xref: /dragonfly/sys/net/if.c (revision 9348a738)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
61 
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/ifq_var.h>
68 #include <net/radix.h>
69 #include <net/route.h>
70 #include <net/if_clone.h>
71 #include <net/netisr2.h>
72 #include <net/netmsg2.h>
73 
74 #include <machine/atomic.h>
75 #include <machine/stdarg.h>
76 #include <machine/smp.h>
77 
78 #if defined(INET) || defined(INET6)
79 /*XXX*/
80 #include <netinet/in.h>
81 #include <netinet/in_var.h>
82 #include <netinet/if_ether.h>
83 #ifdef INET6
84 #include <netinet6/in6_var.h>
85 #include <netinet6/in6_ifattach.h>
86 #endif
87 #endif
88 
89 struct netmsg_ifaddr {
90 	struct netmsg_base base;
91 	struct ifaddr	*ifa;
92 	struct ifnet	*ifp;
93 	int		tail;
94 };
95 
96 struct ifsubq_stage_head {
97 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
98 } __cachealign;
99 
100 /*
101  * System initialization
102  */
103 static void	if_attachdomain(void *);
104 static void	if_attachdomain1(struct ifnet *);
105 static int	ifconf(u_long, caddr_t, struct ucred *);
106 static void	ifinit(void *);
107 static void	ifnetinit(void *);
108 static void	if_slowtimo(void *);
109 static void	link_rtrequest(int, struct rtentry *);
110 static int	if_rtdel(struct radix_node *, void *);
111 static void	if_slowtimo_dispatch(netmsg_t);
112 
113 /* Helper functions */
114 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
115 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
116 static struct ifnet_array *ifnet_array_alloc(int);
117 static void	ifnet_array_free(struct ifnet_array *);
118 static struct ifnet_array *ifnet_array_add(struct ifnet *,
119 		    const struct ifnet_array *);
120 static struct ifnet_array *ifnet_array_del(struct ifnet *,
121 		    const struct ifnet_array *);
122 
123 #ifdef INET6
124 /*
125  * XXX: declare here to avoid to include many inet6 related files..
126  * should be more generalized?
127  */
128 extern void	nd6_setmtu(struct ifnet *);
129 #endif
130 
131 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
132 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
133 
134 static int ifsq_stage_cntmax = 4;
135 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
136 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
137     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
138 
139 static int if_stats_compat = 0;
140 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
141     &if_stats_compat, 0, "Compat the old ifnet stats");
142 
143 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
144 /* Must be after netisr_init */
145 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
146 
147 static  if_com_alloc_t *if_com_alloc[256];
148 static  if_com_free_t *if_com_free[256];
149 
150 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
151 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
152 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
153 
154 int			ifqmaxlen = IFQ_MAXLEN;
155 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
156 
157 static struct ifnet_array	ifnet_array0;
158 static struct ifnet_array	*ifnet_array = &ifnet_array0;
159 
160 static struct callout		if_slowtimo_timer;
161 static struct netmsg_base	if_slowtimo_netmsg;
162 
163 int			if_index = 0;
164 struct ifnet		**ifindex2ifnet = NULL;
165 static struct thread	*ifnet_threads[MAXCPU];
166 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
167 
168 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
169 
170 #ifdef notyet
171 #define IFQ_KTR_STRING		"ifq=%p"
172 #define IFQ_KTR_ARGS	struct ifaltq *ifq
173 #ifndef KTR_IFQ
174 #define KTR_IFQ			KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
179 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
180 
181 #define IF_START_KTR_STRING	"ifp=%p"
182 #define IF_START_KTR_ARGS	struct ifnet *ifp
183 #ifndef KTR_IF_START
184 #define KTR_IF_START		KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
197 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
198 #endif
199 
200 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
201 
202 /*
203  * Network interface utility routines.
204  *
205  * Routines with ifa_ifwith* names take sockaddr *'s as
206  * parameters.
207  */
208 /* ARGSUSED*/
209 static void
210 ifinit(void *dummy)
211 {
212 	struct ifnet *ifp;
213 
214 	callout_init_mp(&if_slowtimo_timer);
215 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
216 	    MSGF_PRIORITY, if_slowtimo_dispatch);
217 
218 	/* XXX is this necessary? */
219 	ifnet_lock();
220 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
221 		if (ifp->if_snd.altq_maxlen == 0) {
222 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
223 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
224 		}
225 	}
226 	ifnet_unlock();
227 
228 	/* Start if_slowtimo */
229 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
230 }
231 
232 static void
233 ifsq_ifstart_ipifunc(void *arg)
234 {
235 	struct ifaltq_subque *ifsq = arg;
236 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
237 
238 	crit_enter();
239 	if (lmsg->ms_flags & MSGF_DONE)
240 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
241 	crit_exit();
242 }
243 
244 static __inline void
245 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
246 {
247 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
248 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
249 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
250 	stage->stg_cnt = 0;
251 	stage->stg_len = 0;
252 }
253 
254 static __inline void
255 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
256 {
257 	KKASSERT((stage->stg_flags &
258 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
259 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
260 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
261 }
262 
263 /*
264  * Schedule ifnet.if_start on the subqueue owner CPU
265  */
266 static void
267 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
268 {
269 	int cpu;
270 
271 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
272 	    ifsq_stage_cntmax > 0) {
273 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
274 
275 		stage->stg_cnt = 0;
276 		stage->stg_len = 0;
277 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
278 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
279 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
280 		return;
281 	}
282 
283 	cpu = ifsq_get_cpuid(ifsq);
284 	if (cpu != mycpuid)
285 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
286 	else
287 		ifsq_ifstart_ipifunc(ifsq);
288 }
289 
290 /*
291  * NOTE:
292  * This function will release ifnet.if_start subqueue interlock,
293  * if ifnet.if_start for the subqueue does not need to be scheduled
294  */
295 static __inline int
296 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
297 {
298 	if (!running || ifsq_is_empty(ifsq)
299 #ifdef ALTQ
300 	    || ifsq->ifsq_altq->altq_tbr != NULL
301 #endif
302 	) {
303 		ALTQ_SQ_LOCK(ifsq);
304 		/*
305 		 * ifnet.if_start subqueue interlock is released, if:
306 		 * 1) Hardware can not take any packets, due to
307 		 *    o  interface is marked down
308 		 *    o  hardware queue is full (ifsq_is_oactive)
309 		 *    Under the second situation, hardware interrupt
310 		 *    or polling(4) will call/schedule ifnet.if_start
311 		 *    on the subqueue when hardware queue is ready
312 		 * 2) There is no packet in the subqueue.
313 		 *    Further ifq_dispatch or ifq_handoff will call/
314 		 *    schedule ifnet.if_start on the subqueue.
315 		 * 3) TBR is used and it does not allow further
316 		 *    dequeueing.
317 		 *    TBR callout will call ifnet.if_start on the
318 		 *    subqueue.
319 		 */
320 		if (!running || !ifsq_data_ready(ifsq)) {
321 			ifsq_clr_started(ifsq);
322 			ALTQ_SQ_UNLOCK(ifsq);
323 			return 0;
324 		}
325 		ALTQ_SQ_UNLOCK(ifsq);
326 	}
327 	return 1;
328 }
329 
330 static void
331 ifsq_ifstart_dispatch(netmsg_t msg)
332 {
333 	struct lwkt_msg *lmsg = &msg->base.lmsg;
334 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
335 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
336 	struct globaldata *gd = mycpu;
337 	int running = 0, need_sched;
338 
339 	crit_enter_gd(gd);
340 
341 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
342 
343 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
344 		/*
345 		 * We need to chase the subqueue owner CPU change.
346 		 */
347 		ifsq_ifstart_schedule(ifsq, 1);
348 		crit_exit_gd(gd);
349 		return;
350 	}
351 
352 	ifsq_serialize_hw(ifsq);
353 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
354 		ifp->if_start(ifp, ifsq);
355 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
356 			running = 1;
357 	}
358 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
359 	ifsq_deserialize_hw(ifsq);
360 
361 	if (need_sched) {
362 		/*
363 		 * More data need to be transmitted, ifnet.if_start is
364 		 * scheduled on the subqueue owner CPU, and we keep going.
365 		 * NOTE: ifnet.if_start subqueue interlock is not released.
366 		 */
367 		ifsq_ifstart_schedule(ifsq, 0);
368 	}
369 
370 	crit_exit_gd(gd);
371 }
372 
373 /* Device driver ifnet.if_start helper function */
374 void
375 ifsq_devstart(struct ifaltq_subque *ifsq)
376 {
377 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
378 	int running = 0;
379 
380 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
381 
382 	ALTQ_SQ_LOCK(ifsq);
383 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
384 		ALTQ_SQ_UNLOCK(ifsq);
385 		return;
386 	}
387 	ifsq_set_started(ifsq);
388 	ALTQ_SQ_UNLOCK(ifsq);
389 
390 	ifp->if_start(ifp, ifsq);
391 
392 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
393 		running = 1;
394 
395 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
396 		/*
397 		 * More data need to be transmitted, ifnet.if_start is
398 		 * scheduled on ifnet's CPU, and we keep going.
399 		 * NOTE: ifnet.if_start interlock is not released.
400 		 */
401 		ifsq_ifstart_schedule(ifsq, 0);
402 	}
403 }
404 
405 void
406 if_devstart(struct ifnet *ifp)
407 {
408 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
409 }
410 
411 /* Device driver ifnet.if_start schedule helper function */
412 void
413 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
414 {
415 	ifsq_ifstart_schedule(ifsq, 1);
416 }
417 
418 void
419 if_devstart_sched(struct ifnet *ifp)
420 {
421 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
422 }
423 
424 static void
425 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427 	lwkt_serialize_enter(ifp->if_serializer);
428 }
429 
430 static void
431 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
432 {
433 	lwkt_serialize_exit(ifp->if_serializer);
434 }
435 
436 static int
437 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
438 {
439 	return lwkt_serialize_try(ifp->if_serializer);
440 }
441 
442 #ifdef INVARIANTS
443 static void
444 if_default_serialize_assert(struct ifnet *ifp,
445 			    enum ifnet_serialize slz __unused,
446 			    boolean_t serialized)
447 {
448 	if (serialized)
449 		ASSERT_SERIALIZED(ifp->if_serializer);
450 	else
451 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
452 }
453 #endif
454 
455 /*
456  * Attach an interface to the list of "active" interfaces.
457  *
458  * The serializer is optional.
459  */
460 void
461 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
462 {
463 	unsigned socksize;
464 	int namelen, masklen;
465 	struct sockaddr_dl *sdl, *sdl_addr;
466 	struct ifaddr *ifa;
467 	struct ifaltq *ifq;
468 	struct ifnet **old_ifindex2ifnet = NULL;
469 	struct ifnet_array *old_ifnet_array;
470 	int i, q;
471 
472 	static int if_indexlim = 8;
473 
474 	if (ifp->if_serialize != NULL) {
475 		KASSERT(ifp->if_deserialize != NULL &&
476 			ifp->if_tryserialize != NULL &&
477 			ifp->if_serialize_assert != NULL,
478 			("serialize functions are partially setup"));
479 
480 		/*
481 		 * If the device supplies serialize functions,
482 		 * then clear if_serializer to catch any invalid
483 		 * usage of this field.
484 		 */
485 		KASSERT(serializer == NULL,
486 			("both serialize functions and default serializer "
487 			 "are supplied"));
488 		ifp->if_serializer = NULL;
489 	} else {
490 		KASSERT(ifp->if_deserialize == NULL &&
491 			ifp->if_tryserialize == NULL &&
492 			ifp->if_serialize_assert == NULL,
493 			("serialize functions are partially setup"));
494 		ifp->if_serialize = if_default_serialize;
495 		ifp->if_deserialize = if_default_deserialize;
496 		ifp->if_tryserialize = if_default_tryserialize;
497 #ifdef INVARIANTS
498 		ifp->if_serialize_assert = if_default_serialize_assert;
499 #endif
500 
501 		/*
502 		 * The serializer can be passed in from the device,
503 		 * allowing the same serializer to be used for both
504 		 * the interrupt interlock and the device queue.
505 		 * If not specified, the netif structure will use an
506 		 * embedded serializer.
507 		 */
508 		if (serializer == NULL) {
509 			serializer = &ifp->if_default_serializer;
510 			lwkt_serialize_init(serializer);
511 		}
512 		ifp->if_serializer = serializer;
513 	}
514 
515 	/*
516 	 * XXX -
517 	 * The old code would work if the interface passed a pre-existing
518 	 * chain of ifaddrs to this code.  We don't trust our callers to
519 	 * properly initialize the tailq, however, so we no longer allow
520 	 * this unlikely case.
521 	 */
522 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
523 				    M_IFADDR, M_WAITOK | M_ZERO);
524 	for (i = 0; i < ncpus; ++i)
525 		TAILQ_INIT(&ifp->if_addrheads[i]);
526 
527 	TAILQ_INIT(&ifp->if_multiaddrs);
528 	TAILQ_INIT(&ifp->if_groups);
529 	getmicrotime(&ifp->if_lastchange);
530 
531 	/*
532 	 * create a Link Level name for this device
533 	 */
534 	namelen = strlen(ifp->if_xname);
535 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
536 	socksize = masklen + ifp->if_addrlen;
537 	if (socksize < sizeof(*sdl))
538 		socksize = sizeof(*sdl);
539 	socksize = RT_ROUNDUP(socksize);
540 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
541 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
542 	sdl->sdl_len = socksize;
543 	sdl->sdl_family = AF_LINK;
544 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
545 	sdl->sdl_nlen = namelen;
546 	sdl->sdl_type = ifp->if_type;
547 	ifp->if_lladdr = ifa;
548 	ifa->ifa_ifp = ifp;
549 	ifa->ifa_rtrequest = link_rtrequest;
550 	ifa->ifa_addr = (struct sockaddr *)sdl;
551 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
552 	ifa->ifa_netmask = (struct sockaddr *)sdl;
553 	sdl->sdl_len = masklen;
554 	while (namelen != 0)
555 		sdl->sdl_data[--namelen] = 0xff;
556 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
557 
558 	ifp->if_data_pcpu = kmalloc_cachealign(
559 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
560 
561 	if (ifp->if_mapsubq == NULL)
562 		ifp->if_mapsubq = ifq_mapsubq_default;
563 
564 	ifq = &ifp->if_snd;
565 	ifq->altq_type = 0;
566 	ifq->altq_disc = NULL;
567 	ifq->altq_flags &= ALTQF_CANTCHANGE;
568 	ifq->altq_tbr = NULL;
569 	ifq->altq_ifp = ifp;
570 
571 	if (ifq->altq_subq_cnt <= 0)
572 		ifq->altq_subq_cnt = 1;
573 	ifq->altq_subq = kmalloc_cachealign(
574 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
575 	    M_DEVBUF, M_WAITOK | M_ZERO);
576 
577 	if (ifq->altq_maxlen == 0) {
578 		if_printf(ifp, "driver didn't set altq_maxlen\n");
579 		ifq_set_maxlen(ifq, ifqmaxlen);
580 	}
581 
582 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
583 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
584 
585 		ALTQ_SQ_LOCK_INIT(ifsq);
586 		ifsq->ifsq_index = q;
587 
588 		ifsq->ifsq_altq = ifq;
589 		ifsq->ifsq_ifp = ifp;
590 
591 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
592 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
593 		ifsq->ifsq_prepended = NULL;
594 		ifsq->ifsq_started = 0;
595 		ifsq->ifsq_hw_oactive = 0;
596 		ifsq_set_cpuid(ifsq, 0);
597 		if (ifp->if_serializer != NULL)
598 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
599 
600 		ifsq->ifsq_stage =
601 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
602 		    M_DEVBUF, M_WAITOK | M_ZERO);
603 		for (i = 0; i < ncpus; ++i)
604 			ifsq->ifsq_stage[i].stg_subq = ifsq;
605 
606 		ifsq->ifsq_ifstart_nmsg =
607 		    kmalloc(ncpus * sizeof(struct netmsg_base),
608 		    M_LWKTMSG, M_WAITOK);
609 		for (i = 0; i < ncpus; ++i) {
610 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
611 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
612 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
613 		}
614 	}
615 	ifq_set_classic(ifq);
616 
617 	/*
618 	 * Increase mbuf cluster/jcluster limits for the mbufs that
619 	 * could sit on the device queues for quite some time.
620 	 */
621 	if (ifp->if_nmbclusters > 0)
622 		mcl_inclimit(ifp->if_nmbclusters);
623 	if (ifp->if_nmbjclusters > 0)
624 		mjcl_inclimit(ifp->if_nmbjclusters);
625 
626 	/*
627 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
628 	 * array after it is setup.
629 	 *
630 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
631 	 * by ifnet lock, so that non-netisr threads could get a
632 	 * consistent view.
633 	 */
634 	ifnet_lock();
635 
636 	/* Don't update if_index until ifindex2ifnet is setup */
637 	ifp->if_index = if_index + 1;
638 	sdl_addr->sdl_index = ifp->if_index;
639 
640 	/*
641 	 * Install this ifp into ifindex2ifnet
642 	 */
643 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
644 		unsigned int n;
645 		struct ifnet **q;
646 
647 		/*
648 		 * Grow ifindex2ifnet
649 		 */
650 		if_indexlim <<= 1;
651 		n = if_indexlim * sizeof(*q);
652 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
653 		if (ifindex2ifnet != NULL) {
654 			bcopy(ifindex2ifnet, q, n/2);
655 			/* Free old ifindex2ifnet after sync all netisrs */
656 			old_ifindex2ifnet = ifindex2ifnet;
657 		}
658 		ifindex2ifnet = q;
659 	}
660 	ifindex2ifnet[ifp->if_index] = ifp;
661 	/*
662 	 * Update if_index after this ifp is installed into ifindex2ifnet,
663 	 * so that netisrs could get a consistent view of ifindex2ifnet.
664 	 */
665 	cpu_sfence();
666 	if_index = ifp->if_index;
667 
668 	/*
669 	 * Install this ifp into ifnet array.
670 	 */
671 	/* Free old ifnet array after sync all netisrs */
672 	old_ifnet_array = ifnet_array;
673 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
674 
675 	/*
676 	 * Install this ifp into ifnet queue.
677 	 */
678 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
679 
680 	ifnet_unlock();
681 
682 	/*
683 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
684 	 * are no longer accessed and we can free them safely later on.
685 	 */
686 	netmsg_service_sync();
687 	if (old_ifindex2ifnet != NULL)
688 		kfree(old_ifindex2ifnet, M_IFADDR);
689 	ifnet_array_free(old_ifnet_array);
690 
691 	if (!SLIST_EMPTY(&domains))
692 		if_attachdomain1(ifp);
693 
694 	/* Announce the interface. */
695 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
696 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
697 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
698 }
699 
700 static void
701 if_attachdomain(void *dummy)
702 {
703 	struct ifnet *ifp;
704 
705 	ifnet_lock();
706 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
707 		if_attachdomain1(ifp);
708 	ifnet_unlock();
709 }
710 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
711 	if_attachdomain, NULL);
712 
713 static void
714 if_attachdomain1(struct ifnet *ifp)
715 {
716 	struct domain *dp;
717 
718 	crit_enter();
719 
720 	/* address family dependent data region */
721 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
722 	SLIST_FOREACH(dp, &domains, dom_next)
723 		if (dp->dom_ifattach)
724 			ifp->if_afdata[dp->dom_family] =
725 				(*dp->dom_ifattach)(ifp);
726 	crit_exit();
727 }
728 
729 /*
730  * Purge all addresses whose type is _not_ AF_LINK
731  */
732 static void
733 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
734 {
735 	struct lwkt_msg *lmsg = &nmsg->lmsg;
736 	struct ifnet *ifp = lmsg->u.ms_resultp;
737 	struct ifaddr_container *ifac, *next;
738 
739 	ASSERT_IN_NETISR(0);
740 
741 	/*
742 	 * The ifaddr processing in the following loop will block,
743 	 * however, this function is called in netisr0, in which
744 	 * ifaddr list changes happen, so we don't care about the
745 	 * blockness of the ifaddr processing here.
746 	 */
747 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
748 			      ifa_link, next) {
749 		struct ifaddr *ifa = ifac->ifa;
750 
751 		/* Ignore marker */
752 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
753 			continue;
754 
755 		/* Leave link ifaddr as it is */
756 		if (ifa->ifa_addr->sa_family == AF_LINK)
757 			continue;
758 #ifdef INET
759 		/* XXX: Ugly!! ad hoc just for INET */
760 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
761 			struct ifaliasreq ifr;
762 #ifdef IFADDR_DEBUG_VERBOSE
763 			int i;
764 
765 			kprintf("purge in4 addr %p: ", ifa);
766 			for (i = 0; i < ncpus; ++i)
767 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
768 			kprintf("\n");
769 #endif
770 
771 			bzero(&ifr, sizeof ifr);
772 			ifr.ifra_addr = *ifa->ifa_addr;
773 			if (ifa->ifa_dstaddr)
774 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
775 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
776 				       NULL) == 0)
777 				continue;
778 		}
779 #endif /* INET */
780 #ifdef INET6
781 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
782 #ifdef IFADDR_DEBUG_VERBOSE
783 			int i;
784 
785 			kprintf("purge in6 addr %p: ", ifa);
786 			for (i = 0; i < ncpus; ++i)
787 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
788 			kprintf("\n");
789 #endif
790 
791 			in6_purgeaddr(ifa);
792 			/* ifp_addrhead is already updated */
793 			continue;
794 		}
795 #endif /* INET6 */
796 		ifa_ifunlink(ifa, ifp);
797 		ifa_destroy(ifa);
798 	}
799 
800 	lwkt_replymsg(lmsg, 0);
801 }
802 
803 void
804 if_purgeaddrs_nolink(struct ifnet *ifp)
805 {
806 	struct netmsg_base nmsg;
807 	struct lwkt_msg *lmsg = &nmsg.lmsg;
808 
809 	ASSERT_CANDOMSG_NETISR0(curthread);
810 
811 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
812 	    if_purgeaddrs_nolink_dispatch);
813 	lmsg->u.ms_resultp = ifp;
814 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
815 }
816 
817 static void
818 ifq_stage_detach_handler(netmsg_t nmsg)
819 {
820 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
821 	int q;
822 
823 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
824 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
825 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
826 
827 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
828 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
829 	}
830 	lwkt_replymsg(&nmsg->lmsg, 0);
831 }
832 
833 static void
834 ifq_stage_detach(struct ifaltq *ifq)
835 {
836 	struct netmsg_base base;
837 	int cpu;
838 
839 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
840 	    ifq_stage_detach_handler);
841 	base.lmsg.u.ms_resultp = ifq;
842 
843 	for (cpu = 0; cpu < ncpus; ++cpu)
844 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
845 }
846 
847 struct netmsg_if_rtdel {
848 	struct netmsg_base	base;
849 	struct ifnet		*ifp;
850 };
851 
852 static void
853 if_rtdel_dispatch(netmsg_t msg)
854 {
855 	struct netmsg_if_rtdel *rmsg = (void *)msg;
856 	int i, nextcpu, cpu;
857 
858 	cpu = mycpuid;
859 	for (i = 1; i <= AF_MAX; i++) {
860 		struct radix_node_head	*rnh;
861 
862 		if ((rnh = rt_tables[cpu][i]) == NULL)
863 			continue;
864 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
865 	}
866 
867 	nextcpu = cpu + 1;
868 	if (nextcpu < ncpus)
869 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
870 	else
871 		lwkt_replymsg(&rmsg->base.lmsg, 0);
872 }
873 
874 /*
875  * Detach an interface, removing it from the
876  * list of "active" interfaces.
877  */
878 void
879 if_detach(struct ifnet *ifp)
880 {
881 	struct ifnet_array *old_ifnet_array;
882 	struct netmsg_if_rtdel msg;
883 	struct domain *dp;
884 	int q;
885 
886 	/* Announce that the interface is gone. */
887 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
888 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
889 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
890 
891 	/*
892 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
893 	 * array before it is whacked.
894 	 *
895 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
896 	 * by ifnet lock, so that non-netisr threads could get a
897 	 * consistent view.
898 	 */
899 	ifnet_lock();
900 
901 	/*
902 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
903 	 */
904 	ifindex2ifnet[ifp->if_index] = NULL;
905 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
906 		if_index--;
907 
908 	/*
909 	 * Remove this ifp from ifnet queue.
910 	 */
911 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
912 
913 	/*
914 	 * Remove this ifp from ifnet array.
915 	 */
916 	/* Free old ifnet array after sync all netisrs */
917 	old_ifnet_array = ifnet_array;
918 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
919 
920 	ifnet_unlock();
921 
922 	/*
923 	 * Sync all netisrs so that the old ifnet array is no longer
924 	 * accessed and we can free it safely later on.
925 	 */
926 	netmsg_service_sync();
927 	ifnet_array_free(old_ifnet_array);
928 
929 	/*
930 	 * Remove routes and flush queues.
931 	 */
932 	crit_enter();
933 #ifdef IFPOLL_ENABLE
934 	if (ifp->if_flags & IFF_NPOLLING)
935 		ifpoll_deregister(ifp);
936 #endif
937 	if_down(ifp);
938 
939 	/* Decrease the mbuf clusters/jclusters limits increased by us */
940 	if (ifp->if_nmbclusters > 0)
941 		mcl_inclimit(-ifp->if_nmbclusters);
942 	if (ifp->if_nmbjclusters > 0)
943 		mjcl_inclimit(-ifp->if_nmbjclusters);
944 
945 #ifdef ALTQ
946 	if (ifq_is_enabled(&ifp->if_snd))
947 		altq_disable(&ifp->if_snd);
948 	if (ifq_is_attached(&ifp->if_snd))
949 		altq_detach(&ifp->if_snd);
950 #endif
951 
952 	/*
953 	 * Clean up all addresses.
954 	 */
955 	ifp->if_lladdr = NULL;
956 
957 	if_purgeaddrs_nolink(ifp);
958 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
959 		struct ifaddr *ifa;
960 
961 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
962 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
963 			("non-link ifaddr is left on if_addrheads"));
964 
965 		ifa_ifunlink(ifa, ifp);
966 		ifa_destroy(ifa);
967 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
968 			("there are still ifaddrs left on if_addrheads"));
969 	}
970 
971 #ifdef INET
972 	/*
973 	 * Remove all IPv4 kernel structures related to ifp.
974 	 */
975 	in_ifdetach(ifp);
976 #endif
977 
978 #ifdef INET6
979 	/*
980 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
981 	 * before removing routing entries below, since IPv6 interface direct
982 	 * routes are expected to be removed by the IPv6-specific kernel API.
983 	 * Otherwise, the kernel will detect some inconsistency and bark it.
984 	 */
985 	in6_ifdetach(ifp);
986 #endif
987 
988 	/*
989 	 * Delete all remaining routes using this interface
990 	 */
991 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
992 	    if_rtdel_dispatch);
993 	msg.ifp = ifp;
994 	rt_domsg_global(&msg.base);
995 
996 	SLIST_FOREACH(dp, &domains, dom_next)
997 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
998 			(*dp->dom_ifdetach)(ifp,
999 				ifp->if_afdata[dp->dom_family]);
1000 
1001 	kfree(ifp->if_addrheads, M_IFADDR);
1002 
1003 	lwkt_synchronize_ipiqs("if_detach");
1004 	ifq_stage_detach(&ifp->if_snd);
1005 
1006 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1007 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1008 
1009 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1010 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1011 	}
1012 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1013 
1014 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1015 
1016 	crit_exit();
1017 }
1018 
1019 /*
1020  * Create interface group without members
1021  */
1022 struct ifg_group *
1023 if_creategroup(const char *groupname)
1024 {
1025         struct ifg_group        *ifg = NULL;
1026 
1027         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1028             M_TEMP, M_NOWAIT)) == NULL)
1029                 return (NULL);
1030 
1031         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1032         ifg->ifg_refcnt = 0;
1033         ifg->ifg_carp_demoted = 0;
1034         TAILQ_INIT(&ifg->ifg_members);
1035 #if NPF > 0
1036         pfi_attach_ifgroup(ifg);
1037 #endif
1038         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1039 
1040         return (ifg);
1041 }
1042 
1043 /*
1044  * Add a group to an interface
1045  */
1046 int
1047 if_addgroup(struct ifnet *ifp, const char *groupname)
1048 {
1049 	struct ifg_list		*ifgl;
1050 	struct ifg_group	*ifg = NULL;
1051 	struct ifg_member	*ifgm;
1052 
1053 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1054 	    groupname[strlen(groupname) - 1] <= '9')
1055 		return (EINVAL);
1056 
1057 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1058 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1059 			return (EEXIST);
1060 
1061 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1062 		return (ENOMEM);
1063 
1064 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1065 		kfree(ifgl, M_TEMP);
1066 		return (ENOMEM);
1067 	}
1068 
1069 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1070 		if (!strcmp(ifg->ifg_group, groupname))
1071 			break;
1072 
1073 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1074 		kfree(ifgl, M_TEMP);
1075 		kfree(ifgm, M_TEMP);
1076 		return (ENOMEM);
1077 	}
1078 
1079 	ifg->ifg_refcnt++;
1080 	ifgl->ifgl_group = ifg;
1081 	ifgm->ifgm_ifp = ifp;
1082 
1083 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1084 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1085 
1086 #if NPF > 0
1087 	pfi_group_change(groupname);
1088 #endif
1089 
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Remove a group from an interface
1095  */
1096 int
1097 if_delgroup(struct ifnet *ifp, const char *groupname)
1098 {
1099 	struct ifg_list		*ifgl;
1100 	struct ifg_member	*ifgm;
1101 
1102 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1103 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1104 			break;
1105 	if (ifgl == NULL)
1106 		return (ENOENT);
1107 
1108 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1109 
1110 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1111 		if (ifgm->ifgm_ifp == ifp)
1112 			break;
1113 
1114 	if (ifgm != NULL) {
1115 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1116 		kfree(ifgm, M_TEMP);
1117 	}
1118 
1119 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1120 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1121 #if NPF > 0
1122 		pfi_detach_ifgroup(ifgl->ifgl_group);
1123 #endif
1124 		kfree(ifgl->ifgl_group, M_TEMP);
1125 	}
1126 
1127 	kfree(ifgl, M_TEMP);
1128 
1129 #if NPF > 0
1130 	pfi_group_change(groupname);
1131 #endif
1132 
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Stores all groups from an interface in memory pointed
1138  * to by data
1139  */
1140 int
1141 if_getgroup(caddr_t data, struct ifnet *ifp)
1142 {
1143 	int			 len, error;
1144 	struct ifg_list		*ifgl;
1145 	struct ifg_req		 ifgrq, *ifgp;
1146 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1147 
1148 	if (ifgr->ifgr_len == 0) {
1149 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1150 			ifgr->ifgr_len += sizeof(struct ifg_req);
1151 		return (0);
1152 	}
1153 
1154 	len = ifgr->ifgr_len;
1155 	ifgp = ifgr->ifgr_groups;
1156 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1157 		if (len < sizeof(ifgrq))
1158 			return (EINVAL);
1159 		bzero(&ifgrq, sizeof ifgrq);
1160 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1161 		    sizeof(ifgrq.ifgrq_group));
1162 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1163 		    sizeof(struct ifg_req))))
1164 			return (error);
1165 		len -= sizeof(ifgrq);
1166 		ifgp++;
1167 	}
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Stores all members of a group in memory pointed to by data
1174  */
1175 int
1176 if_getgroupmembers(caddr_t data)
1177 {
1178 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1179 	struct ifg_group	*ifg;
1180 	struct ifg_member	*ifgm;
1181 	struct ifg_req		 ifgrq, *ifgp;
1182 	int			 len, error;
1183 
1184 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1185 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1186 			break;
1187 	if (ifg == NULL)
1188 		return (ENOENT);
1189 
1190 	if (ifgr->ifgr_len == 0) {
1191 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1192 			ifgr->ifgr_len += sizeof(ifgrq);
1193 		return (0);
1194 	}
1195 
1196 	len = ifgr->ifgr_len;
1197 	ifgp = ifgr->ifgr_groups;
1198 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1199 		if (len < sizeof(ifgrq))
1200 			return (EINVAL);
1201 		bzero(&ifgrq, sizeof ifgrq);
1202 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1203 		    sizeof(ifgrq.ifgrq_member));
1204 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1205 		    sizeof(struct ifg_req))))
1206 			return (error);
1207 		len -= sizeof(ifgrq);
1208 		ifgp++;
1209 	}
1210 
1211 	return (0);
1212 }
1213 
1214 /*
1215  * Delete Routes for a Network Interface
1216  *
1217  * Called for each routing entry via the rnh->rnh_walktree() call above
1218  * to delete all route entries referencing a detaching network interface.
1219  *
1220  * Arguments:
1221  *	rn	pointer to node in the routing table
1222  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1223  *
1224  * Returns:
1225  *	0	successful
1226  *	errno	failed - reason indicated
1227  *
1228  */
1229 static int
1230 if_rtdel(struct radix_node *rn, void *arg)
1231 {
1232 	struct rtentry	*rt = (struct rtentry *)rn;
1233 	struct ifnet	*ifp = arg;
1234 	int		err;
1235 
1236 	if (rt->rt_ifp == ifp) {
1237 
1238 		/*
1239 		 * Protect (sorta) against walktree recursion problems
1240 		 * with cloned routes
1241 		 */
1242 		if (!(rt->rt_flags & RTF_UP))
1243 			return (0);
1244 
1245 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1246 				rt_mask(rt), rt->rt_flags,
1247 				NULL);
1248 		if (err) {
1249 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1250 		}
1251 	}
1252 
1253 	return (0);
1254 }
1255 
1256 static __inline boolean_t
1257 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1258 {
1259 	if (old_ifa == NULL)
1260 		return TRUE;
1261 
1262 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1263 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1264 		return TRUE;
1265 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1266 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1267 		return TRUE;
1268 	return FALSE;
1269 }
1270 
1271 /*
1272  * Locate an interface based on a complete address.
1273  */
1274 struct ifaddr *
1275 ifa_ifwithaddr(struct sockaddr *addr)
1276 {
1277 	const struct ifnet_array *arr;
1278 	int i;
1279 
1280 	arr = ifnet_array_get();
1281 	for (i = 0; i < arr->ifnet_count; ++i) {
1282 		struct ifnet *ifp = arr->ifnet_arr[i];
1283 		struct ifaddr_container *ifac;
1284 
1285 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1286 			struct ifaddr *ifa = ifac->ifa;
1287 
1288 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1289 				continue;
1290 			if (sa_equal(addr, ifa->ifa_addr))
1291 				return (ifa);
1292 			if ((ifp->if_flags & IFF_BROADCAST) &&
1293 			    ifa->ifa_broadaddr &&
1294 			    /* IPv6 doesn't have broadcast */
1295 			    ifa->ifa_broadaddr->sa_len != 0 &&
1296 			    sa_equal(ifa->ifa_broadaddr, addr))
1297 				return (ifa);
1298 		}
1299 	}
1300 	return (NULL);
1301 }
1302 
1303 /*
1304  * Locate the point to point interface with a given destination address.
1305  */
1306 struct ifaddr *
1307 ifa_ifwithdstaddr(struct sockaddr *addr)
1308 {
1309 	const struct ifnet_array *arr;
1310 	int i;
1311 
1312 	arr = ifnet_array_get();
1313 	for (i = 0; i < arr->ifnet_count; ++i) {
1314 		struct ifnet *ifp = arr->ifnet_arr[i];
1315 		struct ifaddr_container *ifac;
1316 
1317 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1318 			continue;
1319 
1320 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1321 			struct ifaddr *ifa = ifac->ifa;
1322 
1323 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1324 				continue;
1325 			if (ifa->ifa_dstaddr &&
1326 			    sa_equal(addr, ifa->ifa_dstaddr))
1327 				return (ifa);
1328 		}
1329 	}
1330 	return (NULL);
1331 }
1332 
1333 /*
1334  * Find an interface on a specific network.  If many, choice
1335  * is most specific found.
1336  */
1337 struct ifaddr *
1338 ifa_ifwithnet(struct sockaddr *addr)
1339 {
1340 	struct ifaddr *ifa_maybe = NULL;
1341 	u_int af = addr->sa_family;
1342 	char *addr_data = addr->sa_data, *cplim;
1343 	const struct ifnet_array *arr;
1344 	int i;
1345 
1346 	/*
1347 	 * AF_LINK addresses can be looked up directly by their index number,
1348 	 * so do that if we can.
1349 	 */
1350 	if (af == AF_LINK) {
1351 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1352 
1353 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1354 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1355 	}
1356 
1357 	/*
1358 	 * Scan though each interface, looking for ones that have
1359 	 * addresses in this address family.
1360 	 */
1361 	arr = ifnet_array_get();
1362 	for (i = 0; i < arr->ifnet_count; ++i) {
1363 		struct ifnet *ifp = arr->ifnet_arr[i];
1364 		struct ifaddr_container *ifac;
1365 
1366 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1367 			struct ifaddr *ifa = ifac->ifa;
1368 			char *cp, *cp2, *cp3;
1369 
1370 			if (ifa->ifa_addr->sa_family != af)
1371 next:				continue;
1372 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1373 				/*
1374 				 * This is a bit broken as it doesn't
1375 				 * take into account that the remote end may
1376 				 * be a single node in the network we are
1377 				 * looking for.
1378 				 * The trouble is that we don't know the
1379 				 * netmask for the remote end.
1380 				 */
1381 				if (ifa->ifa_dstaddr != NULL &&
1382 				    sa_equal(addr, ifa->ifa_dstaddr))
1383 					return (ifa);
1384 			} else {
1385 				/*
1386 				 * if we have a special address handler,
1387 				 * then use it instead of the generic one.
1388 				 */
1389 				if (ifa->ifa_claim_addr) {
1390 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1391 						return (ifa);
1392 					} else {
1393 						continue;
1394 					}
1395 				}
1396 
1397 				/*
1398 				 * Scan all the bits in the ifa's address.
1399 				 * If a bit dissagrees with what we are
1400 				 * looking for, mask it with the netmask
1401 				 * to see if it really matters.
1402 				 * (A byte at a time)
1403 				 */
1404 				if (ifa->ifa_netmask == 0)
1405 					continue;
1406 				cp = addr_data;
1407 				cp2 = ifa->ifa_addr->sa_data;
1408 				cp3 = ifa->ifa_netmask->sa_data;
1409 				cplim = ifa->ifa_netmask->sa_len +
1410 					(char *)ifa->ifa_netmask;
1411 				while (cp3 < cplim)
1412 					if ((*cp++ ^ *cp2++) & *cp3++)
1413 						goto next; /* next address! */
1414 				/*
1415 				 * If the netmask of what we just found
1416 				 * is more specific than what we had before
1417 				 * (if we had one) then remember the new one
1418 				 * before continuing to search for an even
1419 				 * better one.  If the netmasks are equal,
1420 				 * we prefer the this ifa based on the result
1421 				 * of ifa_prefer().
1422 				 */
1423 				if (ifa_maybe == NULL ||
1424 				    rn_refines((char *)ifa->ifa_netmask,
1425 				        (char *)ifa_maybe->ifa_netmask) ||
1426 				    (sa_equal(ifa_maybe->ifa_netmask,
1427 				        ifa->ifa_netmask) &&
1428 				     ifa_prefer(ifa, ifa_maybe)))
1429 					ifa_maybe = ifa;
1430 			}
1431 		}
1432 	}
1433 	return (ifa_maybe);
1434 }
1435 
1436 /*
1437  * Find an interface address specific to an interface best matching
1438  * a given address.
1439  */
1440 struct ifaddr *
1441 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1442 {
1443 	struct ifaddr_container *ifac;
1444 	char *cp, *cp2, *cp3;
1445 	char *cplim;
1446 	struct ifaddr *ifa_maybe = NULL;
1447 	u_int af = addr->sa_family;
1448 
1449 	if (af >= AF_MAX)
1450 		return (0);
1451 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1452 		struct ifaddr *ifa = ifac->ifa;
1453 
1454 		if (ifa->ifa_addr->sa_family != af)
1455 			continue;
1456 		if (ifa_maybe == NULL)
1457 			ifa_maybe = ifa;
1458 		if (ifa->ifa_netmask == NULL) {
1459 			if (sa_equal(addr, ifa->ifa_addr) ||
1460 			    (ifa->ifa_dstaddr != NULL &&
1461 			     sa_equal(addr, ifa->ifa_dstaddr)))
1462 				return (ifa);
1463 			continue;
1464 		}
1465 		if (ifp->if_flags & IFF_POINTOPOINT) {
1466 			if (sa_equal(addr, ifa->ifa_dstaddr))
1467 				return (ifa);
1468 		} else {
1469 			cp = addr->sa_data;
1470 			cp2 = ifa->ifa_addr->sa_data;
1471 			cp3 = ifa->ifa_netmask->sa_data;
1472 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1473 			for (; cp3 < cplim; cp3++)
1474 				if ((*cp++ ^ *cp2++) & *cp3)
1475 					break;
1476 			if (cp3 == cplim)
1477 				return (ifa);
1478 		}
1479 	}
1480 	return (ifa_maybe);
1481 }
1482 
1483 /*
1484  * Default action when installing a route with a Link Level gateway.
1485  * Lookup an appropriate real ifa to point to.
1486  * This should be moved to /sys/net/link.c eventually.
1487  */
1488 static void
1489 link_rtrequest(int cmd, struct rtentry *rt)
1490 {
1491 	struct ifaddr *ifa;
1492 	struct sockaddr *dst;
1493 	struct ifnet *ifp;
1494 
1495 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1496 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1497 		return;
1498 	ifa = ifaof_ifpforaddr(dst, ifp);
1499 	if (ifa != NULL) {
1500 		IFAFREE(rt->rt_ifa);
1501 		IFAREF(ifa);
1502 		rt->rt_ifa = ifa;
1503 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1504 			ifa->ifa_rtrequest(cmd, rt);
1505 	}
1506 }
1507 
1508 struct netmsg_ifroute {
1509 	struct netmsg_base	base;
1510 	struct ifnet		*ifp;
1511 	int			flag;
1512 	int			fam;
1513 };
1514 
1515 /*
1516  * Mark an interface down and notify protocols of the transition.
1517  */
1518 static void
1519 if_unroute_dispatch(netmsg_t nmsg)
1520 {
1521 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1522 	struct ifnet *ifp = msg->ifp;
1523 	int flag = msg->flag, fam = msg->fam;
1524 	struct ifaddr_container *ifac;
1525 
1526 	ifp->if_flags &= ~flag;
1527 	getmicrotime(&ifp->if_lastchange);
1528 	/*
1529 	 * The ifaddr processing in the following loop will block,
1530 	 * however, this function is called in netisr0, in which
1531 	 * ifaddr list changes happen, so we don't care about the
1532 	 * blockness of the ifaddr processing here.
1533 	 */
1534 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1535 		struct ifaddr *ifa = ifac->ifa;
1536 
1537 		/* Ignore marker */
1538 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1539 			continue;
1540 
1541 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1542 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1543 	}
1544 	ifq_purge_all(&ifp->if_snd);
1545 	rt_ifmsg(ifp);
1546 
1547 	lwkt_replymsg(&nmsg->lmsg, 0);
1548 }
1549 
1550 void
1551 if_unroute(struct ifnet *ifp, int flag, int fam)
1552 {
1553 	struct netmsg_ifroute msg;
1554 
1555 	ASSERT_CANDOMSG_NETISR0(curthread);
1556 
1557 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1558 	    if_unroute_dispatch);
1559 	msg.ifp = ifp;
1560 	msg.flag = flag;
1561 	msg.fam = fam;
1562 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1563 }
1564 
1565 /*
1566  * Mark an interface up and notify protocols of the transition.
1567  */
1568 static void
1569 if_route_dispatch(netmsg_t nmsg)
1570 {
1571 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1572 	struct ifnet *ifp = msg->ifp;
1573 	int flag = msg->flag, fam = msg->fam;
1574 	struct ifaddr_container *ifac;
1575 
1576 	ifq_purge_all(&ifp->if_snd);
1577 	ifp->if_flags |= flag;
1578 	getmicrotime(&ifp->if_lastchange);
1579 	/*
1580 	 * The ifaddr processing in the following loop will block,
1581 	 * however, this function is called in netisr0, in which
1582 	 * ifaddr list changes happen, so we don't care about the
1583 	 * blockness of the ifaddr processing here.
1584 	 */
1585 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1586 		struct ifaddr *ifa = ifac->ifa;
1587 
1588 		/* Ignore marker */
1589 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1590 			continue;
1591 
1592 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1593 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1594 	}
1595 	rt_ifmsg(ifp);
1596 #ifdef INET6
1597 	in6_if_up(ifp);
1598 #endif
1599 
1600 	lwkt_replymsg(&nmsg->lmsg, 0);
1601 }
1602 
1603 void
1604 if_route(struct ifnet *ifp, int flag, int fam)
1605 {
1606 	struct netmsg_ifroute msg;
1607 
1608 	ASSERT_CANDOMSG_NETISR0(curthread);
1609 
1610 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1611 	    if_route_dispatch);
1612 	msg.ifp = ifp;
1613 	msg.flag = flag;
1614 	msg.fam = fam;
1615 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1616 }
1617 
1618 /*
1619  * Mark an interface down and notify protocols of the transition.  An
1620  * interface going down is also considered to be a synchronizing event.
1621  * We must ensure that all packet processing related to the interface
1622  * has completed before we return so e.g. the caller can free the ifnet
1623  * structure that the mbufs may be referencing.
1624  *
1625  * NOTE: must be called at splnet or eqivalent.
1626  */
1627 void
1628 if_down(struct ifnet *ifp)
1629 {
1630 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1631 	netmsg_service_sync();
1632 }
1633 
1634 /*
1635  * Mark an interface up and notify protocols of
1636  * the transition.
1637  * NOTE: must be called at splnet or eqivalent.
1638  */
1639 void
1640 if_up(struct ifnet *ifp)
1641 {
1642 	if_route(ifp, IFF_UP, AF_UNSPEC);
1643 }
1644 
1645 /*
1646  * Process a link state change.
1647  * NOTE: must be called at splsoftnet or equivalent.
1648  */
1649 void
1650 if_link_state_change(struct ifnet *ifp)
1651 {
1652 	int link_state = ifp->if_link_state;
1653 
1654 	rt_ifmsg(ifp);
1655 	devctl_notify("IFNET", ifp->if_xname,
1656 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1657 }
1658 
1659 /*
1660  * Handle interface watchdog timer routines.  Called
1661  * from softclock, we decrement timers (if set) and
1662  * call the appropriate interface routine on expiration.
1663  */
1664 static void
1665 if_slowtimo_dispatch(netmsg_t nmsg)
1666 {
1667 	struct globaldata *gd = mycpu;
1668 	const struct ifnet_array *arr;
1669 	int i;
1670 
1671 	ASSERT_IN_NETISR(0);
1672 
1673 	crit_enter_gd(gd);
1674 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1675 	crit_exit_gd(gd);
1676 
1677 	arr = ifnet_array_get();
1678 	for (i = 0; i < arr->ifnet_count; ++i) {
1679 		struct ifnet *ifp = arr->ifnet_arr[i];
1680 
1681 		crit_enter_gd(gd);
1682 
1683 		if (if_stats_compat) {
1684 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1685 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1686 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1687 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1688 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1689 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1690 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1691 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1692 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1693 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1694 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1695 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1696 		}
1697 
1698 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1699 			crit_exit_gd(gd);
1700 			continue;
1701 		}
1702 		if (ifp->if_watchdog) {
1703 			if (ifnet_tryserialize_all(ifp)) {
1704 				(*ifp->if_watchdog)(ifp);
1705 				ifnet_deserialize_all(ifp);
1706 			} else {
1707 				/* try again next timeout */
1708 				++ifp->if_timer;
1709 			}
1710 		}
1711 
1712 		crit_exit_gd(gd);
1713 	}
1714 
1715 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1716 }
1717 
1718 static void
1719 if_slowtimo(void *arg __unused)
1720 {
1721 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1722 
1723 	KASSERT(mycpuid == 0, ("not on cpu0"));
1724 	crit_enter();
1725 	if (lmsg->ms_flags & MSGF_DONE)
1726 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1727 	crit_exit();
1728 }
1729 
1730 /*
1731  * Map interface name to
1732  * interface structure pointer.
1733  */
1734 struct ifnet *
1735 ifunit(const char *name)
1736 {
1737 	struct ifnet *ifp;
1738 
1739 	/*
1740 	 * Search all the interfaces for this name/number
1741 	 */
1742 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1743 
1744 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1745 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1746 			break;
1747 	}
1748 	return (ifp);
1749 }
1750 
1751 struct ifnet *
1752 ifunit_netisr(const char *name)
1753 {
1754 	const struct ifnet_array *arr;
1755 	int i;
1756 
1757 	/*
1758 	 * Search all the interfaces for this name/number
1759 	 */
1760 
1761 	arr = ifnet_array_get();
1762 	for (i = 0; i < arr->ifnet_count; ++i) {
1763 		struct ifnet *ifp = arr->ifnet_arr[i];
1764 
1765 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1766 			return ifp;
1767 	}
1768 	return NULL;
1769 }
1770 
1771 /*
1772  * Interface ioctls.
1773  */
1774 int
1775 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1776 {
1777 	struct ifnet *ifp;
1778 	struct ifreq *ifr;
1779 	struct ifstat *ifs;
1780 	int error, do_ifup = 0;
1781 	short oif_flags;
1782 	int new_flags;
1783 	size_t namelen, onamelen;
1784 	char new_name[IFNAMSIZ];
1785 	struct ifaddr *ifa;
1786 	struct sockaddr_dl *sdl;
1787 
1788 	switch (cmd) {
1789 	case SIOCGIFCONF:
1790 	case OSIOCGIFCONF:
1791 		return (ifconf(cmd, data, cred));
1792 	default:
1793 		break;
1794 	}
1795 
1796 	ifr = (struct ifreq *)data;
1797 
1798 	switch (cmd) {
1799 	case SIOCIFCREATE:
1800 	case SIOCIFCREATE2:
1801 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1802 			return (error);
1803 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1804 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1805 	case SIOCIFDESTROY:
1806 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1807 			return (error);
1808 		return (if_clone_destroy(ifr->ifr_name));
1809 	case SIOCIFGCLONERS:
1810 		return (if_clone_list((struct if_clonereq *)data));
1811 	default:
1812 		break;
1813 	}
1814 
1815 	/*
1816 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1817 	 * lock to serialize the ifconfig ioctl operation.
1818 	 */
1819 	ifnet_lock();
1820 
1821 	ifp = ifunit(ifr->ifr_name);
1822 	if (ifp == NULL) {
1823 		ifnet_unlock();
1824 		return (ENXIO);
1825 	}
1826 	error = 0;
1827 
1828 	switch (cmd) {
1829 	case SIOCGIFINDEX:
1830 		ifr->ifr_index = ifp->if_index;
1831 		break;
1832 
1833 	case SIOCGIFFLAGS:
1834 		ifr->ifr_flags = ifp->if_flags;
1835 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1836 		break;
1837 
1838 	case SIOCGIFCAP:
1839 		ifr->ifr_reqcap = ifp->if_capabilities;
1840 		ifr->ifr_curcap = ifp->if_capenable;
1841 		break;
1842 
1843 	case SIOCGIFMETRIC:
1844 		ifr->ifr_metric = ifp->if_metric;
1845 		break;
1846 
1847 	case SIOCGIFMTU:
1848 		ifr->ifr_mtu = ifp->if_mtu;
1849 		break;
1850 
1851 	case SIOCGIFTSOLEN:
1852 		ifr->ifr_tsolen = ifp->if_tsolen;
1853 		break;
1854 
1855 	case SIOCGIFDATA:
1856 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1857 				sizeof(ifp->if_data));
1858 		break;
1859 
1860 	case SIOCGIFPHYS:
1861 		ifr->ifr_phys = ifp->if_physical;
1862 		break;
1863 
1864 	case SIOCGIFPOLLCPU:
1865 		ifr->ifr_pollcpu = -1;
1866 		break;
1867 
1868 	case SIOCSIFPOLLCPU:
1869 		break;
1870 
1871 	case SIOCSIFFLAGS:
1872 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1873 		if (error)
1874 			break;
1875 		new_flags = (ifr->ifr_flags & 0xffff) |
1876 		    (ifr->ifr_flagshigh << 16);
1877 		if (ifp->if_flags & IFF_SMART) {
1878 			/* Smart drivers twiddle their own routes */
1879 		} else if (ifp->if_flags & IFF_UP &&
1880 		    (new_flags & IFF_UP) == 0) {
1881 			if_down(ifp);
1882 		} else if (new_flags & IFF_UP &&
1883 		    (ifp->if_flags & IFF_UP) == 0) {
1884 			do_ifup = 1;
1885 		}
1886 
1887 #ifdef IFPOLL_ENABLE
1888 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1889 			if (new_flags & IFF_NPOLLING)
1890 				ifpoll_register(ifp);
1891 			else
1892 				ifpoll_deregister(ifp);
1893 		}
1894 #endif
1895 
1896 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1897 			(new_flags &~ IFF_CANTCHANGE);
1898 		if (new_flags & IFF_PPROMISC) {
1899 			/* Permanently promiscuous mode requested */
1900 			ifp->if_flags |= IFF_PROMISC;
1901 		} else if (ifp->if_pcount == 0) {
1902 			ifp->if_flags &= ~IFF_PROMISC;
1903 		}
1904 		if (ifp->if_ioctl) {
1905 			ifnet_serialize_all(ifp);
1906 			ifp->if_ioctl(ifp, cmd, data, cred);
1907 			ifnet_deserialize_all(ifp);
1908 		}
1909 		if (do_ifup)
1910 			if_up(ifp);
1911 		getmicrotime(&ifp->if_lastchange);
1912 		break;
1913 
1914 	case SIOCSIFCAP:
1915 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1916 		if (error)
1917 			break;
1918 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1919 			error = EINVAL;
1920 			break;
1921 		}
1922 		ifnet_serialize_all(ifp);
1923 		ifp->if_ioctl(ifp, cmd, data, cred);
1924 		ifnet_deserialize_all(ifp);
1925 		break;
1926 
1927 	case SIOCSIFNAME:
1928 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1929 		if (error)
1930 			break;
1931 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1932 		if (error)
1933 			break;
1934 		if (new_name[0] == '\0') {
1935 			error = EINVAL;
1936 			break;
1937 		}
1938 		if (ifunit(new_name) != NULL) {
1939 			error = EEXIST;
1940 			break;
1941 		}
1942 
1943 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1944 
1945 		/* Announce the departure of the interface. */
1946 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1947 
1948 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1949 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1950 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1951 		namelen = strlen(new_name);
1952 		onamelen = sdl->sdl_nlen;
1953 		/*
1954 		 * Move the address if needed.  This is safe because we
1955 		 * allocate space for a name of length IFNAMSIZ when we
1956 		 * create this in if_attach().
1957 		 */
1958 		if (namelen != onamelen) {
1959 			bcopy(sdl->sdl_data + onamelen,
1960 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1961 		}
1962 		bcopy(new_name, sdl->sdl_data, namelen);
1963 		sdl->sdl_nlen = namelen;
1964 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1965 		bzero(sdl->sdl_data, onamelen);
1966 		while (namelen != 0)
1967 			sdl->sdl_data[--namelen] = 0xff;
1968 
1969 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1970 
1971 		/* Announce the return of the interface. */
1972 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1973 		break;
1974 
1975 	case SIOCSIFMETRIC:
1976 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1977 		if (error)
1978 			break;
1979 		ifp->if_metric = ifr->ifr_metric;
1980 		getmicrotime(&ifp->if_lastchange);
1981 		break;
1982 
1983 	case SIOCSIFPHYS:
1984 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1985 		if (error)
1986 			break;
1987 		if (ifp->if_ioctl == NULL) {
1988 		        error = EOPNOTSUPP;
1989 			break;
1990 		}
1991 		ifnet_serialize_all(ifp);
1992 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1993 		ifnet_deserialize_all(ifp);
1994 		if (error == 0)
1995 			getmicrotime(&ifp->if_lastchange);
1996 		break;
1997 
1998 	case SIOCSIFMTU:
1999 	{
2000 		u_long oldmtu = ifp->if_mtu;
2001 
2002 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2003 		if (error)
2004 			break;
2005 		if (ifp->if_ioctl == NULL) {
2006 			error = EOPNOTSUPP;
2007 			break;
2008 		}
2009 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2010 			error = EINVAL;
2011 			break;
2012 		}
2013 		ifnet_serialize_all(ifp);
2014 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2015 		ifnet_deserialize_all(ifp);
2016 		if (error == 0) {
2017 			getmicrotime(&ifp->if_lastchange);
2018 			rt_ifmsg(ifp);
2019 		}
2020 		/*
2021 		 * If the link MTU changed, do network layer specific procedure.
2022 		 */
2023 		if (ifp->if_mtu != oldmtu) {
2024 #ifdef INET6
2025 			nd6_setmtu(ifp);
2026 #endif
2027 		}
2028 		break;
2029 	}
2030 
2031 	case SIOCSIFTSOLEN:
2032 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2033 		if (error)
2034 			break;
2035 
2036 		/* XXX need driver supplied upper limit */
2037 		if (ifr->ifr_tsolen <= 0) {
2038 			error = EINVAL;
2039 			break;
2040 		}
2041 		ifp->if_tsolen = ifr->ifr_tsolen;
2042 		break;
2043 
2044 	case SIOCADDMULTI:
2045 	case SIOCDELMULTI:
2046 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2047 		if (error)
2048 			break;
2049 
2050 		/* Don't allow group membership on non-multicast interfaces. */
2051 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2052 			error = EOPNOTSUPP;
2053 			break;
2054 		}
2055 
2056 		/* Don't let users screw up protocols' entries. */
2057 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2058 			error = EINVAL;
2059 			break;
2060 		}
2061 
2062 		if (cmd == SIOCADDMULTI) {
2063 			struct ifmultiaddr *ifma;
2064 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2065 		} else {
2066 			error = if_delmulti(ifp, &ifr->ifr_addr);
2067 		}
2068 		if (error == 0)
2069 			getmicrotime(&ifp->if_lastchange);
2070 		break;
2071 
2072 	case SIOCSIFPHYADDR:
2073 	case SIOCDIFPHYADDR:
2074 #ifdef INET6
2075 	case SIOCSIFPHYADDR_IN6:
2076 #endif
2077 	case SIOCSLIFPHYADDR:
2078         case SIOCSIFMEDIA:
2079 	case SIOCSIFGENERIC:
2080 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2081 		if (error)
2082 			break;
2083 		if (ifp->if_ioctl == 0) {
2084 			error = EOPNOTSUPP;
2085 			break;
2086 		}
2087 		ifnet_serialize_all(ifp);
2088 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2089 		ifnet_deserialize_all(ifp);
2090 		if (error == 0)
2091 			getmicrotime(&ifp->if_lastchange);
2092 		break;
2093 
2094 	case SIOCGIFSTATUS:
2095 		ifs = (struct ifstat *)data;
2096 		ifs->ascii[0] = '\0';
2097 		/* fall through */
2098 	case SIOCGIFPSRCADDR:
2099 	case SIOCGIFPDSTADDR:
2100 	case SIOCGLIFPHYADDR:
2101 	case SIOCGIFMEDIA:
2102 	case SIOCGIFGENERIC:
2103 		if (ifp->if_ioctl == NULL) {
2104 			error = EOPNOTSUPP;
2105 			break;
2106 		}
2107 		ifnet_serialize_all(ifp);
2108 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2109 		ifnet_deserialize_all(ifp);
2110 		break;
2111 
2112 	case SIOCSIFLLADDR:
2113 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2114 		if (error)
2115 			break;
2116 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2117 				     ifr->ifr_addr.sa_len);
2118 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2119 		break;
2120 
2121 	default:
2122 		oif_flags = ifp->if_flags;
2123 		if (so->so_proto == 0) {
2124 			error = EOPNOTSUPP;
2125 			break;
2126 		}
2127 		error = so_pru_control_direct(so, cmd, data, ifp);
2128 
2129 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2130 #ifdef INET6
2131 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2132 			if (ifp->if_flags & IFF_UP) {
2133 				crit_enter();
2134 				in6_if_up(ifp);
2135 				crit_exit();
2136 			}
2137 #endif
2138 		}
2139 		break;
2140 	}
2141 
2142 	ifnet_unlock();
2143 	return (error);
2144 }
2145 
2146 /*
2147  * Set/clear promiscuous mode on interface ifp based on the truth value
2148  * of pswitch.  The calls are reference counted so that only the first
2149  * "on" request actually has an effect, as does the final "off" request.
2150  * Results are undefined if the "off" and "on" requests are not matched.
2151  */
2152 int
2153 ifpromisc(struct ifnet *ifp, int pswitch)
2154 {
2155 	struct ifreq ifr;
2156 	int error;
2157 	int oldflags;
2158 
2159 	oldflags = ifp->if_flags;
2160 	if (ifp->if_flags & IFF_PPROMISC) {
2161 		/* Do nothing if device is in permanently promiscuous mode */
2162 		ifp->if_pcount += pswitch ? 1 : -1;
2163 		return (0);
2164 	}
2165 	if (pswitch) {
2166 		/*
2167 		 * If the device is not configured up, we cannot put it in
2168 		 * promiscuous mode.
2169 		 */
2170 		if ((ifp->if_flags & IFF_UP) == 0)
2171 			return (ENETDOWN);
2172 		if (ifp->if_pcount++ != 0)
2173 			return (0);
2174 		ifp->if_flags |= IFF_PROMISC;
2175 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2176 		    ifp->if_xname);
2177 	} else {
2178 		if (--ifp->if_pcount > 0)
2179 			return (0);
2180 		ifp->if_flags &= ~IFF_PROMISC;
2181 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2182 		    ifp->if_xname);
2183 	}
2184 	ifr.ifr_flags = ifp->if_flags;
2185 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2186 	ifnet_serialize_all(ifp);
2187 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2188 	ifnet_deserialize_all(ifp);
2189 	if (error == 0)
2190 		rt_ifmsg(ifp);
2191 	else
2192 		ifp->if_flags = oldflags;
2193 	return error;
2194 }
2195 
2196 /*
2197  * Return interface configuration
2198  * of system.  List may be used
2199  * in later ioctl's (above) to get
2200  * other information.
2201  */
2202 static int
2203 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2204 {
2205 	struct ifconf *ifc = (struct ifconf *)data;
2206 	struct ifnet *ifp;
2207 	struct sockaddr *sa;
2208 	struct ifreq ifr, *ifrp;
2209 	int space = ifc->ifc_len, error = 0;
2210 
2211 	ifrp = ifc->ifc_req;
2212 
2213 	ifnet_lock();
2214 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2215 		struct ifaddr_container *ifac, *ifac_mark;
2216 		struct ifaddr_marker mark;
2217 		struct ifaddrhead *head;
2218 		int addrs;
2219 
2220 		if (space <= sizeof ifr)
2221 			break;
2222 
2223 		/*
2224 		 * Zero the stack declared structure first to prevent
2225 		 * memory disclosure.
2226 		 */
2227 		bzero(&ifr, sizeof(ifr));
2228 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2229 		    >= sizeof(ifr.ifr_name)) {
2230 			error = ENAMETOOLONG;
2231 			break;
2232 		}
2233 
2234 		/*
2235 		 * Add a marker, since copyout() could block and during that
2236 		 * period the list could be changed.  Inserting the marker to
2237 		 * the header of the list will not cause trouble for the code
2238 		 * assuming that the first element of the list is AF_LINK; the
2239 		 * marker will be moved to the next position w/o blocking.
2240 		 */
2241 		ifa_marker_init(&mark, ifp);
2242 		ifac_mark = &mark.ifac;
2243 		head = &ifp->if_addrheads[mycpuid];
2244 
2245 		addrs = 0;
2246 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2247 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2248 			struct ifaddr *ifa = ifac->ifa;
2249 
2250 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2251 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2252 
2253 			/* Ignore marker */
2254 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2255 				continue;
2256 
2257 			if (space <= sizeof ifr)
2258 				break;
2259 			sa = ifa->ifa_addr;
2260 			if (cred->cr_prison &&
2261 			    prison_if(cred, sa))
2262 				continue;
2263 			addrs++;
2264 			/*
2265 			 * Keep a reference on this ifaddr, so that it will
2266 			 * not be destroyed when its address is copied to
2267 			 * the userland, which could block.
2268 			 */
2269 			IFAREF(ifa);
2270 			if (sa->sa_len <= sizeof(*sa)) {
2271 				ifr.ifr_addr = *sa;
2272 				error = copyout(&ifr, ifrp, sizeof ifr);
2273 				ifrp++;
2274 			} else {
2275 				if (space < (sizeof ifr) + sa->sa_len -
2276 					    sizeof(*sa)) {
2277 					IFAFREE(ifa);
2278 					break;
2279 				}
2280 				space -= sa->sa_len - sizeof(*sa);
2281 				error = copyout(&ifr, ifrp,
2282 						sizeof ifr.ifr_name);
2283 				if (error == 0)
2284 					error = copyout(sa, &ifrp->ifr_addr,
2285 							sa->sa_len);
2286 				ifrp = (struct ifreq *)
2287 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2288 			}
2289 			IFAFREE(ifa);
2290 			if (error)
2291 				break;
2292 			space -= sizeof ifr;
2293 		}
2294 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2295 		if (error)
2296 			break;
2297 		if (!addrs) {
2298 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2299 			error = copyout(&ifr, ifrp, sizeof ifr);
2300 			if (error)
2301 				break;
2302 			space -= sizeof ifr;
2303 			ifrp++;
2304 		}
2305 	}
2306 	ifnet_unlock();
2307 
2308 	ifc->ifc_len -= space;
2309 	return (error);
2310 }
2311 
2312 /*
2313  * Just like if_promisc(), but for all-multicast-reception mode.
2314  */
2315 int
2316 if_allmulti(struct ifnet *ifp, int onswitch)
2317 {
2318 	int error = 0;
2319 	struct ifreq ifr;
2320 
2321 	crit_enter();
2322 
2323 	if (onswitch) {
2324 		if (ifp->if_amcount++ == 0) {
2325 			ifp->if_flags |= IFF_ALLMULTI;
2326 			ifr.ifr_flags = ifp->if_flags;
2327 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2328 			ifnet_serialize_all(ifp);
2329 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2330 					      NULL);
2331 			ifnet_deserialize_all(ifp);
2332 		}
2333 	} else {
2334 		if (ifp->if_amcount > 1) {
2335 			ifp->if_amcount--;
2336 		} else {
2337 			ifp->if_amcount = 0;
2338 			ifp->if_flags &= ~IFF_ALLMULTI;
2339 			ifr.ifr_flags = ifp->if_flags;
2340 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2341 			ifnet_serialize_all(ifp);
2342 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2343 					      NULL);
2344 			ifnet_deserialize_all(ifp);
2345 		}
2346 	}
2347 
2348 	crit_exit();
2349 
2350 	if (error == 0)
2351 		rt_ifmsg(ifp);
2352 	return error;
2353 }
2354 
2355 /*
2356  * Add a multicast listenership to the interface in question.
2357  * The link layer provides a routine which converts
2358  */
2359 int
2360 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2361     struct ifmultiaddr **retifma)
2362 {
2363 	struct sockaddr *llsa, *dupsa;
2364 	int error;
2365 	struct ifmultiaddr *ifma;
2366 
2367 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2368 
2369 	/*
2370 	 * If the matching multicast address already exists
2371 	 * then don't add a new one, just add a reference
2372 	 */
2373 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2374 		if (sa_equal(sa, ifma->ifma_addr)) {
2375 			ifma->ifma_refcount++;
2376 			if (retifma)
2377 				*retifma = ifma;
2378 			return 0;
2379 		}
2380 	}
2381 
2382 	/*
2383 	 * Give the link layer a chance to accept/reject it, and also
2384 	 * find out which AF_LINK address this maps to, if it isn't one
2385 	 * already.
2386 	 */
2387 	if (ifp->if_resolvemulti) {
2388 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2389 		if (error)
2390 			return error;
2391 	} else {
2392 		llsa = NULL;
2393 	}
2394 
2395 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2396 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2397 	bcopy(sa, dupsa, sa->sa_len);
2398 
2399 	ifma->ifma_addr = dupsa;
2400 	ifma->ifma_lladdr = llsa;
2401 	ifma->ifma_ifp = ifp;
2402 	ifma->ifma_refcount = 1;
2403 	ifma->ifma_protospec = NULL;
2404 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2405 
2406 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2407 	if (retifma)
2408 		*retifma = ifma;
2409 
2410 	if (llsa != NULL) {
2411 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2412 			if (sa_equal(ifma->ifma_addr, llsa))
2413 				break;
2414 		}
2415 		if (ifma) {
2416 			ifma->ifma_refcount++;
2417 		} else {
2418 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2419 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2420 			bcopy(llsa, dupsa, llsa->sa_len);
2421 			ifma->ifma_addr = dupsa;
2422 			ifma->ifma_ifp = ifp;
2423 			ifma->ifma_refcount = 1;
2424 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2425 		}
2426 	}
2427 	/*
2428 	 * We are certain we have added something, so call down to the
2429 	 * interface to let them know about it.
2430 	 */
2431 	if (ifp->if_ioctl)
2432 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2433 
2434 	return 0;
2435 }
2436 
2437 int
2438 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2439     struct ifmultiaddr **retifma)
2440 {
2441 	int error;
2442 
2443 	ifnet_serialize_all(ifp);
2444 	error = if_addmulti_serialized(ifp, sa, retifma);
2445 	ifnet_deserialize_all(ifp);
2446 
2447 	return error;
2448 }
2449 
2450 /*
2451  * Remove a reference to a multicast address on this interface.  Yell
2452  * if the request does not match an existing membership.
2453  */
2454 static int
2455 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2456 {
2457 	struct ifmultiaddr *ifma;
2458 
2459 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2460 
2461 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2462 		if (sa_equal(sa, ifma->ifma_addr))
2463 			break;
2464 	if (ifma == NULL)
2465 		return ENOENT;
2466 
2467 	if (ifma->ifma_refcount > 1) {
2468 		ifma->ifma_refcount--;
2469 		return 0;
2470 	}
2471 
2472 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2473 	sa = ifma->ifma_lladdr;
2474 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2475 	/*
2476 	 * Make sure the interface driver is notified
2477 	 * in the case of a link layer mcast group being left.
2478 	 */
2479 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2480 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2481 	kfree(ifma->ifma_addr, M_IFMADDR);
2482 	kfree(ifma, M_IFMADDR);
2483 	if (sa == NULL)
2484 		return 0;
2485 
2486 	/*
2487 	 * Now look for the link-layer address which corresponds to
2488 	 * this network address.  It had been squirreled away in
2489 	 * ifma->ifma_lladdr for this purpose (so we don't have
2490 	 * to call ifp->if_resolvemulti() again), and we saved that
2491 	 * value in sa above.  If some nasty deleted the
2492 	 * link-layer address out from underneath us, we can deal because
2493 	 * the address we stored was is not the same as the one which was
2494 	 * in the record for the link-layer address.  (So we don't complain
2495 	 * in that case.)
2496 	 */
2497 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2498 		if (sa_equal(sa, ifma->ifma_addr))
2499 			break;
2500 	if (ifma == NULL)
2501 		return 0;
2502 
2503 	if (ifma->ifma_refcount > 1) {
2504 		ifma->ifma_refcount--;
2505 		return 0;
2506 	}
2507 
2508 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2509 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2510 	kfree(ifma->ifma_addr, M_IFMADDR);
2511 	kfree(sa, M_IFMADDR);
2512 	kfree(ifma, M_IFMADDR);
2513 
2514 	return 0;
2515 }
2516 
2517 int
2518 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2519 {
2520 	int error;
2521 
2522 	ifnet_serialize_all(ifp);
2523 	error = if_delmulti_serialized(ifp, sa);
2524 	ifnet_deserialize_all(ifp);
2525 
2526 	return error;
2527 }
2528 
2529 /*
2530  * Delete all multicast group membership for an interface.
2531  * Should be used to quickly flush all multicast filters.
2532  */
2533 void
2534 if_delallmulti_serialized(struct ifnet *ifp)
2535 {
2536 	struct ifmultiaddr *ifma, mark;
2537 	struct sockaddr sa;
2538 
2539 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2540 
2541 	bzero(&sa, sizeof(sa));
2542 	sa.sa_family = AF_UNSPEC;
2543 	sa.sa_len = sizeof(sa);
2544 
2545 	bzero(&mark, sizeof(mark));
2546 	mark.ifma_addr = &sa;
2547 
2548 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2549 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2550 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2551 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2552 		    ifma_link);
2553 
2554 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2555 			continue;
2556 
2557 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2558 	}
2559 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2560 }
2561 
2562 
2563 /*
2564  * Set the link layer address on an interface.
2565  *
2566  * At this time we only support certain types of interfaces,
2567  * and we don't allow the length of the address to change.
2568  */
2569 int
2570 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2571 {
2572 	struct sockaddr_dl *sdl;
2573 	struct ifreq ifr;
2574 
2575 	sdl = IF_LLSOCKADDR(ifp);
2576 	if (sdl == NULL)
2577 		return (EINVAL);
2578 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2579 		return (EINVAL);
2580 	switch (ifp->if_type) {
2581 	case IFT_ETHER:			/* these types use struct arpcom */
2582 	case IFT_XETHER:
2583 	case IFT_L2VLAN:
2584 	case IFT_IEEE8023ADLAG:
2585 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2586 		bcopy(lladdr, LLADDR(sdl), len);
2587 		break;
2588 	default:
2589 		return (ENODEV);
2590 	}
2591 	/*
2592 	 * If the interface is already up, we need
2593 	 * to re-init it in order to reprogram its
2594 	 * address filter.
2595 	 */
2596 	ifnet_serialize_all(ifp);
2597 	if ((ifp->if_flags & IFF_UP) != 0) {
2598 #ifdef INET
2599 		struct ifaddr_container *ifac;
2600 #endif
2601 
2602 		ifp->if_flags &= ~IFF_UP;
2603 		ifr.ifr_flags = ifp->if_flags;
2604 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2605 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2606 			      NULL);
2607 		ifp->if_flags |= IFF_UP;
2608 		ifr.ifr_flags = ifp->if_flags;
2609 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2610 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2611 				 NULL);
2612 #ifdef INET
2613 		/*
2614 		 * Also send gratuitous ARPs to notify other nodes about
2615 		 * the address change.
2616 		 */
2617 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2618 			struct ifaddr *ifa = ifac->ifa;
2619 
2620 			if (ifa->ifa_addr != NULL &&
2621 			    ifa->ifa_addr->sa_family == AF_INET)
2622 				arp_gratuitous(ifp, ifa);
2623 		}
2624 #endif
2625 	}
2626 	ifnet_deserialize_all(ifp);
2627 	return (0);
2628 }
2629 
2630 struct ifmultiaddr *
2631 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2632 {
2633 	struct ifmultiaddr *ifma;
2634 
2635 	/* TODO: need ifnet_serialize_main */
2636 	ifnet_serialize_all(ifp);
2637 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2638 		if (sa_equal(ifma->ifma_addr, sa))
2639 			break;
2640 	ifnet_deserialize_all(ifp);
2641 
2642 	return ifma;
2643 }
2644 
2645 /*
2646  * This function locates the first real ethernet MAC from a network
2647  * card and loads it into node, returning 0 on success or ENOENT if
2648  * no suitable interfaces were found.  It is used by the uuid code to
2649  * generate a unique 6-byte number.
2650  */
2651 int
2652 if_getanyethermac(uint16_t *node, int minlen)
2653 {
2654 	struct ifnet *ifp;
2655 	struct sockaddr_dl *sdl;
2656 
2657 	ifnet_lock();
2658 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2659 		if (ifp->if_type != IFT_ETHER)
2660 			continue;
2661 		sdl = IF_LLSOCKADDR(ifp);
2662 		if (sdl->sdl_alen < minlen)
2663 			continue;
2664 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2665 		      minlen);
2666 		ifnet_unlock();
2667 		return(0);
2668 	}
2669 	ifnet_unlock();
2670 	return (ENOENT);
2671 }
2672 
2673 /*
2674  * The name argument must be a pointer to storage which will last as
2675  * long as the interface does.  For physical devices, the result of
2676  * device_get_name(dev) is a good choice and for pseudo-devices a
2677  * static string works well.
2678  */
2679 void
2680 if_initname(struct ifnet *ifp, const char *name, int unit)
2681 {
2682 	ifp->if_dname = name;
2683 	ifp->if_dunit = unit;
2684 	if (unit != IF_DUNIT_NONE)
2685 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2686 	else
2687 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2688 }
2689 
2690 int
2691 if_printf(struct ifnet *ifp, const char *fmt, ...)
2692 {
2693 	__va_list ap;
2694 	int retval;
2695 
2696 	retval = kprintf("%s: ", ifp->if_xname);
2697 	__va_start(ap, fmt);
2698 	retval += kvprintf(fmt, ap);
2699 	__va_end(ap);
2700 	return (retval);
2701 }
2702 
2703 struct ifnet *
2704 if_alloc(uint8_t type)
2705 {
2706         struct ifnet *ifp;
2707 	size_t size;
2708 
2709 	/*
2710 	 * XXX temporary hack until arpcom is setup in if_l2com
2711 	 */
2712 	if (type == IFT_ETHER)
2713 		size = sizeof(struct arpcom);
2714 	else
2715 		size = sizeof(struct ifnet);
2716 
2717 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2718 
2719 	ifp->if_type = type;
2720 
2721 	if (if_com_alloc[type] != NULL) {
2722 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2723 		if (ifp->if_l2com == NULL) {
2724 			kfree(ifp, M_IFNET);
2725 			return (NULL);
2726 		}
2727 	}
2728 	return (ifp);
2729 }
2730 
2731 void
2732 if_free(struct ifnet *ifp)
2733 {
2734 	kfree(ifp, M_IFNET);
2735 }
2736 
2737 void
2738 ifq_set_classic(struct ifaltq *ifq)
2739 {
2740 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2741 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2742 }
2743 
2744 void
2745 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2746     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2747 {
2748 	int q;
2749 
2750 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2751 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2752 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2753 	KASSERT(request != NULL, ("request is not specified"));
2754 
2755 	ifq->altq_mapsubq = mapsubq;
2756 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2757 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2758 
2759 		ifsq->ifsq_enqueue = enqueue;
2760 		ifsq->ifsq_dequeue = dequeue;
2761 		ifsq->ifsq_request = request;
2762 	}
2763 }
2764 
2765 static void
2766 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2767 {
2768 
2769 	classq_add(&ifsq->ifsq_norm, m);
2770 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2771 }
2772 
2773 static void
2774 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2775 {
2776 
2777 	classq_add(&ifsq->ifsq_prio, m);
2778 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2779 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2780 }
2781 
2782 static struct mbuf *
2783 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2784 {
2785 	struct mbuf *m;
2786 
2787 	m = classq_get(&ifsq->ifsq_norm);
2788 	if (m != NULL)
2789 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2790 	return (m);
2791 }
2792 
2793 static struct mbuf *
2794 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2795 {
2796 	struct mbuf *m;
2797 
2798 	m = classq_get(&ifsq->ifsq_prio);
2799 	if (m != NULL) {
2800 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2801 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2802 	}
2803 	return (m);
2804 }
2805 
2806 int
2807 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2808     struct altq_pktattr *pa __unused)
2809 {
2810 
2811 	M_ASSERTPKTHDR(m);
2812 again:
2813 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2814 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2815 		struct mbuf *m_drop;
2816 
2817 		if (m->m_flags & M_PRIO) {
2818 			m_drop = NULL;
2819 			if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
2820 			    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
2821 				/* Try dropping some from normal queue. */
2822 				m_drop = ifsq_norm_dequeue(ifsq);
2823 			}
2824 			if (m_drop == NULL)
2825 				m_drop = ifsq_prio_dequeue(ifsq);
2826 		} else {
2827 			m_drop = ifsq_norm_dequeue(ifsq);
2828 		}
2829 		if (m_drop != NULL) {
2830 			IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
2831 			m_freem(m_drop);
2832 			goto again;
2833 		}
2834 		/*
2835 		 * No old packets could be dropped!
2836 		 * NOTE: Caller increases oqdrops.
2837 		 */
2838 		m_freem(m);
2839 		return (ENOBUFS);
2840 	} else {
2841 		if (m->m_flags & M_PRIO)
2842 			ifsq_prio_enqueue(ifsq, m);
2843 		else
2844 			ifsq_norm_enqueue(ifsq, m);
2845 		return (0);
2846 	}
2847 }
2848 
2849 struct mbuf *
2850 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2851 {
2852 	struct mbuf *m;
2853 
2854 	switch (op) {
2855 	case ALTDQ_POLL:
2856 		m = classq_head(&ifsq->ifsq_prio);
2857 		if (m == NULL)
2858 			m = classq_head(&ifsq->ifsq_norm);
2859 		break;
2860 
2861 	case ALTDQ_REMOVE:
2862 		m = ifsq_prio_dequeue(ifsq);
2863 		if (m == NULL)
2864 			m = ifsq_norm_dequeue(ifsq);
2865 		break;
2866 
2867 	default:
2868 		panic("unsupported ALTQ dequeue op: %d", op);
2869 	}
2870 	return m;
2871 }
2872 
2873 int
2874 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2875 {
2876 	switch (req) {
2877 	case ALTRQ_PURGE:
2878 		for (;;) {
2879 			struct mbuf *m;
2880 
2881 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2882 			if (m == NULL)
2883 				break;
2884 			m_freem(m);
2885 		}
2886 		break;
2887 
2888 	default:
2889 		panic("unsupported ALTQ request: %d", req);
2890 	}
2891 	return 0;
2892 }
2893 
2894 static void
2895 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2896 {
2897 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2898 	int running = 0, need_sched;
2899 
2900 	/*
2901 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2902 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2903 	 * the subqueue will be scheduled on the subqueue owner CPU.
2904 	 */
2905 	if (!ifsq_tryserialize_hw(ifsq)) {
2906 		/*
2907 		 * Subqueue hardware serializer contention happened,
2908 		 * ifnet.if_start on the subqueue is scheduled on
2909 		 * the subqueue owner CPU, and we keep going.
2910 		 */
2911 		ifsq_ifstart_schedule(ifsq, 1);
2912 		return;
2913 	}
2914 
2915 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2916 		ifp->if_start(ifp, ifsq);
2917 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2918 			running = 1;
2919 	}
2920 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2921 
2922 	ifsq_deserialize_hw(ifsq);
2923 
2924 	if (need_sched) {
2925 		/*
2926 		 * More data need to be transmitted, ifnet.if_start on the
2927 		 * subqueue is scheduled on the subqueue owner CPU, and we
2928 		 * keep going.
2929 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2930 		 */
2931 		ifsq_ifstart_schedule(ifsq, force_sched);
2932 	}
2933 }
2934 
2935 /*
2936  * Subqeue packets staging mechanism:
2937  *
2938  * The packets enqueued into the subqueue are staged to a certain amount
2939  * before the ifnet.if_start on the subqueue is called.  In this way, the
2940  * driver could avoid writing to hardware registers upon every packet,
2941  * instead, hardware registers could be written when certain amount of
2942  * packets are put onto hardware TX ring.  The measurement on several modern
2943  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2944  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2945  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2946  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2947  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2948  *
2949  * Subqueue packets staging is performed for two entry points into drivers'
2950  * transmission function:
2951  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2952  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2953  *
2954  * Subqueue packets staging will be stopped upon any of the following
2955  * conditions:
2956  * - If the count of packets enqueued on the current CPU is great than or
2957  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2958  * - If the total length of packets enqueued on the current CPU is great
2959  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2960  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2961  *   is usually less than hardware's MTU.
2962  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2963  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2964  *   released.
2965  * - The if_start_rollup(), which is registered as low priority netisr
2966  *   rollup function, is called; probably because no more work is pending
2967  *   for netisr.
2968  *
2969  * NOTE:
2970  * Currently subqueue packet staging is only performed in netisr threads.
2971  */
2972 int
2973 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2974 {
2975 	struct ifaltq *ifq = &ifp->if_snd;
2976 	struct ifaltq_subque *ifsq;
2977 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2978 	struct ifsubq_stage_head *head = NULL;
2979 	struct ifsubq_stage *stage = NULL;
2980 	struct globaldata *gd = mycpu;
2981 	struct thread *td = gd->gd_curthread;
2982 
2983 	crit_enter_quick(td);
2984 
2985 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2986 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2987 
2988 	len = m->m_pkthdr.len;
2989 	if (m->m_flags & M_MCAST)
2990 		mcast = 1;
2991 
2992 	if (td->td_type == TD_TYPE_NETISR) {
2993 		head = &ifsubq_stage_heads[mycpuid];
2994 		stage = ifsq_get_stage(ifsq, mycpuid);
2995 
2996 		stage->stg_cnt++;
2997 		stage->stg_len += len;
2998 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2999 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3000 			avoid_start = 1;
3001 	}
3002 
3003 	ALTQ_SQ_LOCK(ifsq);
3004 	error = ifsq_enqueue_locked(ifsq, m, pa);
3005 	if (error) {
3006 		IFNET_STAT_INC(ifp, oqdrops, 1);
3007 		if (!ifsq_data_ready(ifsq)) {
3008 			ALTQ_SQ_UNLOCK(ifsq);
3009 			crit_exit_quick(td);
3010 			return error;
3011 		}
3012 		avoid_start = 0;
3013 	}
3014 	if (!ifsq_is_started(ifsq)) {
3015 		if (avoid_start) {
3016 			ALTQ_SQ_UNLOCK(ifsq);
3017 
3018 			KKASSERT(!error);
3019 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3020 				ifsq_stage_insert(head, stage);
3021 
3022 			IFNET_STAT_INC(ifp, obytes, len);
3023 			if (mcast)
3024 				IFNET_STAT_INC(ifp, omcasts, 1);
3025 			crit_exit_quick(td);
3026 			return error;
3027 		}
3028 
3029 		/*
3030 		 * Hold the subqueue interlock of ifnet.if_start
3031 		 */
3032 		ifsq_set_started(ifsq);
3033 		start = 1;
3034 	}
3035 	ALTQ_SQ_UNLOCK(ifsq);
3036 
3037 	if (!error) {
3038 		IFNET_STAT_INC(ifp, obytes, len);
3039 		if (mcast)
3040 			IFNET_STAT_INC(ifp, omcasts, 1);
3041 	}
3042 
3043 	if (stage != NULL) {
3044 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3045 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3046 			if (!avoid_start) {
3047 				ifsq_stage_remove(head, stage);
3048 				ifsq_ifstart_schedule(ifsq, 1);
3049 			}
3050 			crit_exit_quick(td);
3051 			return error;
3052 		}
3053 
3054 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3055 			ifsq_stage_remove(head, stage);
3056 		} else {
3057 			stage->stg_cnt = 0;
3058 			stage->stg_len = 0;
3059 		}
3060 	}
3061 
3062 	if (!start) {
3063 		crit_exit_quick(td);
3064 		return error;
3065 	}
3066 
3067 	ifsq_ifstart_try(ifsq, 0);
3068 
3069 	crit_exit_quick(td);
3070 	return error;
3071 }
3072 
3073 void *
3074 ifa_create(int size)
3075 {
3076 	struct ifaddr *ifa;
3077 	int i;
3078 
3079 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3080 
3081 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3082 	ifa->ifa_containers =
3083 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3084 	        M_IFADDR, M_INTWAIT | M_ZERO);
3085 
3086 	ifa->ifa_ncnt = ncpus;
3087 	for (i = 0; i < ncpus; ++i) {
3088 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3089 
3090 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3091 		ifac->ifa = ifa;
3092 		ifac->ifa_refcnt = 1;
3093 	}
3094 #ifdef IFADDR_DEBUG
3095 	kprintf("alloc ifa %p %d\n", ifa, size);
3096 #endif
3097 	return ifa;
3098 }
3099 
3100 void
3101 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3102 {
3103 	struct ifaddr *ifa = ifac->ifa;
3104 
3105 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3106 	KKASSERT(ifac->ifa_refcnt == 0);
3107 	KASSERT(ifac->ifa_listmask == 0,
3108 		("ifa is still on %#x lists", ifac->ifa_listmask));
3109 
3110 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3111 
3112 #ifdef IFADDR_DEBUG_VERBOSE
3113 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3114 #endif
3115 
3116 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3117 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3118 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3119 #ifdef IFADDR_DEBUG
3120 		kprintf("free ifa %p\n", ifa);
3121 #endif
3122 		kfree(ifa->ifa_containers, M_IFADDR);
3123 		kfree(ifa, M_IFADDR);
3124 	}
3125 }
3126 
3127 static void
3128 ifa_iflink_dispatch(netmsg_t nmsg)
3129 {
3130 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3131 	struct ifaddr *ifa = msg->ifa;
3132 	struct ifnet *ifp = msg->ifp;
3133 	int cpu = mycpuid;
3134 	struct ifaddr_container *ifac;
3135 
3136 	crit_enter();
3137 
3138 	ifac = &ifa->ifa_containers[cpu];
3139 	ASSERT_IFAC_VALID(ifac);
3140 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3141 		("ifaddr is on if_addrheads"));
3142 
3143 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3144 	if (msg->tail)
3145 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3146 	else
3147 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3148 
3149 	crit_exit();
3150 
3151 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3152 }
3153 
3154 void
3155 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3156 {
3157 	struct netmsg_ifaddr msg;
3158 
3159 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3160 		    0, ifa_iflink_dispatch);
3161 	msg.ifa = ifa;
3162 	msg.ifp = ifp;
3163 	msg.tail = tail;
3164 
3165 	ifa_domsg(&msg.base.lmsg, 0);
3166 }
3167 
3168 static void
3169 ifa_ifunlink_dispatch(netmsg_t nmsg)
3170 {
3171 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3172 	struct ifaddr *ifa = msg->ifa;
3173 	struct ifnet *ifp = msg->ifp;
3174 	int cpu = mycpuid;
3175 	struct ifaddr_container *ifac;
3176 
3177 	crit_enter();
3178 
3179 	ifac = &ifa->ifa_containers[cpu];
3180 	ASSERT_IFAC_VALID(ifac);
3181 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3182 		("ifaddr is not on if_addrhead"));
3183 
3184 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3185 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3186 
3187 	crit_exit();
3188 
3189 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3190 }
3191 
3192 void
3193 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3194 {
3195 	struct netmsg_ifaddr msg;
3196 
3197 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3198 		    0, ifa_ifunlink_dispatch);
3199 	msg.ifa = ifa;
3200 	msg.ifp = ifp;
3201 
3202 	ifa_domsg(&msg.base.lmsg, 0);
3203 }
3204 
3205 static void
3206 ifa_destroy_dispatch(netmsg_t nmsg)
3207 {
3208 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3209 
3210 	IFAFREE(msg->ifa);
3211 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3212 }
3213 
3214 void
3215 ifa_destroy(struct ifaddr *ifa)
3216 {
3217 	struct netmsg_ifaddr msg;
3218 
3219 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3220 		    0, ifa_destroy_dispatch);
3221 	msg.ifa = ifa;
3222 
3223 	ifa_domsg(&msg.base.lmsg, 0);
3224 }
3225 
3226 struct lwkt_port *
3227 ifnet_portfn(int cpu)
3228 {
3229 	return &ifnet_threads[cpu]->td_msgport;
3230 }
3231 
3232 void
3233 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3234 {
3235 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3236 
3237 	if (next_cpu < ncpus)
3238 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3239 	else
3240 		lwkt_replymsg(lmsg, 0);
3241 }
3242 
3243 int
3244 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3245 {
3246 	KKASSERT(cpu < ncpus);
3247 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3248 }
3249 
3250 void
3251 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3252 {
3253 	KKASSERT(cpu < ncpus);
3254 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3255 }
3256 
3257 /*
3258  * Generic netmsg service loop.  Some protocols may roll their own but all
3259  * must do the basic command dispatch function call done here.
3260  */
3261 static void
3262 ifnet_service_loop(void *arg __unused)
3263 {
3264 	netmsg_t msg;
3265 
3266 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3267 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3268 		msg->base.nm_dispatch(msg);
3269 	}
3270 }
3271 
3272 static void
3273 if_start_rollup(void)
3274 {
3275 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3276 	struct ifsubq_stage *stage;
3277 
3278 	crit_enter();
3279 
3280 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3281 		struct ifaltq_subque *ifsq = stage->stg_subq;
3282 		int is_sched = 0;
3283 
3284 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3285 			is_sched = 1;
3286 		ifsq_stage_remove(head, stage);
3287 
3288 		if (is_sched) {
3289 			ifsq_ifstart_schedule(ifsq, 1);
3290 		} else {
3291 			int start = 0;
3292 
3293 			ALTQ_SQ_LOCK(ifsq);
3294 			if (!ifsq_is_started(ifsq)) {
3295 				/*
3296 				 * Hold the subqueue interlock of
3297 				 * ifnet.if_start
3298 				 */
3299 				ifsq_set_started(ifsq);
3300 				start = 1;
3301 			}
3302 			ALTQ_SQ_UNLOCK(ifsq);
3303 
3304 			if (start)
3305 				ifsq_ifstart_try(ifsq, 1);
3306 		}
3307 		KKASSERT((stage->stg_flags &
3308 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3309 	}
3310 
3311 	crit_exit();
3312 }
3313 
3314 static void
3315 ifnetinit(void *dummy __unused)
3316 {
3317 	int i;
3318 
3319 	for (i = 0; i < ncpus; ++i) {
3320 		struct thread **thr = &ifnet_threads[i];
3321 
3322 		lwkt_create(ifnet_service_loop, NULL, thr, NULL,
3323 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3324 			    i, "ifnet %d", i);
3325 		netmsg_service_port_init(&(*thr)->td_msgport);
3326 		lwkt_schedule(*thr);
3327 	}
3328 
3329 	for (i = 0; i < ncpus; ++i)
3330 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3331 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3332 }
3333 
3334 void
3335 if_register_com_alloc(u_char type,
3336     if_com_alloc_t *a, if_com_free_t *f)
3337 {
3338 
3339         KASSERT(if_com_alloc[type] == NULL,
3340             ("if_register_com_alloc: %d already registered", type));
3341         KASSERT(if_com_free[type] == NULL,
3342             ("if_register_com_alloc: %d free already registered", type));
3343 
3344         if_com_alloc[type] = a;
3345         if_com_free[type] = f;
3346 }
3347 
3348 void
3349 if_deregister_com_alloc(u_char type)
3350 {
3351 
3352         KASSERT(if_com_alloc[type] != NULL,
3353             ("if_deregister_com_alloc: %d not registered", type));
3354         KASSERT(if_com_free[type] != NULL,
3355             ("if_deregister_com_alloc: %d free not registered", type));
3356         if_com_alloc[type] = NULL;
3357         if_com_free[type] = NULL;
3358 }
3359 
3360 int
3361 if_ring_count2(int cnt, int cnt_max)
3362 {
3363 	int shift = 0;
3364 
3365 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3366 	    ("invalid ring count max %d", cnt_max));
3367 
3368 	if (cnt <= 0)
3369 		cnt = cnt_max;
3370 	if (cnt > ncpus2)
3371 		cnt = ncpus2;
3372 	if (cnt > cnt_max)
3373 		cnt = cnt_max;
3374 
3375 	while ((1 << (shift + 1)) <= cnt)
3376 		++shift;
3377 	cnt = 1 << shift;
3378 
3379 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3380 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3381 	     cnt, ncpus2, cnt_max));
3382 	return cnt;
3383 }
3384 
3385 void
3386 ifq_set_maxlen(struct ifaltq *ifq, int len)
3387 {
3388 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3389 }
3390 
3391 int
3392 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3393 {
3394 	return ALTQ_SUBQ_INDEX_DEFAULT;
3395 }
3396 
3397 int
3398 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3399 {
3400 	return (cpuid & ifq->altq_subq_mask);
3401 }
3402 
3403 static void
3404 ifsq_watchdog(void *arg)
3405 {
3406 	struct ifsubq_watchdog *wd = arg;
3407 	struct ifnet *ifp;
3408 
3409 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3410 		goto done;
3411 
3412 	ifp = ifsq_get_ifp(wd->wd_subq);
3413 	if (ifnet_tryserialize_all(ifp)) {
3414 		wd->wd_watchdog(wd->wd_subq);
3415 		ifnet_deserialize_all(ifp);
3416 	} else {
3417 		/* try again next timeout */
3418 		wd->wd_timer = 1;
3419 	}
3420 done:
3421 	ifsq_watchdog_reset(wd);
3422 }
3423 
3424 static void
3425 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3426 {
3427 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3428 	    ifsq_get_cpuid(wd->wd_subq));
3429 }
3430 
3431 void
3432 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3433     ifsq_watchdog_t watchdog)
3434 {
3435 	callout_init_mp(&wd->wd_callout);
3436 	wd->wd_timer = 0;
3437 	wd->wd_subq = ifsq;
3438 	wd->wd_watchdog = watchdog;
3439 }
3440 
3441 void
3442 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3443 {
3444 	wd->wd_timer = 0;
3445 	ifsq_watchdog_reset(wd);
3446 }
3447 
3448 void
3449 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3450 {
3451 	wd->wd_timer = 0;
3452 	callout_stop(&wd->wd_callout);
3453 }
3454 
3455 void
3456 ifnet_lock(void)
3457 {
3458 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3459 	    ("try holding ifnet lock in netisr"));
3460 	mtx_lock(&ifnet_mtx);
3461 }
3462 
3463 void
3464 ifnet_unlock(void)
3465 {
3466 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3467 	    ("try holding ifnet lock in netisr"));
3468 	mtx_unlock(&ifnet_mtx);
3469 }
3470 
3471 static struct ifnet_array *
3472 ifnet_array_alloc(int count)
3473 {
3474 	struct ifnet_array *arr;
3475 
3476 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3477 	    M_IFNET, M_WAITOK);
3478 	arr->ifnet_count = count;
3479 
3480 	return arr;
3481 }
3482 
3483 static void
3484 ifnet_array_free(struct ifnet_array *arr)
3485 {
3486 	if (arr == &ifnet_array0)
3487 		return;
3488 	kfree(arr, M_IFNET);
3489 }
3490 
3491 static struct ifnet_array *
3492 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3493 {
3494 	struct ifnet_array *arr;
3495 	int count, i;
3496 
3497 	KASSERT(old_arr->ifnet_count >= 0,
3498 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3499 	count = old_arr->ifnet_count + 1;
3500 	arr = ifnet_array_alloc(count);
3501 
3502 	/*
3503 	 * Save the old ifnet array and append this ifp to the end of
3504 	 * the new ifnet array.
3505 	 */
3506 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3507 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3508 		    ("%s is already in ifnet array", ifp->if_xname));
3509 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3510 	}
3511 	KASSERT(i == count - 1,
3512 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3513 	     ifp->if_xname, count - 1, i));
3514 	arr->ifnet_arr[i] = ifp;
3515 
3516 	return arr;
3517 }
3518 
3519 static struct ifnet_array *
3520 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3521 {
3522 	struct ifnet_array *arr;
3523 	int count, i, idx, found = 0;
3524 
3525 	KASSERT(old_arr->ifnet_count > 0,
3526 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3527 	count = old_arr->ifnet_count - 1;
3528 	arr = ifnet_array_alloc(count);
3529 
3530 	/*
3531 	 * Save the old ifnet array, but skip this ifp.
3532 	 */
3533 	idx = 0;
3534 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3535 		if (old_arr->ifnet_arr[i] == ifp) {
3536 			KASSERT(!found,
3537 			    ("dup %s is in ifnet array", ifp->if_xname));
3538 			found = 1;
3539 			continue;
3540 		}
3541 		KASSERT(idx < count,
3542 		    ("invalid ifnet array index %d, count %d", idx, count));
3543 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3544 		++idx;
3545 	}
3546 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3547 	KASSERT(idx == count,
3548 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3549 	     ifp->if_xname, count, idx));
3550 
3551 	return arr;
3552 }
3553 
3554 const struct ifnet_array *
3555 ifnet_array_get(void)
3556 {
3557 	const struct ifnet_array *ret;
3558 
3559 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3560 	ret = ifnet_array;
3561 	/* Make sure 'ret' is really used. */
3562 	cpu_ccfence();
3563 	return (ret);
3564 }
3565 
3566 int
3567 ifnet_array_isempty(void)
3568 {
3569 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3570 	if (ifnet_array->ifnet_count == 0)
3571 		return 1;
3572 	else
3573 		return 0;
3574 }
3575 
3576 void
3577 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3578 {
3579 	struct ifaddr *ifa;
3580 
3581 	memset(mark, 0, sizeof(*mark));
3582 	ifa = &mark->ifa;
3583 
3584 	mark->ifac.ifa = ifa;
3585 
3586 	ifa->ifa_addr = &mark->addr;
3587 	ifa->ifa_dstaddr = &mark->dstaddr;
3588 	ifa->ifa_netmask = &mark->netmask;
3589 	ifa->ifa_ifp = ifp;
3590 }
3591