xref: /dragonfly/sys/net/if.c (revision 97055fc2)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 static void	if_slowtimo_dispatch(netmsg_t);
117 
118 /* Helper functions */
119 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
121 static struct ifnet_array *ifnet_array_alloc(int);
122 static void	ifnet_array_free(struct ifnet_array *);
123 static struct ifnet_array *ifnet_array_add(struct ifnet *,
124 		    const struct ifnet_array *);
125 static struct ifnet_array *ifnet_array_del(struct ifnet *,
126 		    const struct ifnet_array *);
127 
128 #ifdef INET6
129 /*
130  * XXX: declare here to avoid to include many inet6 related files..
131  * should be more generalized?
132  */
133 extern void	nd6_setmtu(struct ifnet *);
134 #endif
135 
136 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
137 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
138 
139 static int ifsq_stage_cntmax = 4;
140 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
141 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
142     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
143 
144 static int if_stats_compat = 0;
145 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
146     &if_stats_compat, 0, "Compat the old ifnet stats");
147 
148 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
149 /* Must be after netisr_init */
150 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
151 
152 static  if_com_alloc_t *if_com_alloc[256];
153 static  if_com_free_t *if_com_free[256];
154 
155 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
156 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
157 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
158 
159 int			ifqmaxlen = IFQ_MAXLEN;
160 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
161 
162 static struct ifnet_array	ifnet_array0;
163 static struct ifnet_array	*ifnet_array = &ifnet_array0;
164 
165 static struct callout		if_slowtimo_timer;
166 static struct netmsg_base	if_slowtimo_netmsg;
167 
168 int			if_index = 0;
169 struct ifnet		**ifindex2ifnet = NULL;
170 static struct thread	ifnet_threads[MAXCPU];
171 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
172 
173 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
174 
175 #ifdef notyet
176 #define IFQ_KTR_STRING		"ifq=%p"
177 #define IFQ_KTR_ARGS	struct ifaltq *ifq
178 #ifndef KTR_IFQ
179 #define KTR_IFQ			KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
184 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
185 
186 #define IF_START_KTR_STRING	"ifp=%p"
187 #define IF_START_KTR_ARGS	struct ifnet *ifp
188 #ifndef KTR_IF_START
189 #define KTR_IF_START		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
203 #endif
204 
205 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
206 
207 /*
208  * Network interface utility routines.
209  *
210  * Routines with ifa_ifwith* names take sockaddr *'s as
211  * parameters.
212  */
213 /* ARGSUSED*/
214 void
215 ifinit(void *dummy)
216 {
217 	struct ifnet *ifp;
218 
219 	callout_init_mp(&if_slowtimo_timer);
220 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
221 	    MSGF_PRIORITY, if_slowtimo_dispatch);
222 
223 	/* XXX is this necessary? */
224 	ifnet_lock();
225 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
226 		if (ifp->if_snd.altq_maxlen == 0) {
227 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
228 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
229 		}
230 	}
231 	ifnet_unlock();
232 
233 	/* Start if_slowtimo */
234 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
235 }
236 
237 static void
238 ifsq_ifstart_ipifunc(void *arg)
239 {
240 	struct ifaltq_subque *ifsq = arg;
241 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
242 
243 	crit_enter();
244 	if (lmsg->ms_flags & MSGF_DONE)
245 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
246 	crit_exit();
247 }
248 
249 static __inline void
250 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
251 {
252 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
253 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
254 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
255 	stage->stg_cnt = 0;
256 	stage->stg_len = 0;
257 }
258 
259 static __inline void
260 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
261 {
262 	KKASSERT((stage->stg_flags &
263 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
264 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
265 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
266 }
267 
268 /*
269  * Schedule ifnet.if_start on the subqueue owner CPU
270  */
271 static void
272 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
273 {
274 	int cpu;
275 
276 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
277 	    ifsq_stage_cntmax > 0) {
278 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
279 
280 		stage->stg_cnt = 0;
281 		stage->stg_len = 0;
282 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
283 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
284 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
285 		return;
286 	}
287 
288 	cpu = ifsq_get_cpuid(ifsq);
289 	if (cpu != mycpuid)
290 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
291 	else
292 		ifsq_ifstart_ipifunc(ifsq);
293 }
294 
295 /*
296  * NOTE:
297  * This function will release ifnet.if_start subqueue interlock,
298  * if ifnet.if_start for the subqueue does not need to be scheduled
299  */
300 static __inline int
301 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
302 {
303 	if (!running || ifsq_is_empty(ifsq)
304 #ifdef ALTQ
305 	    || ifsq->ifsq_altq->altq_tbr != NULL
306 #endif
307 	) {
308 		ALTQ_SQ_LOCK(ifsq);
309 		/*
310 		 * ifnet.if_start subqueue interlock is released, if:
311 		 * 1) Hardware can not take any packets, due to
312 		 *    o  interface is marked down
313 		 *    o  hardware queue is full (ifsq_is_oactive)
314 		 *    Under the second situation, hardware interrupt
315 		 *    or polling(4) will call/schedule ifnet.if_start
316 		 *    on the subqueue when hardware queue is ready
317 		 * 2) There is no packet in the subqueue.
318 		 *    Further ifq_dispatch or ifq_handoff will call/
319 		 *    schedule ifnet.if_start on the subqueue.
320 		 * 3) TBR is used and it does not allow further
321 		 *    dequeueing.
322 		 *    TBR callout will call ifnet.if_start on the
323 		 *    subqueue.
324 		 */
325 		if (!running || !ifsq_data_ready(ifsq)) {
326 			ifsq_clr_started(ifsq);
327 			ALTQ_SQ_UNLOCK(ifsq);
328 			return 0;
329 		}
330 		ALTQ_SQ_UNLOCK(ifsq);
331 	}
332 	return 1;
333 }
334 
335 static void
336 ifsq_ifstart_dispatch(netmsg_t msg)
337 {
338 	struct lwkt_msg *lmsg = &msg->base.lmsg;
339 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
340 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
341 	struct globaldata *gd = mycpu;
342 	int running = 0, need_sched;
343 
344 	crit_enter_gd(gd);
345 
346 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
347 
348 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
349 		/*
350 		 * We need to chase the subqueue owner CPU change.
351 		 */
352 		ifsq_ifstart_schedule(ifsq, 1);
353 		crit_exit_gd(gd);
354 		return;
355 	}
356 
357 	ifsq_serialize_hw(ifsq);
358 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
359 		ifp->if_start(ifp, ifsq);
360 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
361 			running = 1;
362 	}
363 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
364 	ifsq_deserialize_hw(ifsq);
365 
366 	if (need_sched) {
367 		/*
368 		 * More data need to be transmitted, ifnet.if_start is
369 		 * scheduled on the subqueue owner CPU, and we keep going.
370 		 * NOTE: ifnet.if_start subqueue interlock is not released.
371 		 */
372 		ifsq_ifstart_schedule(ifsq, 0);
373 	}
374 
375 	crit_exit_gd(gd);
376 }
377 
378 /* Device driver ifnet.if_start helper function */
379 void
380 ifsq_devstart(struct ifaltq_subque *ifsq)
381 {
382 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
383 	int running = 0;
384 
385 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
386 
387 	ALTQ_SQ_LOCK(ifsq);
388 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
389 		ALTQ_SQ_UNLOCK(ifsq);
390 		return;
391 	}
392 	ifsq_set_started(ifsq);
393 	ALTQ_SQ_UNLOCK(ifsq);
394 
395 	ifp->if_start(ifp, ifsq);
396 
397 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
398 		running = 1;
399 
400 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
401 		/*
402 		 * More data need to be transmitted, ifnet.if_start is
403 		 * scheduled on ifnet's CPU, and we keep going.
404 		 * NOTE: ifnet.if_start interlock is not released.
405 		 */
406 		ifsq_ifstart_schedule(ifsq, 0);
407 	}
408 }
409 
410 void
411 if_devstart(struct ifnet *ifp)
412 {
413 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
414 }
415 
416 /* Device driver ifnet.if_start schedule helper function */
417 void
418 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
419 {
420 	ifsq_ifstart_schedule(ifsq, 1);
421 }
422 
423 void
424 if_devstart_sched(struct ifnet *ifp)
425 {
426 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
427 }
428 
429 static void
430 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
431 {
432 	lwkt_serialize_enter(ifp->if_serializer);
433 }
434 
435 static void
436 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
437 {
438 	lwkt_serialize_exit(ifp->if_serializer);
439 }
440 
441 static int
442 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
443 {
444 	return lwkt_serialize_try(ifp->if_serializer);
445 }
446 
447 #ifdef INVARIANTS
448 static void
449 if_default_serialize_assert(struct ifnet *ifp,
450 			    enum ifnet_serialize slz __unused,
451 			    boolean_t serialized)
452 {
453 	if (serialized)
454 		ASSERT_SERIALIZED(ifp->if_serializer);
455 	else
456 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
457 }
458 #endif
459 
460 /*
461  * Attach an interface to the list of "active" interfaces.
462  *
463  * The serializer is optional.
464  */
465 void
466 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
467 {
468 	unsigned socksize;
469 	int namelen, masklen;
470 	struct sockaddr_dl *sdl, *sdl_addr;
471 	struct ifaddr *ifa;
472 	struct ifaltq *ifq;
473 	struct ifnet **old_ifindex2ifnet = NULL;
474 	struct ifnet_array *old_ifnet_array;
475 	int i, q;
476 
477 	static int if_indexlim = 8;
478 
479 	if (ifp->if_serialize != NULL) {
480 		KASSERT(ifp->if_deserialize != NULL &&
481 			ifp->if_tryserialize != NULL &&
482 			ifp->if_serialize_assert != NULL,
483 			("serialize functions are partially setup"));
484 
485 		/*
486 		 * If the device supplies serialize functions,
487 		 * then clear if_serializer to catch any invalid
488 		 * usage of this field.
489 		 */
490 		KASSERT(serializer == NULL,
491 			("both serialize functions and default serializer "
492 			 "are supplied"));
493 		ifp->if_serializer = NULL;
494 	} else {
495 		KASSERT(ifp->if_deserialize == NULL &&
496 			ifp->if_tryserialize == NULL &&
497 			ifp->if_serialize_assert == NULL,
498 			("serialize functions are partially setup"));
499 		ifp->if_serialize = if_default_serialize;
500 		ifp->if_deserialize = if_default_deserialize;
501 		ifp->if_tryserialize = if_default_tryserialize;
502 #ifdef INVARIANTS
503 		ifp->if_serialize_assert = if_default_serialize_assert;
504 #endif
505 
506 		/*
507 		 * The serializer can be passed in from the device,
508 		 * allowing the same serializer to be used for both
509 		 * the interrupt interlock and the device queue.
510 		 * If not specified, the netif structure will use an
511 		 * embedded serializer.
512 		 */
513 		if (serializer == NULL) {
514 			serializer = &ifp->if_default_serializer;
515 			lwkt_serialize_init(serializer);
516 		}
517 		ifp->if_serializer = serializer;
518 	}
519 
520 	/*
521 	 * XXX -
522 	 * The old code would work if the interface passed a pre-existing
523 	 * chain of ifaddrs to this code.  We don't trust our callers to
524 	 * properly initialize the tailq, however, so we no longer allow
525 	 * this unlikely case.
526 	 */
527 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
528 				    M_IFADDR, M_WAITOK | M_ZERO);
529 	for (i = 0; i < ncpus; ++i)
530 		TAILQ_INIT(&ifp->if_addrheads[i]);
531 
532 	TAILQ_INIT(&ifp->if_multiaddrs);
533 	TAILQ_INIT(&ifp->if_groups);
534 	getmicrotime(&ifp->if_lastchange);
535 
536 	/*
537 	 * create a Link Level name for this device
538 	 */
539 	namelen = strlen(ifp->if_xname);
540 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
541 	socksize = masklen + ifp->if_addrlen;
542 	if (socksize < sizeof(*sdl))
543 		socksize = sizeof(*sdl);
544 	socksize = RT_ROUNDUP(socksize);
545 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
546 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
547 	sdl->sdl_len = socksize;
548 	sdl->sdl_family = AF_LINK;
549 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
550 	sdl->sdl_nlen = namelen;
551 	sdl->sdl_type = ifp->if_type;
552 	ifp->if_lladdr = ifa;
553 	ifa->ifa_ifp = ifp;
554 	ifa->ifa_rtrequest = link_rtrequest;
555 	ifa->ifa_addr = (struct sockaddr *)sdl;
556 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
557 	ifa->ifa_netmask = (struct sockaddr *)sdl;
558 	sdl->sdl_len = masklen;
559 	while (namelen != 0)
560 		sdl->sdl_data[--namelen] = 0xff;
561 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
562 
563 	ifp->if_data_pcpu = kmalloc_cachealign(
564 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
565 
566 	if (ifp->if_mapsubq == NULL)
567 		ifp->if_mapsubq = ifq_mapsubq_default;
568 
569 	ifq = &ifp->if_snd;
570 	ifq->altq_type = 0;
571 	ifq->altq_disc = NULL;
572 	ifq->altq_flags &= ALTQF_CANTCHANGE;
573 	ifq->altq_tbr = NULL;
574 	ifq->altq_ifp = ifp;
575 
576 	if (ifq->altq_subq_cnt <= 0)
577 		ifq->altq_subq_cnt = 1;
578 	ifq->altq_subq = kmalloc_cachealign(
579 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
580 	    M_DEVBUF, M_WAITOK | M_ZERO);
581 
582 	if (ifq->altq_maxlen == 0) {
583 		if_printf(ifp, "driver didn't set altq_maxlen\n");
584 		ifq_set_maxlen(ifq, ifqmaxlen);
585 	}
586 
587 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
588 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
589 
590 		ALTQ_SQ_LOCK_INIT(ifsq);
591 		ifsq->ifsq_index = q;
592 
593 		ifsq->ifsq_altq = ifq;
594 		ifsq->ifsq_ifp = ifp;
595 
596 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
597 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
598 		ifsq->ifsq_prepended = NULL;
599 		ifsq->ifsq_started = 0;
600 		ifsq->ifsq_hw_oactive = 0;
601 		ifsq_set_cpuid(ifsq, 0);
602 		if (ifp->if_serializer != NULL)
603 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
604 
605 		ifsq->ifsq_stage =
606 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
607 		    M_DEVBUF, M_WAITOK | M_ZERO);
608 		for (i = 0; i < ncpus; ++i)
609 			ifsq->ifsq_stage[i].stg_subq = ifsq;
610 
611 		ifsq->ifsq_ifstart_nmsg =
612 		    kmalloc(ncpus * sizeof(struct netmsg_base),
613 		    M_LWKTMSG, M_WAITOK);
614 		for (i = 0; i < ncpus; ++i) {
615 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
616 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
617 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
618 		}
619 	}
620 	ifq_set_classic(ifq);
621 
622 	/*
623 	 * Increase mbuf cluster/jcluster limits for the mbufs that
624 	 * could sit on the device queues for quite some time.
625 	 */
626 	if (ifp->if_nmbclusters > 0)
627 		mcl_inclimit(ifp->if_nmbclusters);
628 	if (ifp->if_nmbjclusters > 0)
629 		mjcl_inclimit(ifp->if_nmbjclusters);
630 
631 	/*
632 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
633 	 * array after it is setup.
634 	 *
635 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
636 	 * by ifnet lock, so that non-netisr threads could get a
637 	 * consistent view.
638 	 */
639 	ifnet_lock();
640 
641 	/* Don't update if_index until ifindex2ifnet is setup */
642 	ifp->if_index = if_index + 1;
643 	sdl_addr->sdl_index = ifp->if_index;
644 
645 	/*
646 	 * Install this ifp into ifindex2ifnet
647 	 */
648 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
649 		unsigned int n;
650 		struct ifnet **q;
651 
652 		/*
653 		 * Grow ifindex2ifnet
654 		 */
655 		if_indexlim <<= 1;
656 		n = if_indexlim * sizeof(*q);
657 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
658 		if (ifindex2ifnet != NULL) {
659 			bcopy(ifindex2ifnet, q, n/2);
660 			/* Free old ifindex2ifnet after sync all netisrs */
661 			old_ifindex2ifnet = ifindex2ifnet;
662 		}
663 		ifindex2ifnet = q;
664 	}
665 	ifindex2ifnet[ifp->if_index] = ifp;
666 	/*
667 	 * Update if_index after this ifp is installed into ifindex2ifnet,
668 	 * so that netisrs could get a consistent view of ifindex2ifnet.
669 	 */
670 	cpu_sfence();
671 	if_index = ifp->if_index;
672 
673 	/*
674 	 * Install this ifp into ifnet array.
675 	 */
676 	/* Free old ifnet array after sync all netisrs */
677 	old_ifnet_array = ifnet_array;
678 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
679 
680 	/*
681 	 * Install this ifp into ifnet queue.
682 	 */
683 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
684 
685 	ifnet_unlock();
686 
687 	/*
688 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
689 	 * are no longer accessed and we can free them safely later on.
690 	 */
691 	netmsg_service_sync();
692 	if (old_ifindex2ifnet != NULL)
693 		kfree(old_ifindex2ifnet, M_IFADDR);
694 	ifnet_array_free(old_ifnet_array);
695 
696 	if (!SLIST_EMPTY(&domains))
697 		if_attachdomain1(ifp);
698 
699 	/* Announce the interface. */
700 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
701 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
702 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
703 }
704 
705 static void
706 if_attachdomain(void *dummy)
707 {
708 	struct ifnet *ifp;
709 
710 	ifnet_lock();
711 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
712 		if_attachdomain1(ifp);
713 	ifnet_unlock();
714 }
715 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
716 	if_attachdomain, NULL);
717 
718 static void
719 if_attachdomain1(struct ifnet *ifp)
720 {
721 	struct domain *dp;
722 
723 	crit_enter();
724 
725 	/* address family dependent data region */
726 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
727 	SLIST_FOREACH(dp, &domains, dom_next)
728 		if (dp->dom_ifattach)
729 			ifp->if_afdata[dp->dom_family] =
730 				(*dp->dom_ifattach)(ifp);
731 	crit_exit();
732 }
733 
734 /*
735  * Purge all addresses whose type is _not_ AF_LINK
736  */
737 static void
738 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
739 {
740 	struct lwkt_msg *lmsg = &nmsg->lmsg;
741 	struct ifnet *ifp = lmsg->u.ms_resultp;
742 	struct ifaddr_container *ifac, *next;
743 
744 	ASSERT_IN_NETISR(0);
745 
746 	/*
747 	 * The ifaddr processing in the following loop will block,
748 	 * however, this function is called in netisr0, in which
749 	 * ifaddr list changes happen, so we don't care about the
750 	 * blockness of the ifaddr processing here.
751 	 */
752 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
753 			      ifa_link, next) {
754 		struct ifaddr *ifa = ifac->ifa;
755 
756 		/* Ignore marker */
757 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
758 			continue;
759 
760 		/* Leave link ifaddr as it is */
761 		if (ifa->ifa_addr->sa_family == AF_LINK)
762 			continue;
763 #ifdef INET
764 		/* XXX: Ugly!! ad hoc just for INET */
765 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
766 			struct ifaliasreq ifr;
767 #ifdef IFADDR_DEBUG_VERBOSE
768 			int i;
769 
770 			kprintf("purge in4 addr %p: ", ifa);
771 			for (i = 0; i < ncpus; ++i)
772 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
773 			kprintf("\n");
774 #endif
775 
776 			bzero(&ifr, sizeof ifr);
777 			ifr.ifra_addr = *ifa->ifa_addr;
778 			if (ifa->ifa_dstaddr)
779 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
780 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
781 				       NULL) == 0)
782 				continue;
783 		}
784 #endif /* INET */
785 #ifdef INET6
786 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
787 #ifdef IFADDR_DEBUG_VERBOSE
788 			int i;
789 
790 			kprintf("purge in6 addr %p: ", ifa);
791 			for (i = 0; i < ncpus; ++i)
792 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
793 			kprintf("\n");
794 #endif
795 
796 			in6_purgeaddr(ifa);
797 			/* ifp_addrhead is already updated */
798 			continue;
799 		}
800 #endif /* INET6 */
801 		ifa_ifunlink(ifa, ifp);
802 		ifa_destroy(ifa);
803 	}
804 
805 	lwkt_replymsg(lmsg, 0);
806 }
807 
808 void
809 if_purgeaddrs_nolink(struct ifnet *ifp)
810 {
811 	struct netmsg_base nmsg;
812 	struct lwkt_msg *lmsg = &nmsg.lmsg;
813 
814 	ASSERT_CANDOMSG_NETISR0(curthread);
815 
816 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
817 	    if_purgeaddrs_nolink_dispatch);
818 	lmsg->u.ms_resultp = ifp;
819 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
820 }
821 
822 static void
823 ifq_stage_detach_handler(netmsg_t nmsg)
824 {
825 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
826 	int q;
827 
828 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
829 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
830 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
831 
832 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
833 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
834 	}
835 	lwkt_replymsg(&nmsg->lmsg, 0);
836 }
837 
838 static void
839 ifq_stage_detach(struct ifaltq *ifq)
840 {
841 	struct netmsg_base base;
842 	int cpu;
843 
844 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
845 	    ifq_stage_detach_handler);
846 	base.lmsg.u.ms_resultp = ifq;
847 
848 	for (cpu = 0; cpu < ncpus; ++cpu)
849 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
850 }
851 
852 struct netmsg_if_rtdel {
853 	struct netmsg_base	base;
854 	struct ifnet		*ifp;
855 };
856 
857 static void
858 if_rtdel_dispatch(netmsg_t msg)
859 {
860 	struct netmsg_if_rtdel *rmsg = (void *)msg;
861 	int i, nextcpu, cpu;
862 
863 	cpu = mycpuid;
864 	for (i = 1; i <= AF_MAX; i++) {
865 		struct radix_node_head	*rnh;
866 
867 		if ((rnh = rt_tables[cpu][i]) == NULL)
868 			continue;
869 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
870 	}
871 
872 	nextcpu = cpu + 1;
873 	if (nextcpu < ncpus)
874 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
875 	else
876 		lwkt_replymsg(&rmsg->base.lmsg, 0);
877 }
878 
879 /*
880  * Detach an interface, removing it from the
881  * list of "active" interfaces.
882  */
883 void
884 if_detach(struct ifnet *ifp)
885 {
886 	struct ifnet_array *old_ifnet_array;
887 	struct netmsg_if_rtdel msg;
888 	struct domain *dp;
889 	int q;
890 
891 	/* Announce that the interface is gone. */
892 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
893 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
894 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
895 
896 	/*
897 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
898 	 * array before it is whacked.
899 	 *
900 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
901 	 * by ifnet lock, so that non-netisr threads could get a
902 	 * consistent view.
903 	 */
904 	ifnet_lock();
905 
906 	/*
907 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
908 	 */
909 	ifindex2ifnet[ifp->if_index] = NULL;
910 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
911 		if_index--;
912 
913 	/*
914 	 * Remove this ifp from ifnet queue.
915 	 */
916 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
917 
918 	/*
919 	 * Remove this ifp from ifnet array.
920 	 */
921 	/* Free old ifnet array after sync all netisrs */
922 	old_ifnet_array = ifnet_array;
923 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
924 
925 	ifnet_unlock();
926 
927 	/*
928 	 * Sync all netisrs so that the old ifnet array is no longer
929 	 * accessed and we can free it safely later on.
930 	 */
931 	netmsg_service_sync();
932 	ifnet_array_free(old_ifnet_array);
933 
934 	/*
935 	 * Remove routes and flush queues.
936 	 */
937 	crit_enter();
938 #ifdef IFPOLL_ENABLE
939 	if (ifp->if_flags & IFF_NPOLLING)
940 		ifpoll_deregister(ifp);
941 #endif
942 	if_down(ifp);
943 
944 	/* Decrease the mbuf clusters/jclusters limits increased by us */
945 	if (ifp->if_nmbclusters > 0)
946 		mcl_inclimit(-ifp->if_nmbclusters);
947 	if (ifp->if_nmbjclusters > 0)
948 		mjcl_inclimit(-ifp->if_nmbjclusters);
949 
950 #ifdef ALTQ
951 	if (ifq_is_enabled(&ifp->if_snd))
952 		altq_disable(&ifp->if_snd);
953 	if (ifq_is_attached(&ifp->if_snd))
954 		altq_detach(&ifp->if_snd);
955 #endif
956 
957 	/*
958 	 * Clean up all addresses.
959 	 */
960 	ifp->if_lladdr = NULL;
961 
962 	if_purgeaddrs_nolink(ifp);
963 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
964 		struct ifaddr *ifa;
965 
966 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
967 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
968 			("non-link ifaddr is left on if_addrheads"));
969 
970 		ifa_ifunlink(ifa, ifp);
971 		ifa_destroy(ifa);
972 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
973 			("there are still ifaddrs left on if_addrheads"));
974 	}
975 
976 #ifdef INET
977 	/*
978 	 * Remove all IPv4 kernel structures related to ifp.
979 	 */
980 	in_ifdetach(ifp);
981 #endif
982 
983 #ifdef INET6
984 	/*
985 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
986 	 * before removing routing entries below, since IPv6 interface direct
987 	 * routes are expected to be removed by the IPv6-specific kernel API.
988 	 * Otherwise, the kernel will detect some inconsistency and bark it.
989 	 */
990 	in6_ifdetach(ifp);
991 #endif
992 
993 	/*
994 	 * Delete all remaining routes using this interface
995 	 */
996 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
997 	    if_rtdel_dispatch);
998 	msg.ifp = ifp;
999 	rt_domsg_global(&msg.base);
1000 
1001 	SLIST_FOREACH(dp, &domains, dom_next)
1002 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1003 			(*dp->dom_ifdetach)(ifp,
1004 				ifp->if_afdata[dp->dom_family]);
1005 
1006 	kfree(ifp->if_addrheads, M_IFADDR);
1007 
1008 	lwkt_synchronize_ipiqs("if_detach");
1009 	ifq_stage_detach(&ifp->if_snd);
1010 
1011 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1012 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1013 
1014 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1015 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1016 	}
1017 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1018 
1019 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1020 
1021 	crit_exit();
1022 }
1023 
1024 /*
1025  * Create interface group without members
1026  */
1027 struct ifg_group *
1028 if_creategroup(const char *groupname)
1029 {
1030         struct ifg_group        *ifg = NULL;
1031 
1032         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1033             M_TEMP, M_NOWAIT)) == NULL)
1034                 return (NULL);
1035 
1036         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1037         ifg->ifg_refcnt = 0;
1038         ifg->ifg_carp_demoted = 0;
1039         TAILQ_INIT(&ifg->ifg_members);
1040 #if NPF > 0
1041         pfi_attach_ifgroup(ifg);
1042 #endif
1043         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1044 
1045         return (ifg);
1046 }
1047 
1048 /*
1049  * Add a group to an interface
1050  */
1051 int
1052 if_addgroup(struct ifnet *ifp, const char *groupname)
1053 {
1054 	struct ifg_list		*ifgl;
1055 	struct ifg_group	*ifg = NULL;
1056 	struct ifg_member	*ifgm;
1057 
1058 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1059 	    groupname[strlen(groupname) - 1] <= '9')
1060 		return (EINVAL);
1061 
1062 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1063 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1064 			return (EEXIST);
1065 
1066 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1067 		return (ENOMEM);
1068 
1069 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1070 		kfree(ifgl, M_TEMP);
1071 		return (ENOMEM);
1072 	}
1073 
1074 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1075 		if (!strcmp(ifg->ifg_group, groupname))
1076 			break;
1077 
1078 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1079 		kfree(ifgl, M_TEMP);
1080 		kfree(ifgm, M_TEMP);
1081 		return (ENOMEM);
1082 	}
1083 
1084 	ifg->ifg_refcnt++;
1085 	ifgl->ifgl_group = ifg;
1086 	ifgm->ifgm_ifp = ifp;
1087 
1088 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1089 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1090 
1091 #if NPF > 0
1092 	pfi_group_change(groupname);
1093 #endif
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Remove a group from an interface
1100  */
1101 int
1102 if_delgroup(struct ifnet *ifp, const char *groupname)
1103 {
1104 	struct ifg_list		*ifgl;
1105 	struct ifg_member	*ifgm;
1106 
1107 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1108 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1109 			break;
1110 	if (ifgl == NULL)
1111 		return (ENOENT);
1112 
1113 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1114 
1115 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1116 		if (ifgm->ifgm_ifp == ifp)
1117 			break;
1118 
1119 	if (ifgm != NULL) {
1120 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1121 		kfree(ifgm, M_TEMP);
1122 	}
1123 
1124 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1125 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1126 #if NPF > 0
1127 		pfi_detach_ifgroup(ifgl->ifgl_group);
1128 #endif
1129 		kfree(ifgl->ifgl_group, M_TEMP);
1130 	}
1131 
1132 	kfree(ifgl, M_TEMP);
1133 
1134 #if NPF > 0
1135 	pfi_group_change(groupname);
1136 #endif
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Stores all groups from an interface in memory pointed
1143  * to by data
1144  */
1145 int
1146 if_getgroup(caddr_t data, struct ifnet *ifp)
1147 {
1148 	int			 len, error;
1149 	struct ifg_list		*ifgl;
1150 	struct ifg_req		 ifgrq, *ifgp;
1151 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1152 
1153 	if (ifgr->ifgr_len == 0) {
1154 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1155 			ifgr->ifgr_len += sizeof(struct ifg_req);
1156 		return (0);
1157 	}
1158 
1159 	len = ifgr->ifgr_len;
1160 	ifgp = ifgr->ifgr_groups;
1161 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1162 		if (len < sizeof(ifgrq))
1163 			return (EINVAL);
1164 		bzero(&ifgrq, sizeof ifgrq);
1165 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1166 		    sizeof(ifgrq.ifgrq_group));
1167 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1168 		    sizeof(struct ifg_req))))
1169 			return (error);
1170 		len -= sizeof(ifgrq);
1171 		ifgp++;
1172 	}
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Stores all members of a group in memory pointed to by data
1179  */
1180 int
1181 if_getgroupmembers(caddr_t data)
1182 {
1183 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1184 	struct ifg_group	*ifg;
1185 	struct ifg_member	*ifgm;
1186 	struct ifg_req		 ifgrq, *ifgp;
1187 	int			 len, error;
1188 
1189 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1190 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1191 			break;
1192 	if (ifg == NULL)
1193 		return (ENOENT);
1194 
1195 	if (ifgr->ifgr_len == 0) {
1196 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1197 			ifgr->ifgr_len += sizeof(ifgrq);
1198 		return (0);
1199 	}
1200 
1201 	len = ifgr->ifgr_len;
1202 	ifgp = ifgr->ifgr_groups;
1203 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1204 		if (len < sizeof(ifgrq))
1205 			return (EINVAL);
1206 		bzero(&ifgrq, sizeof ifgrq);
1207 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1208 		    sizeof(ifgrq.ifgrq_member));
1209 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1210 		    sizeof(struct ifg_req))))
1211 			return (error);
1212 		len -= sizeof(ifgrq);
1213 		ifgp++;
1214 	}
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Delete Routes for a Network Interface
1221  *
1222  * Called for each routing entry via the rnh->rnh_walktree() call above
1223  * to delete all route entries referencing a detaching network interface.
1224  *
1225  * Arguments:
1226  *	rn	pointer to node in the routing table
1227  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1228  *
1229  * Returns:
1230  *	0	successful
1231  *	errno	failed - reason indicated
1232  *
1233  */
1234 static int
1235 if_rtdel(struct radix_node *rn, void *arg)
1236 {
1237 	struct rtentry	*rt = (struct rtentry *)rn;
1238 	struct ifnet	*ifp = arg;
1239 	int		err;
1240 
1241 	if (rt->rt_ifp == ifp) {
1242 
1243 		/*
1244 		 * Protect (sorta) against walktree recursion problems
1245 		 * with cloned routes
1246 		 */
1247 		if (!(rt->rt_flags & RTF_UP))
1248 			return (0);
1249 
1250 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1251 				rt_mask(rt), rt->rt_flags,
1252 				NULL);
1253 		if (err) {
1254 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 /*
1262  * Locate an interface based on a complete address.
1263  */
1264 struct ifaddr *
1265 ifa_ifwithaddr(struct sockaddr *addr)
1266 {
1267 	const struct ifnet_array *arr;
1268 	int i;
1269 
1270 	arr = ifnet_array_get();
1271 	for (i = 0; i < arr->ifnet_count; ++i) {
1272 		struct ifnet *ifp = arr->ifnet_arr[i];
1273 		struct ifaddr_container *ifac;
1274 
1275 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1276 			struct ifaddr *ifa = ifac->ifa;
1277 
1278 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1279 				continue;
1280 			if (sa_equal(addr, ifa->ifa_addr))
1281 				return (ifa);
1282 			if ((ifp->if_flags & IFF_BROADCAST) &&
1283 			    ifa->ifa_broadaddr &&
1284 			    /* IPv6 doesn't have broadcast */
1285 			    ifa->ifa_broadaddr->sa_len != 0 &&
1286 			    sa_equal(ifa->ifa_broadaddr, addr))
1287 				return (ifa);
1288 		}
1289 	}
1290 	return (NULL);
1291 }
1292 /*
1293  * Locate the point to point interface with a given destination address.
1294  */
1295 struct ifaddr *
1296 ifa_ifwithdstaddr(struct sockaddr *addr)
1297 {
1298 	const struct ifnet_array *arr;
1299 	int i;
1300 
1301 	arr = ifnet_array_get();
1302 	for (i = 0; i < arr->ifnet_count; ++i) {
1303 		struct ifnet *ifp = arr->ifnet_arr[i];
1304 		struct ifaddr_container *ifac;
1305 
1306 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1307 			continue;
1308 
1309 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1310 			struct ifaddr *ifa = ifac->ifa;
1311 
1312 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1313 				continue;
1314 			if (ifa->ifa_dstaddr &&
1315 			    sa_equal(addr, ifa->ifa_dstaddr))
1316 				return (ifa);
1317 		}
1318 	}
1319 	return (NULL);
1320 }
1321 
1322 /*
1323  * Find an interface on a specific network.  If many, choice
1324  * is most specific found.
1325  */
1326 struct ifaddr *
1327 ifa_ifwithnet(struct sockaddr *addr)
1328 {
1329 	struct ifaddr *ifa_maybe = NULL;
1330 	u_int af = addr->sa_family;
1331 	char *addr_data = addr->sa_data, *cplim;
1332 	const struct ifnet_array *arr;
1333 	int i;
1334 
1335 	/*
1336 	 * AF_LINK addresses can be looked up directly by their index number,
1337 	 * so do that if we can.
1338 	 */
1339 	if (af == AF_LINK) {
1340 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1341 
1342 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1343 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1344 	}
1345 
1346 	/*
1347 	 * Scan though each interface, looking for ones that have
1348 	 * addresses in this address family.
1349 	 */
1350 	arr = ifnet_array_get();
1351 	for (i = 0; i < arr->ifnet_count; ++i) {
1352 		struct ifnet *ifp = arr->ifnet_arr[i];
1353 		struct ifaddr_container *ifac;
1354 
1355 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1356 			struct ifaddr *ifa = ifac->ifa;
1357 			char *cp, *cp2, *cp3;
1358 
1359 			if (ifa->ifa_addr->sa_family != af)
1360 next:				continue;
1361 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1362 				/*
1363 				 * This is a bit broken as it doesn't
1364 				 * take into account that the remote end may
1365 				 * be a single node in the network we are
1366 				 * looking for.
1367 				 * The trouble is that we don't know the
1368 				 * netmask for the remote end.
1369 				 */
1370 				if (ifa->ifa_dstaddr != NULL &&
1371 				    sa_equal(addr, ifa->ifa_dstaddr))
1372 					return (ifa);
1373 			} else {
1374 				/*
1375 				 * if we have a special address handler,
1376 				 * then use it instead of the generic one.
1377 				 */
1378 				if (ifa->ifa_claim_addr) {
1379 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1380 						return (ifa);
1381 					} else {
1382 						continue;
1383 					}
1384 				}
1385 
1386 				/*
1387 				 * Scan all the bits in the ifa's address.
1388 				 * If a bit dissagrees with what we are
1389 				 * looking for, mask it with the netmask
1390 				 * to see if it really matters.
1391 				 * (A byte at a time)
1392 				 */
1393 				if (ifa->ifa_netmask == 0)
1394 					continue;
1395 				cp = addr_data;
1396 				cp2 = ifa->ifa_addr->sa_data;
1397 				cp3 = ifa->ifa_netmask->sa_data;
1398 				cplim = ifa->ifa_netmask->sa_len +
1399 					(char *)ifa->ifa_netmask;
1400 				while (cp3 < cplim)
1401 					if ((*cp++ ^ *cp2++) & *cp3++)
1402 						goto next; /* next address! */
1403 				/*
1404 				 * If the netmask of what we just found
1405 				 * is more specific than what we had before
1406 				 * (if we had one) then remember the new one
1407 				 * before continuing to search
1408 				 * for an even better one.
1409 				 */
1410 				if (ifa_maybe == NULL ||
1411 				    rn_refines((char *)ifa->ifa_netmask,
1412 					       (char *)ifa_maybe->ifa_netmask))
1413 					ifa_maybe = ifa;
1414 			}
1415 		}
1416 	}
1417 	return (ifa_maybe);
1418 }
1419 
1420 /*
1421  * Find an interface address specific to an interface best matching
1422  * a given address.
1423  */
1424 struct ifaddr *
1425 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1426 {
1427 	struct ifaddr_container *ifac;
1428 	char *cp, *cp2, *cp3;
1429 	char *cplim;
1430 	struct ifaddr *ifa_maybe = NULL;
1431 	u_int af = addr->sa_family;
1432 
1433 	if (af >= AF_MAX)
1434 		return (0);
1435 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1436 		struct ifaddr *ifa = ifac->ifa;
1437 
1438 		if (ifa->ifa_addr->sa_family != af)
1439 			continue;
1440 		if (ifa_maybe == NULL)
1441 			ifa_maybe = ifa;
1442 		if (ifa->ifa_netmask == NULL) {
1443 			if (sa_equal(addr, ifa->ifa_addr) ||
1444 			    (ifa->ifa_dstaddr != NULL &&
1445 			     sa_equal(addr, ifa->ifa_dstaddr)))
1446 				return (ifa);
1447 			continue;
1448 		}
1449 		if (ifp->if_flags & IFF_POINTOPOINT) {
1450 			if (sa_equal(addr, ifa->ifa_dstaddr))
1451 				return (ifa);
1452 		} else {
1453 			cp = addr->sa_data;
1454 			cp2 = ifa->ifa_addr->sa_data;
1455 			cp3 = ifa->ifa_netmask->sa_data;
1456 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1457 			for (; cp3 < cplim; cp3++)
1458 				if ((*cp++ ^ *cp2++) & *cp3)
1459 					break;
1460 			if (cp3 == cplim)
1461 				return (ifa);
1462 		}
1463 	}
1464 	return (ifa_maybe);
1465 }
1466 
1467 /*
1468  * Default action when installing a route with a Link Level gateway.
1469  * Lookup an appropriate real ifa to point to.
1470  * This should be moved to /sys/net/link.c eventually.
1471  */
1472 static void
1473 link_rtrequest(int cmd, struct rtentry *rt)
1474 {
1475 	struct ifaddr *ifa;
1476 	struct sockaddr *dst;
1477 	struct ifnet *ifp;
1478 
1479 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1480 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1481 		return;
1482 	ifa = ifaof_ifpforaddr(dst, ifp);
1483 	if (ifa != NULL) {
1484 		IFAFREE(rt->rt_ifa);
1485 		IFAREF(ifa);
1486 		rt->rt_ifa = ifa;
1487 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1488 			ifa->ifa_rtrequest(cmd, rt);
1489 	}
1490 }
1491 
1492 struct netmsg_ifroute {
1493 	struct netmsg_base	base;
1494 	struct ifnet		*ifp;
1495 	int			flag;
1496 	int			fam;
1497 };
1498 
1499 /*
1500  * Mark an interface down and notify protocols of the transition.
1501  */
1502 static void
1503 if_unroute_dispatch(netmsg_t nmsg)
1504 {
1505 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1506 	struct ifnet *ifp = msg->ifp;
1507 	int flag = msg->flag, fam = msg->fam;
1508 	struct ifaddr_container *ifac;
1509 
1510 	ifp->if_flags &= ~flag;
1511 	getmicrotime(&ifp->if_lastchange);
1512 	/*
1513 	 * The ifaddr processing in the following loop will block,
1514 	 * however, this function is called in netisr0, in which
1515 	 * ifaddr list changes happen, so we don't care about the
1516 	 * blockness of the ifaddr processing here.
1517 	 */
1518 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1519 		struct ifaddr *ifa = ifac->ifa;
1520 
1521 		/* Ignore marker */
1522 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1523 			continue;
1524 
1525 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1526 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1527 	}
1528 	ifq_purge_all(&ifp->if_snd);
1529 	rt_ifmsg(ifp);
1530 
1531 	lwkt_replymsg(&nmsg->lmsg, 0);
1532 }
1533 
1534 void
1535 if_unroute(struct ifnet *ifp, int flag, int fam)
1536 {
1537 	struct netmsg_ifroute msg;
1538 
1539 	ASSERT_CANDOMSG_NETISR0(curthread);
1540 
1541 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1542 	    if_unroute_dispatch);
1543 	msg.ifp = ifp;
1544 	msg.flag = flag;
1545 	msg.fam = fam;
1546 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1547 }
1548 
1549 /*
1550  * Mark an interface up and notify protocols of the transition.
1551  */
1552 static void
1553 if_route_dispatch(netmsg_t nmsg)
1554 {
1555 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1556 	struct ifnet *ifp = msg->ifp;
1557 	int flag = msg->flag, fam = msg->fam;
1558 	struct ifaddr_container *ifac;
1559 
1560 	ifq_purge_all(&ifp->if_snd);
1561 	ifp->if_flags |= flag;
1562 	getmicrotime(&ifp->if_lastchange);
1563 	/*
1564 	 * The ifaddr processing in the following loop will block,
1565 	 * however, this function is called in netisr0, in which
1566 	 * ifaddr list changes happen, so we don't care about the
1567 	 * blockness of the ifaddr processing here.
1568 	 */
1569 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1570 		struct ifaddr *ifa = ifac->ifa;
1571 
1572 		/* Ignore marker */
1573 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1574 			continue;
1575 
1576 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1577 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1578 	}
1579 	rt_ifmsg(ifp);
1580 #ifdef INET6
1581 	in6_if_up(ifp);
1582 #endif
1583 
1584 	lwkt_replymsg(&nmsg->lmsg, 0);
1585 }
1586 
1587 void
1588 if_route(struct ifnet *ifp, int flag, int fam)
1589 {
1590 	struct netmsg_ifroute msg;
1591 
1592 	ASSERT_CANDOMSG_NETISR0(curthread);
1593 
1594 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1595 	    if_route_dispatch);
1596 	msg.ifp = ifp;
1597 	msg.flag = flag;
1598 	msg.fam = fam;
1599 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1600 }
1601 
1602 /*
1603  * Mark an interface down and notify protocols of the transition.  An
1604  * interface going down is also considered to be a synchronizing event.
1605  * We must ensure that all packet processing related to the interface
1606  * has completed before we return so e.g. the caller can free the ifnet
1607  * structure that the mbufs may be referencing.
1608  *
1609  * NOTE: must be called at splnet or eqivalent.
1610  */
1611 void
1612 if_down(struct ifnet *ifp)
1613 {
1614 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1615 	netmsg_service_sync();
1616 }
1617 
1618 /*
1619  * Mark an interface up and notify protocols of
1620  * the transition.
1621  * NOTE: must be called at splnet or eqivalent.
1622  */
1623 void
1624 if_up(struct ifnet *ifp)
1625 {
1626 	if_route(ifp, IFF_UP, AF_UNSPEC);
1627 }
1628 
1629 /*
1630  * Process a link state change.
1631  * NOTE: must be called at splsoftnet or equivalent.
1632  */
1633 void
1634 if_link_state_change(struct ifnet *ifp)
1635 {
1636 	int link_state = ifp->if_link_state;
1637 
1638 	rt_ifmsg(ifp);
1639 	devctl_notify("IFNET", ifp->if_xname,
1640 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1641 }
1642 
1643 /*
1644  * Handle interface watchdog timer routines.  Called
1645  * from softclock, we decrement timers (if set) and
1646  * call the appropriate interface routine on expiration.
1647  */
1648 static void
1649 if_slowtimo_dispatch(netmsg_t nmsg)
1650 {
1651 	struct globaldata *gd = mycpu;
1652 	const struct ifnet_array *arr;
1653 	int i;
1654 
1655 	ASSERT_IN_NETISR(0);
1656 
1657 	crit_enter_gd(gd);
1658 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1659 	crit_exit_gd(gd);
1660 
1661 	arr = ifnet_array_get();
1662 	for (i = 0; i < arr->ifnet_count; ++i) {
1663 		struct ifnet *ifp = arr->ifnet_arr[i];
1664 
1665 		crit_enter_gd(gd);
1666 
1667 		if (if_stats_compat) {
1668 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1669 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1670 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1671 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1672 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1673 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1674 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1675 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1676 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1677 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1678 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1679 		}
1680 
1681 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1682 			crit_exit_gd(gd);
1683 			continue;
1684 		}
1685 		if (ifp->if_watchdog) {
1686 			if (ifnet_tryserialize_all(ifp)) {
1687 				(*ifp->if_watchdog)(ifp);
1688 				ifnet_deserialize_all(ifp);
1689 			} else {
1690 				/* try again next timeout */
1691 				++ifp->if_timer;
1692 			}
1693 		}
1694 
1695 		crit_exit_gd(gd);
1696 	}
1697 
1698 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1699 }
1700 
1701 static void
1702 if_slowtimo(void *arg __unused)
1703 {
1704 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1705 
1706 	KASSERT(mycpuid == 0, ("not on cpu0"));
1707 	crit_enter();
1708 	if (lmsg->ms_flags & MSGF_DONE)
1709 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1710 	crit_exit();
1711 }
1712 
1713 /*
1714  * Map interface name to
1715  * interface structure pointer.
1716  */
1717 struct ifnet *
1718 ifunit(const char *name)
1719 {
1720 	struct ifnet *ifp;
1721 
1722 	/*
1723 	 * Search all the interfaces for this name/number
1724 	 */
1725 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1726 
1727 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1728 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1729 			break;
1730 	}
1731 	return (ifp);
1732 }
1733 
1734 struct ifnet *
1735 ifunit_netisr(const char *name)
1736 {
1737 	const struct ifnet_array *arr;
1738 	int i;
1739 
1740 	/*
1741 	 * Search all the interfaces for this name/number
1742 	 */
1743 
1744 	arr = ifnet_array_get();
1745 	for (i = 0; i < arr->ifnet_count; ++i) {
1746 		struct ifnet *ifp = arr->ifnet_arr[i];
1747 
1748 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1749 			return ifp;
1750 	}
1751 	return NULL;
1752 }
1753 
1754 /*
1755  * Interface ioctls.
1756  */
1757 int
1758 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1759 {
1760 	struct ifnet *ifp;
1761 	struct ifreq *ifr;
1762 	struct ifstat *ifs;
1763 	int error;
1764 	short oif_flags;
1765 	int new_flags;
1766 #ifdef COMPAT_43
1767 	int ocmd;
1768 #endif
1769 	size_t namelen, onamelen;
1770 	char new_name[IFNAMSIZ];
1771 	struct ifaddr *ifa;
1772 	struct sockaddr_dl *sdl;
1773 
1774 	switch (cmd) {
1775 	case SIOCGIFCONF:
1776 	case OSIOCGIFCONF:
1777 		return (ifconf(cmd, data, cred));
1778 	default:
1779 		break;
1780 	}
1781 
1782 	ifr = (struct ifreq *)data;
1783 
1784 	switch (cmd) {
1785 	case SIOCIFCREATE:
1786 	case SIOCIFCREATE2:
1787 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1788 			return (error);
1789 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1790 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1791 	case SIOCIFDESTROY:
1792 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1793 			return (error);
1794 		return (if_clone_destroy(ifr->ifr_name));
1795 	case SIOCIFGCLONERS:
1796 		return (if_clone_list((struct if_clonereq *)data));
1797 	default:
1798 		break;
1799 	}
1800 
1801 	/*
1802 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1803 	 * lock to serialize the ifconfig ioctl operation.
1804 	 */
1805 	ifnet_lock();
1806 
1807 	ifp = ifunit(ifr->ifr_name);
1808 	if (ifp == NULL) {
1809 		ifnet_unlock();
1810 		return (ENXIO);
1811 	}
1812 	error = 0;
1813 
1814 	switch (cmd) {
1815 	case SIOCGIFINDEX:
1816 		ifr->ifr_index = ifp->if_index;
1817 		break;
1818 
1819 	case SIOCGIFFLAGS:
1820 		ifr->ifr_flags = ifp->if_flags;
1821 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1822 		break;
1823 
1824 	case SIOCGIFCAP:
1825 		ifr->ifr_reqcap = ifp->if_capabilities;
1826 		ifr->ifr_curcap = ifp->if_capenable;
1827 		break;
1828 
1829 	case SIOCGIFMETRIC:
1830 		ifr->ifr_metric = ifp->if_metric;
1831 		break;
1832 
1833 	case SIOCGIFMTU:
1834 		ifr->ifr_mtu = ifp->if_mtu;
1835 		break;
1836 
1837 	case SIOCGIFTSOLEN:
1838 		ifr->ifr_tsolen = ifp->if_tsolen;
1839 		break;
1840 
1841 	case SIOCGIFDATA:
1842 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1843 				sizeof(ifp->if_data));
1844 		break;
1845 
1846 	case SIOCGIFPHYS:
1847 		ifr->ifr_phys = ifp->if_physical;
1848 		break;
1849 
1850 	case SIOCGIFPOLLCPU:
1851 		ifr->ifr_pollcpu = -1;
1852 		break;
1853 
1854 	case SIOCSIFPOLLCPU:
1855 		break;
1856 
1857 	case SIOCSIFFLAGS:
1858 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1859 		if (error)
1860 			break;
1861 		new_flags = (ifr->ifr_flags & 0xffff) |
1862 		    (ifr->ifr_flagshigh << 16);
1863 		if (ifp->if_flags & IFF_SMART) {
1864 			/* Smart drivers twiddle their own routes */
1865 		} else if (ifp->if_flags & IFF_UP &&
1866 		    (new_flags & IFF_UP) == 0) {
1867 			crit_enter();
1868 			if_down(ifp);
1869 			crit_exit();
1870 		} else if (new_flags & IFF_UP &&
1871 		    (ifp->if_flags & IFF_UP) == 0) {
1872 			crit_enter();
1873 			if_up(ifp);
1874 			crit_exit();
1875 		}
1876 
1877 #ifdef IFPOLL_ENABLE
1878 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1879 			if (new_flags & IFF_NPOLLING)
1880 				ifpoll_register(ifp);
1881 			else
1882 				ifpoll_deregister(ifp);
1883 		}
1884 #endif
1885 
1886 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1887 			(new_flags &~ IFF_CANTCHANGE);
1888 		if (new_flags & IFF_PPROMISC) {
1889 			/* Permanently promiscuous mode requested */
1890 			ifp->if_flags |= IFF_PROMISC;
1891 		} else if (ifp->if_pcount == 0) {
1892 			ifp->if_flags &= ~IFF_PROMISC;
1893 		}
1894 		if (ifp->if_ioctl) {
1895 			ifnet_serialize_all(ifp);
1896 			ifp->if_ioctl(ifp, cmd, data, cred);
1897 			ifnet_deserialize_all(ifp);
1898 		}
1899 		getmicrotime(&ifp->if_lastchange);
1900 		break;
1901 
1902 	case SIOCSIFCAP:
1903 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1904 		if (error)
1905 			break;
1906 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1907 			error = EINVAL;
1908 			break;
1909 		}
1910 		ifnet_serialize_all(ifp);
1911 		ifp->if_ioctl(ifp, cmd, data, cred);
1912 		ifnet_deserialize_all(ifp);
1913 		break;
1914 
1915 	case SIOCSIFNAME:
1916 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1917 		if (error)
1918 			break;
1919 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1920 		if (error)
1921 			break;
1922 		if (new_name[0] == '\0') {
1923 			error = EINVAL;
1924 			break;
1925 		}
1926 		if (ifunit(new_name) != NULL) {
1927 			error = EEXIST;
1928 			break;
1929 		}
1930 
1931 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1932 
1933 		/* Announce the departure of the interface. */
1934 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1935 
1936 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1937 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1938 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1939 		namelen = strlen(new_name);
1940 		onamelen = sdl->sdl_nlen;
1941 		/*
1942 		 * Move the address if needed.  This is safe because we
1943 		 * allocate space for a name of length IFNAMSIZ when we
1944 		 * create this in if_attach().
1945 		 */
1946 		if (namelen != onamelen) {
1947 			bcopy(sdl->sdl_data + onamelen,
1948 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1949 		}
1950 		bcopy(new_name, sdl->sdl_data, namelen);
1951 		sdl->sdl_nlen = namelen;
1952 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1953 		bzero(sdl->sdl_data, onamelen);
1954 		while (namelen != 0)
1955 			sdl->sdl_data[--namelen] = 0xff;
1956 
1957 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1958 
1959 		/* Announce the return of the interface. */
1960 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1961 		break;
1962 
1963 	case SIOCSIFMETRIC:
1964 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1965 		if (error)
1966 			break;
1967 		ifp->if_metric = ifr->ifr_metric;
1968 		getmicrotime(&ifp->if_lastchange);
1969 		break;
1970 
1971 	case SIOCSIFPHYS:
1972 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1973 		if (error)
1974 			break;
1975 		if (ifp->if_ioctl == NULL) {
1976 		        error = EOPNOTSUPP;
1977 			break;
1978 		}
1979 		ifnet_serialize_all(ifp);
1980 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1981 		ifnet_deserialize_all(ifp);
1982 		if (error == 0)
1983 			getmicrotime(&ifp->if_lastchange);
1984 		break;
1985 
1986 	case SIOCSIFMTU:
1987 	{
1988 		u_long oldmtu = ifp->if_mtu;
1989 
1990 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1991 		if (error)
1992 			break;
1993 		if (ifp->if_ioctl == NULL) {
1994 			error = EOPNOTSUPP;
1995 			break;
1996 		}
1997 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1998 			error = EINVAL;
1999 			break;
2000 		}
2001 		ifnet_serialize_all(ifp);
2002 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2003 		ifnet_deserialize_all(ifp);
2004 		if (error == 0) {
2005 			getmicrotime(&ifp->if_lastchange);
2006 			rt_ifmsg(ifp);
2007 		}
2008 		/*
2009 		 * If the link MTU changed, do network layer specific procedure.
2010 		 */
2011 		if (ifp->if_mtu != oldmtu) {
2012 #ifdef INET6
2013 			nd6_setmtu(ifp);
2014 #endif
2015 		}
2016 		break;
2017 	}
2018 
2019 	case SIOCSIFTSOLEN:
2020 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2021 		if (error)
2022 			break;
2023 
2024 		/* XXX need driver supplied upper limit */
2025 		if (ifr->ifr_tsolen <= 0) {
2026 			error = EINVAL;
2027 			break;
2028 		}
2029 		ifp->if_tsolen = ifr->ifr_tsolen;
2030 		break;
2031 
2032 	case SIOCADDMULTI:
2033 	case SIOCDELMULTI:
2034 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2035 		if (error)
2036 			break;
2037 
2038 		/* Don't allow group membership on non-multicast interfaces. */
2039 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2040 			error = EOPNOTSUPP;
2041 			break;
2042 		}
2043 
2044 		/* Don't let users screw up protocols' entries. */
2045 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2046 			error = EINVAL;
2047 			break;
2048 		}
2049 
2050 		if (cmd == SIOCADDMULTI) {
2051 			struct ifmultiaddr *ifma;
2052 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2053 		} else {
2054 			error = if_delmulti(ifp, &ifr->ifr_addr);
2055 		}
2056 		if (error == 0)
2057 			getmicrotime(&ifp->if_lastchange);
2058 		break;
2059 
2060 	case SIOCSIFPHYADDR:
2061 	case SIOCDIFPHYADDR:
2062 #ifdef INET6
2063 	case SIOCSIFPHYADDR_IN6:
2064 #endif
2065 	case SIOCSLIFPHYADDR:
2066         case SIOCSIFMEDIA:
2067 	case SIOCSIFGENERIC:
2068 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2069 		if (error)
2070 			break;
2071 		if (ifp->if_ioctl == 0) {
2072 			error = EOPNOTSUPP;
2073 			break;
2074 		}
2075 		ifnet_serialize_all(ifp);
2076 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2077 		ifnet_deserialize_all(ifp);
2078 		if (error == 0)
2079 			getmicrotime(&ifp->if_lastchange);
2080 		break;
2081 
2082 	case SIOCGIFSTATUS:
2083 		ifs = (struct ifstat *)data;
2084 		ifs->ascii[0] = '\0';
2085 		/* fall through */
2086 	case SIOCGIFPSRCADDR:
2087 	case SIOCGIFPDSTADDR:
2088 	case SIOCGLIFPHYADDR:
2089 	case SIOCGIFMEDIA:
2090 	case SIOCGIFGENERIC:
2091 		if (ifp->if_ioctl == NULL) {
2092 			error = EOPNOTSUPP;
2093 			break;
2094 		}
2095 		ifnet_serialize_all(ifp);
2096 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2097 		ifnet_deserialize_all(ifp);
2098 		break;
2099 
2100 	case SIOCSIFLLADDR:
2101 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2102 		if (error)
2103 			break;
2104 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2105 				     ifr->ifr_addr.sa_len);
2106 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2107 		break;
2108 
2109 	default:
2110 		oif_flags = ifp->if_flags;
2111 		if (so->so_proto == 0) {
2112 			error = EOPNOTSUPP;
2113 			break;
2114 		}
2115 #ifndef COMPAT_43
2116 		error = so_pru_control_direct(so, cmd, data, ifp);
2117 #else
2118 		ocmd = cmd;
2119 
2120 		switch (cmd) {
2121 		case SIOCSIFDSTADDR:
2122 		case SIOCSIFADDR:
2123 		case SIOCSIFBRDADDR:
2124 		case SIOCSIFNETMASK:
2125 #if BYTE_ORDER != BIG_ENDIAN
2126 			if (ifr->ifr_addr.sa_family == 0 &&
2127 			    ifr->ifr_addr.sa_len < 16) {
2128 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
2129 				ifr->ifr_addr.sa_len = 16;
2130 			}
2131 #else
2132 			if (ifr->ifr_addr.sa_len == 0)
2133 				ifr->ifr_addr.sa_len = 16;
2134 #endif
2135 			break;
2136 		case OSIOCGIFADDR:
2137 			cmd = SIOCGIFADDR;
2138 			break;
2139 		case OSIOCGIFDSTADDR:
2140 			cmd = SIOCGIFDSTADDR;
2141 			break;
2142 		case OSIOCGIFBRDADDR:
2143 			cmd = SIOCGIFBRDADDR;
2144 			break;
2145 		case OSIOCGIFNETMASK:
2146 			cmd = SIOCGIFNETMASK;
2147 			break;
2148 		default:
2149 			break;
2150 		}
2151 
2152 		error = so_pru_control_direct(so, cmd, data, ifp);
2153 
2154 		switch (ocmd) {
2155 		case OSIOCGIFADDR:
2156 		case OSIOCGIFDSTADDR:
2157 		case OSIOCGIFBRDADDR:
2158 		case OSIOCGIFNETMASK:
2159 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
2160 			break;
2161 		}
2162 #endif /* COMPAT_43 */
2163 
2164 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2165 #ifdef INET6
2166 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2167 			if (ifp->if_flags & IFF_UP) {
2168 				crit_enter();
2169 				in6_if_up(ifp);
2170 				crit_exit();
2171 			}
2172 #endif
2173 		}
2174 		break;
2175 	}
2176 
2177 	ifnet_unlock();
2178 	return (error);
2179 }
2180 
2181 /*
2182  * Set/clear promiscuous mode on interface ifp based on the truth value
2183  * of pswitch.  The calls are reference counted so that only the first
2184  * "on" request actually has an effect, as does the final "off" request.
2185  * Results are undefined if the "off" and "on" requests are not matched.
2186  */
2187 int
2188 ifpromisc(struct ifnet *ifp, int pswitch)
2189 {
2190 	struct ifreq ifr;
2191 	int error;
2192 	int oldflags;
2193 
2194 	oldflags = ifp->if_flags;
2195 	if (ifp->if_flags & IFF_PPROMISC) {
2196 		/* Do nothing if device is in permanently promiscuous mode */
2197 		ifp->if_pcount += pswitch ? 1 : -1;
2198 		return (0);
2199 	}
2200 	if (pswitch) {
2201 		/*
2202 		 * If the device is not configured up, we cannot put it in
2203 		 * promiscuous mode.
2204 		 */
2205 		if ((ifp->if_flags & IFF_UP) == 0)
2206 			return (ENETDOWN);
2207 		if (ifp->if_pcount++ != 0)
2208 			return (0);
2209 		ifp->if_flags |= IFF_PROMISC;
2210 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2211 		    ifp->if_xname);
2212 	} else {
2213 		if (--ifp->if_pcount > 0)
2214 			return (0);
2215 		ifp->if_flags &= ~IFF_PROMISC;
2216 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2217 		    ifp->if_xname);
2218 	}
2219 	ifr.ifr_flags = ifp->if_flags;
2220 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2221 	ifnet_serialize_all(ifp);
2222 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2223 	ifnet_deserialize_all(ifp);
2224 	if (error == 0)
2225 		rt_ifmsg(ifp);
2226 	else
2227 		ifp->if_flags = oldflags;
2228 	return error;
2229 }
2230 
2231 /*
2232  * Return interface configuration
2233  * of system.  List may be used
2234  * in later ioctl's (above) to get
2235  * other information.
2236  */
2237 static int
2238 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2239 {
2240 	struct ifconf *ifc = (struct ifconf *)data;
2241 	struct ifnet *ifp;
2242 	struct sockaddr *sa;
2243 	struct ifreq ifr, *ifrp;
2244 	int space = ifc->ifc_len, error = 0;
2245 
2246 	ifrp = ifc->ifc_req;
2247 
2248 	ifnet_lock();
2249 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2250 		struct ifaddr_container *ifac, *ifac_mark;
2251 		struct ifaddr_marker mark;
2252 		struct ifaddrhead *head;
2253 		int addrs;
2254 
2255 		if (space <= sizeof ifr)
2256 			break;
2257 
2258 		/*
2259 		 * Zero the stack declared structure first to prevent
2260 		 * memory disclosure.
2261 		 */
2262 		bzero(&ifr, sizeof(ifr));
2263 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2264 		    >= sizeof(ifr.ifr_name)) {
2265 			error = ENAMETOOLONG;
2266 			break;
2267 		}
2268 
2269 		/*
2270 		 * Add a marker, since copyout() could block and during that
2271 		 * period the list could be changed.  Inserting the marker to
2272 		 * the header of the list will not cause trouble for the code
2273 		 * assuming that the first element of the list is AF_LINK; the
2274 		 * marker will be moved to the next position w/o blocking.
2275 		 */
2276 		ifa_marker_init(&mark, ifp);
2277 		ifac_mark = &mark.ifac;
2278 		head = &ifp->if_addrheads[mycpuid];
2279 
2280 		addrs = 0;
2281 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2282 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2283 			struct ifaddr *ifa = ifac->ifa;
2284 
2285 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2286 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2287 
2288 			/* Ignore marker */
2289 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2290 				continue;
2291 
2292 			if (space <= sizeof ifr)
2293 				break;
2294 			sa = ifa->ifa_addr;
2295 			if (cred->cr_prison &&
2296 			    prison_if(cred, sa))
2297 				continue;
2298 			addrs++;
2299 			/*
2300 			 * Keep a reference on this ifaddr, so that it will
2301 			 * not be destroyed when its address is copied to
2302 			 * the userland, which could block.
2303 			 */
2304 			IFAREF(ifa);
2305 #ifdef COMPAT_43
2306 			if (cmd == OSIOCGIFCONF) {
2307 				struct osockaddr *osa =
2308 					 (struct osockaddr *)&ifr.ifr_addr;
2309 				ifr.ifr_addr = *sa;
2310 				osa->sa_family = sa->sa_family;
2311 				error = copyout(&ifr, ifrp, sizeof ifr);
2312 				ifrp++;
2313 			} else
2314 #endif
2315 			if (sa->sa_len <= sizeof(*sa)) {
2316 				ifr.ifr_addr = *sa;
2317 				error = copyout(&ifr, ifrp, sizeof ifr);
2318 				ifrp++;
2319 			} else {
2320 				if (space < (sizeof ifr) + sa->sa_len -
2321 					    sizeof(*sa)) {
2322 					IFAFREE(ifa);
2323 					break;
2324 				}
2325 				space -= sa->sa_len - sizeof(*sa);
2326 				error = copyout(&ifr, ifrp,
2327 						sizeof ifr.ifr_name);
2328 				if (error == 0)
2329 					error = copyout(sa, &ifrp->ifr_addr,
2330 							sa->sa_len);
2331 				ifrp = (struct ifreq *)
2332 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2333 			}
2334 			IFAFREE(ifa);
2335 			if (error)
2336 				break;
2337 			space -= sizeof ifr;
2338 		}
2339 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2340 		if (error)
2341 			break;
2342 		if (!addrs) {
2343 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2344 			error = copyout(&ifr, ifrp, sizeof ifr);
2345 			if (error)
2346 				break;
2347 			space -= sizeof ifr;
2348 			ifrp++;
2349 		}
2350 	}
2351 	ifnet_unlock();
2352 
2353 	ifc->ifc_len -= space;
2354 	return (error);
2355 }
2356 
2357 /*
2358  * Just like if_promisc(), but for all-multicast-reception mode.
2359  */
2360 int
2361 if_allmulti(struct ifnet *ifp, int onswitch)
2362 {
2363 	int error = 0;
2364 	struct ifreq ifr;
2365 
2366 	crit_enter();
2367 
2368 	if (onswitch) {
2369 		if (ifp->if_amcount++ == 0) {
2370 			ifp->if_flags |= IFF_ALLMULTI;
2371 			ifr.ifr_flags = ifp->if_flags;
2372 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2373 			ifnet_serialize_all(ifp);
2374 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2375 					      NULL);
2376 			ifnet_deserialize_all(ifp);
2377 		}
2378 	} else {
2379 		if (ifp->if_amcount > 1) {
2380 			ifp->if_amcount--;
2381 		} else {
2382 			ifp->if_amcount = 0;
2383 			ifp->if_flags &= ~IFF_ALLMULTI;
2384 			ifr.ifr_flags = ifp->if_flags;
2385 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2386 			ifnet_serialize_all(ifp);
2387 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2388 					      NULL);
2389 			ifnet_deserialize_all(ifp);
2390 		}
2391 	}
2392 
2393 	crit_exit();
2394 
2395 	if (error == 0)
2396 		rt_ifmsg(ifp);
2397 	return error;
2398 }
2399 
2400 /*
2401  * Add a multicast listenership to the interface in question.
2402  * The link layer provides a routine which converts
2403  */
2404 int
2405 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2406     struct ifmultiaddr **retifma)
2407 {
2408 	struct sockaddr *llsa, *dupsa;
2409 	int error;
2410 	struct ifmultiaddr *ifma;
2411 
2412 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2413 
2414 	/*
2415 	 * If the matching multicast address already exists
2416 	 * then don't add a new one, just add a reference
2417 	 */
2418 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2419 		if (sa_equal(sa, ifma->ifma_addr)) {
2420 			ifma->ifma_refcount++;
2421 			if (retifma)
2422 				*retifma = ifma;
2423 			return 0;
2424 		}
2425 	}
2426 
2427 	/*
2428 	 * Give the link layer a chance to accept/reject it, and also
2429 	 * find out which AF_LINK address this maps to, if it isn't one
2430 	 * already.
2431 	 */
2432 	if (ifp->if_resolvemulti) {
2433 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2434 		if (error)
2435 			return error;
2436 	} else {
2437 		llsa = NULL;
2438 	}
2439 
2440 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2441 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2442 	bcopy(sa, dupsa, sa->sa_len);
2443 
2444 	ifma->ifma_addr = dupsa;
2445 	ifma->ifma_lladdr = llsa;
2446 	ifma->ifma_ifp = ifp;
2447 	ifma->ifma_refcount = 1;
2448 	ifma->ifma_protospec = NULL;
2449 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2450 
2451 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2452 	if (retifma)
2453 		*retifma = ifma;
2454 
2455 	if (llsa != NULL) {
2456 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2457 			if (sa_equal(ifma->ifma_addr, llsa))
2458 				break;
2459 		}
2460 		if (ifma) {
2461 			ifma->ifma_refcount++;
2462 		} else {
2463 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2464 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2465 			bcopy(llsa, dupsa, llsa->sa_len);
2466 			ifma->ifma_addr = dupsa;
2467 			ifma->ifma_ifp = ifp;
2468 			ifma->ifma_refcount = 1;
2469 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2470 		}
2471 	}
2472 	/*
2473 	 * We are certain we have added something, so call down to the
2474 	 * interface to let them know about it.
2475 	 */
2476 	if (ifp->if_ioctl)
2477 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2478 
2479 	return 0;
2480 }
2481 
2482 int
2483 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2484     struct ifmultiaddr **retifma)
2485 {
2486 	int error;
2487 
2488 	ifnet_serialize_all(ifp);
2489 	error = if_addmulti_serialized(ifp, sa, retifma);
2490 	ifnet_deserialize_all(ifp);
2491 
2492 	return error;
2493 }
2494 
2495 /*
2496  * Remove a reference to a multicast address on this interface.  Yell
2497  * if the request does not match an existing membership.
2498  */
2499 static int
2500 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2501 {
2502 	struct ifmultiaddr *ifma;
2503 
2504 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2505 
2506 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2507 		if (sa_equal(sa, ifma->ifma_addr))
2508 			break;
2509 	if (ifma == NULL)
2510 		return ENOENT;
2511 
2512 	if (ifma->ifma_refcount > 1) {
2513 		ifma->ifma_refcount--;
2514 		return 0;
2515 	}
2516 
2517 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2518 	sa = ifma->ifma_lladdr;
2519 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2520 	/*
2521 	 * Make sure the interface driver is notified
2522 	 * in the case of a link layer mcast group being left.
2523 	 */
2524 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2525 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2526 	kfree(ifma->ifma_addr, M_IFMADDR);
2527 	kfree(ifma, M_IFMADDR);
2528 	if (sa == NULL)
2529 		return 0;
2530 
2531 	/*
2532 	 * Now look for the link-layer address which corresponds to
2533 	 * this network address.  It had been squirreled away in
2534 	 * ifma->ifma_lladdr for this purpose (so we don't have
2535 	 * to call ifp->if_resolvemulti() again), and we saved that
2536 	 * value in sa above.  If some nasty deleted the
2537 	 * link-layer address out from underneath us, we can deal because
2538 	 * the address we stored was is not the same as the one which was
2539 	 * in the record for the link-layer address.  (So we don't complain
2540 	 * in that case.)
2541 	 */
2542 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2543 		if (sa_equal(sa, ifma->ifma_addr))
2544 			break;
2545 	if (ifma == NULL)
2546 		return 0;
2547 
2548 	if (ifma->ifma_refcount > 1) {
2549 		ifma->ifma_refcount--;
2550 		return 0;
2551 	}
2552 
2553 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2554 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2555 	kfree(ifma->ifma_addr, M_IFMADDR);
2556 	kfree(sa, M_IFMADDR);
2557 	kfree(ifma, M_IFMADDR);
2558 
2559 	return 0;
2560 }
2561 
2562 int
2563 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2564 {
2565 	int error;
2566 
2567 	ifnet_serialize_all(ifp);
2568 	error = if_delmulti_serialized(ifp, sa);
2569 	ifnet_deserialize_all(ifp);
2570 
2571 	return error;
2572 }
2573 
2574 /*
2575  * Delete all multicast group membership for an interface.
2576  * Should be used to quickly flush all multicast filters.
2577  */
2578 void
2579 if_delallmulti_serialized(struct ifnet *ifp)
2580 {
2581 	struct ifmultiaddr *ifma, mark;
2582 	struct sockaddr sa;
2583 
2584 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2585 
2586 	bzero(&sa, sizeof(sa));
2587 	sa.sa_family = AF_UNSPEC;
2588 	sa.sa_len = sizeof(sa);
2589 
2590 	bzero(&mark, sizeof(mark));
2591 	mark.ifma_addr = &sa;
2592 
2593 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2594 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2595 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2596 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2597 		    ifma_link);
2598 
2599 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2600 			continue;
2601 
2602 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2603 	}
2604 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2605 }
2606 
2607 
2608 /*
2609  * Set the link layer address on an interface.
2610  *
2611  * At this time we only support certain types of interfaces,
2612  * and we don't allow the length of the address to change.
2613  */
2614 int
2615 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2616 {
2617 	struct sockaddr_dl *sdl;
2618 	struct ifreq ifr;
2619 
2620 	sdl = IF_LLSOCKADDR(ifp);
2621 	if (sdl == NULL)
2622 		return (EINVAL);
2623 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2624 		return (EINVAL);
2625 	switch (ifp->if_type) {
2626 	case IFT_ETHER:			/* these types use struct arpcom */
2627 	case IFT_XETHER:
2628 	case IFT_L2VLAN:
2629 	case IFT_IEEE8023ADLAG:
2630 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2631 		bcopy(lladdr, LLADDR(sdl), len);
2632 		break;
2633 	default:
2634 		return (ENODEV);
2635 	}
2636 	/*
2637 	 * If the interface is already up, we need
2638 	 * to re-init it in order to reprogram its
2639 	 * address filter.
2640 	 */
2641 	ifnet_serialize_all(ifp);
2642 	if ((ifp->if_flags & IFF_UP) != 0) {
2643 #ifdef INET
2644 		struct ifaddr_container *ifac;
2645 #endif
2646 
2647 		ifp->if_flags &= ~IFF_UP;
2648 		ifr.ifr_flags = ifp->if_flags;
2649 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2650 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2651 			      NULL);
2652 		ifp->if_flags |= IFF_UP;
2653 		ifr.ifr_flags = ifp->if_flags;
2654 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2655 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2656 				 NULL);
2657 #ifdef INET
2658 		/*
2659 		 * Also send gratuitous ARPs to notify other nodes about
2660 		 * the address change.
2661 		 */
2662 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2663 			struct ifaddr *ifa = ifac->ifa;
2664 
2665 			if (ifa->ifa_addr != NULL &&
2666 			    ifa->ifa_addr->sa_family == AF_INET)
2667 				arp_gratuitous(ifp, ifa);
2668 		}
2669 #endif
2670 	}
2671 	ifnet_deserialize_all(ifp);
2672 	return (0);
2673 }
2674 
2675 struct ifmultiaddr *
2676 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2677 {
2678 	struct ifmultiaddr *ifma;
2679 
2680 	/* TODO: need ifnet_serialize_main */
2681 	ifnet_serialize_all(ifp);
2682 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2683 		if (sa_equal(ifma->ifma_addr, sa))
2684 			break;
2685 	ifnet_deserialize_all(ifp);
2686 
2687 	return ifma;
2688 }
2689 
2690 /*
2691  * This function locates the first real ethernet MAC from a network
2692  * card and loads it into node, returning 0 on success or ENOENT if
2693  * no suitable interfaces were found.  It is used by the uuid code to
2694  * generate a unique 6-byte number.
2695  */
2696 int
2697 if_getanyethermac(uint16_t *node, int minlen)
2698 {
2699 	struct ifnet *ifp;
2700 	struct sockaddr_dl *sdl;
2701 
2702 	ifnet_lock();
2703 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2704 		if (ifp->if_type != IFT_ETHER)
2705 			continue;
2706 		sdl = IF_LLSOCKADDR(ifp);
2707 		if (sdl->sdl_alen < minlen)
2708 			continue;
2709 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2710 		      minlen);
2711 		ifnet_unlock();
2712 		return(0);
2713 	}
2714 	ifnet_unlock();
2715 	return (ENOENT);
2716 }
2717 
2718 /*
2719  * The name argument must be a pointer to storage which will last as
2720  * long as the interface does.  For physical devices, the result of
2721  * device_get_name(dev) is a good choice and for pseudo-devices a
2722  * static string works well.
2723  */
2724 void
2725 if_initname(struct ifnet *ifp, const char *name, int unit)
2726 {
2727 	ifp->if_dname = name;
2728 	ifp->if_dunit = unit;
2729 	if (unit != IF_DUNIT_NONE)
2730 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2731 	else
2732 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2733 }
2734 
2735 int
2736 if_printf(struct ifnet *ifp, const char *fmt, ...)
2737 {
2738 	__va_list ap;
2739 	int retval;
2740 
2741 	retval = kprintf("%s: ", ifp->if_xname);
2742 	__va_start(ap, fmt);
2743 	retval += kvprintf(fmt, ap);
2744 	__va_end(ap);
2745 	return (retval);
2746 }
2747 
2748 struct ifnet *
2749 if_alloc(uint8_t type)
2750 {
2751         struct ifnet *ifp;
2752 	size_t size;
2753 
2754 	/*
2755 	 * XXX temporary hack until arpcom is setup in if_l2com
2756 	 */
2757 	if (type == IFT_ETHER)
2758 		size = sizeof(struct arpcom);
2759 	else
2760 		size = sizeof(struct ifnet);
2761 
2762 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2763 
2764 	ifp->if_type = type;
2765 
2766 	if (if_com_alloc[type] != NULL) {
2767 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2768 		if (ifp->if_l2com == NULL) {
2769 			kfree(ifp, M_IFNET);
2770 			return (NULL);
2771 		}
2772 	}
2773 	return (ifp);
2774 }
2775 
2776 void
2777 if_free(struct ifnet *ifp)
2778 {
2779 	kfree(ifp, M_IFNET);
2780 }
2781 
2782 void
2783 ifq_set_classic(struct ifaltq *ifq)
2784 {
2785 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2786 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2787 }
2788 
2789 void
2790 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2791     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2792 {
2793 	int q;
2794 
2795 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2796 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2797 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2798 	KASSERT(request != NULL, ("request is not specified"));
2799 
2800 	ifq->altq_mapsubq = mapsubq;
2801 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2802 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2803 
2804 		ifsq->ifsq_enqueue = enqueue;
2805 		ifsq->ifsq_dequeue = dequeue;
2806 		ifsq->ifsq_request = request;
2807 	}
2808 }
2809 
2810 static void
2811 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2812 {
2813 	m->m_nextpkt = NULL;
2814 	if (ifsq->ifsq_norm_tail == NULL)
2815 		ifsq->ifsq_norm_head = m;
2816 	else
2817 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2818 	ifsq->ifsq_norm_tail = m;
2819 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2820 }
2821 
2822 static void
2823 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2824 {
2825 	m->m_nextpkt = NULL;
2826 	if (ifsq->ifsq_prio_tail == NULL)
2827 		ifsq->ifsq_prio_head = m;
2828 	else
2829 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2830 	ifsq->ifsq_prio_tail = m;
2831 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2832 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2833 }
2834 
2835 static struct mbuf *
2836 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2837 {
2838 	struct mbuf *m;
2839 
2840 	m = ifsq->ifsq_norm_head;
2841 	if (m != NULL) {
2842 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2843 			ifsq->ifsq_norm_tail = NULL;
2844 		m->m_nextpkt = NULL;
2845 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2846 	}
2847 	return m;
2848 }
2849 
2850 static struct mbuf *
2851 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2852 {
2853 	struct mbuf *m;
2854 
2855 	m = ifsq->ifsq_prio_head;
2856 	if (m != NULL) {
2857 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2858 			ifsq->ifsq_prio_tail = NULL;
2859 		m->m_nextpkt = NULL;
2860 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2861 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2862 	}
2863 	return m;
2864 }
2865 
2866 int
2867 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2868     struct altq_pktattr *pa __unused)
2869 {
2870 	M_ASSERTPKTHDR(m);
2871 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2872 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2873 		if ((m->m_flags & M_PRIO) &&
2874 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2875 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2876 			struct mbuf *m_drop;
2877 
2878 			/*
2879 			 * Perform drop-head on normal queue
2880 			 */
2881 			m_drop = ifsq_norm_dequeue(ifsq);
2882 			if (m_drop != NULL) {
2883 				m_freem(m_drop);
2884 				ifsq_prio_enqueue(ifsq, m);
2885 				return 0;
2886 			}
2887 			/* XXX nothing could be dropped? */
2888 		}
2889 		m_freem(m);
2890 		return ENOBUFS;
2891 	} else {
2892 		if (m->m_flags & M_PRIO)
2893 			ifsq_prio_enqueue(ifsq, m);
2894 		else
2895 			ifsq_norm_enqueue(ifsq, m);
2896 		return 0;
2897 	}
2898 }
2899 
2900 struct mbuf *
2901 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2902 {
2903 	struct mbuf *m;
2904 
2905 	switch (op) {
2906 	case ALTDQ_POLL:
2907 		m = ifsq->ifsq_prio_head;
2908 		if (m == NULL)
2909 			m = ifsq->ifsq_norm_head;
2910 		break;
2911 
2912 	case ALTDQ_REMOVE:
2913 		m = ifsq_prio_dequeue(ifsq);
2914 		if (m == NULL)
2915 			m = ifsq_norm_dequeue(ifsq);
2916 		break;
2917 
2918 	default:
2919 		panic("unsupported ALTQ dequeue op: %d", op);
2920 	}
2921 	return m;
2922 }
2923 
2924 int
2925 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2926 {
2927 	switch (req) {
2928 	case ALTRQ_PURGE:
2929 		for (;;) {
2930 			struct mbuf *m;
2931 
2932 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2933 			if (m == NULL)
2934 				break;
2935 			m_freem(m);
2936 		}
2937 		break;
2938 
2939 	default:
2940 		panic("unsupported ALTQ request: %d", req);
2941 	}
2942 	return 0;
2943 }
2944 
2945 static void
2946 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2947 {
2948 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2949 	int running = 0, need_sched;
2950 
2951 	/*
2952 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2953 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2954 	 * the subqueue will be scheduled on the subqueue owner CPU.
2955 	 */
2956 	if (!ifsq_tryserialize_hw(ifsq)) {
2957 		/*
2958 		 * Subqueue hardware serializer contention happened,
2959 		 * ifnet.if_start on the subqueue is scheduled on
2960 		 * the subqueue owner CPU, and we keep going.
2961 		 */
2962 		ifsq_ifstart_schedule(ifsq, 1);
2963 		return;
2964 	}
2965 
2966 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2967 		ifp->if_start(ifp, ifsq);
2968 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2969 			running = 1;
2970 	}
2971 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2972 
2973 	ifsq_deserialize_hw(ifsq);
2974 
2975 	if (need_sched) {
2976 		/*
2977 		 * More data need to be transmitted, ifnet.if_start on the
2978 		 * subqueue is scheduled on the subqueue owner CPU, and we
2979 		 * keep going.
2980 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2981 		 */
2982 		ifsq_ifstart_schedule(ifsq, force_sched);
2983 	}
2984 }
2985 
2986 /*
2987  * Subqeue packets staging mechanism:
2988  *
2989  * The packets enqueued into the subqueue are staged to a certain amount
2990  * before the ifnet.if_start on the subqueue is called.  In this way, the
2991  * driver could avoid writing to hardware registers upon every packet,
2992  * instead, hardware registers could be written when certain amount of
2993  * packets are put onto hardware TX ring.  The measurement on several modern
2994  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2995  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2996  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2997  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2998  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2999  *
3000  * Subqueue packets staging is performed for two entry points into drivers'
3001  * transmission function:
3002  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3003  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3004  *
3005  * Subqueue packets staging will be stopped upon any of the following
3006  * conditions:
3007  * - If the count of packets enqueued on the current CPU is great than or
3008  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3009  * - If the total length of packets enqueued on the current CPU is great
3010  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
3011  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3012  *   is usually less than hardware's MTU.
3013  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3014  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3015  *   released.
3016  * - The if_start_rollup(), which is registered as low priority netisr
3017  *   rollup function, is called; probably because no more work is pending
3018  *   for netisr.
3019  *
3020  * NOTE:
3021  * Currently subqueue packet staging is only performed in netisr threads.
3022  */
3023 int
3024 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3025 {
3026 	struct ifaltq *ifq = &ifp->if_snd;
3027 	struct ifaltq_subque *ifsq;
3028 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3029 	struct ifsubq_stage_head *head = NULL;
3030 	struct ifsubq_stage *stage = NULL;
3031 	struct globaldata *gd = mycpu;
3032 	struct thread *td = gd->gd_curthread;
3033 
3034 	crit_enter_quick(td);
3035 
3036 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3037 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3038 
3039 	len = m->m_pkthdr.len;
3040 	if (m->m_flags & M_MCAST)
3041 		mcast = 1;
3042 
3043 	if (td->td_type == TD_TYPE_NETISR) {
3044 		head = &ifsubq_stage_heads[mycpuid];
3045 		stage = ifsq_get_stage(ifsq, mycpuid);
3046 
3047 		stage->stg_cnt++;
3048 		stage->stg_len += len;
3049 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3050 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3051 			avoid_start = 1;
3052 	}
3053 
3054 	ALTQ_SQ_LOCK(ifsq);
3055 	error = ifsq_enqueue_locked(ifsq, m, pa);
3056 	if (error) {
3057 		if (!ifsq_data_ready(ifsq)) {
3058 			ALTQ_SQ_UNLOCK(ifsq);
3059 			crit_exit_quick(td);
3060 			return error;
3061 		}
3062 		avoid_start = 0;
3063 	}
3064 	if (!ifsq_is_started(ifsq)) {
3065 		if (avoid_start) {
3066 			ALTQ_SQ_UNLOCK(ifsq);
3067 
3068 			KKASSERT(!error);
3069 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3070 				ifsq_stage_insert(head, stage);
3071 
3072 			IFNET_STAT_INC(ifp, obytes, len);
3073 			if (mcast)
3074 				IFNET_STAT_INC(ifp, omcasts, 1);
3075 			crit_exit_quick(td);
3076 			return error;
3077 		}
3078 
3079 		/*
3080 		 * Hold the subqueue interlock of ifnet.if_start
3081 		 */
3082 		ifsq_set_started(ifsq);
3083 		start = 1;
3084 	}
3085 	ALTQ_SQ_UNLOCK(ifsq);
3086 
3087 	if (!error) {
3088 		IFNET_STAT_INC(ifp, obytes, len);
3089 		if (mcast)
3090 			IFNET_STAT_INC(ifp, omcasts, 1);
3091 	}
3092 
3093 	if (stage != NULL) {
3094 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3095 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3096 			if (!avoid_start) {
3097 				ifsq_stage_remove(head, stage);
3098 				ifsq_ifstart_schedule(ifsq, 1);
3099 			}
3100 			crit_exit_quick(td);
3101 			return error;
3102 		}
3103 
3104 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3105 			ifsq_stage_remove(head, stage);
3106 		} else {
3107 			stage->stg_cnt = 0;
3108 			stage->stg_len = 0;
3109 		}
3110 	}
3111 
3112 	if (!start) {
3113 		crit_exit_quick(td);
3114 		return error;
3115 	}
3116 
3117 	ifsq_ifstart_try(ifsq, 0);
3118 
3119 	crit_exit_quick(td);
3120 	return error;
3121 }
3122 
3123 void *
3124 ifa_create(int size)
3125 {
3126 	struct ifaddr *ifa;
3127 	int i;
3128 
3129 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3130 
3131 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3132 	ifa->ifa_containers =
3133 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3134 	        M_IFADDR, M_INTWAIT | M_ZERO);
3135 
3136 	ifa->ifa_ncnt = ncpus;
3137 	for (i = 0; i < ncpus; ++i) {
3138 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3139 
3140 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3141 		ifac->ifa = ifa;
3142 		ifac->ifa_refcnt = 1;
3143 	}
3144 #ifdef IFADDR_DEBUG
3145 	kprintf("alloc ifa %p %d\n", ifa, size);
3146 #endif
3147 	return ifa;
3148 }
3149 
3150 void
3151 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3152 {
3153 	struct ifaddr *ifa = ifac->ifa;
3154 
3155 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3156 	KKASSERT(ifac->ifa_refcnt == 0);
3157 	KASSERT(ifac->ifa_listmask == 0,
3158 		("ifa is still on %#x lists", ifac->ifa_listmask));
3159 
3160 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3161 
3162 #ifdef IFADDR_DEBUG_VERBOSE
3163 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3164 #endif
3165 
3166 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3167 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3168 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3169 #ifdef IFADDR_DEBUG
3170 		kprintf("free ifa %p\n", ifa);
3171 #endif
3172 		kfree(ifa->ifa_containers, M_IFADDR);
3173 		kfree(ifa, M_IFADDR);
3174 	}
3175 }
3176 
3177 static void
3178 ifa_iflink_dispatch(netmsg_t nmsg)
3179 {
3180 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3181 	struct ifaddr *ifa = msg->ifa;
3182 	struct ifnet *ifp = msg->ifp;
3183 	int cpu = mycpuid;
3184 	struct ifaddr_container *ifac;
3185 
3186 	crit_enter();
3187 
3188 	ifac = &ifa->ifa_containers[cpu];
3189 	ASSERT_IFAC_VALID(ifac);
3190 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3191 		("ifaddr is on if_addrheads"));
3192 
3193 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3194 	if (msg->tail)
3195 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3196 	else
3197 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3198 
3199 	crit_exit();
3200 
3201 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3202 }
3203 
3204 void
3205 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3206 {
3207 	struct netmsg_ifaddr msg;
3208 
3209 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3210 		    0, ifa_iflink_dispatch);
3211 	msg.ifa = ifa;
3212 	msg.ifp = ifp;
3213 	msg.tail = tail;
3214 
3215 	ifa_domsg(&msg.base.lmsg, 0);
3216 }
3217 
3218 static void
3219 ifa_ifunlink_dispatch(netmsg_t nmsg)
3220 {
3221 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3222 	struct ifaddr *ifa = msg->ifa;
3223 	struct ifnet *ifp = msg->ifp;
3224 	int cpu = mycpuid;
3225 	struct ifaddr_container *ifac;
3226 
3227 	crit_enter();
3228 
3229 	ifac = &ifa->ifa_containers[cpu];
3230 	ASSERT_IFAC_VALID(ifac);
3231 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3232 		("ifaddr is not on if_addrhead"));
3233 
3234 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3235 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3236 
3237 	crit_exit();
3238 
3239 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3240 }
3241 
3242 void
3243 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3244 {
3245 	struct netmsg_ifaddr msg;
3246 
3247 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3248 		    0, ifa_ifunlink_dispatch);
3249 	msg.ifa = ifa;
3250 	msg.ifp = ifp;
3251 
3252 	ifa_domsg(&msg.base.lmsg, 0);
3253 }
3254 
3255 static void
3256 ifa_destroy_dispatch(netmsg_t nmsg)
3257 {
3258 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3259 
3260 	IFAFREE(msg->ifa);
3261 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3262 }
3263 
3264 void
3265 ifa_destroy(struct ifaddr *ifa)
3266 {
3267 	struct netmsg_ifaddr msg;
3268 
3269 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3270 		    0, ifa_destroy_dispatch);
3271 	msg.ifa = ifa;
3272 
3273 	ifa_domsg(&msg.base.lmsg, 0);
3274 }
3275 
3276 struct lwkt_port *
3277 ifnet_portfn(int cpu)
3278 {
3279 	return &ifnet_threads[cpu].td_msgport;
3280 }
3281 
3282 void
3283 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3284 {
3285 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3286 
3287 	if (next_cpu < ncpus)
3288 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3289 	else
3290 		lwkt_replymsg(lmsg, 0);
3291 }
3292 
3293 int
3294 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3295 {
3296 	KKASSERT(cpu < ncpus);
3297 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3298 }
3299 
3300 void
3301 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3302 {
3303 	KKASSERT(cpu < ncpus);
3304 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3305 }
3306 
3307 /*
3308  * Generic netmsg service loop.  Some protocols may roll their own but all
3309  * must do the basic command dispatch function call done here.
3310  */
3311 static void
3312 ifnet_service_loop(void *arg __unused)
3313 {
3314 	netmsg_t msg;
3315 
3316 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3317 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3318 		msg->base.nm_dispatch(msg);
3319 	}
3320 }
3321 
3322 static void
3323 if_start_rollup(void)
3324 {
3325 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3326 	struct ifsubq_stage *stage;
3327 
3328 	crit_enter();
3329 
3330 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3331 		struct ifaltq_subque *ifsq = stage->stg_subq;
3332 		int is_sched = 0;
3333 
3334 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3335 			is_sched = 1;
3336 		ifsq_stage_remove(head, stage);
3337 
3338 		if (is_sched) {
3339 			ifsq_ifstart_schedule(ifsq, 1);
3340 		} else {
3341 			int start = 0;
3342 
3343 			ALTQ_SQ_LOCK(ifsq);
3344 			if (!ifsq_is_started(ifsq)) {
3345 				/*
3346 				 * Hold the subqueue interlock of
3347 				 * ifnet.if_start
3348 				 */
3349 				ifsq_set_started(ifsq);
3350 				start = 1;
3351 			}
3352 			ALTQ_SQ_UNLOCK(ifsq);
3353 
3354 			if (start)
3355 				ifsq_ifstart_try(ifsq, 1);
3356 		}
3357 		KKASSERT((stage->stg_flags &
3358 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3359 	}
3360 
3361 	crit_exit();
3362 }
3363 
3364 static void
3365 ifnetinit(void *dummy __unused)
3366 {
3367 	int i;
3368 
3369 	for (i = 0; i < ncpus; ++i) {
3370 		struct thread *thr = &ifnet_threads[i];
3371 
3372 		lwkt_create(ifnet_service_loop, NULL, NULL,
3373 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3374 			    i, "ifnet %d", i);
3375 		netmsg_service_port_init(&thr->td_msgport);
3376 		lwkt_schedule(thr);
3377 	}
3378 
3379 	for (i = 0; i < ncpus; ++i)
3380 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3381 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3382 }
3383 
3384 void
3385 if_register_com_alloc(u_char type,
3386     if_com_alloc_t *a, if_com_free_t *f)
3387 {
3388 
3389         KASSERT(if_com_alloc[type] == NULL,
3390             ("if_register_com_alloc: %d already registered", type));
3391         KASSERT(if_com_free[type] == NULL,
3392             ("if_register_com_alloc: %d free already registered", type));
3393 
3394         if_com_alloc[type] = a;
3395         if_com_free[type] = f;
3396 }
3397 
3398 void
3399 if_deregister_com_alloc(u_char type)
3400 {
3401 
3402         KASSERT(if_com_alloc[type] != NULL,
3403             ("if_deregister_com_alloc: %d not registered", type));
3404         KASSERT(if_com_free[type] != NULL,
3405             ("if_deregister_com_alloc: %d free not registered", type));
3406         if_com_alloc[type] = NULL;
3407         if_com_free[type] = NULL;
3408 }
3409 
3410 int
3411 if_ring_count2(int cnt, int cnt_max)
3412 {
3413 	int shift = 0;
3414 
3415 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3416 	    ("invalid ring count max %d", cnt_max));
3417 
3418 	if (cnt <= 0)
3419 		cnt = cnt_max;
3420 	if (cnt > ncpus2)
3421 		cnt = ncpus2;
3422 	if (cnt > cnt_max)
3423 		cnt = cnt_max;
3424 
3425 	while ((1 << (shift + 1)) <= cnt)
3426 		++shift;
3427 	cnt = 1 << shift;
3428 
3429 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3430 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3431 	     cnt, ncpus2, cnt_max));
3432 	return cnt;
3433 }
3434 
3435 void
3436 ifq_set_maxlen(struct ifaltq *ifq, int len)
3437 {
3438 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3439 }
3440 
3441 int
3442 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3443 {
3444 	return ALTQ_SUBQ_INDEX_DEFAULT;
3445 }
3446 
3447 int
3448 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3449 {
3450 	return (cpuid & ifq->altq_subq_mask);
3451 }
3452 
3453 static void
3454 ifsq_watchdog(void *arg)
3455 {
3456 	struct ifsubq_watchdog *wd = arg;
3457 	struct ifnet *ifp;
3458 
3459 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3460 		goto done;
3461 
3462 	ifp = ifsq_get_ifp(wd->wd_subq);
3463 	if (ifnet_tryserialize_all(ifp)) {
3464 		wd->wd_watchdog(wd->wd_subq);
3465 		ifnet_deserialize_all(ifp);
3466 	} else {
3467 		/* try again next timeout */
3468 		wd->wd_timer = 1;
3469 	}
3470 done:
3471 	ifsq_watchdog_reset(wd);
3472 }
3473 
3474 static void
3475 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3476 {
3477 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3478 	    ifsq_get_cpuid(wd->wd_subq));
3479 }
3480 
3481 void
3482 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3483     ifsq_watchdog_t watchdog)
3484 {
3485 	callout_init_mp(&wd->wd_callout);
3486 	wd->wd_timer = 0;
3487 	wd->wd_subq = ifsq;
3488 	wd->wd_watchdog = watchdog;
3489 }
3490 
3491 void
3492 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3493 {
3494 	wd->wd_timer = 0;
3495 	ifsq_watchdog_reset(wd);
3496 }
3497 
3498 void
3499 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3500 {
3501 	wd->wd_timer = 0;
3502 	callout_stop(&wd->wd_callout);
3503 }
3504 
3505 void
3506 ifnet_lock(void)
3507 {
3508 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3509 	    ("try holding ifnet lock in netisr"));
3510 	mtx_lock(&ifnet_mtx);
3511 }
3512 
3513 void
3514 ifnet_unlock(void)
3515 {
3516 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3517 	    ("try holding ifnet lock in netisr"));
3518 	mtx_unlock(&ifnet_mtx);
3519 }
3520 
3521 static struct ifnet_array *
3522 ifnet_array_alloc(int count)
3523 {
3524 	struct ifnet_array *arr;
3525 
3526 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3527 	    M_IFNET, M_WAITOK);
3528 	arr->ifnet_count = count;
3529 
3530 	return arr;
3531 }
3532 
3533 static void
3534 ifnet_array_free(struct ifnet_array *arr)
3535 {
3536 	if (arr == &ifnet_array0)
3537 		return;
3538 	kfree(arr, M_IFNET);
3539 }
3540 
3541 static struct ifnet_array *
3542 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3543 {
3544 	struct ifnet_array *arr;
3545 	int count, i;
3546 
3547 	KASSERT(old_arr->ifnet_count >= 0,
3548 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3549 	count = old_arr->ifnet_count + 1;
3550 	arr = ifnet_array_alloc(count);
3551 
3552 	/*
3553 	 * Save the old ifnet array and append this ifp to the end of
3554 	 * the new ifnet array.
3555 	 */
3556 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3557 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3558 		    ("%s is already in ifnet array", ifp->if_xname));
3559 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3560 	}
3561 	KASSERT(i == count - 1,
3562 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3563 	     ifp->if_xname, count - 1, i));
3564 	arr->ifnet_arr[i] = ifp;
3565 
3566 	return arr;
3567 }
3568 
3569 static struct ifnet_array *
3570 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3571 {
3572 	struct ifnet_array *arr;
3573 	int count, i, idx, found = 0;
3574 
3575 	KASSERT(old_arr->ifnet_count > 0,
3576 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3577 	count = old_arr->ifnet_count - 1;
3578 	arr = ifnet_array_alloc(count);
3579 
3580 	/*
3581 	 * Save the old ifnet array, but skip this ifp.
3582 	 */
3583 	idx = 0;
3584 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3585 		if (old_arr->ifnet_arr[i] == ifp) {
3586 			KASSERT(!found,
3587 			    ("dup %s is in ifnet array", ifp->if_xname));
3588 			found = 1;
3589 			continue;
3590 		}
3591 		KASSERT(idx < count,
3592 		    ("invalid ifnet array index %d, count %d", idx, count));
3593 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3594 		++idx;
3595 	}
3596 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3597 	KASSERT(idx == count,
3598 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3599 	     ifp->if_xname, count, idx));
3600 
3601 	return arr;
3602 }
3603 
3604 const struct ifnet_array *
3605 ifnet_array_get(void)
3606 {
3607 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3608 	return ifnet_array;
3609 }
3610 
3611 int
3612 ifnet_array_isempty(void)
3613 {
3614 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3615 	if (ifnet_array->ifnet_count == 0)
3616 		return 1;
3617 	else
3618 		return 0;
3619 }
3620 
3621 void
3622 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3623 {
3624 	struct ifaddr *ifa;
3625 
3626 	memset(mark, 0, sizeof(*mark));
3627 	ifa = &mark->ifa;
3628 
3629 	mark->ifac.ifa = ifa;
3630 
3631 	ifa->ifa_addr = &mark->addr;
3632 	ifa->ifa_dstaddr = &mark->dstaddr;
3633 	ifa->ifa_netmask = &mark->netmask;
3634 	ifa->ifa_ifp = ifp;
3635 }
3636