2534  */
2535 void
2536 if_delallmulti_serialized(struct ifnet *ifp)
2537 {
2538 	struct ifmultiaddr *ifma, mark;
2539 	struct sockaddr sa;
2540 
2541 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2542 
2543 	bzero(&sa, sizeof(sa));
2544 	sa.sa_family = AF_UNSPEC;
2545 	sa.sa_len = sizeof(sa);
2546 
2547 	bzero(&mark, sizeof(mark));
2548 	mark.ifma_addr = &sa;
2549 
2550 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2551 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2552 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2553 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2554 		    ifma_link);
2555 
2556 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2557 			continue;
2558 
2559 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2560 	}
2561 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2562 }
2563 
2564 
2565 /*
2566  * Set the link layer address on an interface.
2567  *
2568  * At this time we only support certain types of interfaces,
2569  * and we don't allow the length of the address to change.
2570  */
2571 int
2572 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2573 {
2574 	struct sockaddr_dl *sdl;
2575 	struct ifreq ifr;
2576 
2577 	sdl = IF_LLSOCKADDR(ifp);
2578 	if (sdl == NULL)
2579 		return (EINVAL);
2580 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2581 		return (EINVAL);
2582 	switch (ifp->if_type) {
2583 	case IFT_ETHER:			/* these types use struct arpcom */
2584 	case IFT_XETHER:
2585 	case IFT_L2VLAN:
2586 	case IFT_IEEE8023ADLAG:
2587 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2588 		bcopy(lladdr, LLADDR(sdl), len);
2589 		break;
2590 	default:
2591 		return (ENODEV);
2592 	}
2593 	/*
2594 	 * If the interface is already up, we need
2595 	 * to re-init it in order to reprogram its
2596 	 * address filter.
2597 	 */
2598 	ifnet_serialize_all(ifp);
2599 	if ((ifp->if_flags & IFF_UP) != 0) {
2600 #ifdef INET
2601 		struct ifaddr_container *ifac;
2602 #endif
2603 
2604 		ifp->if_flags &= ~IFF_UP;
2605 		ifr.ifr_flags = ifp->if_flags;
2606 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2607 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2608 			      NULL);
2609 		ifp->if_flags |= IFF_UP;
2610 		ifr.ifr_flags = ifp->if_flags;
2611 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2612 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2613 				 NULL);
2614 #ifdef INET
2615 		/*
2616 		 * Also send gratuitous ARPs to notify other nodes about
2617 		 * the address change.
2618 		 */
2619 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2620 			struct ifaddr *ifa = ifac->ifa;
2621 
2622 			if (ifa->ifa_addr != NULL &&
2623 			    ifa->ifa_addr->sa_family == AF_INET)
2624 				arp_gratuitous(ifp, ifa);
2625 		}
2626 #endif
2627 	}
2628 	ifnet_deserialize_all(ifp);
2629 	return (0);
2630 }
2631 
2632 struct ifmultiaddr *
2633 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2634 {
2635 	struct ifmultiaddr *ifma;
2636 
2637 	/* TODO: need ifnet_serialize_main */
2638 	ifnet_serialize_all(ifp);
2639 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2640 		if (sa_equal(ifma->ifma_addr, sa))
2641 			break;
2642 	ifnet_deserialize_all(ifp);
2643 
2644 	return ifma;
2645 }
2646 
2647 /*
2648  * This function locates the first real ethernet MAC from a network
2649  * card and loads it into node, returning 0 on success or ENOENT if
2650  * no suitable interfaces were found.  It is used by the uuid code to
2651  * generate a unique 6-byte number.
2652  */
2653 int
2654 if_getanyethermac(uint16_t *node, int minlen)
2655 {
2656 	struct ifnet *ifp;
2657 	struct sockaddr_dl *sdl;
2658 
2659 	ifnet_lock();
2660 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2661 		if (ifp->if_type != IFT_ETHER)
2662 			continue;
2663 		sdl = IF_LLSOCKADDR(ifp);
2664 		if (sdl->sdl_alen < minlen)
2665 			continue;
2666 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2667 		      minlen);
2668 		ifnet_unlock();
2669 		return(0);
2670 	}
2671 	ifnet_unlock();
2672 	return (ENOENT);
2673 }
2674 
2675 /*
2676  * The name argument must be a pointer to storage which will last as
2677  * long as the interface does.  For physical devices, the result of
2678  * device_get_name(dev) is a good choice and for pseudo-devices a
2679  * static string works well.
2680  */
2681 void
2682 if_initname(struct ifnet *ifp, const char *name, int unit)
2683 {
2684 	ifp->if_dname = name;
2685 	ifp->if_dunit = unit;
2686 	if (unit != IF_DUNIT_NONE)
2687 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2688 	else
2689 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2690 }
2691 
2692 int
2693 if_printf(struct ifnet *ifp, const char *fmt, ...)
2694 {
2695 	__va_list ap;
2696 	int retval;
2697 
2698 	retval = kprintf("%s: ", ifp->if_xname);
2699 	__va_start(ap, fmt);
2700 	retval += kvprintf(fmt, ap);
2701 	__va_end(ap);
2702 	return (retval);
2703 }
2704 
2705 struct ifnet *
2706 if_alloc(uint8_t type)
2707 {
2708         struct ifnet *ifp;
2709 	size_t size;
2710 
2711 	/*
2712 	 * XXX temporary hack until arpcom is setup in if_l2com
2713 	 */
2714 	if (type == IFT_ETHER)
2715 		size = sizeof(struct arpcom);
2716 	else
2717 		size = sizeof(struct ifnet);
2718 
2719 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2720 
2721 	ifp->if_type = type;
2722 
2723 	if (if_com_alloc[type] != NULL) {
2724 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2725 		if (ifp->if_l2com == NULL) {
2726 			kfree(ifp, M_IFNET);
2727 			return (NULL);
2728 		}
2729 	}
2730 	return (ifp);
2731 }
2732 
2733 void
2734 if_free(struct ifnet *ifp)
2735 {
2736 	kfree(ifp, M_IFNET);
2737 }
2738 
2739 void
2740 ifq_set_classic(struct ifaltq *ifq)
2741 {
2742 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2743 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2744 }
2745 
2746 void
2747 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2748     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2749 {
2750 	int q;
2751 
2752 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2753 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2754 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2755 	KASSERT(request != NULL, ("request is not specified"));
2756 
2757 	ifq->altq_mapsubq = mapsubq;
2758 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2759 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2760 
2761 		ifsq->ifsq_enqueue = enqueue;
2762 		ifsq->ifsq_dequeue = dequeue;
2763 		ifsq->ifsq_request = request;
2764 	}
2765 }
2766 
2767 static void
2768 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2769 {
2770 	m->m_nextpkt = NULL;
2771 	if (ifsq->ifsq_norm_tail == NULL)
2772 		ifsq->ifsq_norm_head = m;
2773 	else
2774 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2775 	ifsq->ifsq_norm_tail = m;
2776 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2777 }
2778 
2779 static void
2780 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2781 {
2782 	m->m_nextpkt = NULL;
2783 	if (ifsq->ifsq_prio_tail == NULL)
2784 		ifsq->ifsq_prio_head = m;
2785 	else
2786 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2787 	ifsq->ifsq_prio_tail = m;
2788 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2789 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2790 }
2791 
2792 static struct mbuf *
2793 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2794 {
2795 	struct mbuf *m;
2796 
2797 	m = ifsq->ifsq_norm_head;
2798 	if (m != NULL) {
2799 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2800 			ifsq->ifsq_norm_tail = NULL;
2801 		m->m_nextpkt = NULL;
2802 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2803 	}
2804 	return m;
2805 }
2806 
2807 static struct mbuf *
2808 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2809 {
2810 	struct mbuf *m;
2811 
2812 	m = ifsq->ifsq_prio_head;
2813 	if (m != NULL) {
2814 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2815 			ifsq->ifsq_prio_tail = NULL;
2816 		m->m_nextpkt = NULL;
2817 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2818 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2819 	}
2820 	return m;
2821 }
2822 
2823 int
2824 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2825     struct altq_pktattr *pa __unused)
2826 {
2827 	M_ASSERTPKTHDR(m);
2828 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2829 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2830 		if ((m->m_flags & M_PRIO) &&
2831 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2832 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2833 			struct mbuf *m_drop;
2834 
2835 			/*
2836 			 * Perform drop-head on normal queue
2837 			 */
2838 			m_drop = ifsq_norm_dequeue(ifsq);
2839 			if (m_drop != NULL) {
2840 				m_freem(m_drop);
2841 				ifsq_prio_enqueue(ifsq, m);
2842 				return 0;
2843 			}
2844 			/* XXX nothing could be dropped? */
2845 		}
2846 		m_freem(m);
2847 		return ENOBUFS;
2848 	} else {
2849 		if (m->m_flags & M_PRIO)
2850 			ifsq_prio_enqueue(ifsq, m);
2851 		else
2852 			ifsq_norm_enqueue(ifsq, m);
2853 		return 0;
2854 	}
2855 }
2856 
2857 struct mbuf *
2858 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2859 {
2860 	struct mbuf *m;
2861 
2862 	switch (op) {
2863 	case ALTDQ_POLL:
2864 		m = ifsq->ifsq_prio_head;
2865 		if (m == NULL)
2866 			m = ifsq->ifsq_norm_head;
2867 		break;
2868 
2869 	case ALTDQ_REMOVE:
2870 		m = ifsq_prio_dequeue(ifsq);
2871 		if (m == NULL)
2872 			m = ifsq_norm_dequeue(ifsq);
2873 		break;
2874 
2875 	default:
2876 		panic("unsupported ALTQ dequeue op: %d", op);
2877 	}
2878 	return m;
2879 }
2880 
2881 int
2882 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2883 {
2884 	switch (req) {
2885 	case ALTRQ_PURGE:
2886 		for (;;) {
2887 			struct mbuf *m;
2888 
2889 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2890 			if (m == NULL)
2891 				break;
2892 			m_freem(m);
2893 		}
2894 		break;
2895 
2896 	default:
2897 		panic("unsupported ALTQ request: %d", req);
2898 	}
2899 	return 0;
2900 }
2901 
2902 static void
2903 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2904 {
2905 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2906 	int running = 0, need_sched;
2907 
2908 	/*
2909 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2910 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2911 	 * the subqueue will be scheduled on the subqueue owner CPU.
2912 	 */
2913 	if (!ifsq_tryserialize_hw(ifsq)) {
2914 		/*
2915 		 * Subqueue hardware serializer contention happened,
2916 		 * ifnet.if_start on the subqueue is scheduled on
2917 		 * the subqueue owner CPU, and we keep going.
2918 		 */
2919 		ifsq_ifstart_schedule(ifsq, 1);
2920 		return;
2921 	}
2922 
2923 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2924 		ifp->if_start(ifp, ifsq);
2925 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2926 			running = 1;
2927 	}
2928 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2929 
2930 	ifsq_deserialize_hw(ifsq);
2931 
2932 	if (need_sched) {
2933 		/*
2934 		 * More data need to be transmitted, ifnet.if_start on the
2935 		 * subqueue is scheduled on the subqueue owner CPU, and we
2936 		 * keep going.
2937 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2938 		 */
2939 		ifsq_ifstart_schedule(ifsq, force_sched);
2940 	}
2941 }
2942 
2943 /*
2944  * Subqeue packets staging mechanism:
2945  *
2946  * The packets enqueued into the subqueue are staged to a certain amount
2947  * before the ifnet.if_start on the subqueue is called.  In this way, the
2948  * driver could avoid writing to hardware registers upon every packet,
2949  * instead, hardware registers could be written when certain amount of
2950  * packets are put onto hardware TX ring.  The measurement on several modern
2951  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2952  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2953  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2954  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2955  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2956  *
2957  * Subqueue packets staging is performed for two entry points into drivers'
2958  * transmission function:
2959  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2960  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2961  *
2962  * Subqueue packets staging will be stopped upon any of the following
2963  * conditions:
2964  * - If the count of packets enqueued on the current CPU is great than or
2965  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2966  * - If the total length of packets enqueued on the current CPU is great
2967  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2968  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2969  *   is usually less than hardware's MTU.
2970  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2971  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2972  *   released.
2973  * - The if_start_rollup(), which is registered as low priority netisr
2974  *   rollup function, is called; probably because no more work is pending
2975  *   for netisr.
2976  *
2977  * NOTE:
2978  * Currently subqueue packet staging is only performed in netisr threads.
2979  */
2980 int
2981 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2982 {
2983 	struct ifaltq *ifq = &ifp->if_snd;
2984 	struct ifaltq_subque *ifsq;
2985 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2986 	struct ifsubq_stage_head *head = NULL;
2987 	struct ifsubq_stage *stage = NULL;
2988 	struct globaldata *gd = mycpu;
2989 	struct thread *td = gd->gd_curthread;
2990 
2991 	crit_enter_quick(td);
2992 
2993 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2994 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2995 
2996 	len = m->m_pkthdr.len;
2997 	if (m->m_flags & M_MCAST)
2998 		mcast = 1;
2999 
3000 	if (td->td_type == TD_TYPE_NETISR) {
3001 		head = &ifsubq_stage_heads[mycpuid];
3002 		stage = ifsq_get_stage(ifsq, mycpuid);
3003 
3004 		stage->stg_cnt++;
3005 		stage->stg_len += len;
3006 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3007 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3008 			avoid_start = 1;
3009 	}
3010 
3011 	ALTQ_SQ_LOCK(ifsq);
3012 	error = ifsq_enqueue_locked(ifsq, m, pa);
3013 	if (error) {
3014 		IFNET_STAT_INC(ifp, oqdrops, 1);
3015 		if (!ifsq_data_ready(ifsq)) {
3016 			ALTQ_SQ_UNLOCK(ifsq);
3017 			crit_exit_quick(td);
3018 			return error;
3019 		}
3020 		avoid_start = 0;
3021 	}
3022 	if (!ifsq_is_started(ifsq)) {
3023 		if (avoid_start) {
3024 			ALTQ_SQ_UNLOCK(ifsq);
3025 
3026 			KKASSERT(!error);
3027 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3028 				ifsq_stage_insert(head, stage);
3029 
3030 			IFNET_STAT_INC(ifp, obytes, len);
3031 			if (mcast)
3032 				IFNET_STAT_INC(ifp, omcasts, 1);
3033 			crit_exit_quick(td);
3034 			return error;
3035 		}
3036 
3037 		/*
3038 		 * Hold the subqueue interlock of ifnet.if_start
3039 		 */
3040 		ifsq_set_started(ifsq);
3041 		start = 1;
3042 	}
3043 	ALTQ_SQ_UNLOCK(ifsq);
3044 
3045 	if (!error) {
3046 		IFNET_STAT_INC(ifp, obytes, len);
3047 		if (mcast)
3048 			IFNET_STAT_INC(ifp, omcasts, 1);
3049 	}
3050 
3051 	if (stage != NULL) {
3052 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3053 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3054 			if (!avoid_start) {
3055 				ifsq_stage_remove(head, stage);
3056 				ifsq_ifstart_schedule(ifsq, 1);
3057 			}
3058 			crit_exit_quick(td);
3059 			return error;
3060 		}
3061 
3062 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3063 			ifsq_stage_remove(head, stage);
3064 		} else {
3065 			stage->stg_cnt = 0;
3066 			stage->stg_len = 0;
3067 		}
3068 	}
3069 
3070 	if (!start) {
3071 		crit_exit_quick(td);
3072 		return error;
3073 	}
3074 
3075 	ifsq_ifstart_try(ifsq, 0);
3076 
3077 	crit_exit_quick(td);
3078 	return error;
3079 }
3080 
3081 void *
3082 ifa_create(int size)
3083 {
3084 	struct ifaddr *ifa;
3085 	int i;
3086 
3087 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3088 
3089 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3090 	ifa->ifa_containers =
3091 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3092 	        M_IFADDR, M_INTWAIT | M_ZERO);
3093 
3094 	ifa->ifa_ncnt = ncpus;
3095 	for (i = 0; i < ncpus; ++i) {
3096 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3097 
3098 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3099 		ifac->ifa = ifa;
3100 		ifac->ifa_refcnt = 1;
3101 	}
3102 #ifdef IFADDR_DEBUG
3103 	kprintf("alloc ifa %p %d\n", ifa, size);
3104 #endif
3105 	return ifa;
3106 }
3107 
3108 void
3109 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3110 {
3111 	struct ifaddr *ifa = ifac->ifa;
3112 
3113 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3114 	KKASSERT(ifac->ifa_refcnt == 0);
3115 	KASSERT(ifac->ifa_listmask == 0,
3116 		("ifa is still on %#x lists", ifac->ifa_listmask));
3117 
3118 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3119 
3120 #ifdef IFADDR_DEBUG_VERBOSE
3121 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3122 #endif
3123 
3124 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3125 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3126 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3127 #ifdef IFADDR_DEBUG
3128 		kprintf("free ifa %p\n", ifa);
3129 #endif
3130 		kfree(ifa->ifa_containers, M_IFADDR);
3131 		kfree(ifa, M_IFADDR);
3132 	}
3133 }
3134 
3135 static void
3136 ifa_iflink_dispatch(netmsg_t nmsg)
3137 {
3138 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3139 	struct ifaddr *ifa = msg->ifa;
3140 	struct ifnet *ifp = msg->ifp;
3141 	int cpu = mycpuid;
3142 	struct ifaddr_container *ifac;
3143 
3144 	crit_enter();
3145 
3146 	ifac = &ifa->ifa_containers[cpu];
3147 	ASSERT_IFAC_VALID(ifac);
3148 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3149 		("ifaddr is on if_addrheads"));
3150 
3151 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3152 	if (msg->tail)
3153 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3154 	else
3155 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3156 
3157 	crit_exit();
3158 
3159 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3160 }
3161 
3162 void
3163 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3164 {
3165 	struct netmsg_ifaddr msg;
3166 
3167 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3168 		    0, ifa_iflink_dispatch);
3169 	msg.ifa = ifa;
3170 	msg.ifp = ifp;
3171 	msg.tail = tail;
3172 
3173 	ifa_domsg(&msg.base.lmsg, 0);
3174 }
3175 
3176 static void
3177 ifa_ifunlink_dispatch(netmsg_t nmsg)
3178 {
3179 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3180 	struct ifaddr *ifa = msg->ifa;
3181 	struct ifnet *ifp = msg->ifp;
3182 	int cpu = mycpuid;
3183 	struct ifaddr_container *ifac;
3184 
3185 	crit_enter();
3186 
3187 	ifac = &ifa->ifa_containers[cpu];
3188 	ASSERT_IFAC_VALID(ifac);
3189 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3190 		("ifaddr is not on if_addrhead"));
3191 
3192 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3193 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3194 
3195 	crit_exit();
3196 
3197 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3198 }
3199 
3200 void
3201 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3202 {
3203 	struct netmsg_ifaddr msg;
3204 
3205 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3206 		    0, ifa_ifunlink_dispatch);
3207 	msg.ifa = ifa;
3208 	msg.ifp = ifp;
3209 
3210 	ifa_domsg(&msg.base.lmsg, 0);
3211 }
3212 
3213 static void
3214 ifa_destroy_dispatch(netmsg_t nmsg)
3215 {
3216 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3217 
3218 	IFAFREE(msg->ifa);
3219 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3220 }
3221 
3222 void
3223 ifa_destroy(struct ifaddr *ifa)
3224 {
3225 	struct netmsg_ifaddr msg;
3226 
3227 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3228 		    0, ifa_destroy_dispatch);
3229 	msg.ifa = ifa;
3230 
3231 	ifa_domsg(&msg.base.lmsg, 0);
3232 }
3233 
3234 struct lwkt_port *
3235 ifnet_portfn(int cpu)
3236 {
3237 	return &ifnet_threads[cpu]->td_msgport;
3238 }
3239 
3240 void
3241 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3242 {
3243 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3244 
3245 	if (next_cpu < ncpus)
3246 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3247 	else
3248 		lwkt_replymsg(lmsg, 0);
3249 }
3250 
3251 int
3252 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3253 {
3254 	KKASSERT(cpu < ncpus);
3255 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3256 }
3257 
3258 void
3259 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3260 {
3261 	KKASSERT(cpu < ncpus);
3262 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3263 }
3264 
3265 /*
3266  * Generic netmsg service loop.  Some protocols may roll their own but all
3267  * must do the basic command dispatch function call done here.
3268  */
3269 static void
3270 ifnet_service_loop(void *arg __unused)
3271 {
3272 	netmsg_t msg;
3273 
3274 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3275 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3276 		msg->base.nm_dispatch(msg);
3277 	}
3278 }
3279 
3280 static void
3281 if_start_rollup(void)
3282 {
3283 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3284 	struct ifsubq_stage *stage;
3285 
3286 	crit_enter();
3287 
3288 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3289 		struct ifaltq_subque *ifsq = stage->stg_subq;
3290 		int is_sched = 0;
3291 
3292 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3293 			is_sched = 1;
3294 		ifsq_stage_remove(head, stage);
3295 
3296 		if (is_sched) {
3297 			ifsq_ifstart_schedule(ifsq, 1);
3298 		} else {
3299 			int start = 0;
3300 
3301 			ALTQ_SQ_LOCK(ifsq);
3302 			if (!ifsq_is_started(ifsq)) {
3303 				/*
3304 				 * Hold the subqueue interlock of
3305 				 * ifnet.if_start
3306 				 */
3307 				ifsq_set_started(ifsq);
3308 				start = 1;
3309 			}
3310 			ALTQ_SQ_UNLOCK(ifsq);
3311 
3312 			if (start)
3313 				ifsq_ifstart_try(ifsq, 1);
3314 		}
3315 		KKASSERT((stage->stg_flags &
3316 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3317 	}
3318 
3319 	crit_exit();
3320 }
3321 
3322 static void
3323 ifnetinit(void *dummy __unused)
3324 {
3325 	int i;
3326 
3327 	for (i = 0; i < ncpus; ++i) {
3328 		struct thread **thr = &ifnet_threads[i];
3329 
3330 		lwkt_create(ifnet_service_loop, NULL, thr, NULL,
3331 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3332 			    i, "ifnet %d", i);
3333 		netmsg_service_port_init(&(*thr)->td_msgport);
3334 		lwkt_schedule(*thr);
3335 	}
3336 
3337 	for (i = 0; i < ncpus; ++i)
3338 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3339 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3340 }
3341 
3342 void
3343 if_register_com_alloc(u_char type,
3344     if_com_alloc_t *a, if_com_free_t *f)
3345 {
3346 
3347         KASSERT(if_com_alloc[type] == NULL,
3348             ("if_register_com_alloc: %d already registered", type));
3349         KASSERT(if_com_free[type] == NULL,
3350             ("if_register_com_alloc: %d free already registered", type));
3351 
3352         if_com_alloc[type] = a;
3353         if_com_free[type] = f;
3354 }
3355 
3356 void
3357 if_deregister_com_alloc(u_char type)
3358 {
3359 
3360         KASSERT(if_com_alloc[type] != NULL,
3361             ("if_deregister_com_alloc: %d not registered", type));
3362         KASSERT(if_com_free[type] != NULL,
3363             ("if_deregister_com_alloc: %d free not registered", type));
3364         if_com_alloc[type] = NULL;
3365         if_com_free[type] = NULL;
3366 }
3367 
3368 int
3369 if_ring_count2(int cnt, int cnt_max)
3370 {
3371 	int shift = 0;
3372 
3373 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3374 	    ("invalid ring count max %d", cnt_max));
3375 
3376 	if (cnt <= 0)
3377 		cnt = cnt_max;
3378 	if (cnt > ncpus2)
3379 		cnt = ncpus2;
3380 	if (cnt > cnt_max)
3381 		cnt = cnt_max;
3382 
3383 	while ((1 << (shift + 1)) <= cnt)
3384 		++shift;
3385 	cnt = 1 << shift;
3386 
3387 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3388 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3389 	     cnt, ncpus2, cnt_max));
3390 	return cnt;
3391 }
3392 
3393 void
3394 ifq_set_maxlen(struct ifaltq *ifq, int len)
3395 {
3396 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3397 }
3398 
3399 int
3400 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3401 {
3402 	return ALTQ_SUBQ_INDEX_DEFAULT;
3403 }
3404 
3405 int
3406 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3407 {
3408 	return (cpuid & ifq->altq_subq_mask);
3409 }
3410 
3411 static void
3412 ifsq_watchdog(void *arg)
3413 {
3414 	struct ifsubq_watchdog *wd = arg;
3415 	struct ifnet *ifp;
3416 
3417 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3418 		goto done;
3419 
3420 	ifp = ifsq_get_ifp(wd->wd_subq);
3421 	if (ifnet_tryserialize_all(ifp)) {
3422 		wd->wd_watchdog(wd->wd_subq);
3423 		ifnet_deserialize_all(ifp);
3424 	} else {
3425 		/* try again next timeout */
3426 		wd->wd_timer = 1;
3427 	}
3428 done:
3429 	ifsq_watchdog_reset(wd);
3430 }
3431 
3432 static void
3433 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3434 {
3435 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3436 	    ifsq_get_cpuid(wd->wd_subq));
3437 }
3438 
3439 void
3440 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3441     ifsq_watchdog_t watchdog)
3442 {
3443 	callout_init_mp(&wd->wd_callout);
3444 	wd->wd_timer = 0;
3445 	wd->wd_subq = ifsq;
3446 	wd->wd_watchdog = watchdog;
3447 }
3448 
3449 void
3450 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3451 {
3452 	wd->wd_timer = 0;
3453 	ifsq_watchdog_reset(wd);
3454 }
3455 
3456 void
3457 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3458 {
3459 	wd->wd_timer = 0;
3460 	callout_stop(&wd->wd_callout);
3461 }
3462 
3463 void
3464 ifnet_lock(void)
3465 {
3466 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3467 	    ("try holding ifnet lock in netisr"));
3468 	mtx_lock(&ifnet_mtx);
3469 }
3470 
3471 void
3472 ifnet_unlock(void)
3473 {
3474 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3475 	    ("try holding ifnet lock in netisr"));
3476 	mtx_unlock(&ifnet_mtx);
3477 }
3478 
3479 static struct ifnet_array *
3480 ifnet_array_alloc(int count)
3481 {
3482 	struct ifnet_array *arr;
3483 
3484 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3485 	    M_IFNET, M_WAITOK);
3486 	arr->ifnet_count = count;
3487 
3488 	return arr;
3489 }
3490 
3491 static void
3492 ifnet_array_free(struct ifnet_array *arr)
3493 {
3494 	if (arr == &ifnet_array0)
3495 		return;
3496 	kfree(arr, M_IFNET);
3497 }
3498 
3499 static struct ifnet_array *
3500 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3501 {
3502 	struct ifnet_array *arr;
3503 	int count, i;
3504 
3505 	KASSERT(old_arr->ifnet_count >= 0,
3506 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3507 	count = old_arr->ifnet_count + 1;
3508 	arr = ifnet_array_alloc(count);
3509 
3510 	/*
3511 	 * Save the old ifnet array and append this ifp to the end of
3512 	 * the new ifnet array.
3513 	 */
3514 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3515 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3516 		    ("%s is already in ifnet array", ifp->if_xname));
3517 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3518 	}
3519 	KASSERT(i == count - 1,
3520 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3521 	     ifp->if_xname, count - 1, i));
3522 	arr->ifnet_arr[i] = ifp;
3523 
3524 	return arr;
3525 }
3526 
3527 static struct ifnet_array *
3528 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3529 {
3530 	struct ifnet_array *arr;
3531 	int count, i, idx, found = 0;
3532 
3533 	KASSERT(old_arr->ifnet_count > 0,
3534 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3535 	count = old_arr->ifnet_count - 1;
3536 	arr = ifnet_array_alloc(count);
3537 
3538 	/*
3539 	 * Save the old ifnet array, but skip this ifp.
3540 	 */
3541 	idx = 0;
3542 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3543 		if (old_arr->ifnet_arr[i] == ifp) {
3544 			KASSERT(!found,
3545 			    ("dup %s is in ifnet array", ifp->if_xname));
3546 			found = 1;
3547 			continue;
3548 		}
3549 		KASSERT(idx < count,
3550 		    ("invalid ifnet array index %d, count %d", idx, count));
3551 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3552 		++idx;
3553 	}
3554 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3555 	KASSERT(idx == count,
3556 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3557 	     ifp->if_xname, count, idx));
3558 
3559 	return arr;
3560 }
3561 
3562 const struct ifnet_array *
3563 ifnet_array_get(void)
3564 {
3565 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3566 	return ifnet_array;
3567 }
3568 
3569 int
3570 ifnet_array_isempty(void)
3571 {
3572 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3573 	if (ifnet_array->ifnet_count == 0)
3574 		return 1;
3575 	else
3576 		return 0;
3577 }
3578 
3579 void
3580 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3581 {
3582 	struct ifaddr *ifa;
3583 
3584 	memset(mark, 0, sizeof(*mark));
3585 	ifa = &mark->ifa;
3586 
3587 	mark->ifac.ifa = ifa;
3588 
3589 	ifa->ifa_addr = &mark->addr;
3590 	ifa->ifa_dstaddr = &mark->dstaddr;
3591 	ifa->ifa_netmask = &mark->netmask;
3592 	ifa->ifa_ifp = ifp;
3593 }
3594