xref: /dragonfly/sys/net/if.c (revision 7485684f)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/caps.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/lock.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 #include <sys/jail.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/msgport2.h>
62 #include <sys/mutex2.h>
63 
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/if_var.h>
69 #include <net/if_ringmap.h>
70 #include <net/ifq_var.h>
71 #include <net/radix.h>
72 #include <net/route.h>
73 #include <net/if_clone.h>
74 #include <net/netisr2.h>
75 #include <net/netmsg2.h>
76 
77 #include <machine/atomic.h>
78 #include <machine/stdarg.h>
79 #include <machine/smp.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #ifdef INET6
86 #include <netinet6/in6_var.h>
87 #include <netinet6/in6_ifattach.h>
88 #endif /* INET6 */
89 #endif /* INET || INET6 */
90 
91 struct netmsg_ifaddr {
92 	struct netmsg_base base;
93 	struct ifaddr	*ifa;
94 	struct ifnet	*ifp;
95 	int		tail;
96 };
97 
98 struct ifsubq_stage_head {
99 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
100 } __cachealign;
101 
102 struct if_ringmap {
103 	int		rm_cnt;
104 	int		rm_grid;
105 	int		rm_cpumap[];
106 };
107 
108 #define RINGMAP_FLAG_NONE		0x0
109 #define RINGMAP_FLAG_POWEROF2		0x1
110 
111 /*
112  * System initialization
113  */
114 static void	if_attachdomain(void *);
115 static void	if_attachdomain1(struct ifnet *);
116 static int	ifconf(u_long, caddr_t, struct ucred *);
117 static void	ifinit(void *);
118 static void	ifnetinit(void *);
119 static void	if_slowtimo(void *);
120 static int	if_rtdel(struct radix_node *, void *);
121 static void	if_slowtimo_dispatch(netmsg_t);
122 
123 /* Helper functions */
124 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
125 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
126 static struct ifnet_array *ifnet_array_alloc(int);
127 static void	ifnet_array_free(struct ifnet_array *);
128 static struct ifnet_array *ifnet_array_add(struct ifnet *,
129 		    const struct ifnet_array *);
130 static struct ifnet_array *ifnet_array_del(struct ifnet *,
131 		    const struct ifnet_array *);
132 static struct ifg_group *if_creategroup(const char *);
133 static int	if_destroygroup(struct ifg_group *);
134 static int	if_delgroup_locked(struct ifnet *, const char *);
135 static int	if_getgroups(struct ifgroupreq *, struct ifnet *);
136 static int	if_getgroupmembers(struct ifgroupreq *);
137 
138 #ifdef INET6
139 /*
140  * XXX: declare here to avoid to include many inet6 related files..
141  * should be more generalized?
142  */
143 extern void	nd6_setmtu(struct ifnet *);
144 #endif
145 
146 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
147 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
148 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
149 
150 static int ifsq_stage_cntmax = 16;
151 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
152 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
153     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
154 
155 static int if_stats_compat = 0;
156 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
157     &if_stats_compat, 0, "Compat the old ifnet stats");
158 
159 static int if_ringmap_dumprdr = 0;
160 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
161     &if_ringmap_dumprdr, 0, "dump redirect table");
162 
163 /* Interface description */
164 static unsigned int ifdescr_maxlen = 1024;
165 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
166 	&ifdescr_maxlen, 0,
167 	"administrative maximum length for interface description");
168 
169 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
170 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
171 
172 static if_com_alloc_t *if_com_alloc[256];
173 static if_com_free_t *if_com_free[256];
174 
175 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
176 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
177 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
178 MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
179 
180 int			ifqmaxlen = IFQ_MAXLEN;
181 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
182 struct ifgrouphead	ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
183 static struct lock	ifgroup_lock;
184 
185 static struct ifnet_array	ifnet_array0;
186 static struct ifnet_array	*ifnet_array = &ifnet_array0;
187 
188 static struct callout		if_slowtimo_timer;
189 static struct netmsg_base	if_slowtimo_netmsg;
190 
191 int			if_index = 0;
192 struct ifnet		**ifindex2ifnet = NULL;
193 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
194 
195 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
196 
197 #ifdef notyet
198 #define IFQ_KTR_STRING		"ifq=%p"
199 #define IFQ_KTR_ARGS		struct ifaltq *ifq
200 #ifndef KTR_IFQ
201 #define KTR_IFQ			KTR_ALL
202 #endif
203 KTR_INFO_MASTER(ifq);
204 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
205 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
206 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
207 
208 #define IF_START_KTR_STRING	"ifp=%p"
209 #define IF_START_KTR_ARGS	struct ifnet *ifp
210 #ifndef KTR_IF_START
211 #define KTR_IF_START		KTR_ALL
212 #endif
213 KTR_INFO_MASTER(if_start);
214 KTR_INFO(KTR_IF_START, if_start, run, 0,
215 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
216 KTR_INFO(KTR_IF_START, if_start, sched, 1,
217 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
218 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
219 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
220 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
221 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
222 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
223 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
224 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
225 #endif /* notyet */
226 
227 /*
228  * Network interface utility routines.
229  *
230  * Routines with ifa_ifwith* names take sockaddr *'s as
231  * parameters.
232  */
233 /* ARGSUSED */
234 static void
235 ifinit(void *dummy)
236 {
237 	lockinit(&ifgroup_lock, "ifgroup", 0, 0);
238 
239 	callout_init_mp(&if_slowtimo_timer);
240 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
241 	    MSGF_PRIORITY, if_slowtimo_dispatch);
242 
243 	/* Start if_slowtimo */
244 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
245 }
246 
247 static void
248 ifsq_ifstart_ipifunc(void *arg)
249 {
250 	struct ifaltq_subque *ifsq = arg;
251 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
252 
253 	crit_enter();
254 	if (lmsg->ms_flags & MSGF_DONE)
255 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
256 	crit_exit();
257 }
258 
259 static __inline void
260 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
261 {
262 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
263 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
264 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
265 	stage->stg_cnt = 0;
266 	stage->stg_len = 0;
267 }
268 
269 static __inline void
270 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
271 {
272 	KKASSERT((stage->stg_flags &
273 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
274 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
275 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
276 }
277 
278 /*
279  * Schedule ifnet.if_start on the subqueue owner CPU
280  */
281 static void
282 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
283 {
284 	int cpu;
285 
286 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
287 	    ifsq_stage_cntmax > 0) {
288 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
289 
290 		stage->stg_cnt = 0;
291 		stage->stg_len = 0;
292 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
293 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
294 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
295 		return;
296 	}
297 
298 	cpu = ifsq_get_cpuid(ifsq);
299 	if (cpu != mycpuid)
300 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
301 	else
302 		ifsq_ifstart_ipifunc(ifsq);
303 }
304 
305 /*
306  * NOTE:
307  * This function will release ifnet.if_start subqueue interlock,
308  * if ifnet.if_start for the subqueue does not need to be scheduled
309  */
310 static __inline int
311 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
312 {
313 	if (!running || ifsq_is_empty(ifsq)
314 #ifdef ALTQ
315 	    || ifsq->ifsq_altq->altq_tbr != NULL
316 #endif
317 	) {
318 		ALTQ_SQ_LOCK(ifsq);
319 		/*
320 		 * ifnet.if_start subqueue interlock is released, if:
321 		 * 1) Hardware can not take any packets, due to
322 		 *    o  interface is marked down
323 		 *    o  hardware queue is full (ifsq_is_oactive)
324 		 *    Under the second situation, hardware interrupt
325 		 *    or polling(4) will call/schedule ifnet.if_start
326 		 *    on the subqueue when hardware queue is ready
327 		 * 2) There is no packet in the subqueue.
328 		 *    Further ifq_dispatch or ifq_handoff will call/
329 		 *    schedule ifnet.if_start on the subqueue.
330 		 * 3) TBR is used and it does not allow further
331 		 *    dequeueing.
332 		 *    TBR callout will call ifnet.if_start on the
333 		 *    subqueue.
334 		 */
335 		if (!running || !ifsq_data_ready(ifsq)) {
336 			ifsq_clr_started(ifsq);
337 			ALTQ_SQ_UNLOCK(ifsq);
338 			return 0;
339 		}
340 		ALTQ_SQ_UNLOCK(ifsq);
341 	}
342 	return 1;
343 }
344 
345 static void
346 ifsq_ifstart_dispatch(netmsg_t msg)
347 {
348 	struct lwkt_msg *lmsg = &msg->base.lmsg;
349 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
350 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
351 	struct globaldata *gd = mycpu;
352 	int running = 0, need_sched;
353 
354 	crit_enter_gd(gd);
355 
356 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
357 
358 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
359 		/*
360 		 * We need to chase the subqueue owner CPU change.
361 		 */
362 		ifsq_ifstart_schedule(ifsq, 1);
363 		crit_exit_gd(gd);
364 		return;
365 	}
366 
367 	ifsq_serialize_hw(ifsq);
368 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
369 		ifp->if_start(ifp, ifsq);
370 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
371 			running = 1;
372 	}
373 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
374 	ifsq_deserialize_hw(ifsq);
375 
376 	if (need_sched) {
377 		/*
378 		 * More data need to be transmitted, ifnet.if_start is
379 		 * scheduled on the subqueue owner CPU, and we keep going.
380 		 * NOTE: ifnet.if_start subqueue interlock is not released.
381 		 */
382 		ifsq_ifstart_schedule(ifsq, 0);
383 	}
384 
385 	crit_exit_gd(gd);
386 }
387 
388 /* Device driver ifnet.if_start helper function */
389 void
390 ifsq_devstart(struct ifaltq_subque *ifsq)
391 {
392 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
393 	int running = 0;
394 
395 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
396 
397 	ALTQ_SQ_LOCK(ifsq);
398 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
399 		ALTQ_SQ_UNLOCK(ifsq);
400 		return;
401 	}
402 	ifsq_set_started(ifsq);
403 	ALTQ_SQ_UNLOCK(ifsq);
404 
405 	ifp->if_start(ifp, ifsq);
406 
407 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
408 		running = 1;
409 
410 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
411 		/*
412 		 * More data need to be transmitted, ifnet.if_start is
413 		 * scheduled on ifnet's CPU, and we keep going.
414 		 * NOTE: ifnet.if_start interlock is not released.
415 		 */
416 		ifsq_ifstart_schedule(ifsq, 0);
417 	}
418 }
419 
420 void
421 if_devstart(struct ifnet *ifp)
422 {
423 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
424 }
425 
426 /* Device driver ifnet.if_start schedule helper function */
427 void
428 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
429 {
430 	ifsq_ifstart_schedule(ifsq, 1);
431 }
432 
433 void
434 if_devstart_sched(struct ifnet *ifp)
435 {
436 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
437 }
438 
439 static void
440 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
441 {
442 	lwkt_serialize_enter(ifp->if_serializer);
443 }
444 
445 static void
446 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
447 {
448 	lwkt_serialize_exit(ifp->if_serializer);
449 }
450 
451 static int
452 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
453 {
454 	return lwkt_serialize_try(ifp->if_serializer);
455 }
456 
457 #ifdef INVARIANTS
458 static void
459 if_default_serialize_assert(struct ifnet *ifp,
460 			    enum ifnet_serialize slz __unused,
461 			    boolean_t serialized)
462 {
463 	if (serialized)
464 		ASSERT_SERIALIZED(ifp->if_serializer);
465 	else
466 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
467 }
468 #endif
469 
470 /*
471  * Attach an interface to the list of "active" interfaces.
472  *
473  * The serializer is optional.
474  */
475 void
476 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
477 {
478 	unsigned socksize;
479 	int namelen, masklen;
480 	struct sockaddr_dl *sdl, *sdl_addr;
481 	struct ifaddr *ifa;
482 	struct ifaltq *ifq;
483 	struct ifnet **old_ifindex2ifnet = NULL;
484 	struct ifnet_array *old_ifnet_array;
485 	int i, q, qlen;
486 	char qlenname[64];
487 
488 	static int if_indexlim = 8;
489 
490 	if (ifp->if_serialize != NULL) {
491 		KASSERT(ifp->if_deserialize != NULL &&
492 			ifp->if_tryserialize != NULL &&
493 			ifp->if_serialize_assert != NULL,
494 			("serialize functions are partially setup"));
495 
496 		/*
497 		 * If the device supplies serialize functions,
498 		 * then clear if_serializer to catch any invalid
499 		 * usage of this field.
500 		 */
501 		KASSERT(serializer == NULL,
502 			("both serialize functions and default serializer "
503 			 "are supplied"));
504 		ifp->if_serializer = NULL;
505 	} else {
506 		KASSERT(ifp->if_deserialize == NULL &&
507 			ifp->if_tryserialize == NULL &&
508 			ifp->if_serialize_assert == NULL,
509 			("serialize functions are partially setup"));
510 		ifp->if_serialize = if_default_serialize;
511 		ifp->if_deserialize = if_default_deserialize;
512 		ifp->if_tryserialize = if_default_tryserialize;
513 #ifdef INVARIANTS
514 		ifp->if_serialize_assert = if_default_serialize_assert;
515 #endif
516 
517 		/*
518 		 * The serializer can be passed in from the device,
519 		 * allowing the same serializer to be used for both
520 		 * the interrupt interlock and the device queue.
521 		 * If not specified, the netif structure will use an
522 		 * embedded serializer.
523 		 */
524 		if (serializer == NULL) {
525 			serializer = &ifp->if_default_serializer;
526 			lwkt_serialize_init(serializer);
527 		}
528 		ifp->if_serializer = serializer;
529 	}
530 
531 	/*
532 	 * Make if_addrhead available on all CPUs, since they
533 	 * could be accessed by any threads.
534 	 */
535 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
536 				    M_IFADDR, M_WAITOK | M_ZERO);
537 	for (i = 0; i < ncpus; ++i)
538 		TAILQ_INIT(&ifp->if_addrheads[i]);
539 
540 	TAILQ_INIT(&ifp->if_multiaddrs);
541 	TAILQ_INIT(&ifp->if_groups);
542 	getmicrotime(&ifp->if_lastchange);
543 	if_addgroup(ifp, IFG_ALL);
544 
545 	/*
546 	 * create a Link Level name for this device
547 	 */
548 	namelen = strlen(ifp->if_xname);
549 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
550 	socksize = masklen + ifp->if_addrlen;
551 	if (socksize < sizeof(*sdl))
552 		socksize = sizeof(*sdl);
553 	socksize = RT_ROUNDUP(socksize);
554 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
555 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
556 	sdl->sdl_len = socksize;
557 	sdl->sdl_family = AF_LINK;
558 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
559 	sdl->sdl_nlen = namelen;
560 	sdl->sdl_type = ifp->if_type;
561 	ifp->if_lladdr = ifa;
562 	ifa->ifa_ifp = ifp;
563 	ifa->ifa_addr = (struct sockaddr *)sdl;
564 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
565 	ifa->ifa_netmask = (struct sockaddr *)sdl;
566 	sdl->sdl_len = masklen;
567 	while (namelen != 0)
568 		sdl->sdl_data[--namelen] = 0xff;
569 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
570 
571 	/*
572 	 * Make if_data available on all CPUs, since they could
573 	 * be updated by hardware interrupt routing, which could
574 	 * be bound to any CPU.
575 	 */
576 	ifp->if_data_pcpu = kmalloc(ncpus * sizeof(struct ifdata_pcpu),
577 				    M_DEVBUF,
578 				    M_WAITOK | M_ZERO | M_CACHEALIGN);
579 
580 	if (ifp->if_mapsubq == NULL)
581 		ifp->if_mapsubq = ifq_mapsubq_default;
582 
583 	ifq = &ifp->if_snd;
584 	ifq->altq_type = 0;
585 	ifq->altq_disc = NULL;
586 	ifq->altq_flags &= ALTQF_CANTCHANGE;
587 	ifq->altq_tbr = NULL;
588 	ifq->altq_ifp = ifp;
589 
590 	if (ifq->altq_subq_cnt <= 0)
591 		ifq->altq_subq_cnt = 1;
592 	ifq->altq_subq =
593 		kmalloc(ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
594 			M_DEVBUF,
595 			M_WAITOK | M_ZERO | M_CACHEALIGN);
596 
597 	if (ifq->altq_maxlen == 0) {
598 		if_printf(ifp, "driver didn't set altq_maxlen\n");
599 		ifq_set_maxlen(ifq, ifqmaxlen);
600 	}
601 
602 	/* Allow user to override driver's setting. */
603 	ksnprintf(qlenname, sizeof(qlenname), "net.%s.qlenmax", ifp->if_xname);
604 	qlen = -1;
605 	TUNABLE_INT_FETCH(qlenname, &qlen);
606 	if (qlen > 0) {
607 		if_printf(ifp, "qlenmax -> %d\n", qlen);
608 		ifq_set_maxlen(ifq, qlen);
609 	}
610 
611 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
612 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
613 
614 		ALTQ_SQ_LOCK_INIT(ifsq);
615 		ifsq->ifsq_index = q;
616 
617 		ifsq->ifsq_altq = ifq;
618 		ifsq->ifsq_ifp = ifp;
619 
620 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
621 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
622 		ifsq->ifsq_prepended = NULL;
623 		ifsq->ifsq_started = 0;
624 		ifsq->ifsq_hw_oactive = 0;
625 		ifsq_set_cpuid(ifsq, 0);
626 		if (ifp->if_serializer != NULL)
627 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
628 
629 		/* XXX: netisr_ncpus */
630 		ifsq->ifsq_stage =
631 			kmalloc(ncpus * sizeof(struct ifsubq_stage),
632 				M_DEVBUF,
633 				M_WAITOK | M_ZERO | M_CACHEALIGN);
634 		for (i = 0; i < ncpus; ++i)
635 			ifsq->ifsq_stage[i].stg_subq = ifsq;
636 
637 		/*
638 		 * Allocate one if_start message for each CPU, since
639 		 * the hardware TX ring could be assigned to any CPU.
640 		 *
641 		 * NOTE:
642 		 * If the hardware TX ring polling CPU and the hardware
643 		 * TX ring interrupt CPU are same, one if_start message
644 		 * should be enough.
645 		 */
646 		ifsq->ifsq_ifstart_nmsg =
647 		    kmalloc(ncpus * sizeof(struct netmsg_base),
648 		    M_LWKTMSG, M_WAITOK);
649 		for (i = 0; i < ncpus; ++i) {
650 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
651 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
652 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
653 		}
654 	}
655 	ifq_set_classic(ifq);
656 
657 	/*
658 	 * Increase mbuf cluster/jcluster limits for the mbufs that
659 	 * could sit on the device queues for quite some time.
660 	 */
661 	if (ifp->if_nmbclusters > 0)
662 		mcl_inclimit(ifp->if_nmbclusters);
663 	if (ifp->if_nmbjclusters > 0)
664 		mjcl_inclimit(ifp->if_nmbjclusters);
665 
666 	/*
667 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
668 	 * array after it is setup.
669 	 *
670 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
671 	 * by ifnet lock, so that non-netisr threads could get a
672 	 * consistent view.
673 	 */
674 	ifnet_lock();
675 
676 	/* Don't update if_index until ifindex2ifnet is setup */
677 	ifp->if_index = if_index + 1;
678 	sdl_addr->sdl_index = ifp->if_index;
679 
680 	/*
681 	 * Install this ifp into ifindex2ifnet
682 	 */
683 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
684 		unsigned int n;
685 		struct ifnet **q;
686 
687 		/*
688 		 * Grow ifindex2ifnet
689 		 */
690 		if_indexlim <<= 1;
691 		n = if_indexlim * sizeof(*q);
692 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
693 		if (ifindex2ifnet != NULL) {
694 			bcopy(ifindex2ifnet, q, n/2);
695 			/* Free old ifindex2ifnet after sync all netisrs */
696 			old_ifindex2ifnet = ifindex2ifnet;
697 		}
698 		ifindex2ifnet = q;
699 	}
700 	ifindex2ifnet[ifp->if_index] = ifp;
701 	/*
702 	 * Update if_index after this ifp is installed into ifindex2ifnet,
703 	 * so that netisrs could get a consistent view of ifindex2ifnet.
704 	 */
705 	cpu_sfence();
706 	if_index = ifp->if_index;
707 
708 	/*
709 	 * Install this ifp into ifnet array.
710 	 */
711 	/* Free old ifnet array after sync all netisrs */
712 	old_ifnet_array = ifnet_array;
713 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
714 
715 	/*
716 	 * Install this ifp into ifnet queue.
717 	 */
718 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
719 
720 	ifnet_unlock();
721 
722 	/*
723 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
724 	 * are no longer accessed and we can free them safely later on.
725 	 */
726 	netmsg_service_sync();
727 	if (old_ifindex2ifnet != NULL)
728 		kfree(old_ifindex2ifnet, M_IFADDR);
729 	ifnet_array_free(old_ifnet_array);
730 
731 	if (!SLIST_EMPTY(&domains))
732 		if_attachdomain1(ifp);
733 
734 	/* Announce the interface. */
735 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
736 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
737 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
738 }
739 
740 static void
741 if_attachdomain(void *dummy)
742 {
743 	struct ifnet *ifp;
744 
745 	ifnet_lock();
746 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
747 		if_attachdomain1(ifp);
748 	ifnet_unlock();
749 }
750 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
751 	if_attachdomain, NULL);
752 
753 static void
754 if_attachdomain1(struct ifnet *ifp)
755 {
756 	struct domain *dp;
757 
758 	crit_enter();
759 
760 	/* address family dependent data region */
761 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
762 	SLIST_FOREACH(dp, &domains, dom_next)
763 		if (dp->dom_ifattach)
764 			ifp->if_afdata[dp->dom_family] =
765 				(*dp->dom_ifattach)(ifp);
766 	crit_exit();
767 }
768 
769 /*
770  * Purge all addresses whose type is _not_ AF_LINK
771  */
772 static void
773 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
774 {
775 	struct ifnet *ifp = nmsg->lmsg.u.ms_resultp;
776 	struct ifaddr_container *ifac, *next;
777 
778 	ASSERT_NETISR0;
779 
780 	/*
781 	 * The ifaddr processing in the following loop will block,
782 	 * however, this function is called in netisr0, in which
783 	 * ifaddr list changes happen, so we don't care about the
784 	 * blockness of the ifaddr processing here.
785 	 */
786 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
787 			      ifa_link, next) {
788 		struct ifaddr *ifa = ifac->ifa;
789 
790 		/* Ignore marker */
791 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
792 			continue;
793 
794 		/* Leave link ifaddr as it is */
795 		if (ifa->ifa_addr->sa_family == AF_LINK)
796 			continue;
797 #ifdef INET
798 		/* XXX: Ugly!! ad hoc just for INET */
799 		if (ifa->ifa_addr->sa_family == AF_INET) {
800 			struct ifaliasreq ifr;
801 			struct sockaddr_in saved_addr, saved_dst;
802 #ifdef IFADDR_DEBUG_VERBOSE
803 			int i;
804 
805 			kprintf("purge in4 addr %p: ", ifa);
806 			for (i = 0; i < ncpus; ++i) {
807 				kprintf("%d ",
808 				    ifa->ifa_containers[i].ifa_refcnt);
809 			}
810 			kprintf("\n");
811 #endif
812 
813 			/* Save information for panic. */
814 			memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
815 			if (ifa->ifa_dstaddr != NULL) {
816 				memcpy(&saved_dst, ifa->ifa_dstaddr,
817 				    sizeof(saved_dst));
818 			} else {
819 				memset(&saved_dst, 0, sizeof(saved_dst));
820 			}
821 
822 			bzero(&ifr, sizeof ifr);
823 			ifr.ifra_addr = *ifa->ifa_addr;
824 			if (ifa->ifa_dstaddr)
825 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
826 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
827 				       NULL) == 0)
828 				continue;
829 
830 			/* MUST NOT HAPPEN */
831 			panic("%s: in_control failed %x, dst %x", ifp->if_xname,
832 			    ntohl(saved_addr.sin_addr.s_addr),
833 			    ntohl(saved_dst.sin_addr.s_addr));
834 		}
835 #endif /* INET */
836 #ifdef INET6
837 		if (ifa->ifa_addr->sa_family == AF_INET6) {
838 #ifdef IFADDR_DEBUG_VERBOSE
839 			int i;
840 
841 			kprintf("purge in6 addr %p: ", ifa);
842 			for (i = 0; i < ncpus; ++i) {
843 				kprintf("%d ",
844 				    ifa->ifa_containers[i].ifa_refcnt);
845 			}
846 			kprintf("\n");
847 #endif
848 
849 			in6_purgeaddr(ifa);
850 			/* ifp_addrhead is already updated */
851 			continue;
852 		}
853 #endif /* INET6 */
854 		if_printf(ifp, "destroy ifaddr family %d\n",
855 		    ifa->ifa_addr->sa_family);
856 		ifa_ifunlink(ifa, ifp);
857 		ifa_destroy(ifa);
858 	}
859 
860 	netisr_replymsg(&nmsg->base, 0);
861 }
862 
863 void
864 if_purgeaddrs_nolink(struct ifnet *ifp)
865 {
866 	struct netmsg_base nmsg;
867 
868 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
869 	    if_purgeaddrs_nolink_dispatch);
870 	nmsg.lmsg.u.ms_resultp = ifp;
871 	netisr_domsg(&nmsg, 0);
872 }
873 
874 static void
875 ifq_stage_detach_handler(netmsg_t nmsg)
876 {
877 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
878 	int q;
879 
880 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
881 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
882 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
883 
884 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
885 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
886 	}
887 	lwkt_replymsg(&nmsg->lmsg, 0);
888 }
889 
890 static void
891 ifq_stage_detach(struct ifaltq *ifq)
892 {
893 	struct netmsg_base base;
894 	int cpu;
895 
896 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
897 	    ifq_stage_detach_handler);
898 	base.lmsg.u.ms_resultp = ifq;
899 
900 	/* XXX netisr_ncpus */
901 	for (cpu = 0; cpu < ncpus; ++cpu)
902 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
903 }
904 
905 struct netmsg_if_rtdel {
906 	struct netmsg_base	base;
907 	struct ifnet		*ifp;
908 };
909 
910 static void
911 if_rtdel_dispatch(netmsg_t msg)
912 {
913 	struct netmsg_if_rtdel *rmsg = (void *)msg;
914 	int i, cpu;
915 
916 	cpu = mycpuid;
917 	ASSERT_NETISR_NCPUS(cpu);
918 
919 	for (i = 1; i <= AF_MAX; i++) {
920 		struct radix_node_head	*rnh;
921 
922 		if ((rnh = rt_tables[cpu][i]) == NULL)
923 			continue;
924 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
925 	}
926 	netisr_forwardmsg(&msg->base, cpu + 1);
927 }
928 
929 /*
930  * Detach an interface, removing it from the
931  * list of "active" interfaces.
932  */
933 void
934 if_detach(struct ifnet *ifp)
935 {
936 	struct ifnet_array *old_ifnet_array;
937 	struct ifg_list *ifgl;
938 	struct netmsg_if_rtdel msg;
939 	struct domain *dp;
940 	int q;
941 
942 	/* Announce that the interface is gone. */
943 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
944 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
945 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
946 
947 	/*
948 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
949 	 * array before it is whacked.
950 	 *
951 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
952 	 * by ifnet lock, so that non-netisr threads could get a
953 	 * consistent view.
954 	 */
955 	ifnet_lock();
956 
957 	/*
958 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
959 	 */
960 	ifindex2ifnet[ifp->if_index] = NULL;
961 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
962 		if_index--;
963 
964 	/*
965 	 * Remove this ifp from ifnet queue.
966 	 */
967 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
968 
969 	/*
970 	 * Remove this ifp from ifnet array.
971 	 */
972 	/* Free old ifnet array after sync all netisrs */
973 	old_ifnet_array = ifnet_array;
974 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
975 
976 	ifnet_unlock();
977 
978 	ifgroup_lockmgr(LK_EXCLUSIVE);
979 	while ((ifgl = TAILQ_FIRST(&ifp->if_groups)) != NULL)
980 		if_delgroup_locked(ifp, ifgl->ifgl_group->ifg_group);
981 	ifgroup_lockmgr(LK_RELEASE);
982 
983 	/*
984 	 * Sync all netisrs so that the old ifnet array is no longer
985 	 * accessed and we can free it safely later on.
986 	 */
987 	netmsg_service_sync();
988 	ifnet_array_free(old_ifnet_array);
989 
990 	/*
991 	 * Remove routes and flush queues.
992 	 */
993 	crit_enter();
994 #ifdef IFPOLL_ENABLE
995 	if (ifp->if_flags & IFF_NPOLLING)
996 		ifpoll_deregister(ifp);
997 #endif
998 	if_down(ifp);
999 
1000 	/* Decrease the mbuf clusters/jclusters limits increased by us */
1001 	if (ifp->if_nmbclusters > 0)
1002 		mcl_inclimit(-ifp->if_nmbclusters);
1003 	if (ifp->if_nmbjclusters > 0)
1004 		mjcl_inclimit(-ifp->if_nmbjclusters);
1005 
1006 #ifdef ALTQ
1007 	if (ifq_is_enabled(&ifp->if_snd))
1008 		altq_disable(&ifp->if_snd);
1009 	if (ifq_is_attached(&ifp->if_snd))
1010 		altq_detach(&ifp->if_snd);
1011 #endif
1012 
1013 	/*
1014 	 * Clean up all addresses.
1015 	 */
1016 	ifp->if_lladdr = NULL;
1017 
1018 	if_purgeaddrs_nolink(ifp);
1019 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1020 		struct ifaddr *ifa;
1021 
1022 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1023 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
1024 			("non-link ifaddr is left on if_addrheads"));
1025 
1026 		ifa_ifunlink(ifa, ifp);
1027 		ifa_destroy(ifa);
1028 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1029 			("there are still ifaddrs left on if_addrheads"));
1030 	}
1031 
1032 #ifdef INET
1033 	/*
1034 	 * Remove all IPv4 kernel structures related to ifp.
1035 	 */
1036 	in_ifdetach(ifp);
1037 #endif
1038 
1039 #ifdef INET6
1040 	/*
1041 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1042 	 * before removing routing entries below, since IPv6 interface direct
1043 	 * routes are expected to be removed by the IPv6-specific kernel API.
1044 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1045 	 */
1046 	in6_ifdetach(ifp);
1047 #endif
1048 
1049 	/*
1050 	 * Delete all remaining routes using this interface
1051 	 */
1052 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1053 	    if_rtdel_dispatch);
1054 	msg.ifp = ifp;
1055 	netisr_domsg_global(&msg.base);
1056 
1057 	SLIST_FOREACH(dp, &domains, dom_next) {
1058 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1059 			(*dp->dom_ifdetach)(ifp,
1060 				ifp->if_afdata[dp->dom_family]);
1061 	}
1062 
1063 	kfree(ifp->if_addrheads, M_IFADDR);
1064 
1065 	lwkt_synchronize_ipiqs("if_detach");
1066 	ifq_stage_detach(&ifp->if_snd);
1067 
1068 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1069 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1070 
1071 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1072 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1073 	}
1074 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1075 
1076 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1077 
1078 	crit_exit();
1079 }
1080 
1081 int
1082 ifgroup_lockmgr(u_int flags)
1083 {
1084 	return lockmgr(&ifgroup_lock, flags);
1085 }
1086 
1087 /*
1088  * Create an empty interface group.
1089  */
1090 static struct ifg_group *
1091 if_creategroup(const char *groupname)
1092 {
1093 	struct ifg_group *ifg;
1094 
1095 	ifg = kmalloc(sizeof(*ifg), M_IFNET, M_WAITOK);
1096 	strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1097 	ifg->ifg_refcnt = 0;
1098 	ifg->ifg_carp_demoted = 0;
1099 	TAILQ_INIT(&ifg->ifg_members);
1100 
1101 	ifgroup_lockmgr(LK_EXCLUSIVE);
1102 	TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1103 	ifgroup_lockmgr(LK_RELEASE);
1104 
1105 	EVENTHANDLER_INVOKE(group_attach_event, ifg);
1106 
1107 	return (ifg);
1108 }
1109 
1110 /*
1111  * Destroy an empty interface group.
1112  */
1113 static int
1114 if_destroygroup(struct ifg_group *ifg)
1115 {
1116 	KASSERT(ifg->ifg_refcnt == 0,
1117 		("trying to delete a non-empty interface group"));
1118 
1119 	ifgroup_lockmgr(LK_EXCLUSIVE);
1120 	TAILQ_REMOVE(&ifg_head, ifg, ifg_next);
1121 	ifgroup_lockmgr(LK_RELEASE);
1122 
1123 	EVENTHANDLER_INVOKE(group_detach_event, ifg);
1124 	kfree(ifg, M_IFNET);
1125 
1126 	return (0);
1127 }
1128 
1129 /*
1130  * Add the interface to a group.
1131  * The target group will be created if it doesn't exist.
1132  */
1133 int
1134 if_addgroup(struct ifnet *ifp, const char *groupname)
1135 {
1136 	struct ifg_list *ifgl;
1137 	struct ifg_group *ifg;
1138 	struct ifg_member *ifgm;
1139 
1140 	if (groupname[0] &&
1141 	    groupname[strlen(groupname) - 1] >= '0' &&
1142 	    groupname[strlen(groupname) - 1] <= '9')
1143 		return (EINVAL);
1144 
1145 	ifgroup_lockmgr(LK_SHARED);
1146 
1147 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1148 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) {
1149 			ifgroup_lockmgr(LK_RELEASE);
1150 			return (EEXIST);
1151 		}
1152 	}
1153 
1154 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1155 		if (strcmp(ifg->ifg_group, groupname) == 0)
1156 			break;
1157 	}
1158 
1159 	ifgroup_lockmgr(LK_RELEASE);
1160 
1161 	if (ifg == NULL)
1162 		ifg = if_creategroup(groupname);
1163 
1164 	ifgl = kmalloc(sizeof(*ifgl), M_IFNET, M_WAITOK);
1165 	ifgm = kmalloc(sizeof(*ifgm), M_IFNET, M_WAITOK);
1166 	ifgl->ifgl_group = ifg;
1167 	ifgm->ifgm_ifp = ifp;
1168 	ifg->ifg_refcnt++;
1169 
1170 	ifgroup_lockmgr(LK_EXCLUSIVE);
1171 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1172 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1173 	ifgroup_lockmgr(LK_RELEASE);
1174 
1175 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1176 
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Remove the interface from a group.
1182  * The group will be destroyed if it becomes empty.
1183  *
1184  * The 'ifgroup_lock' must be hold exclusively when calling this.
1185  */
1186 static int
1187 if_delgroup_locked(struct ifnet *ifp, const char *groupname)
1188 {
1189 	struct ifg_list *ifgl;
1190 	struct ifg_member *ifgm;
1191 
1192 	KKASSERT(lockstatus(&ifgroup_lock, curthread) == LK_EXCLUSIVE);
1193 
1194 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1195 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1196 			break;
1197 	}
1198 	if (ifgl == NULL)
1199 		return (ENOENT);
1200 
1201 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1202 
1203 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1204 		if (ifgm->ifgm_ifp == ifp)
1205 			break;
1206 	}
1207 
1208 	if (ifgm != NULL) {
1209 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1210 
1211 		ifgroup_lockmgr(LK_RELEASE);
1212 		EVENTHANDLER_INVOKE(group_change_event, groupname);
1213 		ifgroup_lockmgr(LK_EXCLUSIVE);
1214 
1215 		kfree(ifgm, M_IFNET);
1216 		ifgl->ifgl_group->ifg_refcnt--;
1217 	}
1218 
1219 	if (ifgl->ifgl_group->ifg_refcnt == 0) {
1220 		ifgroup_lockmgr(LK_RELEASE);
1221 		if_destroygroup(ifgl->ifgl_group);
1222 		ifgroup_lockmgr(LK_EXCLUSIVE);
1223 	}
1224 
1225 	kfree(ifgl, M_IFNET);
1226 
1227 	return (0);
1228 }
1229 
1230 int
1231 if_delgroup(struct ifnet *ifp, const char *groupname)
1232 {
1233 	int error;
1234 
1235 	ifgroup_lockmgr(LK_EXCLUSIVE);
1236 	error = if_delgroup_locked(ifp, groupname);
1237 	ifgroup_lockmgr(LK_RELEASE);
1238 
1239 	return (error);
1240 }
1241 
1242 /*
1243  * Store all the groups that the interface belongs to in memory
1244  * pointed to by data.
1245  */
1246 static int
1247 if_getgroups(struct ifgroupreq *ifgr, struct ifnet *ifp)
1248 {
1249 	struct ifg_list *ifgl;
1250 	struct ifg_req *ifgrq, *p;
1251 	int len, error;
1252 
1253 	len = 0;
1254 	ifgroup_lockmgr(LK_SHARED);
1255 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1256 		len += sizeof(struct ifg_req);
1257 	ifgroup_lockmgr(LK_RELEASE);
1258 
1259 	if (ifgr->ifgr_len == 0) {
1260 		/*
1261 		 * Caller is asking how much memory should be allocated in
1262 		 * the next request in order to hold all the groups.
1263 		 */
1264 		ifgr->ifgr_len = len;
1265 		return (0);
1266 	} else if (ifgr->ifgr_len != len) {
1267 		return (EINVAL);
1268 	}
1269 
1270 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1271 	if (ifgrq == NULL)
1272 		return (ENOMEM);
1273 
1274 	ifgroup_lockmgr(LK_SHARED);
1275 	p = ifgrq;
1276 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1277 		if (len < sizeof(struct ifg_req)) {
1278 			ifgroup_lockmgr(LK_RELEASE);
1279 			error = EINVAL;
1280 			goto failed;
1281 		}
1282 
1283 		strlcpy(p->ifgrq_group, ifgl->ifgl_group->ifg_group,
1284 			sizeof(ifgrq->ifgrq_group));
1285 		len -= sizeof(struct ifg_req);
1286 		p++;
1287 	}
1288 	ifgroup_lockmgr(LK_RELEASE);
1289 
1290 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1291 failed:
1292 	kfree(ifgrq, M_TEMP);
1293 	return error;
1294 }
1295 
1296 /*
1297  * Store all the members of a group in memory pointed to by data.
1298  */
1299 static int
1300 if_getgroupmembers(struct ifgroupreq *ifgr)
1301 {
1302 	struct ifg_group *ifg;
1303 	struct ifg_member *ifgm;
1304 	struct ifg_req *ifgrq, *p;
1305 	int len, error;
1306 
1307 	ifgroup_lockmgr(LK_SHARED);
1308 
1309 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1310 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1311 			break;
1312 	}
1313 	if (ifg == NULL) {
1314 		ifgroup_lockmgr(LK_RELEASE);
1315 		return (ENOENT);
1316 	}
1317 
1318 	len = 0;
1319 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1320 		len += sizeof(struct ifg_req);
1321 
1322 	ifgroup_lockmgr(LK_RELEASE);
1323 
1324 	if (ifgr->ifgr_len == 0) {
1325 		ifgr->ifgr_len = len;
1326 		return (0);
1327 	} else if (ifgr->ifgr_len != len) {
1328 		return (EINVAL);
1329 	}
1330 
1331 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1332 	if (ifgrq == NULL)
1333 		return (ENOMEM);
1334 
1335 	ifgroup_lockmgr(LK_SHARED);
1336 	p = ifgrq;
1337 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1338 		if (len < sizeof(struct ifg_req)) {
1339 			ifgroup_lockmgr(LK_RELEASE);
1340 			error = EINVAL;
1341 			goto failed;
1342 		}
1343 
1344 		strlcpy(p->ifgrq_member, ifgm->ifgm_ifp->if_xname,
1345 			sizeof(p->ifgrq_member));
1346 		len -= sizeof(struct ifg_req);
1347 		p++;
1348 	}
1349 	ifgroup_lockmgr(LK_RELEASE);
1350 
1351 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1352 failed:
1353 	kfree(ifgrq, M_TEMP);
1354 	return error;
1355 }
1356 
1357 static int
1358 ifa_maintain_loopback_route(int cmd, struct ifaddr *ifa, struct sockaddr *ia)
1359 {
1360 	struct sockaddr_dl null_sdl;
1361 	struct rt_addrinfo info;
1362 	struct ifaddr *rti_ifa;
1363 	struct ifnet *ifp;
1364 	int error;
1365 
1366 	/* RTM_CHANGE is unsupported in rtrequest1() yet. */
1367 	KKASSERT(cmd == RTM_DELETE || cmd == RTM_ADD);
1368 
1369 	rti_ifa = NULL;
1370 	ifp = ifa->ifa_ifp;
1371 
1372 	bzero(&null_sdl, sizeof(null_sdl));
1373 	null_sdl.sdl_len = sizeof(null_sdl);
1374 	null_sdl.sdl_family = AF_LINK;
1375 	null_sdl.sdl_index = ifp->if_index;
1376 	null_sdl.sdl_type = ifp->if_type;
1377 
1378 	bzero(&info, sizeof(info));
1379 	if (cmd != RTM_DELETE)
1380 		info.rti_ifp = loif;
1381 	if (cmd == RTM_ADD) {
1382 		/*
1383 		 * Explicitly specify the loopback IFA.
1384 		 */
1385 		rti_ifa = ifaof_ifpforaddr(ifa->ifa_addr, info.rti_ifp);
1386 		if (rti_ifa != NULL) {
1387 			/*
1388 			 * The loopback IFA wouldn't disappear, but ref it
1389 			 * for safety.
1390 			 */
1391 			IFAREF(rti_ifa);
1392 			info.rti_ifa = rti_ifa;
1393 		}
1394 	}
1395 	info.rti_info[RTAX_DST] = ia;
1396 	info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl;
1397 	/*
1398 	 * Manually set RTF_LOCAL so that the IFA and IFP wouldn't be
1399 	 * overrided to be the owner of the destination address (ia)
1400 	 * by in_addroute().
1401 	 */
1402 	info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_LOCAL;
1403 
1404 	error = rtrequest1_global(cmd, &info, NULL, NULL, RTREQ_PRIO_NORM);
1405 
1406 	if (rti_ifa != NULL)
1407 		IFAFREE(rti_ifa);
1408 
1409 	if (error == 0 ||
1410 	    (cmd == RTM_ADD && error == EEXIST) ||
1411 	    (cmd == RTM_DELETE && (error == ESRCH || error == ENOENT)))
1412 		return (error);
1413 
1414 	log(LOG_DEBUG, "%s: %s failed for interface %s: %d\n",
1415 	    __func__, (cmd == RTM_ADD ? "insertion" : "deletion"),
1416 	    ifp->if_xname, error);
1417 	return (error);
1418 }
1419 
1420 int
1421 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
1422 {
1423 	return ifa_maintain_loopback_route(RTM_ADD, ifa, ia);
1424 }
1425 
1426 int
1427 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
1428 {
1429 	return ifa_maintain_loopback_route(RTM_DELETE, ifa, ia);
1430 }
1431 
1432 /*
1433  * Delete Routes for a Network Interface
1434  *
1435  * Called for each routing entry via the rnh->rnh_walktree() call above
1436  * to delete all route entries referencing a detaching network interface.
1437  *
1438  * Arguments:
1439  *	rn	pointer to node in the routing table
1440  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1441  *
1442  * Returns:
1443  *	0	successful
1444  *	errno	failed - reason indicated
1445  *
1446  */
1447 static int
1448 if_rtdel(struct radix_node *rn, void *arg)
1449 {
1450 	struct rtentry	*rt = (struct rtentry *)rn;
1451 	struct ifnet	*ifp = arg;
1452 	int		err;
1453 
1454 	if (rt->rt_ifp == ifp) {
1455 
1456 		/*
1457 		 * Protect (sorta) against walktree recursion problems
1458 		 * with cloned routes
1459 		 */
1460 		if (!(rt->rt_flags & RTF_UP))
1461 			return (0);
1462 
1463 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1464 				rt_mask(rt), rt->rt_flags,
1465 				NULL);
1466 		if (err) {
1467 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1468 		}
1469 	}
1470 
1471 	return (0);
1472 }
1473 
1474 static __inline boolean_t
1475 ifa_match_withmask(const struct ifaddr *ifa, const struct sockaddr *addr)
1476 {
1477 	const char *cp, *cp2, *cp3, *cplim;
1478 
1479 	KKASSERT(ifa->ifa_addr->sa_family == addr->sa_family);
1480 
1481 	cp = addr->sa_data;
1482 	cp2 = ifa->ifa_addr->sa_data;
1483 	cp3 = ifa->ifa_netmask->sa_data;
1484 	cplim = (const char *)ifa->ifa_netmask + ifa->ifa_netmask->sa_len;
1485 
1486 	while (cp3 < cplim) {
1487 		if ((*cp++ ^ *cp2++) & *cp3++)
1488 			return (FALSE);
1489 	}
1490 
1491 	return (TRUE);
1492 }
1493 
1494 static __inline boolean_t
1495 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1496 {
1497 	if (old_ifa == NULL)
1498 		return (TRUE);
1499 
1500 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1501 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1502 		return (TRUE);
1503 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1504 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1505 		return (TRUE);
1506 
1507 	return (FALSE);
1508 }
1509 
1510 /*
1511  * Locate an interface based on a complete address.
1512  */
1513 struct ifaddr *
1514 ifa_ifwithaddr(struct sockaddr *addr)
1515 {
1516 	const struct ifnet_array *arr;
1517 	int i;
1518 
1519 	arr = ifnet_array_get();
1520 	for (i = 0; i < arr->ifnet_count; ++i) {
1521 		struct ifnet *ifp = arr->ifnet_arr[i];
1522 		struct ifaddr_container *ifac;
1523 
1524 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1525 			struct ifaddr *ifa = ifac->ifa;
1526 
1527 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1528 				continue;
1529 			if (sa_equal(addr, ifa->ifa_addr))
1530 				return (ifa);
1531 			if ((ifp->if_flags & IFF_BROADCAST) &&
1532 			    ifa->ifa_broadaddr &&
1533 			    /* IPv6 doesn't have broadcast */
1534 			    ifa->ifa_broadaddr->sa_len != 0 &&
1535 			    sa_equal(ifa->ifa_broadaddr, addr))
1536 				return (ifa);
1537 		}
1538 	}
1539 	return (NULL);
1540 }
1541 
1542 /*
1543  * Locate the point-to-point interface with a given destination address.
1544  */
1545 struct ifaddr *
1546 ifa_ifwithdstaddr(struct sockaddr *addr)
1547 {
1548 	const struct ifnet_array *arr;
1549 	int i;
1550 
1551 	arr = ifnet_array_get();
1552 	for (i = 0; i < arr->ifnet_count; ++i) {
1553 		struct ifnet *ifp = arr->ifnet_arr[i];
1554 		struct ifaddr_container *ifac;
1555 
1556 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1557 			continue;
1558 
1559 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1560 			struct ifaddr *ifa = ifac->ifa;
1561 
1562 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1563 				continue;
1564 			if (ifa->ifa_dstaddr &&
1565 			    sa_equal(addr, ifa->ifa_dstaddr))
1566 				return (ifa);
1567 		}
1568 	}
1569 	return (NULL);
1570 }
1571 
1572 /*
1573  * Find an interface on a specific network.  If many, choice
1574  * is most specific found.
1575  */
1576 struct ifaddr *
1577 ifa_ifwithnet(struct sockaddr *addr)
1578 {
1579 	struct ifaddr *ifa_maybe = NULL;
1580 	u_int af = addr->sa_family;
1581 	const struct ifnet_array *arr;
1582 	int i;
1583 
1584 	/*
1585 	 * AF_LINK addresses can be looked up directly by their index number,
1586 	 * so do that if we can.
1587 	 */
1588 	if (af == AF_LINK) {
1589 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1590 
1591 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1592 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1593 	}
1594 
1595 	/*
1596 	 * Scan though each interface, looking for ones that have
1597 	 * addresses in this address family.
1598 	 */
1599 	arr = ifnet_array_get();
1600 	for (i = 0; i < arr->ifnet_count; ++i) {
1601 		struct ifnet *ifp = arr->ifnet_arr[i];
1602 		struct ifaddr_container *ifac;
1603 
1604 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1605 			struct ifaddr *ifa = ifac->ifa;
1606 
1607 			if (ifa->ifa_addr->sa_family != af)
1608 				continue;
1609 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1610 				/*
1611 				 * This is a bit broken as it doesn't
1612 				 * take into account that the remote end may
1613 				 * be a single node in the network we are
1614 				 * looking for.
1615 				 * The trouble is that we don't know the
1616 				 * netmask for the remote end.
1617 				 */
1618 				if (ifa->ifa_dstaddr != NULL &&
1619 				    sa_equal(addr, ifa->ifa_dstaddr))
1620 					return (ifa);
1621 			} else {
1622 				/*
1623 				 * If we have a special address handler,
1624 				 * then use it instead of the generic one.
1625 				 */
1626 				if (ifa->ifa_claim_addr) {
1627 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1628 						return (ifa);
1629 					} else {
1630 						continue;
1631 					}
1632 				}
1633 
1634 				if (ifa->ifa_netmask == NULL ||
1635 				    !ifa_match_withmask(ifa, addr))
1636 					continue;
1637 
1638 				/*
1639 				 * If the netmask of what we just found
1640 				 * is more specific than what we had before
1641 				 * (if we had one) then remember the new one
1642 				 * before continuing to search for an even
1643 				 * better one.  If the netmasks are equal,
1644 				 * we prefer the this ifa based on the result
1645 				 * of ifa_prefer().
1646 				 */
1647 				if (ifa_maybe == NULL ||
1648 				    rn_refines(ifa->ifa_netmask,
1649 					       ifa_maybe->ifa_netmask) ||
1650 				    (sa_equal(ifa_maybe->ifa_netmask,
1651 					      ifa->ifa_netmask) &&
1652 				     ifa_prefer(ifa, ifa_maybe)))
1653 					ifa_maybe = ifa;
1654 			}
1655 		}
1656 	}
1657 
1658 	return (ifa_maybe);
1659 }
1660 
1661 /*
1662  * Find an interface address specific to an interface best matching
1663  * a given address.
1664  */
1665 struct ifaddr *
1666 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1667 {
1668 	struct ifaddr_container *ifac;
1669 	struct ifaddr *ifa_maybe = NULL;
1670 	u_int af = addr->sa_family;
1671 
1672 	if (af >= AF_MAX)
1673 		return (NULL);
1674 
1675 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1676 		struct ifaddr *ifa = ifac->ifa;
1677 
1678 		if (ifa->ifa_addr->sa_family != af)
1679 			continue;
1680 		if (ifa_maybe == NULL)
1681 			ifa_maybe = ifa;
1682 		if (ifa->ifa_netmask == NULL) {
1683 			if (sa_equal(addr, ifa->ifa_addr) ||
1684 			    (ifa->ifa_dstaddr != NULL &&
1685 			     sa_equal(addr, ifa->ifa_dstaddr)))
1686 				return (ifa);
1687 			continue;
1688 		}
1689 		if (ifp->if_flags & IFF_POINTOPOINT) {
1690 			if (sa_equal(addr, ifa->ifa_dstaddr))
1691 				return (ifa);
1692 		} else {
1693 			if (ifa_match_withmask(ifa, addr))
1694 				return (ifa);
1695 		}
1696 	}
1697 
1698 	return (ifa_maybe);
1699 }
1700 
1701 struct netmsg_if {
1702 	struct netmsg_base	base;
1703 	struct ifnet		*ifp;
1704 };
1705 
1706 /*
1707  * Mark an interface down and notify protocols of the transition.
1708  */
1709 static void
1710 if_down_dispatch(netmsg_t nmsg)
1711 {
1712 	struct netmsg_if *msg = (struct netmsg_if *)nmsg;
1713 	struct ifnet *ifp = msg->ifp;
1714 	struct ifaddr_container *ifac;
1715 	struct domain *dp;
1716 
1717 	ASSERT_NETISR0;
1718 
1719 	ifp->if_flags &= ~IFF_UP;
1720 	getmicrotime(&ifp->if_lastchange);
1721 	rt_ifmsg(ifp);
1722 
1723 	/*
1724 	 * The ifaddr processing in the following loop will block,
1725 	 * however, this function is called in netisr0, in which
1726 	 * ifaddr list changes happen, so we don't care about the
1727 	 * blockness of the ifaddr processing here.
1728 	 */
1729 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1730 		struct ifaddr *ifa = ifac->ifa;
1731 
1732 		/* Ignore marker */
1733 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1734 			continue;
1735 
1736 		kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1737 	}
1738 
1739 	SLIST_FOREACH(dp, &domains, dom_next)
1740 		if (dp->dom_if_down != NULL)
1741 			dp->dom_if_down(ifp);
1742 
1743 	ifq_purge_all(&ifp->if_snd);
1744 	netisr_replymsg(&nmsg->base, 0);
1745 }
1746 
1747 /*
1748  * Mark an interface up and notify protocols of the transition.
1749  */
1750 static void
1751 if_up_dispatch(netmsg_t nmsg)
1752 {
1753 	struct netmsg_if *msg = (struct netmsg_if *)nmsg;
1754 	struct ifnet *ifp = msg->ifp;
1755 	struct ifaddr_container *ifac;
1756 	struct domain *dp;
1757 
1758 	ASSERT_NETISR0;
1759 
1760 	ifq_purge_all(&ifp->if_snd);
1761 	ifp->if_flags |= IFF_UP;
1762 	getmicrotime(&ifp->if_lastchange);
1763 	rt_ifmsg(ifp);
1764 
1765 	/*
1766 	 * The ifaddr processing in the following loop will block,
1767 	 * however, this function is called in netisr0, in which
1768 	 * ifaddr list changes happen, so we don't care about the
1769 	 * blockness of the ifaddr processing here.
1770 	 */
1771 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1772 		struct ifaddr *ifa = ifac->ifa;
1773 
1774 		/* Ignore marker */
1775 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1776 			continue;
1777 
1778 		kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1779 	}
1780 
1781 	SLIST_FOREACH(dp, &domains, dom_next)
1782 		if (dp->dom_if_up != NULL)
1783 			dp->dom_if_up(ifp);
1784 
1785 	netisr_replymsg(&nmsg->base, 0);
1786 }
1787 
1788 /*
1789  * Mark an interface down and notify protocols of the transition.  An
1790  * interface going down is also considered to be a synchronizing event.
1791  * We must ensure that all packet processing related to the interface
1792  * has completed before we return so e.g. the caller can free the ifnet
1793  * structure that the mbufs may be referencing.
1794  *
1795  * NOTE: must be called at splnet or eqivalent.
1796  */
1797 void
1798 if_down(struct ifnet *ifp)
1799 {
1800 	struct netmsg_if msg;
1801 
1802 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
1803 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1804 	    if_down_dispatch);
1805 	msg.ifp = ifp;
1806 	netisr_domsg(&msg.base, 0);
1807 	netmsg_service_sync();
1808 }
1809 
1810 /*
1811  * Mark an interface up and notify protocols of
1812  * the transition.
1813  * NOTE: must be called at splnet or eqivalent.
1814  */
1815 void
1816 if_up(struct ifnet *ifp)
1817 {
1818 	struct netmsg_if msg;
1819 
1820 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1821 	    if_up_dispatch);
1822 	msg.ifp = ifp;
1823 	netisr_domsg(&msg.base, 0);
1824 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
1825 }
1826 
1827 /*
1828  * Process a link state change.
1829  * NOTE: must be called at splsoftnet or equivalent.
1830  */
1831 void
1832 if_link_state_change(struct ifnet *ifp)
1833 {
1834 	int link_state = ifp->if_link_state;
1835 
1836 	rt_ifmsg(ifp);
1837 	devctl_notify("IFNET", ifp->if_xname,
1838 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1839 
1840 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
1841 }
1842 
1843 /*
1844  * Handle interface watchdog timer routines.  Called
1845  * from softclock, we decrement timers (if set) and
1846  * call the appropriate interface routine on expiration.
1847  */
1848 static void
1849 if_slowtimo_dispatch(netmsg_t nmsg)
1850 {
1851 	struct globaldata *gd = mycpu;
1852 	const struct ifnet_array *arr;
1853 	int i;
1854 
1855 	ASSERT_NETISR0;
1856 
1857 	crit_enter_gd(gd);
1858 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1859 	crit_exit_gd(gd);
1860 
1861 	arr = ifnet_array_get();
1862 	for (i = 0; i < arr->ifnet_count; ++i) {
1863 		struct ifnet *ifp = arr->ifnet_arr[i];
1864 
1865 		crit_enter_gd(gd);
1866 
1867 		if (if_stats_compat) {
1868 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1869 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1870 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1871 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1872 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1873 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1874 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1875 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1876 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1877 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1878 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1879 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1880 		}
1881 
1882 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1883 			crit_exit_gd(gd);
1884 			continue;
1885 		}
1886 		if (ifp->if_watchdog) {
1887 			if (ifnet_tryserialize_all(ifp)) {
1888 				(*ifp->if_watchdog)(ifp);
1889 				ifnet_deserialize_all(ifp);
1890 			} else {
1891 				/* try again next timeout */
1892 				++ifp->if_timer;
1893 			}
1894 		}
1895 
1896 		crit_exit_gd(gd);
1897 	}
1898 
1899 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1900 }
1901 
1902 static void
1903 if_slowtimo(void *arg __unused)
1904 {
1905 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1906 
1907 	KASSERT(mycpuid == 0, ("not on cpu0"));
1908 	crit_enter();
1909 	if (lmsg->ms_flags & MSGF_DONE)
1910 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1911 	crit_exit();
1912 }
1913 
1914 /*
1915  * Map interface name to
1916  * interface structure pointer.
1917  */
1918 struct ifnet *
1919 ifunit(const char *name)
1920 {
1921 	struct ifnet *ifp;
1922 
1923 	/*
1924 	 * Search all the interfaces for this name/number
1925 	 */
1926 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1927 
1928 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1929 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1930 			break;
1931 	}
1932 	return (ifp);
1933 }
1934 
1935 struct ifnet *
1936 ifunit_netisr(const char *name)
1937 {
1938 	const struct ifnet_array *arr;
1939 	int i;
1940 
1941 	/*
1942 	 * Search all the interfaces for this name/number
1943 	 */
1944 
1945 	arr = ifnet_array_get();
1946 	for (i = 0; i < arr->ifnet_count; ++i) {
1947 		struct ifnet *ifp = arr->ifnet_arr[i];
1948 
1949 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1950 			return ifp;
1951 	}
1952 	return NULL;
1953 }
1954 
1955 /*
1956  * Interface ioctls.
1957  */
1958 int
1959 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1960 {
1961 	struct ifnet *ifp;
1962 	struct ifgroupreq *ifgr;
1963 	struct ifreq *ifr;
1964 	struct ifstat *ifs;
1965 	int error, do_ifup = 0;
1966 	short oif_flags;
1967 	int new_flags;
1968 	size_t namelen, onamelen;
1969 	size_t descrlen;
1970 	char *descrbuf, *odescrbuf;
1971 	char new_name[IFNAMSIZ];
1972 	struct ifaddr *ifa;
1973 	struct sockaddr_dl *sdl;
1974 
1975 	switch (cmd) {
1976 	case SIOCGIFCONF:
1977 		return (ifconf(cmd, data, cred));
1978 	default:
1979 		break;
1980 	}
1981 
1982 	ifr = (struct ifreq *)data;
1983 
1984 	switch (cmd) {
1985 	case SIOCIFCREATE:
1986 	case SIOCIFCREATE2:
1987 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
1988 		if (error)
1989 			return (error);
1990 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1991 			(cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL), NULL));
1992 	case SIOCIFDESTROY:
1993 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
1994 		if (error)
1995 			return (error);
1996 		return (if_clone_destroy(ifr->ifr_name));
1997 	case SIOCIFGCLONERS:
1998 		return (if_clone_list((struct if_clonereq *)data));
1999 	case SIOCGIFGMEMB:
2000 		return (if_getgroupmembers((struct ifgroupreq *)data));
2001 	default:
2002 		break;
2003 	}
2004 
2005 	/*
2006 	 * Nominal ioctl through interface, lookup the ifp and obtain a
2007 	 * lock to serialize the ifconfig ioctl operation.
2008 	 */
2009 	ifnet_lock();
2010 
2011 	ifp = ifunit(ifr->ifr_name);
2012 	if (ifp == NULL) {
2013 		ifnet_unlock();
2014 		return (ENXIO);
2015 	}
2016 	error = 0;
2017 
2018 	switch (cmd) {
2019 	case SIOCGIFINDEX:
2020 		ifr->ifr_index = ifp->if_index;
2021 		break;
2022 
2023 	case SIOCGIFFLAGS:
2024 		ifr->ifr_flags = ifp->if_flags;
2025 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
2026 		break;
2027 
2028 	case SIOCGIFCAP:
2029 		ifr->ifr_reqcap = ifp->if_capabilities;
2030 		ifr->ifr_curcap = ifp->if_capenable;
2031 		break;
2032 
2033 	case SIOCGIFMETRIC:
2034 		ifr->ifr_metric = ifp->if_metric;
2035 		break;
2036 
2037 	case SIOCGIFMTU:
2038 		ifr->ifr_mtu = ifp->if_mtu;
2039 		break;
2040 
2041 	case SIOCGIFTSOLEN:
2042 		ifr->ifr_tsolen = ifp->if_tsolen;
2043 		break;
2044 
2045 	case SIOCGIFDATA:
2046 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
2047 				sizeof(ifp->if_data));
2048 		break;
2049 
2050 	case SIOCGIFPHYS:
2051 		ifr->ifr_phys = ifp->if_physical;
2052 		break;
2053 
2054 	case SIOCGIFPOLLCPU:
2055 		ifr->ifr_pollcpu = -1;
2056 		break;
2057 
2058 	case SIOCSIFPOLLCPU:
2059 		break;
2060 
2061 	case SIOCGIFDESCR:
2062 		error = 0;
2063 		ifnet_lock();
2064 		if (ifp->if_description == NULL) {
2065 			ifr->ifr_buffer.length = 0;
2066 			error = ENOMSG;
2067 		} else {
2068 			/* space for terminating nul */
2069 			descrlen = strlen(ifp->if_description) + 1;
2070 			if (ifr->ifr_buffer.length < descrlen)
2071 				error = ENAMETOOLONG;
2072 			else
2073 				error = copyout(ifp->if_description,
2074 				    ifr->ifr_buffer.buffer, descrlen);
2075 			ifr->ifr_buffer.length = descrlen;
2076 		}
2077 		ifnet_unlock();
2078 		break;
2079 
2080 	case SIOCSIFDESCR:
2081 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2082 		if (error)
2083 			break;
2084 
2085 		/*
2086 		 * Copy only (length-1) bytes to make sure that
2087 		 * if_description is always nul terminated.  The
2088 		 * length parameter is supposed to count the
2089 		 * terminating nul in.
2090 		 */
2091 		if (ifr->ifr_buffer.length > ifdescr_maxlen)
2092 			return (ENAMETOOLONG);
2093 		else if (ifr->ifr_buffer.length == 0)
2094 			descrbuf = NULL;
2095 		else {
2096 			descrbuf = kmalloc(ifr->ifr_buffer.length, M_IFDESCR,
2097 			    M_WAITOK | M_ZERO);
2098 			error = copyin(ifr->ifr_buffer.buffer, descrbuf,
2099 			    ifr->ifr_buffer.length - 1);
2100 			if (error) {
2101 				kfree(descrbuf, M_IFDESCR);
2102 				break;
2103 			}
2104 		}
2105 
2106 		ifnet_lock();
2107 		odescrbuf = ifp->if_description;
2108 		ifp->if_description = descrbuf;
2109 		ifnet_unlock();
2110 
2111 		if (odescrbuf)
2112 			kfree(odescrbuf, M_IFDESCR);
2113 
2114 	case SIOCSIFFLAGS:
2115 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2116 		if (error)
2117 			break;
2118 		new_flags = (ifr->ifr_flags & 0xffff) |
2119 		    (ifr->ifr_flagshigh << 16);
2120 		if (ifp->if_flags & IFF_SMART) {
2121 			/* Smart drivers twiddle their own routes */
2122 		} else if (ifp->if_flags & IFF_UP &&
2123 		    (new_flags & IFF_UP) == 0) {
2124 			if_down(ifp);
2125 		} else if (new_flags & IFF_UP &&
2126 		    (ifp->if_flags & IFF_UP) == 0) {
2127 			do_ifup = 1;
2128 		}
2129 
2130 #ifdef IFPOLL_ENABLE
2131 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
2132 			if (new_flags & IFF_NPOLLING)
2133 				ifpoll_register(ifp);
2134 			else
2135 				ifpoll_deregister(ifp);
2136 		}
2137 #endif
2138 
2139 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2140 			(new_flags &~ IFF_CANTCHANGE);
2141 		if (new_flags & IFF_PPROMISC) {
2142 			/* Permanently promiscuous mode requested */
2143 			ifp->if_flags |= IFF_PROMISC;
2144 		} else if (ifp->if_pcount == 0) {
2145 			ifp->if_flags &= ~IFF_PROMISC;
2146 		}
2147 		if (ifp->if_ioctl) {
2148 			ifnet_serialize_all(ifp);
2149 			ifp->if_ioctl(ifp, cmd, data, cred);
2150 			ifnet_deserialize_all(ifp);
2151 		}
2152 		if (do_ifup)
2153 			if_up(ifp);
2154 		getmicrotime(&ifp->if_lastchange);
2155 		break;
2156 
2157 	case SIOCSIFCAP:
2158 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2159 		if (error)
2160 			break;
2161 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
2162 			error = EINVAL;
2163 			break;
2164 		}
2165 		ifnet_serialize_all(ifp);
2166 		ifp->if_ioctl(ifp, cmd, data, cred);
2167 		ifnet_deserialize_all(ifp);
2168 		break;
2169 
2170 	case SIOCSIFNAME:
2171 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2172 		if (error)
2173 			break;
2174 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
2175 		if (error)
2176 			break;
2177 		if (new_name[0] == '\0') {
2178 			error = EINVAL;
2179 			break;
2180 		}
2181 		if (ifunit(new_name) != NULL) {
2182 			error = EEXIST;
2183 			break;
2184 		}
2185 
2186 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
2187 
2188 		/* Announce the departure of the interface. */
2189 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
2190 
2191 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
2192 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2193 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
2194 		namelen = strlen(new_name);
2195 		onamelen = sdl->sdl_nlen;
2196 		/*
2197 		 * Move the address if needed.  This is safe because we
2198 		 * allocate space for a name of length IFNAMSIZ when we
2199 		 * create this in if_attach().
2200 		 */
2201 		if (namelen != onamelen) {
2202 			bcopy(sdl->sdl_data + onamelen,
2203 			    sdl->sdl_data + namelen, sdl->sdl_alen);
2204 		}
2205 		bcopy(new_name, sdl->sdl_data, namelen);
2206 		sdl->sdl_nlen = namelen;
2207 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2208 		bzero(sdl->sdl_data, onamelen);
2209 		while (namelen != 0)
2210 			sdl->sdl_data[--namelen] = 0xff;
2211 
2212 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2213 
2214 		/* Announce the return of the interface. */
2215 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2216 		break;
2217 
2218 	case SIOCSIFMETRIC:
2219 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2220 		if (error)
2221 			break;
2222 		ifp->if_metric = ifr->ifr_metric;
2223 		getmicrotime(&ifp->if_lastchange);
2224 		break;
2225 
2226 	case SIOCSIFPHYS:
2227 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2228 		if (error)
2229 			break;
2230 		if (ifp->if_ioctl == NULL) {
2231 		        error = EOPNOTSUPP;
2232 			break;
2233 		}
2234 		ifnet_serialize_all(ifp);
2235 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2236 		ifnet_deserialize_all(ifp);
2237 		if (error == 0)
2238 			getmicrotime(&ifp->if_lastchange);
2239 		break;
2240 
2241 	case SIOCSIFMTU:
2242 	{
2243 		u_long oldmtu = ifp->if_mtu;
2244 
2245 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2246 		if (error)
2247 			break;
2248 		if (ifp->if_ioctl == NULL) {
2249 			error = EOPNOTSUPP;
2250 			break;
2251 		}
2252 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2253 			error = EINVAL;
2254 			break;
2255 		}
2256 		ifnet_serialize_all(ifp);
2257 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2258 		ifnet_deserialize_all(ifp);
2259 		if (error == 0) {
2260 			getmicrotime(&ifp->if_lastchange);
2261 			rt_ifmsg(ifp);
2262 		}
2263 		/*
2264 		 * If the link MTU changed, do network layer specific procedure.
2265 		 */
2266 		if (ifp->if_mtu != oldmtu) {
2267 #ifdef INET6
2268 			nd6_setmtu(ifp);
2269 #endif
2270 		}
2271 		break;
2272 	}
2273 
2274 	case SIOCSIFTSOLEN:
2275 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2276 		if (error)
2277 			break;
2278 
2279 		/* XXX need driver supplied upper limit */
2280 		if (ifr->ifr_tsolen <= 0) {
2281 			error = EINVAL;
2282 			break;
2283 		}
2284 		ifp->if_tsolen = ifr->ifr_tsolen;
2285 		break;
2286 
2287 	case SIOCADDMULTI:
2288 	case SIOCDELMULTI:
2289 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2290 		if (error)
2291 			break;
2292 
2293 		/* Don't allow group membership on non-multicast interfaces. */
2294 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2295 			error = EOPNOTSUPP;
2296 			break;
2297 		}
2298 
2299 		/* Don't let users screw up protocols' entries. */
2300 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2301 			error = EINVAL;
2302 			break;
2303 		}
2304 
2305 		if (cmd == SIOCADDMULTI) {
2306 			struct ifmultiaddr *ifma;
2307 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2308 		} else {
2309 			error = if_delmulti(ifp, &ifr->ifr_addr);
2310 		}
2311 		if (error == 0)
2312 			getmicrotime(&ifp->if_lastchange);
2313 		break;
2314 
2315 	case SIOCSIFPHYADDR:
2316 	case SIOCDIFPHYADDR:
2317 #ifdef INET6
2318 	case SIOCSIFPHYADDR_IN6:
2319 #endif
2320 	case SIOCSLIFPHYADDR:
2321 	case SIOCSIFMEDIA:
2322 	case SIOCSIFGENERIC:
2323 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2324 		if (error)
2325 			break;
2326 		if (ifp->if_ioctl == NULL) {
2327 			error = EOPNOTSUPP;
2328 			break;
2329 		}
2330 		ifnet_serialize_all(ifp);
2331 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2332 		ifnet_deserialize_all(ifp);
2333 		if (error == 0)
2334 			getmicrotime(&ifp->if_lastchange);
2335 		break;
2336 
2337 	case SIOCGIFSTATUS:
2338 		ifs = (struct ifstat *)data;
2339 		ifs->ascii[0] = '\0';
2340 		/* fall through */
2341 	case SIOCGIFPSRCADDR:
2342 	case SIOCGIFPDSTADDR:
2343 	case SIOCGLIFPHYADDR:
2344 	case SIOCGIFMEDIA:
2345 	case SIOCGIFXMEDIA:
2346 	case SIOCGIFGENERIC:
2347 		if (ifp->if_ioctl == NULL) {
2348 			error = EOPNOTSUPP;
2349 			break;
2350 		}
2351 		ifnet_serialize_all(ifp);
2352 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2353 		ifnet_deserialize_all(ifp);
2354 		break;
2355 
2356 	case SIOCSIFLLADDR:
2357 		error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT);
2358 		if (error)
2359 			break;
2360 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2361 				     ifr->ifr_addr.sa_len);
2362 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2363 		break;
2364 
2365 	case SIOCAIFGROUP:
2366 		ifgr = (struct ifgroupreq *)ifr;
2367 		error = caps_priv_check(cred, SYSCAP_NONET_IFCONFIG);
2368 		if (error)
2369 			return (error);
2370 		if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
2371 			return (error);
2372 		break;
2373 
2374 	case SIOCDIFGROUP:
2375 		ifgr = (struct ifgroupreq *)ifr;
2376 		error = caps_priv_check(cred, SYSCAP_NONET_IFCONFIG);
2377 		if (error)
2378 			return (error);
2379 		if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
2380 			return (error);
2381 		break;
2382 
2383 	case SIOCGIFGROUP:
2384 		ifgr = (struct ifgroupreq *)ifr;
2385 		if ((error = if_getgroups(ifgr, ifp)))
2386 			return (error);
2387 		break;
2388 
2389 	default:
2390 		oif_flags = ifp->if_flags;
2391 		if (so->so_proto == 0) {
2392 			error = EOPNOTSUPP;
2393 			break;
2394 		}
2395 		error = so_pru_control_direct(so, cmd, data, ifp);
2396 
2397 		/*
2398 		 * If the socket control method returns EOPNOTSUPP, pass the
2399 		 * request directly to the interface.
2400 		 *
2401 		 * Exclude the SIOCSIF{ADDR,BRDADDR,DSTADDR,NETMASK} ioctls,
2402 		 * because drivers may trust these ioctls to come from an
2403 		 * already privileged layer and thus do not perform credentials
2404 		 * checks or input validation.
2405 		 */
2406 		if (error == EOPNOTSUPP &&
2407 		    ifp->if_ioctl != NULL &&
2408 		    cmd != SIOCSIFADDR &&
2409 		    cmd != SIOCSIFBRDADDR &&
2410 		    cmd != SIOCSIFDSTADDR &&
2411 		    cmd != SIOCSIFNETMASK) {
2412 			ifnet_serialize_all(ifp);
2413 			error = ifp->if_ioctl(ifp, cmd, data, cred);
2414 			ifnet_deserialize_all(ifp);
2415 		}
2416 
2417 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2418 #ifdef INET6
2419 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2420 			if (ifp->if_flags & IFF_UP) {
2421 				crit_enter();
2422 				in6_if_up(ifp);
2423 				crit_exit();
2424 			}
2425 #endif
2426 		}
2427 		break;
2428 	}
2429 
2430 	ifnet_unlock();
2431 	return (error);
2432 }
2433 
2434 /*
2435  * Set/clear promiscuous mode on interface ifp based on the truth value
2436  * of pswitch.  The calls are reference counted so that only the first
2437  * "on" request actually has an effect, as does the final "off" request.
2438  * Results are undefined if the "off" and "on" requests are not matched.
2439  */
2440 int
2441 ifpromisc(struct ifnet *ifp, int pswitch)
2442 {
2443 	struct ifreq ifr;
2444 	int error;
2445 	int oldflags;
2446 
2447 	oldflags = ifp->if_flags;
2448 	if (ifp->if_flags & IFF_PPROMISC) {
2449 		/* Do nothing if device is in permanently promiscuous mode */
2450 		ifp->if_pcount += pswitch ? 1 : -1;
2451 		return (0);
2452 	}
2453 	if (pswitch) {
2454 		/*
2455 		 * If the device is not configured up, we cannot put it in
2456 		 * promiscuous mode.
2457 		 */
2458 		if ((ifp->if_flags & IFF_UP) == 0)
2459 			return (ENETDOWN);
2460 		if (ifp->if_pcount++ != 0)
2461 			return (0);
2462 		ifp->if_flags |= IFF_PROMISC;
2463 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2464 		    ifp->if_xname);
2465 	} else {
2466 		if (--ifp->if_pcount > 0)
2467 			return (0);
2468 		ifp->if_flags &= ~IFF_PROMISC;
2469 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2470 		    ifp->if_xname);
2471 	}
2472 	ifr.ifr_flags = ifp->if_flags;
2473 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2474 	ifnet_serialize_all(ifp);
2475 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2476 	ifnet_deserialize_all(ifp);
2477 	if (error == 0)
2478 		rt_ifmsg(ifp);
2479 	else
2480 		ifp->if_flags = oldflags;
2481 	return error;
2482 }
2483 
2484 /*
2485  * Return interface configuration
2486  * of system.  List may be used
2487  * in later ioctl's (above) to get
2488  * other information.
2489  */
2490 static int
2491 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2492 {
2493 	struct ifconf *ifc = (struct ifconf *)data;
2494 	struct ifnet *ifp;
2495 	struct sockaddr *sa;
2496 	struct ifreq ifr, *ifrp;
2497 	int space = ifc->ifc_len, error = 0;
2498 
2499 	ifrp = ifc->ifc_req;
2500 
2501 	ifnet_lock();
2502 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2503 		struct ifaddr_container *ifac, *ifac_mark;
2504 		struct ifaddr_marker mark;
2505 		struct ifaddrhead *head;
2506 		int addrs;
2507 
2508 		if (space <= sizeof ifr)
2509 			break;
2510 
2511 		/*
2512 		 * Zero the stack declared structure first to prevent
2513 		 * memory disclosure.
2514 		 */
2515 		bzero(&ifr, sizeof(ifr));
2516 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2517 		    >= sizeof(ifr.ifr_name)) {
2518 			error = ENAMETOOLONG;
2519 			break;
2520 		}
2521 
2522 		/*
2523 		 * Add a marker, since copyout() could block and during that
2524 		 * period the list could be changed.  Inserting the marker to
2525 		 * the header of the list will not cause trouble for the code
2526 		 * assuming that the first element of the list is AF_LINK; the
2527 		 * marker will be moved to the next position w/o blocking.
2528 		 */
2529 		ifa_marker_init(&mark, ifp);
2530 		ifac_mark = &mark.ifac;
2531 		head = &ifp->if_addrheads[mycpuid];
2532 
2533 		addrs = 0;
2534 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2535 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2536 			struct ifaddr *ifa = ifac->ifa;
2537 
2538 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2539 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2540 
2541 			/* Ignore marker */
2542 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2543 				continue;
2544 
2545 			if (space <= sizeof ifr)
2546 				break;
2547 			sa = ifa->ifa_addr;
2548 			if (cred->cr_prison && prison_if(cred, sa))
2549 				continue;
2550 			addrs++;
2551 			/*
2552 			 * Keep a reference on this ifaddr, so that it will
2553 			 * not be destroyed when its address is copied to
2554 			 * the userland, which could block.
2555 			 */
2556 			IFAREF(ifa);
2557 			if (sa->sa_len <= sizeof(*sa)) {
2558 				ifr.ifr_addr = *sa;
2559 				error = copyout(&ifr, ifrp, sizeof ifr);
2560 				ifrp++;
2561 			} else {
2562 				if (space < (sizeof ifr) + sa->sa_len -
2563 					    sizeof(*sa)) {
2564 					IFAFREE(ifa);
2565 					break;
2566 				}
2567 				space -= sa->sa_len - sizeof(*sa);
2568 				error = copyout(&ifr, ifrp,
2569 						sizeof ifr.ifr_name);
2570 				if (error == 0)
2571 					error = copyout(sa, &ifrp->ifr_addr,
2572 							sa->sa_len);
2573 				ifrp = (struct ifreq *)
2574 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2575 			}
2576 			IFAFREE(ifa);
2577 			if (error)
2578 				break;
2579 			space -= sizeof ifr;
2580 		}
2581 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2582 		if (error)
2583 			break;
2584 		if (!addrs) {
2585 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2586 			error = copyout(&ifr, ifrp, sizeof ifr);
2587 			if (error)
2588 				break;
2589 			space -= sizeof ifr;
2590 			ifrp++;
2591 		}
2592 	}
2593 	ifnet_unlock();
2594 
2595 	ifc->ifc_len -= space;
2596 	return (error);
2597 }
2598 
2599 /*
2600  * Just like if_promisc(), but for all-multicast-reception mode.
2601  */
2602 int
2603 if_allmulti(struct ifnet *ifp, int onswitch)
2604 {
2605 	int error = 0;
2606 	struct ifreq ifr;
2607 
2608 	crit_enter();
2609 
2610 	if (onswitch) {
2611 		if (ifp->if_amcount++ == 0) {
2612 			ifp->if_flags |= IFF_ALLMULTI;
2613 			ifr.ifr_flags = ifp->if_flags;
2614 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2615 			ifnet_serialize_all(ifp);
2616 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2617 					      NULL);
2618 			ifnet_deserialize_all(ifp);
2619 		}
2620 	} else {
2621 		if (ifp->if_amcount > 1) {
2622 			ifp->if_amcount--;
2623 		} else {
2624 			ifp->if_amcount = 0;
2625 			ifp->if_flags &= ~IFF_ALLMULTI;
2626 			ifr.ifr_flags = ifp->if_flags;
2627 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2628 			ifnet_serialize_all(ifp);
2629 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2630 					      NULL);
2631 			ifnet_deserialize_all(ifp);
2632 		}
2633 	}
2634 
2635 	crit_exit();
2636 
2637 	if (error == 0)
2638 		rt_ifmsg(ifp);
2639 	return error;
2640 }
2641 
2642 /*
2643  * Add a multicast listenership to the interface in question.
2644  * The link layer provides a routine which converts
2645  */
2646 int
2647 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2648     struct ifmultiaddr **retifma)
2649 {
2650 	struct sockaddr *llsa, *dupsa;
2651 	int error;
2652 	struct ifmultiaddr *ifma;
2653 
2654 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2655 
2656 	/*
2657 	 * If the matching multicast address already exists
2658 	 * then don't add a new one, just add a reference
2659 	 */
2660 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2661 		if (sa_equal(sa, ifma->ifma_addr)) {
2662 			ifma->ifma_refcount++;
2663 			if (retifma)
2664 				*retifma = ifma;
2665 			return 0;
2666 		}
2667 	}
2668 
2669 	/*
2670 	 * Give the link layer a chance to accept/reject it, and also
2671 	 * find out which AF_LINK address this maps to, if it isn't one
2672 	 * already.
2673 	 */
2674 	if (ifp->if_resolvemulti) {
2675 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2676 		if (error)
2677 			return error;
2678 	} else {
2679 		llsa = NULL;
2680 	}
2681 
2682 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2683 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2684 	bcopy(sa, dupsa, sa->sa_len);
2685 
2686 	ifma->ifma_addr = dupsa;
2687 	ifma->ifma_lladdr = llsa;
2688 	ifma->ifma_ifp = ifp;
2689 	ifma->ifma_refcount = 1;
2690 	ifma->ifma_protospec = NULL;
2691 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2692 
2693 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2694 	if (retifma)
2695 		*retifma = ifma;
2696 
2697 	if (llsa != NULL) {
2698 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2699 			if (sa_equal(ifma->ifma_addr, llsa))
2700 				break;
2701 		}
2702 		if (ifma) {
2703 			ifma->ifma_refcount++;
2704 		} else {
2705 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2706 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2707 			bcopy(llsa, dupsa, llsa->sa_len);
2708 			ifma->ifma_addr = dupsa;
2709 			ifma->ifma_ifp = ifp;
2710 			ifma->ifma_refcount = 1;
2711 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2712 		}
2713 	}
2714 	/*
2715 	 * We are certain we have added something, so call down to the
2716 	 * interface to let them know about it.
2717 	 */
2718 	if (ifp->if_ioctl)
2719 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2720 
2721 	return 0;
2722 }
2723 
2724 int
2725 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2726     struct ifmultiaddr **retifma)
2727 {
2728 	int error;
2729 
2730 	ifnet_serialize_all(ifp);
2731 	error = if_addmulti_serialized(ifp, sa, retifma);
2732 	ifnet_deserialize_all(ifp);
2733 
2734 	return error;
2735 }
2736 
2737 /*
2738  * Remove a reference to a multicast address on this interface.  Yell
2739  * if the request does not match an existing membership.
2740  */
2741 static int
2742 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2743 {
2744 	struct ifmultiaddr *ifma;
2745 
2746 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2747 
2748 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2749 		if (sa_equal(sa, ifma->ifma_addr))
2750 			break;
2751 	if (ifma == NULL)
2752 		return ENOENT;
2753 
2754 	if (ifma->ifma_refcount > 1) {
2755 		ifma->ifma_refcount--;
2756 		return 0;
2757 	}
2758 
2759 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2760 	sa = ifma->ifma_lladdr;
2761 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2762 	/*
2763 	 * Make sure the interface driver is notified
2764 	 * in the case of a link layer mcast group being left.
2765 	 */
2766 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2767 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2768 	kfree(ifma->ifma_addr, M_IFMADDR);
2769 	kfree(ifma, M_IFMADDR);
2770 	if (sa == NULL)
2771 		return 0;
2772 
2773 	/*
2774 	 * Now look for the link-layer address which corresponds to
2775 	 * this network address.  It had been squirreled away in
2776 	 * ifma->ifma_lladdr for this purpose (so we don't have
2777 	 * to call ifp->if_resolvemulti() again), and we saved that
2778 	 * value in sa above.  If some nasty deleted the
2779 	 * link-layer address out from underneath us, we can deal because
2780 	 * the address we stored was is not the same as the one which was
2781 	 * in the record for the link-layer address.  (So we don't complain
2782 	 * in that case.)
2783 	 */
2784 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2785 		if (sa_equal(sa, ifma->ifma_addr))
2786 			break;
2787 	if (ifma == NULL)
2788 		return 0;
2789 
2790 	if (ifma->ifma_refcount > 1) {
2791 		ifma->ifma_refcount--;
2792 		return 0;
2793 	}
2794 
2795 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2796 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2797 	kfree(ifma->ifma_addr, M_IFMADDR);
2798 	kfree(sa, M_IFMADDR);
2799 	kfree(ifma, M_IFMADDR);
2800 
2801 	return 0;
2802 }
2803 
2804 int
2805 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2806 {
2807 	int error;
2808 
2809 	ifnet_serialize_all(ifp);
2810 	error = if_delmulti_serialized(ifp, sa);
2811 	ifnet_deserialize_all(ifp);
2812 
2813 	return error;
2814 }
2815 
2816 /*
2817  * Delete all multicast group membership for an interface.
2818  * Should be used to quickly flush all multicast filters.
2819  */
2820 void
2821 if_delallmulti_serialized(struct ifnet *ifp)
2822 {
2823 	struct ifmultiaddr *ifma, mark;
2824 	struct sockaddr sa;
2825 
2826 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2827 
2828 	bzero(&sa, sizeof(sa));
2829 	sa.sa_family = AF_UNSPEC;
2830 	sa.sa_len = sizeof(sa);
2831 
2832 	bzero(&mark, sizeof(mark));
2833 	mark.ifma_addr = &sa;
2834 
2835 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2836 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2837 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2838 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2839 		    ifma_link);
2840 
2841 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2842 			continue;
2843 
2844 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2845 	}
2846 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2847 }
2848 
2849 
2850 /*
2851  * Set the link layer address on an interface.
2852  *
2853  * At this time we only support certain types of interfaces,
2854  * and we don't allow the length of the address to change.
2855  */
2856 int
2857 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2858 {
2859 	struct sockaddr_dl *sdl;
2860 	struct ifreq ifr;
2861 
2862 	sdl = IF_LLSOCKADDR(ifp);
2863 	if (sdl == NULL)
2864 		return (EINVAL);
2865 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2866 		return (EINVAL);
2867 	switch (ifp->if_type) {
2868 	case IFT_ETHER:			/* these types use struct arpcom */
2869 	case IFT_XETHER:
2870 	case IFT_L2VLAN:
2871 	case IFT_IEEE8023ADLAG:
2872 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2873 		bcopy(lladdr, LLADDR(sdl), len);
2874 		break;
2875 	default:
2876 		return (ENODEV);
2877 	}
2878 	/*
2879 	 * If the interface is already up, we need
2880 	 * to re-init it in order to reprogram its
2881 	 * address filter.
2882 	 */
2883 	ifnet_serialize_all(ifp);
2884 	if ((ifp->if_flags & IFF_UP) != 0) {
2885 #ifdef INET
2886 		struct ifaddr_container *ifac;
2887 #endif
2888 
2889 		ifp->if_flags &= ~IFF_UP;
2890 		ifr.ifr_flags = ifp->if_flags;
2891 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2892 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2893 			      NULL);
2894 		ifp->if_flags |= IFF_UP;
2895 		ifr.ifr_flags = ifp->if_flags;
2896 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2897 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2898 				 NULL);
2899 #ifdef INET
2900 		/*
2901 		 * Also send gratuitous ARPs to notify other nodes about
2902 		 * the address change.
2903 		 */
2904 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2905 			struct ifaddr *ifa = ifac->ifa;
2906 
2907 			if (ifa->ifa_addr != NULL &&
2908 			    ifa->ifa_addr->sa_family == AF_INET)
2909 				arp_gratuitous(ifp, ifa);
2910 		}
2911 #endif
2912 	}
2913 	ifnet_deserialize_all(ifp);
2914 	return (0);
2915 }
2916 
2917 
2918 /*
2919  * Tunnel interfaces can nest, also they may cause infinite recursion
2920  * calls when misconfigured.  Introduce an upper limit to prevent infinite
2921  * recursions, as well as to constrain the nesting depth.
2922  *
2923  * Return 0, if tunnel nesting count is equal or less than limit.
2924  */
2925 int
2926 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
2927 			int limit)
2928 {
2929 	struct m_tag *mtag;
2930 	int count;
2931 
2932 	count = 1;
2933 	mtag = m_tag_locate(m, cookie, 0 /* type */, NULL);
2934 	if (mtag != NULL)
2935 		count += *(int *)(mtag + 1);
2936 	if (count > limit) {
2937 		log(LOG_NOTICE,
2938 		    "%s: packet looped too many times (%d), limit %d\n",
2939 		    ifp->if_xname, count, limit);
2940 		return (ELOOP);
2941 	}
2942 
2943 	if (mtag == NULL) {
2944 		mtag = m_tag_alloc(cookie, 0, sizeof(int), M_NOWAIT);
2945 		if (mtag == NULL)
2946 			return (ENOMEM);
2947 		m_tag_prepend(m, mtag);
2948 	}
2949 
2950 	*(int *)(mtag + 1) = count;
2951 	return (0);
2952 }
2953 
2954 
2955 /*
2956  * Locate an interface based on a complete address.
2957  */
2958 struct ifnet *
2959 if_bylla(const void *lla, unsigned char lla_len)
2960 {
2961 	const struct ifnet_array *arr;
2962 	struct ifnet *ifp;
2963 	struct sockaddr_dl *sdl;
2964 	int i;
2965 
2966 	arr = ifnet_array_get();
2967 	for (i = 0; i < arr->ifnet_count; ++i) {
2968 		ifp = arr->ifnet_arr[i];
2969 		if (ifp->if_addrlen != lla_len)
2970 			continue;
2971 
2972 		sdl = IF_LLSOCKADDR(ifp);
2973 		if (memcmp(lla, LLADDR(sdl), lla_len) == 0)
2974 			return (ifp);
2975 	}
2976 	return (NULL);
2977 }
2978 
2979 struct ifmultiaddr *
2980 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2981 {
2982 	struct ifmultiaddr *ifma;
2983 
2984 	/* TODO: need ifnet_serialize_main */
2985 	ifnet_serialize_all(ifp);
2986 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2987 		if (sa_equal(ifma->ifma_addr, sa))
2988 			break;
2989 	ifnet_deserialize_all(ifp);
2990 
2991 	return ifma;
2992 }
2993 
2994 /*
2995  * This function locates the first real ethernet MAC from a network
2996  * card and loads it into node, returning 0 on success or ENOENT if
2997  * no suitable interfaces were found.  It is used by the uuid code to
2998  * generate a unique 6-byte number.
2999  */
3000 int
3001 if_getanyethermac(uint16_t *node, int minlen)
3002 {
3003 	struct ifnet *ifp;
3004 	struct sockaddr_dl *sdl;
3005 
3006 	ifnet_lock();
3007 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
3008 		if (ifp->if_type != IFT_ETHER)
3009 			continue;
3010 		sdl = IF_LLSOCKADDR(ifp);
3011 		if (sdl->sdl_alen < minlen)
3012 			continue;
3013 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
3014 		      minlen);
3015 		ifnet_unlock();
3016 		return(0);
3017 	}
3018 	ifnet_unlock();
3019 	return (ENOENT);
3020 }
3021 
3022 /*
3023  * The name argument must be a pointer to storage which will last as
3024  * long as the interface does.  For physical devices, the result of
3025  * device_get_name(dev) is a good choice and for pseudo-devices a
3026  * static string works well.
3027  */
3028 void
3029 if_initname(struct ifnet *ifp, const char *name, int unit)
3030 {
3031 	ifp->if_dname = name;
3032 	ifp->if_dunit = unit;
3033 	if (unit != IF_DUNIT_NONE)
3034 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
3035 	else
3036 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
3037 }
3038 
3039 int
3040 if_printf(struct ifnet *ifp, const char *fmt, ...)
3041 {
3042 	__va_list ap;
3043 	int retval;
3044 
3045 	retval = kprintf("%s: ", ifp->if_xname);
3046 	__va_start(ap, fmt);
3047 	retval += kvprintf(fmt, ap);
3048 	__va_end(ap);
3049 	return (retval);
3050 }
3051 
3052 struct ifnet *
3053 if_alloc(uint8_t type)
3054 {
3055 	struct ifnet *ifp;
3056 	size_t size;
3057 
3058 	/*
3059 	 * XXX temporary hack until arpcom is setup in if_l2com
3060 	 */
3061 	if (type == IFT_ETHER)
3062 		size = sizeof(struct arpcom);
3063 	else
3064 		size = sizeof(struct ifnet);
3065 
3066 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
3067 
3068 	ifp->if_type = type;
3069 
3070 	if (if_com_alloc[type] != NULL) {
3071 		ifp->if_l2com = if_com_alloc[type](type, ifp);
3072 		if (ifp->if_l2com == NULL) {
3073 			kfree(ifp, M_IFNET);
3074 			return (NULL);
3075 		}
3076 	}
3077 	return (ifp);
3078 }
3079 
3080 void
3081 if_free(struct ifnet *ifp)
3082 {
3083 	if (ifp->if_description != NULL)
3084 		kfree(ifp->if_description, M_IFDESCR);
3085 	kfree(ifp, M_IFNET);
3086 }
3087 
3088 void
3089 ifq_set_classic(struct ifaltq *ifq)
3090 {
3091 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
3092 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
3093 }
3094 
3095 void
3096 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
3097     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
3098 {
3099 	int q;
3100 
3101 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
3102 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
3103 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
3104 	KASSERT(request != NULL, ("request is not specified"));
3105 
3106 	ifq->altq_mapsubq = mapsubq;
3107 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
3108 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
3109 
3110 		ifsq->ifsq_enqueue = enqueue;
3111 		ifsq->ifsq_dequeue = dequeue;
3112 		ifsq->ifsq_request = request;
3113 	}
3114 }
3115 
3116 static void
3117 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
3118 {
3119 
3120 	classq_add(&ifsq->ifsq_norm, m);
3121 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
3122 }
3123 
3124 static void
3125 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
3126 {
3127 
3128 	classq_add(&ifsq->ifsq_prio, m);
3129 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
3130 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
3131 }
3132 
3133 static struct mbuf *
3134 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
3135 {
3136 	struct mbuf *m;
3137 
3138 	m = classq_get(&ifsq->ifsq_norm);
3139 	if (m != NULL)
3140 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
3141 	return (m);
3142 }
3143 
3144 static struct mbuf *
3145 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
3146 {
3147 	struct mbuf *m;
3148 
3149 	m = classq_get(&ifsq->ifsq_prio);
3150 	if (m != NULL) {
3151 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
3152 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
3153 	}
3154 	return (m);
3155 }
3156 
3157 int
3158 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
3159     struct altq_pktattr *pa __unused)
3160 {
3161 
3162 	M_ASSERTPKTHDR(m);
3163 again:
3164 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
3165 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
3166 		struct mbuf *m_drop;
3167 
3168 		if (m->m_flags & M_PRIO) {
3169 			m_drop = NULL;
3170 			if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
3171 			    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
3172 				/* Try dropping some from normal queue. */
3173 				m_drop = ifsq_norm_dequeue(ifsq);
3174 			}
3175 			if (m_drop == NULL)
3176 				m_drop = ifsq_prio_dequeue(ifsq);
3177 		} else {
3178 			m_drop = ifsq_norm_dequeue(ifsq);
3179 		}
3180 		if (m_drop != NULL) {
3181 			IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
3182 			m_freem(m_drop);
3183 			goto again;
3184 		}
3185 		/*
3186 		 * No old packets could be dropped!
3187 		 * NOTE: Caller increases oqdrops.
3188 		 */
3189 		m_freem(m);
3190 		return (ENOBUFS);
3191 	} else {
3192 		if (m->m_flags & M_PRIO)
3193 			ifsq_prio_enqueue(ifsq, m);
3194 		else
3195 			ifsq_norm_enqueue(ifsq, m);
3196 		return (0);
3197 	}
3198 }
3199 
3200 struct mbuf *
3201 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
3202 {
3203 	struct mbuf *m;
3204 
3205 	switch (op) {
3206 	case ALTDQ_POLL:
3207 		m = classq_head(&ifsq->ifsq_prio);
3208 		if (m == NULL)
3209 			m = classq_head(&ifsq->ifsq_norm);
3210 		break;
3211 
3212 	case ALTDQ_REMOVE:
3213 		m = ifsq_prio_dequeue(ifsq);
3214 		if (m == NULL)
3215 			m = ifsq_norm_dequeue(ifsq);
3216 		break;
3217 
3218 	default:
3219 		panic("unsupported ALTQ dequeue op: %d", op);
3220 	}
3221 	return m;
3222 }
3223 
3224 int
3225 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
3226 {
3227 	switch (req) {
3228 	case ALTRQ_PURGE:
3229 		for (;;) {
3230 			struct mbuf *m;
3231 
3232 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
3233 			if (m == NULL)
3234 				break;
3235 			m_freem(m);
3236 		}
3237 		break;
3238 
3239 	default:
3240 		panic("unsupported ALTQ request: %d", req);
3241 	}
3242 	return 0;
3243 }
3244 
3245 static void
3246 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
3247 {
3248 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3249 	int running = 0, need_sched;
3250 
3251 	/*
3252 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
3253 	 * contention on the subqueue hardware serializer, ifnet.if_start on
3254 	 * the subqueue will be scheduled on the subqueue owner CPU.
3255 	 */
3256 	if (!ifsq_tryserialize_hw(ifsq)) {
3257 		/*
3258 		 * Subqueue hardware serializer contention happened,
3259 		 * ifnet.if_start on the subqueue is scheduled on
3260 		 * the subqueue owner CPU, and we keep going.
3261 		 */
3262 		ifsq_ifstart_schedule(ifsq, 1);
3263 		return;
3264 	}
3265 
3266 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
3267 		ifp->if_start(ifp, ifsq);
3268 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
3269 			running = 1;
3270 	}
3271 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
3272 
3273 	ifsq_deserialize_hw(ifsq);
3274 
3275 	if (need_sched) {
3276 		/*
3277 		 * More data need to be transmitted, ifnet.if_start on the
3278 		 * subqueue is scheduled on the subqueue owner CPU, and we
3279 		 * keep going.
3280 		 * NOTE: ifnet.if_start subqueue interlock is not released.
3281 		 */
3282 		ifsq_ifstart_schedule(ifsq, force_sched);
3283 	}
3284 }
3285 
3286 /*
3287  * Subqeue packets staging mechanism:
3288  *
3289  * The packets enqueued into the subqueue are staged to a certain amount
3290  * before the ifnet.if_start on the subqueue is called.  In this way, the
3291  * driver could avoid writing to hardware registers upon every packet,
3292  * instead, hardware registers could be written when certain amount of
3293  * packets are put onto hardware TX ring.  The measurement on several modern
3294  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
3295  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
3296  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
3297  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
3298  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
3299  *
3300  * Subqueue packets staging is performed for two entry points into drivers'
3301  * transmission function:
3302  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3303  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3304  *
3305  * Subqueue packets staging will be stopped upon any of the following
3306  * conditions:
3307  * - If the count of packets enqueued on the current CPU is great than or
3308  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3309  * - If the total length of packets enqueued on the current CPU is great
3310  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
3311  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3312  *   is usually less than hardware's MTU.
3313  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3314  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3315  *   released.
3316  * - The if_start_rollup(), which is registered as low priority netisr
3317  *   rollup function, is called; probably because no more work is pending
3318  *   for netisr.
3319  *
3320  * NOTE:
3321  * Currently subqueue packet staging is only performed in netisr threads.
3322  */
3323 int
3324 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3325 {
3326 	struct ifaltq *ifq = &ifp->if_snd;
3327 	struct ifaltq_subque *ifsq;
3328 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3329 	struct ifsubq_stage_head *head = NULL;
3330 	struct ifsubq_stage *stage = NULL;
3331 	struct globaldata *gd = mycpu;
3332 	struct thread *td = gd->gd_curthread;
3333 
3334 	crit_enter_quick(td);
3335 
3336 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3337 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3338 
3339 	len = m->m_pkthdr.len;
3340 	if (m->m_flags & M_MCAST)
3341 		mcast = 1;
3342 
3343 	if (td->td_type == TD_TYPE_NETISR) {
3344 		head = &ifsubq_stage_heads[mycpuid];
3345 		stage = ifsq_get_stage(ifsq, mycpuid);
3346 
3347 		stage->stg_cnt++;
3348 		stage->stg_len += len;
3349 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3350 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3351 			avoid_start = 1;
3352 	}
3353 
3354 	ALTQ_SQ_LOCK(ifsq);
3355 	error = ifsq_enqueue_locked(ifsq, m, pa);
3356 	if (error) {
3357 		IFNET_STAT_INC(ifp, oqdrops, 1);
3358 		if (!ifsq_data_ready(ifsq)) {
3359 			ALTQ_SQ_UNLOCK(ifsq);
3360 			goto done;
3361 		}
3362 		avoid_start = 0;
3363 	} else {
3364 		IFNET_STAT_INC(ifp, obytes, len);
3365 		if (mcast)
3366 			IFNET_STAT_INC(ifp, omcasts, 1);
3367 	}
3368 	if (!ifsq_is_started(ifsq)) {
3369 		if (avoid_start) {
3370 			ALTQ_SQ_UNLOCK(ifsq);
3371 
3372 			KKASSERT(!error);
3373 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3374 				ifsq_stage_insert(head, stage);
3375 
3376 			goto done;
3377 		}
3378 
3379 		/*
3380 		 * Hold the subqueue interlock of ifnet.if_start
3381 		 */
3382 		ifsq_set_started(ifsq);
3383 		start = 1;
3384 	}
3385 	ALTQ_SQ_UNLOCK(ifsq);
3386 
3387 	if (stage != NULL) {
3388 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3389 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3390 			if (!avoid_start) {
3391 				ifsq_stage_remove(head, stage);
3392 				ifsq_ifstart_schedule(ifsq, 1);
3393 			}
3394 			goto done;
3395 		}
3396 
3397 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3398 			ifsq_stage_remove(head, stage);
3399 		} else {
3400 			stage->stg_cnt = 0;
3401 			stage->stg_len = 0;
3402 		}
3403 	}
3404 
3405 	if (start)
3406 		ifsq_ifstart_try(ifsq, 0);
3407 
3408 done:
3409 	crit_exit_quick(td);
3410 	return error;
3411 }
3412 
3413 void *
3414 ifa_create(int size)
3415 {
3416 	struct ifaddr *ifa;
3417 	int i;
3418 
3419 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3420 
3421 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3422 
3423 	/*
3424 	 * Make ifa_container availabel on all CPUs, since they
3425 	 * could be accessed by any threads.
3426 	 */
3427 	ifa->ifa_containers =
3428 		kmalloc(ncpus * sizeof(struct ifaddr_container),
3429 			M_IFADDR,
3430 			M_INTWAIT | M_ZERO | M_CACHEALIGN);
3431 
3432 	ifa->ifa_ncnt = ncpus;
3433 	for (i = 0; i < ncpus; ++i) {
3434 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3435 
3436 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3437 		ifac->ifa = ifa;
3438 		ifac->ifa_refcnt = 1;
3439 	}
3440 #ifdef IFADDR_DEBUG
3441 	kprintf("alloc ifa %p %d\n", ifa, size);
3442 #endif
3443 	return ifa;
3444 }
3445 
3446 void
3447 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3448 {
3449 	struct ifaddr *ifa = ifac->ifa;
3450 
3451 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3452 	KKASSERT(ifac->ifa_refcnt == 0);
3453 	KASSERT(ifac->ifa_listmask == 0,
3454 		("ifa is still on %#x lists", ifac->ifa_listmask));
3455 
3456 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3457 
3458 #ifdef IFADDR_DEBUG_VERBOSE
3459 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3460 #endif
3461 
3462 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3463 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3464 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3465 #ifdef IFADDR_DEBUG
3466 		kprintf("free ifa %p\n", ifa);
3467 #endif
3468 		kfree(ifa->ifa_containers, M_IFADDR);
3469 		kfree(ifa, M_IFADDR);
3470 	}
3471 }
3472 
3473 static void
3474 ifa_iflink_dispatch(netmsg_t nmsg)
3475 {
3476 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3477 	struct ifaddr *ifa = msg->ifa;
3478 	struct ifnet *ifp = msg->ifp;
3479 	int cpu = mycpuid;
3480 	struct ifaddr_container *ifac;
3481 
3482 	crit_enter();
3483 
3484 	ifac = &ifa->ifa_containers[cpu];
3485 	ASSERT_IFAC_VALID(ifac);
3486 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3487 		("ifaddr is on if_addrheads"));
3488 
3489 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3490 	if (msg->tail)
3491 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3492 	else
3493 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3494 
3495 	crit_exit();
3496 
3497 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3498 }
3499 
3500 void
3501 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3502 {
3503 	struct netmsg_ifaddr msg;
3504 
3505 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3506 		    0, ifa_iflink_dispatch);
3507 	msg.ifa = ifa;
3508 	msg.ifp = ifp;
3509 	msg.tail = tail;
3510 
3511 	netisr_domsg(&msg.base, 0);
3512 }
3513 
3514 static void
3515 ifa_ifunlink_dispatch(netmsg_t nmsg)
3516 {
3517 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3518 	struct ifaddr *ifa = msg->ifa;
3519 	struct ifnet *ifp = msg->ifp;
3520 	int cpu = mycpuid;
3521 	struct ifaddr_container *ifac;
3522 
3523 	crit_enter();
3524 
3525 	ifac = &ifa->ifa_containers[cpu];
3526 	ASSERT_IFAC_VALID(ifac);
3527 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3528 		("ifaddr is not on if_addrhead"));
3529 
3530 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3531 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3532 
3533 	crit_exit();
3534 
3535 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3536 }
3537 
3538 void
3539 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3540 {
3541 	struct netmsg_ifaddr msg;
3542 
3543 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3544 		    0, ifa_ifunlink_dispatch);
3545 	msg.ifa = ifa;
3546 	msg.ifp = ifp;
3547 
3548 	netisr_domsg(&msg.base, 0);
3549 }
3550 
3551 static void
3552 ifa_destroy_dispatch(netmsg_t nmsg)
3553 {
3554 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3555 
3556 	IFAFREE(msg->ifa);
3557 	netisr_forwardmsg_all(&nmsg->base, mycpuid + 1);
3558 }
3559 
3560 void
3561 ifa_destroy(struct ifaddr *ifa)
3562 {
3563 	struct netmsg_ifaddr msg;
3564 
3565 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3566 		    0, ifa_destroy_dispatch);
3567 	msg.ifa = ifa;
3568 
3569 	netisr_domsg(&msg.base, 0);
3570 }
3571 
3572 static void
3573 if_start_rollup(void)
3574 {
3575 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3576 	struct ifsubq_stage *stage;
3577 
3578 	crit_enter();
3579 
3580 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3581 		struct ifaltq_subque *ifsq = stage->stg_subq;
3582 		int is_sched = 0;
3583 
3584 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3585 			is_sched = 1;
3586 		ifsq_stage_remove(head, stage);
3587 
3588 		if (is_sched) {
3589 			ifsq_ifstart_schedule(ifsq, 1);
3590 		} else {
3591 			int start = 0;
3592 
3593 			ALTQ_SQ_LOCK(ifsq);
3594 			if (!ifsq_is_started(ifsq)) {
3595 				/*
3596 				 * Hold the subqueue interlock of
3597 				 * ifnet.if_start
3598 				 */
3599 				ifsq_set_started(ifsq);
3600 				start = 1;
3601 			}
3602 			ALTQ_SQ_UNLOCK(ifsq);
3603 
3604 			if (start)
3605 				ifsq_ifstart_try(ifsq, 1);
3606 		}
3607 		KKASSERT((stage->stg_flags &
3608 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3609 	}
3610 
3611 	crit_exit();
3612 }
3613 
3614 static void
3615 ifnetinit(void *dummy __unused)
3616 {
3617 	int i;
3618 
3619 	/* XXX netisr_ncpus */
3620 	for (i = 0; i < ncpus; ++i)
3621 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3622 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3623 }
3624 
3625 void
3626 if_register_com_alloc(u_char type,
3627     if_com_alloc_t *a, if_com_free_t *f)
3628 {
3629 
3630         KASSERT(if_com_alloc[type] == NULL,
3631             ("if_register_com_alloc: %d already registered", type));
3632         KASSERT(if_com_free[type] == NULL,
3633             ("if_register_com_alloc: %d free already registered", type));
3634 
3635         if_com_alloc[type] = a;
3636         if_com_free[type] = f;
3637 }
3638 
3639 void
3640 if_deregister_com_alloc(u_char type)
3641 {
3642 
3643         KASSERT(if_com_alloc[type] != NULL,
3644             ("if_deregister_com_alloc: %d not registered", type));
3645         KASSERT(if_com_free[type] != NULL,
3646             ("if_deregister_com_alloc: %d free not registered", type));
3647         if_com_alloc[type] = NULL;
3648         if_com_free[type] = NULL;
3649 }
3650 
3651 void
3652 ifq_set_maxlen(struct ifaltq *ifq, int len)
3653 {
3654 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3655 }
3656 
3657 int
3658 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3659 {
3660 	return ALTQ_SUBQ_INDEX_DEFAULT;
3661 }
3662 
3663 int
3664 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3665 {
3666 
3667 	return (cpuid % ifq->altq_subq_mappriv);
3668 }
3669 
3670 /*
3671  * Watchdog timeout.  Process callback as appropriate.  If we cannot
3672  * serialize the ifnet just try again on the next timeout.
3673  *
3674  * NOTE: The ifnet can adjust wd_timer while holding the serializer.  We
3675  *	 can only safely adjust it under the same circumstances.
3676  */
3677 static void
3678 ifsq_watchdog(void *arg)
3679 {
3680 	struct ifsubq_watchdog *wd = arg;
3681 	struct ifnet *ifp;
3682 	int count;
3683 
3684 	/*
3685 	 * Fast track.  Try to avoid acquiring the serializer when not
3686 	 * near the terminal count, unless asked to.  If the atomic op
3687 	 * to decrement the count fails just retry on the next callout.
3688 	 */
3689 	count = wd->wd_timer;
3690 	cpu_ccfence();
3691 	if (count == 0)
3692 		goto done;
3693 	if (count > 2 && (wd->wd_flags & IF_WDOG_ALLTICKS) == 0) {
3694 		(void)atomic_cmpset_int(&wd->wd_timer, count, count - 1);
3695 		goto done;
3696 	}
3697 
3698 	/*
3699 	 * Obtain the serializer and then re-test all wd_timer conditions
3700 	 * as it may have changed.  NICs do not mess with wd_timer without
3701 	 * holding the serializer.
3702 	 *
3703 	 * If we are unable to obtain the serializer just retry the same
3704 	 * count on the next callout.
3705 	 *
3706 	 * - call watchdog in terminal count (0)
3707 	 * - call watchdog on last tick (1) if requested
3708 	 * - call watchdog on all ticks if requested
3709 	 */
3710 	ifp = ifsq_get_ifp(wd->wd_subq);
3711 	if (ifnet_tryserialize_all(ifp) == 0)
3712 		goto done;
3713 	if (atomic_cmpset_int(&wd->wd_timer, count, count - 1)) {
3714 		--count;
3715 		if (count == 0 ||
3716 		    (wd->wd_flags & IF_WDOG_ALLTICKS) ||
3717 		    ((wd->wd_flags & IF_WDOG_LASTTICK) && count == 1)) {
3718 			wd->wd_watchdog(wd->wd_subq);
3719 		}
3720 	}
3721 	ifnet_deserialize_all(ifp);
3722 done:
3723 	ifsq_watchdog_reset(wd);
3724 }
3725 
3726 static void
3727 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3728 {
3729 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3730 	    ifsq_get_cpuid(wd->wd_subq));
3731 }
3732 
3733 void
3734 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3735 		   ifsq_watchdog_t watchdog, int flags)
3736 {
3737 	callout_init_mp(&wd->wd_callout);
3738 	wd->wd_timer = 0;
3739 	wd->wd_flags = flags;
3740 	wd->wd_subq = ifsq;
3741 	wd->wd_watchdog = watchdog;
3742 }
3743 
3744 void
3745 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3746 {
3747 	atomic_swap_int(&wd->wd_timer, 0);
3748 	ifsq_watchdog_reset(wd);
3749 }
3750 
3751 void
3752 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3753 {
3754 	atomic_swap_int(&wd->wd_timer, 0);
3755 	callout_stop(&wd->wd_callout);
3756 }
3757 
3758 void
3759 ifsq_watchdog_set_count(struct ifsubq_watchdog *wd, int count)
3760 {
3761 	atomic_swap_int(&wd->wd_timer, count);
3762 }
3763 
3764 void
3765 ifnet_lock(void)
3766 {
3767 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3768 	    ("try holding ifnet lock in netisr"));
3769 	mtx_lock(&ifnet_mtx);
3770 }
3771 
3772 void
3773 ifnet_unlock(void)
3774 {
3775 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3776 	    ("try holding ifnet lock in netisr"));
3777 	mtx_unlock(&ifnet_mtx);
3778 }
3779 
3780 static struct ifnet_array *
3781 ifnet_array_alloc(int count)
3782 {
3783 	struct ifnet_array *arr;
3784 
3785 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3786 	    M_IFNET, M_WAITOK);
3787 	arr->ifnet_count = count;
3788 
3789 	return arr;
3790 }
3791 
3792 static void
3793 ifnet_array_free(struct ifnet_array *arr)
3794 {
3795 	if (arr == &ifnet_array0)
3796 		return;
3797 	kfree(arr, M_IFNET);
3798 }
3799 
3800 static struct ifnet_array *
3801 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3802 {
3803 	struct ifnet_array *arr;
3804 	int count, i;
3805 
3806 	KASSERT(old_arr->ifnet_count >= 0,
3807 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3808 	count = old_arr->ifnet_count + 1;
3809 	arr = ifnet_array_alloc(count);
3810 
3811 	/*
3812 	 * Save the old ifnet array and append this ifp to the end of
3813 	 * the new ifnet array.
3814 	 */
3815 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3816 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3817 		    ("%s is already in ifnet array", ifp->if_xname));
3818 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3819 	}
3820 	KASSERT(i == count - 1,
3821 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3822 	     ifp->if_xname, count - 1, i));
3823 	arr->ifnet_arr[i] = ifp;
3824 
3825 	return arr;
3826 }
3827 
3828 static struct ifnet_array *
3829 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3830 {
3831 	struct ifnet_array *arr;
3832 	int count, i, idx, found = 0;
3833 
3834 	KASSERT(old_arr->ifnet_count > 0,
3835 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3836 	count = old_arr->ifnet_count - 1;
3837 	arr = ifnet_array_alloc(count);
3838 
3839 	/*
3840 	 * Save the old ifnet array, but skip this ifp.
3841 	 */
3842 	idx = 0;
3843 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3844 		if (old_arr->ifnet_arr[i] == ifp) {
3845 			KASSERT(!found,
3846 			    ("dup %s is in ifnet array", ifp->if_xname));
3847 			found = 1;
3848 			continue;
3849 		}
3850 		KASSERT(idx < count,
3851 		    ("invalid ifnet array index %d, count %d", idx, count));
3852 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3853 		++idx;
3854 	}
3855 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3856 	KASSERT(idx == count,
3857 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3858 	     ifp->if_xname, count, idx));
3859 
3860 	return arr;
3861 }
3862 
3863 const struct ifnet_array *
3864 ifnet_array_get(void)
3865 {
3866 	const struct ifnet_array *ret;
3867 
3868 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3869 	ret = ifnet_array;
3870 	/* Make sure 'ret' is really used. */
3871 	cpu_ccfence();
3872 	return (ret);
3873 }
3874 
3875 int
3876 ifnet_array_isempty(void)
3877 {
3878 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3879 	if (ifnet_array->ifnet_count == 0)
3880 		return 1;
3881 	else
3882 		return 0;
3883 }
3884 
3885 void
3886 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3887 {
3888 	struct ifaddr *ifa;
3889 
3890 	memset(mark, 0, sizeof(*mark));
3891 	ifa = &mark->ifa;
3892 
3893 	mark->ifac.ifa = ifa;
3894 
3895 	ifa->ifa_addr = &mark->addr;
3896 	ifa->ifa_dstaddr = &mark->dstaddr;
3897 	ifa->ifa_netmask = &mark->netmask;
3898 	ifa->ifa_ifp = ifp;
3899 }
3900 
3901 static int
3902 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3903 {
3904 
3905 	KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3906 
3907 	if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3908 		ring_cnt = ring_cntmax;
3909 	if (ring_cnt > netisr_ncpus)
3910 		ring_cnt = netisr_ncpus;
3911 	return (ring_cnt);
3912 }
3913 
3914 static void
3915 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3916 {
3917 	int i, offset;
3918 
3919 	KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3920 	KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3921 	    grid, rm->rm_cnt));
3922 	rm->rm_grid = grid;
3923 
3924 	offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3925 	for (i = 0; i < rm->rm_cnt; ++i) {
3926 		rm->rm_cpumap[i] = offset + i;
3927 		KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3928 		    ("invalid cpumap[%d] = %d, offset %d", i,
3929 		     rm->rm_cpumap[i], offset));
3930 	}
3931 }
3932 
3933 static struct if_ringmap *
3934 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3935     uint32_t flags)
3936 {
3937 	struct if_ringmap *rm;
3938 	int i, grid = 0, prev_grid;
3939 
3940 	ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3941 	rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3942 	    M_DEVBUF, M_WAITOK | M_ZERO);
3943 
3944 	rm->rm_cnt = ring_cnt;
3945 	if (flags & RINGMAP_FLAG_POWEROF2)
3946 		rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3947 
3948 	prev_grid = netisr_ncpus;
3949 	for (i = 0; i < netisr_ncpus; ++i) {
3950 		if (netisr_ncpus % (i + 1) != 0)
3951 			continue;
3952 
3953 		grid = netisr_ncpus / (i + 1);
3954 		if (rm->rm_cnt > grid) {
3955 			grid = prev_grid;
3956 			break;
3957 		}
3958 
3959 		if (rm->rm_cnt > netisr_ncpus / (i + 2))
3960 			break;
3961 		prev_grid = grid;
3962 	}
3963 	if_ringmap_set_grid(dev, rm, grid);
3964 
3965 	return (rm);
3966 }
3967 
3968 struct if_ringmap *
3969 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3970 {
3971 
3972 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3973 	    RINGMAP_FLAG_NONE));
3974 }
3975 
3976 struct if_ringmap *
3977 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3978 {
3979 
3980 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3981 	    RINGMAP_FLAG_POWEROF2));
3982 }
3983 
3984 void
3985 if_ringmap_free(struct if_ringmap *rm)
3986 {
3987 
3988 	kfree(rm, M_DEVBUF);
3989 }
3990 
3991 /*
3992  * Align the two ringmaps.
3993  *
3994  * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3995  *
3996  * Before:
3997  *
3998  * CPU      0  1  2  3   4  5  6  7
3999  * NIC_RX               n0 n1 n2 n3
4000  * NIC_TX        N0 N1
4001  *
4002  * After:
4003  *
4004  * CPU      0  1  2  3   4  5  6  7
4005  * NIC_RX               n0 n1 n2 n3
4006  * NIC_TX               N0 N1
4007  */
4008 void
4009 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
4010 {
4011 
4012 	if (rm0->rm_grid > rm1->rm_grid)
4013 		if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
4014 	else if (rm0->rm_grid < rm1->rm_grid)
4015 		if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
4016 }
4017 
4018 void
4019 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
4020 {
4021 	int subset_grid, cnt, divisor, mod, offset, i;
4022 	struct if_ringmap *subset_rm, *rm;
4023 	int old_rm0_grid, old_rm1_grid;
4024 
4025 	if (rm0->rm_grid == rm1->rm_grid)
4026 		return;
4027 
4028 	/* Save grid for later use */
4029 	old_rm0_grid = rm0->rm_grid;
4030 	old_rm1_grid = rm1->rm_grid;
4031 
4032 	if_ringmap_align(dev, rm0, rm1);
4033 
4034 	/*
4035 	 * Re-shuffle rings to get more even distribution.
4036 	 *
4037 	 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
4038 	 *
4039 	 * CPU       0  1  2  3   4  5  6  7   8  9 10 11
4040 	 *
4041 	 * NIC_RX   a0 a1 a2 a3  b0 b1 b2 b3  c0 c1 c2 c3
4042 	 * NIC_TX   A0 A1        B0 B1        C0 C1
4043 	 *
4044 	 * NIC_RX   d0 d1 d2 d3  e0 e1 e2 e3  f0 f1 f2 f3
4045 	 * NIC_TX         D0 D1        E0 E1        F0 F1
4046 	 */
4047 
4048 	if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
4049 		cnt = rm0->rm_cnt;
4050 		subset_grid = old_rm1_grid;
4051 		subset_rm = rm1;
4052 		rm = rm0;
4053 	} else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
4054 		cnt = rm1->rm_cnt;
4055 		subset_grid = old_rm0_grid;
4056 		subset_rm = rm0;
4057 		rm = rm1;
4058 	} else {
4059 		/* No space to shuffle. */
4060 		return;
4061 	}
4062 
4063 	mod = cnt / subset_grid;
4064 	KKASSERT(mod >= 2);
4065 	divisor = netisr_ncpus / rm->rm_grid;
4066 	offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
4067 
4068 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
4069 		subset_rm->rm_cpumap[i] += offset;
4070 		KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
4071 		    ("match: invalid cpumap[%d] = %d, offset %d",
4072 		     i, subset_rm->rm_cpumap[i], offset));
4073 	}
4074 #ifdef INVARIANTS
4075 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
4076 		int j;
4077 
4078 		for (j = 0; j < rm->rm_cnt; ++j) {
4079 			if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
4080 				break;
4081 		}
4082 		KASSERT(j < rm->rm_cnt,
4083 		    ("subset cpumap[%d] = %d not found in superset",
4084 		     i, subset_rm->rm_cpumap[i]));
4085 	}
4086 #endif
4087 }
4088 
4089 int
4090 if_ringmap_count(const struct if_ringmap *rm)
4091 {
4092 
4093 	return (rm->rm_cnt);
4094 }
4095 
4096 int
4097 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
4098 {
4099 
4100 	KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
4101 	return (rm->rm_cpumap[ring]);
4102 }
4103 
4104 void
4105 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
4106 {
4107 	int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
4108 
4109 	KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
4110 	    ("invalid redirect table entries %d", table_nent));
4111 
4112 	grid_idx = 0;
4113 	for (i = 0; i < NETISR_CPUMAX; ++i) {
4114 		table[i] = grid_idx++ % rm->rm_cnt;
4115 
4116 		if (grid_idx == rm->rm_grid)
4117 			grid_idx = 0;
4118 	}
4119 
4120 	/*
4121 	 * Make the ring distributed more evenly for the remainder
4122 	 * of each grid.
4123 	 *
4124 	 * e.g. 12 netisrs, rm contains 8 rings.
4125 	 *
4126 	 * Redirect table before:
4127 	 *
4128 	 *  0  1  2  3  4  5  6  7  0  1  2  3  0  1  2  3
4129 	 *  4  5  6  7  0  1  2  3  0  1  2  3  4  5  6  7
4130 	 *  0  1  2  3  0  1  2  3  4  5  6  7  0  1  2  3
4131 	 *  ....
4132 	 *
4133 	 * Redirect table after being patched (pX, patched entries):
4134 	 *
4135 	 *  0  1  2  3  4  5  6  7 p0 p1 p2 p3  0  1  2  3
4136 	 *  4  5  6  7 p4 p5 p6 p7  0  1  2  3  4  5  6  7
4137 	 * p0 p1 p2 p3  0  1  2  3  4  5  6  7 p4 p5 p6 p7
4138 	 *  ....
4139 	 */
4140 	patch_cnt = rm->rm_grid % rm->rm_cnt;
4141 	if (patch_cnt == 0)
4142 		goto done;
4143 	patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
4144 
4145 	grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
4146 	grid_idx = 0;
4147 	for (i = 0; i < grid_cnt; ++i) {
4148 		int j;
4149 
4150 		for (j = 0; j < patch_cnt; ++j) {
4151 			int fix_idx;
4152 
4153 			fix_idx = (i * rm->rm_grid) + patch_off + j;
4154 			if (fix_idx >= NETISR_CPUMAX)
4155 				goto done;
4156 			table[fix_idx] = grid_idx++ % rm->rm_cnt;
4157 		}
4158 	}
4159 done:
4160 	/*
4161 	 * If the device supports larger redirect table, duplicate
4162 	 * the first NETISR_CPUMAX entries to the rest of the table,
4163 	 * so that it matches upper layer's expectation:
4164 	 * (hash & NETISR_CPUMASK) % netisr_ncpus
4165 	 */
4166 	ncopy = table_nent / NETISR_CPUMAX;
4167 	for (i = 1; i < ncopy; ++i) {
4168 		memcpy(&table[i * NETISR_CPUMAX], table,
4169 		    NETISR_CPUMAX * sizeof(table[0]));
4170 	}
4171 	if (if_ringmap_dumprdr) {
4172 		for (i = 0; i < table_nent; ++i) {
4173 			if (i != 0 && i % 16 == 0)
4174 				kprintf("\n");
4175 			kprintf("%03d ", table[i]);
4176 		}
4177 		kprintf("\n");
4178 	}
4179 }
4180 
4181 int
4182 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
4183 {
4184 	struct if_ringmap *rm = arg1;
4185 	int i, error = 0;
4186 
4187 	for (i = 0; i < rm->rm_cnt; ++i) {
4188 		int cpu = rm->rm_cpumap[i];
4189 
4190 		error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
4191 		if (error)
4192 			break;
4193 	}
4194 	return (error);
4195 }
4196