xref: /dragonfly/sys/net/if.c (revision 99dd49c5)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/socketops.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/thread2.h>
62 #include <sys/serialize.h>
63 #include <sys/msgport2.h>
64 #include <sys/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_var.h>
71 #include <net/ifq_var.h>
72 #include <net/radix.h>
73 #include <net/route.h>
74 #include <net/if_clone.h>
75 #include <net/netisr.h>
76 #include <net/netmsg2.h>
77 
78 #include <machine/atomic.h>
79 #include <machine/stdarg.h>
80 #include <machine/smp.h>
81 
82 #if defined(INET) || defined(INET6)
83 /*XXX*/
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #ifdef INET6
88 #include <netinet6/in6_var.h>
89 #include <netinet6/in6_ifattach.h>
90 #endif
91 #endif
92 
93 #if defined(COMPAT_43)
94 #include <emulation/43bsd/43bsd_socket.h>
95 #endif /* COMPAT_43 */
96 
97 struct netmsg_ifaddr {
98 	struct netmsg	netmsg;
99 	struct ifaddr	*ifa;
100 	struct ifnet	*ifp;
101 	int		tail;
102 };
103 
104 /*
105  * System initialization
106  */
107 static void	if_attachdomain(void *);
108 static void	if_attachdomain1(struct ifnet *);
109 static int	ifconf(u_long, caddr_t, struct ucred *);
110 static void	ifinit(void *);
111 static void	ifnetinit(void *);
112 static void	if_slowtimo(void *);
113 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
114 static int	if_rtdel(struct radix_node *, void *);
115 
116 #ifdef INET6
117 /*
118  * XXX: declare here to avoid to include many inet6 related files..
119  * should be more generalized?
120  */
121 extern void	nd6_setmtu(struct ifnet *);
122 #endif
123 
124 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
125 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
126 
127 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
128 /* Must be after netisr_init */
129 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
130 
131 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
132 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
133 
134 int			ifqmaxlen = IFQ_MAXLEN;
135 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
136 
137 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
138 static int		ifq_dispatch_schedonly = 0;
139 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
140            &ifq_dispatch_schedonly, 0, "");
141 
142 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
143 static int		ifq_dispatch_schednochk = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
145            &ifq_dispatch_schednochk, 0, "");
146 
147 /* In if_devstart(), try to do direct ifnet.if_start first */
148 static int		if_devstart_schedonly = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
150            &if_devstart_schedonly, 0, "");
151 
152 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
153 static int		if_devstart_schednochk = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
155            &if_devstart_schednochk, 0, "");
156 
157 #ifdef SMP
158 /* Schedule ifnet.if_start on the current CPU */
159 static int		if_start_oncpu_sched = 0;
160 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
161            &if_start_oncpu_sched, 0, "");
162 #endif
163 
164 struct callout		if_slowtimo_timer;
165 
166 int			if_index = 0;
167 struct ifnet		**ifindex2ifnet = NULL;
168 static struct thread	ifnet_threads[MAXCPU];
169 static int		ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
170 
171 #define IFQ_KTR_STRING		"ifq=%p"
172 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
173 #ifndef KTR_IFQ
174 #define KTR_IFQ			KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
179 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
180 
181 #define IF_START_KTR_STRING	"ifp=%p"
182 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
183 #ifndef KTR_IF_START
184 #define KTR_IF_START		KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
198 
199 /*
200  * Network interface utility routines.
201  *
202  * Routines with ifa_ifwith* names take sockaddr *'s as
203  * parameters.
204  */
205 /* ARGSUSED*/
206 void
207 ifinit(void *dummy)
208 {
209 	struct ifnet *ifp;
210 
211 	callout_init(&if_slowtimo_timer);
212 
213 	crit_enter();
214 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
215 		if (ifp->if_snd.ifq_maxlen == 0) {
216 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
217 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
218 		}
219 	}
220 	crit_exit();
221 
222 	if_slowtimo(0);
223 }
224 
225 static int
226 if_start_cpuid(struct ifnet *ifp)
227 {
228 	return ifp->if_cpuid;
229 }
230 
231 #ifdef DEVICE_POLLING
232 static int
233 if_start_cpuid_poll(struct ifnet *ifp)
234 {
235 	int poll_cpuid = ifp->if_poll_cpuid;
236 
237 	if (poll_cpuid >= 0)
238 		return poll_cpuid;
239 	else
240 		return ifp->if_cpuid;
241 }
242 #endif
243 
244 static void
245 if_start_ipifunc(void *arg)
246 {
247 	struct ifnet *ifp = arg;
248 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
249 
250 	crit_enter();
251 	if (lmsg->ms_flags & MSGF_DONE)
252 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
253 	crit_exit();
254 }
255 
256 /*
257  * Schedule ifnet.if_start on ifnet's CPU
258  */
259 static void
260 if_start_schedule(struct ifnet *ifp)
261 {
262 #ifdef SMP
263 	int cpu;
264 
265 	if (if_start_oncpu_sched)
266 		cpu = mycpuid;
267 	else
268 		cpu = ifp->if_start_cpuid(ifp);
269 
270 	if (cpu != mycpuid)
271 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
272 	else
273 #endif
274 	if_start_ipifunc(ifp);
275 }
276 
277 /*
278  * NOTE:
279  * This function will release ifnet.if_start interlock,
280  * if ifnet.if_start does not need to be scheduled
281  */
282 static __inline int
283 if_start_need_schedule(struct ifaltq *ifq, int running)
284 {
285 	if (!running || ifq_is_empty(ifq)
286 #ifdef ALTQ
287 	    || ifq->altq_tbr != NULL
288 #endif
289 	) {
290 		ALTQ_LOCK(ifq);
291 		/*
292 		 * ifnet.if_start interlock is released, if:
293 		 * 1) Hardware can not take any packets, due to
294 		 *    o  interface is marked down
295 		 *    o  hardware queue is full (IFF_OACTIVE)
296 		 *    Under the second situation, hardware interrupt
297 		 *    or polling(4) will call/schedule ifnet.if_start
298 		 *    when hardware queue is ready
299 		 * 2) There is not packet in the ifnet.if_snd.
300 		 *    Further ifq_dispatch or ifq_handoff will call/
301 		 *    schedule ifnet.if_start
302 		 * 3) TBR is used and it does not allow further
303 		 *    dequeueing.
304 		 *    TBR callout will call ifnet.if_start
305 		 */
306 		if (!running || !ifq_data_ready(ifq)) {
307 			ifq->altq_started = 0;
308 			ALTQ_UNLOCK(ifq);
309 			return 0;
310 		}
311 		ALTQ_UNLOCK(ifq);
312 	}
313 	return 1;
314 }
315 
316 static void
317 if_start_dispatch(struct netmsg *nmsg)
318 {
319 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
320 	struct ifnet *ifp = lmsg->u.ms_resultp;
321 	struct ifaltq *ifq = &ifp->if_snd;
322 	int running = 0;
323 
324 	crit_enter();
325 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
326 	crit_exit();
327 
328 #ifdef SMP
329 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
330 		/*
331 		 * If the ifnet is still up, we need to
332 		 * chase its CPU change.
333 		 */
334 		if (ifp->if_flags & IFF_UP) {
335 			logifstart(chase_sched, ifp);
336 			if_start_schedule(ifp);
337 			return;
338 		} else {
339 			goto check;
340 		}
341 	}
342 #endif
343 
344 	if (ifp->if_flags & IFF_UP) {
345 		ifnet_serialize_tx(ifp); /* XXX try? */
346 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
347 			logifstart(run, ifp);
348 			ifp->if_start(ifp);
349 			if ((ifp->if_flags &
350 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
351 				running = 1;
352 		}
353 		ifnet_deserialize_tx(ifp);
354 	}
355 #ifdef SMP
356 check:
357 #endif
358 	if (if_start_need_schedule(ifq, running)) {
359 		crit_enter();
360 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
361 			logifstart(sched, ifp);
362 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
363 		}
364 		crit_exit();
365 	}
366 }
367 
368 /* Device driver ifnet.if_start helper function */
369 void
370 if_devstart(struct ifnet *ifp)
371 {
372 	struct ifaltq *ifq = &ifp->if_snd;
373 	int running = 0;
374 
375 	ASSERT_IFNET_SERIALIZED_TX(ifp);
376 
377 	ALTQ_LOCK(ifq);
378 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
379 		logifstart(avoid, ifp);
380 		ALTQ_UNLOCK(ifq);
381 		return;
382 	}
383 	ifq->altq_started = 1;
384 	ALTQ_UNLOCK(ifq);
385 
386 	if (if_devstart_schedonly) {
387 		/*
388 		 * Always schedule ifnet.if_start on ifnet's CPU,
389 		 * short circuit the rest of this function.
390 		 */
391 		logifstart(sched, ifp);
392 		if_start_schedule(ifp);
393 		return;
394 	}
395 
396 	logifstart(run, ifp);
397 	ifp->if_start(ifp);
398 
399 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
400 		running = 1;
401 
402 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
403 		/*
404 		 * More data need to be transmitted, ifnet.if_start is
405 		 * scheduled on ifnet's CPU, and we keep going.
406 		 * NOTE: ifnet.if_start interlock is not released.
407 		 */
408 		logifstart(sched, ifp);
409 		if_start_schedule(ifp);
410 	}
411 }
412 
413 static void
414 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
415 {
416 	lwkt_serialize_enter(ifp->if_serializer);
417 }
418 
419 static void
420 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
421 {
422 	lwkt_serialize_exit(ifp->if_serializer);
423 }
424 
425 static int
426 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
427 {
428 	return lwkt_serialize_try(ifp->if_serializer);
429 }
430 
431 #ifdef INVARIANTS
432 static void
433 if_default_serialize_assert(struct ifnet *ifp,
434 			    enum ifnet_serialize slz __unused,
435 			    boolean_t serialized)
436 {
437 	if (serialized)
438 		ASSERT_SERIALIZED(ifp->if_serializer);
439 	else
440 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
441 }
442 #endif
443 
444 /*
445  * Attach an interface to the list of "active" interfaces.
446  *
447  * The serializer is optional.  If non-NULL access to the interface
448  * may be MPSAFE.
449  */
450 void
451 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
452 {
453 	unsigned socksize, ifasize;
454 	int namelen, masklen;
455 	struct sockaddr_dl *sdl;
456 	struct ifaddr *ifa;
457 	struct ifaltq *ifq;
458 	int i;
459 
460 	static int if_indexlim = 8;
461 
462 	if (ifp->if_serialize != NULL) {
463 		KASSERT(ifp->if_deserialize != NULL &&
464 			ifp->if_tryserialize != NULL &&
465 			ifp->if_serialize_assert != NULL,
466 			("serialize functions are partially setup\n"));
467 
468 		/*
469 		 * If the device supplies serialize functions,
470 		 * then clear if_serializer to catch any invalid
471 		 * usage of this field.
472 		 */
473 		KASSERT(serializer == NULL,
474 			("both serialize functions and default serializer "
475 			 "are supplied\n"));
476 		ifp->if_serializer = NULL;
477 	} else {
478 		KASSERT(ifp->if_deserialize == NULL &&
479 			ifp->if_tryserialize == NULL &&
480 			ifp->if_serialize_assert == NULL,
481 			("serialize functions are partially setup\n"));
482 		ifp->if_serialize = if_default_serialize;
483 		ifp->if_deserialize = if_default_deserialize;
484 		ifp->if_tryserialize = if_default_tryserialize;
485 #ifdef INVARIANTS
486 		ifp->if_serialize_assert = if_default_serialize_assert;
487 #endif
488 
489 		/*
490 		 * The serializer can be passed in from the device,
491 		 * allowing the same serializer to be used for both
492 		 * the interrupt interlock and the device queue.
493 		 * If not specified, the netif structure will use an
494 		 * embedded serializer.
495 		 */
496 		if (serializer == NULL) {
497 			serializer = &ifp->if_default_serializer;
498 			lwkt_serialize_init(serializer);
499 		}
500 		ifp->if_serializer = serializer;
501 	}
502 
503 	ifp->if_start_cpuid = if_start_cpuid;
504 	ifp->if_cpuid = 0;
505 
506 #ifdef DEVICE_POLLING
507 	/* Device is not in polling mode by default */
508 	ifp->if_poll_cpuid = -1;
509 	if (ifp->if_poll != NULL)
510 		ifp->if_start_cpuid = if_start_cpuid_poll;
511 #endif
512 
513 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
514 				     M_LWKTMSG, M_WAITOK);
515 	for (i = 0; i < ncpus; ++i) {
516 		netmsg_init(&ifp->if_start_nmsg[i], &netisr_adone_rport, 0,
517 			    if_start_dispatch);
518 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
519 	}
520 
521 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
522 	ifp->if_index = ++if_index;
523 
524 	/*
525 	 * XXX -
526 	 * The old code would work if the interface passed a pre-existing
527 	 * chain of ifaddrs to this code.  We don't trust our callers to
528 	 * properly initialize the tailq, however, so we no longer allow
529 	 * this unlikely case.
530 	 */
531 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
532 				    M_IFADDR, M_WAITOK | M_ZERO);
533 	for (i = 0; i < ncpus; ++i)
534 		TAILQ_INIT(&ifp->if_addrheads[i]);
535 
536 	TAILQ_INIT(&ifp->if_prefixhead);
537 	LIST_INIT(&ifp->if_multiaddrs);
538 	getmicrotime(&ifp->if_lastchange);
539 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
540 		unsigned int n;
541 		struct ifnet **q;
542 
543 		if_indexlim <<= 1;
544 
545 		/* grow ifindex2ifnet */
546 		n = if_indexlim * sizeof(*q);
547 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
548 		if (ifindex2ifnet) {
549 			bcopy(ifindex2ifnet, q, n/2);
550 			kfree(ifindex2ifnet, M_IFADDR);
551 		}
552 		ifindex2ifnet = q;
553 	}
554 
555 	ifindex2ifnet[if_index] = ifp;
556 
557 	/*
558 	 * create a Link Level name for this device
559 	 */
560 	namelen = strlen(ifp->if_xname);
561 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
562 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
563 	socksize = masklen + ifp->if_addrlen;
564 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
565 	if (socksize < sizeof(*sdl))
566 		socksize = sizeof(*sdl);
567 	socksize = ROUNDUP(socksize);
568 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
569 	ifa = ifa_create(ifasize, M_WAITOK);
570 	sdl = (struct sockaddr_dl *)(ifa + 1);
571 	sdl->sdl_len = socksize;
572 	sdl->sdl_family = AF_LINK;
573 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
574 	sdl->sdl_nlen = namelen;
575 	sdl->sdl_index = ifp->if_index;
576 	sdl->sdl_type = ifp->if_type;
577 	ifp->if_lladdr = ifa;
578 	ifa->ifa_ifp = ifp;
579 	ifa->ifa_rtrequest = link_rtrequest;
580 	ifa->ifa_addr = (struct sockaddr *)sdl;
581 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
582 	ifa->ifa_netmask = (struct sockaddr *)sdl;
583 	sdl->sdl_len = masklen;
584 	while (namelen != 0)
585 		sdl->sdl_data[--namelen] = 0xff;
586 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
587 
588 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
589 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
590 
591 	ifq = &ifp->if_snd;
592 	ifq->altq_type = 0;
593 	ifq->altq_disc = NULL;
594 	ifq->altq_flags &= ALTQF_CANTCHANGE;
595 	ifq->altq_tbr = NULL;
596 	ifq->altq_ifp = ifp;
597 	ifq->altq_started = 0;
598 	ifq->altq_prepended = NULL;
599 	ALTQ_LOCK_INIT(ifq);
600 	ifq_set_classic(ifq);
601 
602 	if (!SLIST_EMPTY(&domains))
603 		if_attachdomain1(ifp);
604 
605 	/* Announce the interface. */
606 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
607 }
608 
609 static void
610 if_attachdomain(void *dummy)
611 {
612 	struct ifnet *ifp;
613 
614 	crit_enter();
615 	TAILQ_FOREACH(ifp, &ifnet, if_list)
616 		if_attachdomain1(ifp);
617 	crit_exit();
618 }
619 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
620 	if_attachdomain, NULL);
621 
622 static void
623 if_attachdomain1(struct ifnet *ifp)
624 {
625 	struct domain *dp;
626 
627 	crit_enter();
628 
629 	/* address family dependent data region */
630 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
631 	SLIST_FOREACH(dp, &domains, dom_next)
632 		if (dp->dom_ifattach)
633 			ifp->if_afdata[dp->dom_family] =
634 				(*dp->dom_ifattach)(ifp);
635 	crit_exit();
636 }
637 
638 /*
639  * Purge all addresses whose type is _not_ AF_LINK
640  */
641 void
642 if_purgeaddrs_nolink(struct ifnet *ifp)
643 {
644 	struct ifaddr_container *ifac, *next;
645 
646 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
647 			      ifa_link, next) {
648 		struct ifaddr *ifa = ifac->ifa;
649 
650 		/* Leave link ifaddr as it is */
651 		if (ifa->ifa_addr->sa_family == AF_LINK)
652 			continue;
653 #ifdef INET
654 		/* XXX: Ugly!! ad hoc just for INET */
655 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
656 			struct ifaliasreq ifr;
657 #ifdef IFADDR_DEBUG_VERBOSE
658 			int i;
659 
660 			kprintf("purge in4 addr %p: ", ifa);
661 			for (i = 0; i < ncpus; ++i)
662 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
663 			kprintf("\n");
664 #endif
665 
666 			bzero(&ifr, sizeof ifr);
667 			ifr.ifra_addr = *ifa->ifa_addr;
668 			if (ifa->ifa_dstaddr)
669 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
670 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
671 				       NULL) == 0)
672 				continue;
673 		}
674 #endif /* INET */
675 #ifdef INET6
676 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
677 #ifdef IFADDR_DEBUG_VERBOSE
678 			int i;
679 
680 			kprintf("purge in6 addr %p: ", ifa);
681 			for (i = 0; i < ncpus; ++i)
682 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
683 			kprintf("\n");
684 #endif
685 
686 			in6_purgeaddr(ifa);
687 			/* ifp_addrhead is already updated */
688 			continue;
689 		}
690 #endif /* INET6 */
691 		ifa_ifunlink(ifa, ifp);
692 		ifa_destroy(ifa);
693 	}
694 }
695 
696 /*
697  * Detach an interface, removing it from the
698  * list of "active" interfaces.
699  */
700 void
701 if_detach(struct ifnet *ifp)
702 {
703 	struct radix_node_head	*rnh;
704 	int i;
705 	int cpu, origcpu;
706 	struct domain *dp;
707 
708 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
709 
710 	/*
711 	 * Remove routes and flush queues.
712 	 */
713 	crit_enter();
714 #ifdef DEVICE_POLLING
715 	if (ifp->if_flags & IFF_POLLING)
716 		ether_poll_deregister(ifp);
717 #endif
718 	if_down(ifp);
719 
720 	if (ifq_is_enabled(&ifp->if_snd))
721 		altq_disable(&ifp->if_snd);
722 	if (ifq_is_attached(&ifp->if_snd))
723 		altq_detach(&ifp->if_snd);
724 
725 	/*
726 	 * Clean up all addresses.
727 	 */
728 	ifp->if_lladdr = NULL;
729 
730 	if_purgeaddrs_nolink(ifp);
731 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
732 		struct ifaddr *ifa;
733 
734 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
735 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
736 			("non-link ifaddr is left on if_addrheads"));
737 
738 		ifa_ifunlink(ifa, ifp);
739 		ifa_destroy(ifa);
740 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
741 			("there are still ifaddrs left on if_addrheads"));
742 	}
743 
744 #ifdef INET
745 	/*
746 	 * Remove all IPv4 kernel structures related to ifp.
747 	 */
748 	in_ifdetach(ifp);
749 #endif
750 
751 #ifdef INET6
752 	/*
753 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
754 	 * before removing routing entries below, since IPv6 interface direct
755 	 * routes are expected to be removed by the IPv6-specific kernel API.
756 	 * Otherwise, the kernel will detect some inconsistency and bark it.
757 	 */
758 	in6_ifdetach(ifp);
759 #endif
760 
761 	/*
762 	 * Delete all remaining routes using this interface
763 	 * Unfortuneatly the only way to do this is to slog through
764 	 * the entire routing table looking for routes which point
765 	 * to this interface...oh well...
766 	 */
767 	origcpu = mycpuid;
768 	for (cpu = 0; cpu < ncpus2; cpu++) {
769 		lwkt_migratecpu(cpu);
770 		for (i = 1; i <= AF_MAX; i++) {
771 			if ((rnh = rt_tables[cpu][i]) == NULL)
772 				continue;
773 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
774 		}
775 	}
776 	lwkt_migratecpu(origcpu);
777 
778 	/* Announce that the interface is gone. */
779 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
780 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
781 
782 	SLIST_FOREACH(dp, &domains, dom_next)
783 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
784 			(*dp->dom_ifdetach)(ifp,
785 				ifp->if_afdata[dp->dom_family]);
786 
787 	/*
788 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
789 	 */
790 	ifindex2ifnet[ifp->if_index] = NULL;
791 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
792 		if_index--;
793 
794 	TAILQ_REMOVE(&ifnet, ifp, if_link);
795 	kfree(ifp->if_addrheads, M_IFADDR);
796 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
797 	crit_exit();
798 }
799 
800 /*
801  * Delete Routes for a Network Interface
802  *
803  * Called for each routing entry via the rnh->rnh_walktree() call above
804  * to delete all route entries referencing a detaching network interface.
805  *
806  * Arguments:
807  *	rn	pointer to node in the routing table
808  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
809  *
810  * Returns:
811  *	0	successful
812  *	errno	failed - reason indicated
813  *
814  */
815 static int
816 if_rtdel(struct radix_node *rn, void *arg)
817 {
818 	struct rtentry	*rt = (struct rtentry *)rn;
819 	struct ifnet	*ifp = arg;
820 	int		err;
821 
822 	if (rt->rt_ifp == ifp) {
823 
824 		/*
825 		 * Protect (sorta) against walktree recursion problems
826 		 * with cloned routes
827 		 */
828 		if (!(rt->rt_flags & RTF_UP))
829 			return (0);
830 
831 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
832 				rt_mask(rt), rt->rt_flags,
833 				NULL);
834 		if (err) {
835 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
836 		}
837 	}
838 
839 	return (0);
840 }
841 
842 /*
843  * Locate an interface based on a complete address.
844  */
845 struct ifaddr *
846 ifa_ifwithaddr(struct sockaddr *addr)
847 {
848 	struct ifnet *ifp;
849 
850 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
851 		struct ifaddr_container *ifac;
852 
853 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
854 			struct ifaddr *ifa = ifac->ifa;
855 
856 			if (ifa->ifa_addr->sa_family != addr->sa_family)
857 				continue;
858 			if (sa_equal(addr, ifa->ifa_addr))
859 				return (ifa);
860 			if ((ifp->if_flags & IFF_BROADCAST) &&
861 			    ifa->ifa_broadaddr &&
862 			    /* IPv6 doesn't have broadcast */
863 			    ifa->ifa_broadaddr->sa_len != 0 &&
864 			    sa_equal(ifa->ifa_broadaddr, addr))
865 				return (ifa);
866 		}
867 	}
868 	return (NULL);
869 }
870 /*
871  * Locate the point to point interface with a given destination address.
872  */
873 struct ifaddr *
874 ifa_ifwithdstaddr(struct sockaddr *addr)
875 {
876 	struct ifnet *ifp;
877 
878 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
879 		struct ifaddr_container *ifac;
880 
881 		if (!(ifp->if_flags & IFF_POINTOPOINT))
882 			continue;
883 
884 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
885 			struct ifaddr *ifa = ifac->ifa;
886 
887 			if (ifa->ifa_addr->sa_family != addr->sa_family)
888 				continue;
889 			if (ifa->ifa_dstaddr &&
890 			    sa_equal(addr, ifa->ifa_dstaddr))
891 				return (ifa);
892 		}
893 	}
894 	return (NULL);
895 }
896 
897 /*
898  * Find an interface on a specific network.  If many, choice
899  * is most specific found.
900  */
901 struct ifaddr *
902 ifa_ifwithnet(struct sockaddr *addr)
903 {
904 	struct ifnet *ifp;
905 	struct ifaddr *ifa_maybe = NULL;
906 	u_int af = addr->sa_family;
907 	char *addr_data = addr->sa_data, *cplim;
908 
909 	/*
910 	 * AF_LINK addresses can be looked up directly by their index number,
911 	 * so do that if we can.
912 	 */
913 	if (af == AF_LINK) {
914 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
915 
916 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
917 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
918 	}
919 
920 	/*
921 	 * Scan though each interface, looking for ones that have
922 	 * addresses in this address family.
923 	 */
924 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
925 		struct ifaddr_container *ifac;
926 
927 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
928 			struct ifaddr *ifa = ifac->ifa;
929 			char *cp, *cp2, *cp3;
930 
931 			if (ifa->ifa_addr->sa_family != af)
932 next:				continue;
933 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
934 				/*
935 				 * This is a bit broken as it doesn't
936 				 * take into account that the remote end may
937 				 * be a single node in the network we are
938 				 * looking for.
939 				 * The trouble is that we don't know the
940 				 * netmask for the remote end.
941 				 */
942 				if (ifa->ifa_dstaddr != NULL &&
943 				    sa_equal(addr, ifa->ifa_dstaddr))
944 					return (ifa);
945 			} else {
946 				/*
947 				 * if we have a special address handler,
948 				 * then use it instead of the generic one.
949 				 */
950 				if (ifa->ifa_claim_addr) {
951 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
952 						return (ifa);
953 					} else {
954 						continue;
955 					}
956 				}
957 
958 				/*
959 				 * Scan all the bits in the ifa's address.
960 				 * If a bit dissagrees with what we are
961 				 * looking for, mask it with the netmask
962 				 * to see if it really matters.
963 				 * (A byte at a time)
964 				 */
965 				if (ifa->ifa_netmask == 0)
966 					continue;
967 				cp = addr_data;
968 				cp2 = ifa->ifa_addr->sa_data;
969 				cp3 = ifa->ifa_netmask->sa_data;
970 				cplim = ifa->ifa_netmask->sa_len +
971 					(char *)ifa->ifa_netmask;
972 				while (cp3 < cplim)
973 					if ((*cp++ ^ *cp2++) & *cp3++)
974 						goto next; /* next address! */
975 				/*
976 				 * If the netmask of what we just found
977 				 * is more specific than what we had before
978 				 * (if we had one) then remember the new one
979 				 * before continuing to search
980 				 * for an even better one.
981 				 */
982 				if (ifa_maybe == 0 ||
983 				    rn_refines((char *)ifa->ifa_netmask,
984 					       (char *)ifa_maybe->ifa_netmask))
985 					ifa_maybe = ifa;
986 			}
987 		}
988 	}
989 	return (ifa_maybe);
990 }
991 
992 /*
993  * Find an interface address specific to an interface best matching
994  * a given address.
995  */
996 struct ifaddr *
997 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
998 {
999 	struct ifaddr_container *ifac;
1000 	char *cp, *cp2, *cp3;
1001 	char *cplim;
1002 	struct ifaddr *ifa_maybe = 0;
1003 	u_int af = addr->sa_family;
1004 
1005 	if (af >= AF_MAX)
1006 		return (0);
1007 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1008 		struct ifaddr *ifa = ifac->ifa;
1009 
1010 		if (ifa->ifa_addr->sa_family != af)
1011 			continue;
1012 		if (ifa_maybe == 0)
1013 			ifa_maybe = ifa;
1014 		if (ifa->ifa_netmask == NULL) {
1015 			if (sa_equal(addr, ifa->ifa_addr) ||
1016 			    (ifa->ifa_dstaddr != NULL &&
1017 			     sa_equal(addr, ifa->ifa_dstaddr)))
1018 				return (ifa);
1019 			continue;
1020 		}
1021 		if (ifp->if_flags & IFF_POINTOPOINT) {
1022 			if (sa_equal(addr, ifa->ifa_dstaddr))
1023 				return (ifa);
1024 		} else {
1025 			cp = addr->sa_data;
1026 			cp2 = ifa->ifa_addr->sa_data;
1027 			cp3 = ifa->ifa_netmask->sa_data;
1028 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1029 			for (; cp3 < cplim; cp3++)
1030 				if ((*cp++ ^ *cp2++) & *cp3)
1031 					break;
1032 			if (cp3 == cplim)
1033 				return (ifa);
1034 		}
1035 	}
1036 	return (ifa_maybe);
1037 }
1038 
1039 /*
1040  * Default action when installing a route with a Link Level gateway.
1041  * Lookup an appropriate real ifa to point to.
1042  * This should be moved to /sys/net/link.c eventually.
1043  */
1044 static void
1045 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1046 {
1047 	struct ifaddr *ifa;
1048 	struct sockaddr *dst;
1049 	struct ifnet *ifp;
1050 
1051 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1052 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1053 		return;
1054 	ifa = ifaof_ifpforaddr(dst, ifp);
1055 	if (ifa != NULL) {
1056 		IFAFREE(rt->rt_ifa);
1057 		IFAREF(ifa);
1058 		rt->rt_ifa = ifa;
1059 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1060 			ifa->ifa_rtrequest(cmd, rt, info);
1061 	}
1062 }
1063 
1064 /*
1065  * Mark an interface down and notify protocols of
1066  * the transition.
1067  * NOTE: must be called at splnet or eqivalent.
1068  */
1069 void
1070 if_unroute(struct ifnet *ifp, int flag, int fam)
1071 {
1072 	struct ifaddr_container *ifac;
1073 
1074 	ifp->if_flags &= ~flag;
1075 	getmicrotime(&ifp->if_lastchange);
1076 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1077 		struct ifaddr *ifa = ifac->ifa;
1078 
1079 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1080 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1081 	}
1082 	ifq_purge(&ifp->if_snd);
1083 	rt_ifmsg(ifp);
1084 }
1085 
1086 /*
1087  * Mark an interface up and notify protocols of
1088  * the transition.
1089  * NOTE: must be called at splnet or eqivalent.
1090  */
1091 void
1092 if_route(struct ifnet *ifp, int flag, int fam)
1093 {
1094 	struct ifaddr_container *ifac;
1095 
1096 	ifq_purge(&ifp->if_snd);
1097 	ifp->if_flags |= flag;
1098 	getmicrotime(&ifp->if_lastchange);
1099 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1100 		struct ifaddr *ifa = ifac->ifa;
1101 
1102 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1103 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1104 	}
1105 	rt_ifmsg(ifp);
1106 #ifdef INET6
1107 	in6_if_up(ifp);
1108 #endif
1109 }
1110 
1111 /*
1112  * Mark an interface down and notify protocols of the transition.  An
1113  * interface going down is also considered to be a synchronizing event.
1114  * We must ensure that all packet processing related to the interface
1115  * has completed before we return so e.g. the caller can free the ifnet
1116  * structure that the mbufs may be referencing.
1117  *
1118  * NOTE: must be called at splnet or eqivalent.
1119  */
1120 void
1121 if_down(struct ifnet *ifp)
1122 {
1123 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1124 	netmsg_service_sync();
1125 }
1126 
1127 /*
1128  * Mark an interface up and notify protocols of
1129  * the transition.
1130  * NOTE: must be called at splnet or eqivalent.
1131  */
1132 void
1133 if_up(struct ifnet *ifp)
1134 {
1135 	if_route(ifp, IFF_UP, AF_UNSPEC);
1136 }
1137 
1138 /*
1139  * Process a link state change.
1140  * NOTE: must be called at splsoftnet or equivalent.
1141  */
1142 void
1143 if_link_state_change(struct ifnet *ifp)
1144 {
1145 	int link_state = ifp->if_link_state;
1146 
1147 	rt_ifmsg(ifp);
1148 	devctl_notify("IFNET", ifp->if_xname,
1149 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1150 }
1151 
1152 /*
1153  * Handle interface watchdog timer routines.  Called
1154  * from softclock, we decrement timers (if set) and
1155  * call the appropriate interface routine on expiration.
1156  */
1157 static void
1158 if_slowtimo(void *arg)
1159 {
1160 	struct ifnet *ifp;
1161 
1162 	crit_enter();
1163 
1164 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1165 		if (ifp->if_timer == 0 || --ifp->if_timer)
1166 			continue;
1167 		if (ifp->if_watchdog) {
1168 			if (ifnet_tryserialize_all(ifp)) {
1169 				(*ifp->if_watchdog)(ifp);
1170 				ifnet_deserialize_all(ifp);
1171 			} else {
1172 				/* try again next timeout */
1173 				++ifp->if_timer;
1174 			}
1175 		}
1176 	}
1177 
1178 	crit_exit();
1179 
1180 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1181 }
1182 
1183 /*
1184  * Map interface name to
1185  * interface structure pointer.
1186  */
1187 struct ifnet *
1188 ifunit(const char *name)
1189 {
1190 	struct ifnet *ifp;
1191 
1192 	/*
1193 	 * Search all the interfaces for this name/number
1194 	 */
1195 
1196 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1197 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1198 			break;
1199 	}
1200 	return (ifp);
1201 }
1202 
1203 
1204 /*
1205  * Map interface name in a sockaddr_dl to
1206  * interface structure pointer.
1207  */
1208 struct ifnet *
1209 if_withname(struct sockaddr *sa)
1210 {
1211 	char ifname[IFNAMSIZ+1];
1212 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1213 
1214 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1215 	     (sdl->sdl_nlen > IFNAMSIZ) )
1216 		return NULL;
1217 
1218 	/*
1219 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1220 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1221 	 * and there might not be room to put the trailing null anyway, so we
1222 	 * make a local copy that we know we can null terminate safely.
1223 	 */
1224 
1225 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1226 	ifname[sdl->sdl_nlen] = '\0';
1227 	return ifunit(ifname);
1228 }
1229 
1230 
1231 /*
1232  * Interface ioctls.
1233  */
1234 int
1235 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1236 {
1237 	struct ifnet *ifp;
1238 	struct ifreq *ifr;
1239 	struct ifstat *ifs;
1240 	int error;
1241 	short oif_flags;
1242 	int new_flags;
1243 	size_t namelen, onamelen;
1244 	char new_name[IFNAMSIZ];
1245 	struct ifaddr *ifa;
1246 	struct sockaddr_dl *sdl;
1247 
1248 	switch (cmd) {
1249 
1250 	case SIOCGIFCONF:
1251 	case OSIOCGIFCONF:
1252 		return (ifconf(cmd, data, cred));
1253 	}
1254 	ifr = (struct ifreq *)data;
1255 
1256 	switch (cmd) {
1257 	case SIOCIFCREATE:
1258 	case SIOCIFDESTROY:
1259 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1260 			return (error);
1261 		return ((cmd == SIOCIFCREATE) ?
1262 			if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name)) :
1263 			if_clone_destroy(ifr->ifr_name));
1264 
1265 	case SIOCIFGCLONERS:
1266 		return (if_clone_list((struct if_clonereq *)data));
1267 	}
1268 
1269 	ifp = ifunit(ifr->ifr_name);
1270 	if (ifp == 0)
1271 		return (ENXIO);
1272 	switch (cmd) {
1273 
1274 	case SIOCGIFINDEX:
1275 		ifr->ifr_index = ifp->if_index;
1276 		break;
1277 
1278 	case SIOCGIFFLAGS:
1279 		ifr->ifr_flags = ifp->if_flags;
1280 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1281 		break;
1282 
1283 	case SIOCGIFCAP:
1284 		ifr->ifr_reqcap = ifp->if_capabilities;
1285 		ifr->ifr_curcap = ifp->if_capenable;
1286 		break;
1287 
1288 	case SIOCGIFMETRIC:
1289 		ifr->ifr_metric = ifp->if_metric;
1290 		break;
1291 
1292 	case SIOCGIFMTU:
1293 		ifr->ifr_mtu = ifp->if_mtu;
1294 		break;
1295 
1296 	case SIOCGIFPHYS:
1297 		ifr->ifr_phys = ifp->if_physical;
1298 		break;
1299 
1300 	case SIOCGIFPOLLCPU:
1301 #ifdef DEVICE_POLLING
1302 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1303 #else
1304 		ifr->ifr_pollcpu = -1;
1305 #endif
1306 		break;
1307 
1308 	case SIOCSIFPOLLCPU:
1309 #ifdef DEVICE_POLLING
1310 		if ((ifp->if_flags & IFF_POLLING) == 0)
1311 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1312 #endif
1313 		break;
1314 
1315 	case SIOCSIFFLAGS:
1316 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1317 		if (error)
1318 			return (error);
1319 		new_flags = (ifr->ifr_flags & 0xffff) |
1320 		    (ifr->ifr_flagshigh << 16);
1321 		if (ifp->if_flags & IFF_SMART) {
1322 			/* Smart drivers twiddle their own routes */
1323 		} else if (ifp->if_flags & IFF_UP &&
1324 		    (new_flags & IFF_UP) == 0) {
1325 			crit_enter();
1326 			if_down(ifp);
1327 			crit_exit();
1328 		} else if (new_flags & IFF_UP &&
1329 		    (ifp->if_flags & IFF_UP) == 0) {
1330 			crit_enter();
1331 			if_up(ifp);
1332 			crit_exit();
1333 		}
1334 
1335 #ifdef DEVICE_POLLING
1336 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1337 			if (new_flags & IFF_POLLING) {
1338 				ether_poll_register(ifp);
1339 			} else {
1340 				ether_poll_deregister(ifp);
1341 			}
1342 		}
1343 #endif
1344 
1345 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1346 			(new_flags &~ IFF_CANTCHANGE);
1347 		if (new_flags & IFF_PPROMISC) {
1348 			/* Permanently promiscuous mode requested */
1349 			ifp->if_flags |= IFF_PROMISC;
1350 		} else if (ifp->if_pcount == 0) {
1351 			ifp->if_flags &= ~IFF_PROMISC;
1352 		}
1353 		if (ifp->if_ioctl) {
1354 			ifnet_serialize_all(ifp);
1355 			ifp->if_ioctl(ifp, cmd, data, cred);
1356 			ifnet_deserialize_all(ifp);
1357 		}
1358 		getmicrotime(&ifp->if_lastchange);
1359 		break;
1360 
1361 	case SIOCSIFCAP:
1362 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1363 		if (error)
1364 			return (error);
1365 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1366 			return (EINVAL);
1367 		ifnet_serialize_all(ifp);
1368 		ifp->if_ioctl(ifp, cmd, data, cred);
1369 		ifnet_deserialize_all(ifp);
1370 		break;
1371 
1372 	case SIOCSIFNAME:
1373 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1374 		if (error != 0)
1375 			return (error);
1376 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1377 		if (error != 0)
1378 			return (error);
1379 		if (new_name[0] == '\0')
1380 			return (EINVAL);
1381 		if (ifunit(new_name) != NULL)
1382 			return (EEXIST);
1383 
1384 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1385 
1386 		/* Announce the departure of the interface. */
1387 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1388 
1389 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1390 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1391 		/* XXX IFA_LOCK(ifa); */
1392 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1393 		namelen = strlen(new_name);
1394 		onamelen = sdl->sdl_nlen;
1395 		/*
1396 		 * Move the address if needed.  This is safe because we
1397 		 * allocate space for a name of length IFNAMSIZ when we
1398 		 * create this in if_attach().
1399 		 */
1400 		if (namelen != onamelen) {
1401 			bcopy(sdl->sdl_data + onamelen,
1402 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1403 		}
1404 		bcopy(new_name, sdl->sdl_data, namelen);
1405 		sdl->sdl_nlen = namelen;
1406 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1407 		bzero(sdl->sdl_data, onamelen);
1408 		while (namelen != 0)
1409 			sdl->sdl_data[--namelen] = 0xff;
1410 		/* XXX IFA_UNLOCK(ifa) */
1411 
1412 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1413 
1414 		/* Announce the return of the interface. */
1415 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1416 		break;
1417 
1418 	case SIOCSIFMETRIC:
1419 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1420 		if (error)
1421 			return (error);
1422 		ifp->if_metric = ifr->ifr_metric;
1423 		getmicrotime(&ifp->if_lastchange);
1424 		break;
1425 
1426 	case SIOCSIFPHYS:
1427 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1428 		if (error)
1429 			return error;
1430 		if (!ifp->if_ioctl)
1431 		        return EOPNOTSUPP;
1432 		ifnet_serialize_all(ifp);
1433 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1434 		ifnet_deserialize_all(ifp);
1435 		if (error == 0)
1436 			getmicrotime(&ifp->if_lastchange);
1437 		return (error);
1438 
1439 	case SIOCSIFMTU:
1440 	{
1441 		u_long oldmtu = ifp->if_mtu;
1442 
1443 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1444 		if (error)
1445 			return (error);
1446 		if (ifp->if_ioctl == NULL)
1447 			return (EOPNOTSUPP);
1448 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1449 			return (EINVAL);
1450 		ifnet_serialize_all(ifp);
1451 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1452 		ifnet_deserialize_all(ifp);
1453 		if (error == 0) {
1454 			getmicrotime(&ifp->if_lastchange);
1455 			rt_ifmsg(ifp);
1456 		}
1457 		/*
1458 		 * If the link MTU changed, do network layer specific procedure.
1459 		 */
1460 		if (ifp->if_mtu != oldmtu) {
1461 #ifdef INET6
1462 			nd6_setmtu(ifp);
1463 #endif
1464 		}
1465 		return (error);
1466 	}
1467 
1468 	case SIOCADDMULTI:
1469 	case SIOCDELMULTI:
1470 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1471 		if (error)
1472 			return (error);
1473 
1474 		/* Don't allow group membership on non-multicast interfaces. */
1475 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1476 			return EOPNOTSUPP;
1477 
1478 		/* Don't let users screw up protocols' entries. */
1479 		if (ifr->ifr_addr.sa_family != AF_LINK)
1480 			return EINVAL;
1481 
1482 		if (cmd == SIOCADDMULTI) {
1483 			struct ifmultiaddr *ifma;
1484 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1485 		} else {
1486 			error = if_delmulti(ifp, &ifr->ifr_addr);
1487 		}
1488 		if (error == 0)
1489 			getmicrotime(&ifp->if_lastchange);
1490 		return error;
1491 
1492 	case SIOCSIFPHYADDR:
1493 	case SIOCDIFPHYADDR:
1494 #ifdef INET6
1495 	case SIOCSIFPHYADDR_IN6:
1496 #endif
1497 	case SIOCSLIFPHYADDR:
1498         case SIOCSIFMEDIA:
1499 	case SIOCSIFGENERIC:
1500 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1501 		if (error)
1502 			return (error);
1503 		if (ifp->if_ioctl == 0)
1504 			return (EOPNOTSUPP);
1505 		ifnet_serialize_all(ifp);
1506 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1507 		ifnet_deserialize_all(ifp);
1508 		if (error == 0)
1509 			getmicrotime(&ifp->if_lastchange);
1510 		return error;
1511 
1512 	case SIOCGIFSTATUS:
1513 		ifs = (struct ifstat *)data;
1514 		ifs->ascii[0] = '\0';
1515 
1516 	case SIOCGIFPSRCADDR:
1517 	case SIOCGIFPDSTADDR:
1518 	case SIOCGLIFPHYADDR:
1519 	case SIOCGIFMEDIA:
1520 	case SIOCGIFGENERIC:
1521 		if (ifp->if_ioctl == NULL)
1522 			return (EOPNOTSUPP);
1523 		ifnet_serialize_all(ifp);
1524 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1525 		ifnet_deserialize_all(ifp);
1526 		return (error);
1527 
1528 	case SIOCSIFLLADDR:
1529 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1530 		if (error)
1531 			return (error);
1532 		return if_setlladdr(ifp,
1533 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1534 
1535 	default:
1536 		oif_flags = ifp->if_flags;
1537 		if (so->so_proto == 0)
1538 			return (EOPNOTSUPP);
1539 #ifndef COMPAT_43
1540 		error = so_pru_control(so, cmd, data, ifp);
1541 #else
1542 	    {
1543 		int ocmd = cmd;
1544 
1545 		switch (cmd) {
1546 
1547 		case SIOCSIFDSTADDR:
1548 		case SIOCSIFADDR:
1549 		case SIOCSIFBRDADDR:
1550 		case SIOCSIFNETMASK:
1551 #if BYTE_ORDER != BIG_ENDIAN
1552 			if (ifr->ifr_addr.sa_family == 0 &&
1553 			    ifr->ifr_addr.sa_len < 16) {
1554 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1555 				ifr->ifr_addr.sa_len = 16;
1556 			}
1557 #else
1558 			if (ifr->ifr_addr.sa_len == 0)
1559 				ifr->ifr_addr.sa_len = 16;
1560 #endif
1561 			break;
1562 
1563 		case OSIOCGIFADDR:
1564 			cmd = SIOCGIFADDR;
1565 			break;
1566 
1567 		case OSIOCGIFDSTADDR:
1568 			cmd = SIOCGIFDSTADDR;
1569 			break;
1570 
1571 		case OSIOCGIFBRDADDR:
1572 			cmd = SIOCGIFBRDADDR;
1573 			break;
1574 
1575 		case OSIOCGIFNETMASK:
1576 			cmd = SIOCGIFNETMASK;
1577 		}
1578 		error =  so_pru_control(so, cmd, data, ifp);
1579 		switch (ocmd) {
1580 
1581 		case OSIOCGIFADDR:
1582 		case OSIOCGIFDSTADDR:
1583 		case OSIOCGIFBRDADDR:
1584 		case OSIOCGIFNETMASK:
1585 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1586 
1587 		}
1588 	    }
1589 #endif /* COMPAT_43 */
1590 
1591 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1592 #ifdef INET6
1593 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1594 			if (ifp->if_flags & IFF_UP) {
1595 				crit_enter();
1596 				in6_if_up(ifp);
1597 				crit_exit();
1598 			}
1599 #endif
1600 		}
1601 		return (error);
1602 
1603 	}
1604 	return (0);
1605 }
1606 
1607 /*
1608  * Set/clear promiscuous mode on interface ifp based on the truth value
1609  * of pswitch.  The calls are reference counted so that only the first
1610  * "on" request actually has an effect, as does the final "off" request.
1611  * Results are undefined if the "off" and "on" requests are not matched.
1612  */
1613 int
1614 ifpromisc(struct ifnet *ifp, int pswitch)
1615 {
1616 	struct ifreq ifr;
1617 	int error;
1618 	int oldflags;
1619 
1620 	oldflags = ifp->if_flags;
1621 	if (ifp->if_flags & IFF_PPROMISC) {
1622 		/* Do nothing if device is in permanently promiscuous mode */
1623 		ifp->if_pcount += pswitch ? 1 : -1;
1624 		return (0);
1625 	}
1626 	if (pswitch) {
1627 		/*
1628 		 * If the device is not configured up, we cannot put it in
1629 		 * promiscuous mode.
1630 		 */
1631 		if ((ifp->if_flags & IFF_UP) == 0)
1632 			return (ENETDOWN);
1633 		if (ifp->if_pcount++ != 0)
1634 			return (0);
1635 		ifp->if_flags |= IFF_PROMISC;
1636 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1637 		    ifp->if_xname);
1638 	} else {
1639 		if (--ifp->if_pcount > 0)
1640 			return (0);
1641 		ifp->if_flags &= ~IFF_PROMISC;
1642 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1643 		    ifp->if_xname);
1644 	}
1645 	ifr.ifr_flags = ifp->if_flags;
1646 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1647 	ifnet_serialize_all(ifp);
1648 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1649 	ifnet_deserialize_all(ifp);
1650 	if (error == 0)
1651 		rt_ifmsg(ifp);
1652 	else
1653 		ifp->if_flags = oldflags;
1654 	return error;
1655 }
1656 
1657 /*
1658  * Return interface configuration
1659  * of system.  List may be used
1660  * in later ioctl's (above) to get
1661  * other information.
1662  */
1663 static int
1664 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1665 {
1666 	struct ifconf *ifc = (struct ifconf *)data;
1667 	struct ifnet *ifp;
1668 	struct sockaddr *sa;
1669 	struct ifreq ifr, *ifrp;
1670 	int space = ifc->ifc_len, error = 0;
1671 
1672 	ifrp = ifc->ifc_req;
1673 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1674 		struct ifaddr_container *ifac;
1675 		int addrs;
1676 
1677 		if (space <= sizeof ifr)
1678 			break;
1679 
1680 		/*
1681 		 * Zero the stack declared structure first to prevent
1682 		 * memory disclosure.
1683 		 */
1684 		bzero(&ifr, sizeof(ifr));
1685 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1686 		    >= sizeof(ifr.ifr_name)) {
1687 			error = ENAMETOOLONG;
1688 			break;
1689 		}
1690 
1691 		addrs = 0;
1692 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1693 			struct ifaddr *ifa = ifac->ifa;
1694 
1695 			if (space <= sizeof ifr)
1696 				break;
1697 			sa = ifa->ifa_addr;
1698 			if (cred->cr_prison &&
1699 			    prison_if(cred, sa))
1700 				continue;
1701 			addrs++;
1702 #ifdef COMPAT_43
1703 			if (cmd == OSIOCGIFCONF) {
1704 				struct osockaddr *osa =
1705 					 (struct osockaddr *)&ifr.ifr_addr;
1706 				ifr.ifr_addr = *sa;
1707 				osa->sa_family = sa->sa_family;
1708 				error = copyout(&ifr, ifrp, sizeof ifr);
1709 				ifrp++;
1710 			} else
1711 #endif
1712 			if (sa->sa_len <= sizeof(*sa)) {
1713 				ifr.ifr_addr = *sa;
1714 				error = copyout(&ifr, ifrp, sizeof ifr);
1715 				ifrp++;
1716 			} else {
1717 				if (space < (sizeof ifr) + sa->sa_len -
1718 					    sizeof(*sa))
1719 					break;
1720 				space -= sa->sa_len - sizeof(*sa);
1721 				error = copyout(&ifr, ifrp,
1722 						sizeof ifr.ifr_name);
1723 				if (error == 0)
1724 					error = copyout(sa, &ifrp->ifr_addr,
1725 							sa->sa_len);
1726 				ifrp = (struct ifreq *)
1727 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1728 			}
1729 			if (error)
1730 				break;
1731 			space -= sizeof ifr;
1732 		}
1733 		if (error)
1734 			break;
1735 		if (!addrs) {
1736 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1737 			error = copyout(&ifr, ifrp, sizeof ifr);
1738 			if (error)
1739 				break;
1740 			space -= sizeof ifr;
1741 			ifrp++;
1742 		}
1743 	}
1744 	ifc->ifc_len -= space;
1745 	return (error);
1746 }
1747 
1748 /*
1749  * Just like if_promisc(), but for all-multicast-reception mode.
1750  */
1751 int
1752 if_allmulti(struct ifnet *ifp, int onswitch)
1753 {
1754 	int error = 0;
1755 	struct ifreq ifr;
1756 
1757 	crit_enter();
1758 
1759 	if (onswitch) {
1760 		if (ifp->if_amcount++ == 0) {
1761 			ifp->if_flags |= IFF_ALLMULTI;
1762 			ifr.ifr_flags = ifp->if_flags;
1763 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1764 			ifnet_serialize_all(ifp);
1765 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1766 					      NULL);
1767 			ifnet_deserialize_all(ifp);
1768 		}
1769 	} else {
1770 		if (ifp->if_amcount > 1) {
1771 			ifp->if_amcount--;
1772 		} else {
1773 			ifp->if_amcount = 0;
1774 			ifp->if_flags &= ~IFF_ALLMULTI;
1775 			ifr.ifr_flags = ifp->if_flags;
1776 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1777 			ifnet_serialize_all(ifp);
1778 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1779 					      NULL);
1780 			ifnet_deserialize_all(ifp);
1781 		}
1782 	}
1783 
1784 	crit_exit();
1785 
1786 	if (error == 0)
1787 		rt_ifmsg(ifp);
1788 	return error;
1789 }
1790 
1791 /*
1792  * Add a multicast listenership to the interface in question.
1793  * The link layer provides a routine which converts
1794  */
1795 int
1796 if_addmulti(
1797 	struct ifnet *ifp,	/* interface to manipulate */
1798 	struct sockaddr *sa,	/* address to add */
1799 	struct ifmultiaddr **retifma)
1800 {
1801 	struct sockaddr *llsa, *dupsa;
1802 	int error;
1803 	struct ifmultiaddr *ifma;
1804 
1805 	/*
1806 	 * If the matching multicast address already exists
1807 	 * then don't add a new one, just add a reference
1808 	 */
1809 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1810 		if (sa_equal(sa, ifma->ifma_addr)) {
1811 			ifma->ifma_refcount++;
1812 			if (retifma)
1813 				*retifma = ifma;
1814 			return 0;
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * Give the link layer a chance to accept/reject it, and also
1820 	 * find out which AF_LINK address this maps to, if it isn't one
1821 	 * already.
1822 	 */
1823 	if (ifp->if_resolvemulti) {
1824 		ifnet_serialize_all(ifp);
1825 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1826 		ifnet_deserialize_all(ifp);
1827 		if (error)
1828 			return error;
1829 	} else {
1830 		llsa = 0;
1831 	}
1832 
1833 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1834 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1835 	bcopy(sa, dupsa, sa->sa_len);
1836 
1837 	ifma->ifma_addr = dupsa;
1838 	ifma->ifma_lladdr = llsa;
1839 	ifma->ifma_ifp = ifp;
1840 	ifma->ifma_refcount = 1;
1841 	ifma->ifma_protospec = 0;
1842 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1843 
1844 	/*
1845 	 * Some network interfaces can scan the address list at
1846 	 * interrupt time; lock them out.
1847 	 */
1848 	crit_enter();
1849 	LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1850 	crit_exit();
1851 	*retifma = ifma;
1852 
1853 	if (llsa != 0) {
1854 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855 			if (sa_equal(ifma->ifma_addr, llsa))
1856 				break;
1857 		}
1858 		if (ifma) {
1859 			ifma->ifma_refcount++;
1860 		} else {
1861 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1862 			       M_IFMADDR, M_WAITOK);
1863 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1864 			       M_IFMADDR, M_WAITOK);
1865 			bcopy(llsa, dupsa, llsa->sa_len);
1866 			ifma->ifma_addr = dupsa;
1867 			ifma->ifma_ifp = ifp;
1868 			ifma->ifma_refcount = 1;
1869 			crit_enter();
1870 			LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1871 			crit_exit();
1872 		}
1873 	}
1874 	/*
1875 	 * We are certain we have added something, so call down to the
1876 	 * interface to let them know about it.
1877 	 */
1878 	crit_enter();
1879 	ifnet_serialize_all(ifp);
1880 	ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
1881 	ifnet_deserialize_all(ifp);
1882 	crit_exit();
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * Remove a reference to a multicast address on this interface.  Yell
1889  * if the request does not match an existing membership.
1890  */
1891 int
1892 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1893 {
1894 	struct ifmultiaddr *ifma;
1895 
1896 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1897 		if (sa_equal(sa, ifma->ifma_addr))
1898 			break;
1899 	if (ifma == 0)
1900 		return ENOENT;
1901 
1902 	if (ifma->ifma_refcount > 1) {
1903 		ifma->ifma_refcount--;
1904 		return 0;
1905 	}
1906 
1907 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1908 	sa = ifma->ifma_lladdr;
1909 	crit_enter();
1910 	LIST_REMOVE(ifma, ifma_link);
1911 	/*
1912 	 * Make sure the interface driver is notified
1913 	 * in the case of a link layer mcast group being left.
1914 	 */
1915 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1916 		ifnet_serialize_all(ifp);
1917 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1918 		ifnet_deserialize_all(ifp);
1919 	}
1920 	crit_exit();
1921 	kfree(ifma->ifma_addr, M_IFMADDR);
1922 	kfree(ifma, M_IFMADDR);
1923 	if (sa == 0)
1924 		return 0;
1925 
1926 	/*
1927 	 * Now look for the link-layer address which corresponds to
1928 	 * this network address.  It had been squirreled away in
1929 	 * ifma->ifma_lladdr for this purpose (so we don't have
1930 	 * to call ifp->if_resolvemulti() again), and we saved that
1931 	 * value in sa above.  If some nasty deleted the
1932 	 * link-layer address out from underneath us, we can deal because
1933 	 * the address we stored was is not the same as the one which was
1934 	 * in the record for the link-layer address.  (So we don't complain
1935 	 * in that case.)
1936 	 */
1937 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1938 		if (sa_equal(sa, ifma->ifma_addr))
1939 			break;
1940 	if (ifma == 0)
1941 		return 0;
1942 
1943 	if (ifma->ifma_refcount > 1) {
1944 		ifma->ifma_refcount--;
1945 		return 0;
1946 	}
1947 
1948 	crit_enter();
1949 	ifnet_serialize_all(ifp);
1950 	LIST_REMOVE(ifma, ifma_link);
1951 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1952 	ifnet_deserialize_all(ifp);
1953 	crit_exit();
1954 	kfree(ifma->ifma_addr, M_IFMADDR);
1955 	kfree(sa, M_IFMADDR);
1956 	kfree(ifma, M_IFMADDR);
1957 
1958 	return 0;
1959 }
1960 
1961 /*
1962  * Set the link layer address on an interface.
1963  *
1964  * At this time we only support certain types of interfaces,
1965  * and we don't allow the length of the address to change.
1966  */
1967 int
1968 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
1969 {
1970 	struct sockaddr_dl *sdl;
1971 	struct ifreq ifr;
1972 
1973 	sdl = IF_LLSOCKADDR(ifp);
1974 	if (sdl == NULL)
1975 		return (EINVAL);
1976 	if (len != sdl->sdl_alen)	/* don't allow length to change */
1977 		return (EINVAL);
1978 	switch (ifp->if_type) {
1979 	case IFT_ETHER:			/* these types use struct arpcom */
1980 	case IFT_XETHER:
1981 	case IFT_L2VLAN:
1982 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
1983 		bcopy(lladdr, LLADDR(sdl), len);
1984 		break;
1985 	default:
1986 		return (ENODEV);
1987 	}
1988 	/*
1989 	 * If the interface is already up, we need
1990 	 * to re-init it in order to reprogram its
1991 	 * address filter.
1992 	 */
1993 	ifnet_serialize_all(ifp);
1994 	if ((ifp->if_flags & IFF_UP) != 0) {
1995 		struct ifaddr_container *ifac;
1996 
1997 		ifp->if_flags &= ~IFF_UP;
1998 		ifr.ifr_flags = ifp->if_flags;
1999 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2000 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2001 			      NULL);
2002 		ifp->if_flags |= IFF_UP;
2003 		ifr.ifr_flags = ifp->if_flags;
2004 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2005 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2006 				 NULL);
2007 #ifdef INET
2008 		/*
2009 		 * Also send gratuitous ARPs to notify other nodes about
2010 		 * the address change.
2011 		 */
2012 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2013 			struct ifaddr *ifa = ifac->ifa;
2014 
2015 			if (ifa->ifa_addr != NULL &&
2016 			    ifa->ifa_addr->sa_family == AF_INET)
2017 				arp_ifinit(ifp, ifa);
2018 		}
2019 #endif
2020 	}
2021 	ifnet_deserialize_all(ifp);
2022 	return (0);
2023 }
2024 
2025 struct ifmultiaddr *
2026 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2027 {
2028 	struct ifmultiaddr *ifma;
2029 
2030 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2031 		if (sa_equal(ifma->ifma_addr, sa))
2032 			break;
2033 
2034 	return ifma;
2035 }
2036 
2037 /*
2038  * This function locates the first real ethernet MAC from a network
2039  * card and loads it into node, returning 0 on success or ENOENT if
2040  * no suitable interfaces were found.  It is used by the uuid code to
2041  * generate a unique 6-byte number.
2042  */
2043 int
2044 if_getanyethermac(uint16_t *node, int minlen)
2045 {
2046 	struct ifnet *ifp;
2047 	struct sockaddr_dl *sdl;
2048 
2049 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2050 		if (ifp->if_type != IFT_ETHER)
2051 			continue;
2052 		sdl = IF_LLSOCKADDR(ifp);
2053 		if (sdl->sdl_alen < minlen)
2054 			continue;
2055 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2056 		      minlen);
2057 		return(0);
2058 	}
2059 	return (ENOENT);
2060 }
2061 
2062 /*
2063  * The name argument must be a pointer to storage which will last as
2064  * long as the interface does.  For physical devices, the result of
2065  * device_get_name(dev) is a good choice and for pseudo-devices a
2066  * static string works well.
2067  */
2068 void
2069 if_initname(struct ifnet *ifp, const char *name, int unit)
2070 {
2071 	ifp->if_dname = name;
2072 	ifp->if_dunit = unit;
2073 	if (unit != IF_DUNIT_NONE)
2074 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2075 	else
2076 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2077 }
2078 
2079 int
2080 if_printf(struct ifnet *ifp, const char *fmt, ...)
2081 {
2082 	__va_list ap;
2083 	int retval;
2084 
2085 	retval = kprintf("%s: ", ifp->if_xname);
2086 	__va_start(ap, fmt);
2087 	retval += kvprintf(fmt, ap);
2088 	__va_end(ap);
2089 	return (retval);
2090 }
2091 
2092 void
2093 ifq_set_classic(struct ifaltq *ifq)
2094 {
2095 	ifq->altq_enqueue = ifq_classic_enqueue;
2096 	ifq->altq_dequeue = ifq_classic_dequeue;
2097 	ifq->altq_request = ifq_classic_request;
2098 }
2099 
2100 int
2101 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2102 		    struct altq_pktattr *pa __unused)
2103 {
2104 	logifq(enqueue, ifq);
2105 	if (IF_QFULL(ifq)) {
2106 		m_freem(m);
2107 		return(ENOBUFS);
2108 	} else {
2109 		IF_ENQUEUE(ifq, m);
2110 		return(0);
2111 	}
2112 }
2113 
2114 struct mbuf *
2115 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2116 {
2117 	struct mbuf *m;
2118 
2119 	switch (op) {
2120 	case ALTDQ_POLL:
2121 		IF_POLL(ifq, m);
2122 		break;
2123 	case ALTDQ_REMOVE:
2124 		logifq(dequeue, ifq);
2125 		IF_DEQUEUE(ifq, m);
2126 		break;
2127 	default:
2128 		panic("unsupported ALTQ dequeue op: %d", op);
2129 	}
2130 	KKASSERT(mpolled == NULL || mpolled == m);
2131 	return(m);
2132 }
2133 
2134 int
2135 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2136 {
2137 	switch (req) {
2138 	case ALTRQ_PURGE:
2139 		IF_DRAIN(ifq);
2140 		break;
2141 	default:
2142 		panic("unsupported ALTQ request: %d", req);
2143 	}
2144 	return(0);
2145 }
2146 
2147 int
2148 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2149 {
2150 	struct ifaltq *ifq = &ifp->if_snd;
2151 	int running = 0, error, start = 0;
2152 
2153 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2154 
2155 	ALTQ_LOCK(ifq);
2156 	error = ifq_enqueue_locked(ifq, m, pa);
2157 	if (error) {
2158 		ALTQ_UNLOCK(ifq);
2159 		return error;
2160 	}
2161 	if (!ifq->altq_started) {
2162 		/*
2163 		 * Hold the interlock of ifnet.if_start
2164 		 */
2165 		ifq->altq_started = 1;
2166 		start = 1;
2167 	}
2168 	ALTQ_UNLOCK(ifq);
2169 
2170 	ifp->if_obytes += m->m_pkthdr.len;
2171 	if (m->m_flags & M_MCAST)
2172 		ifp->if_omcasts++;
2173 
2174 	if (!start) {
2175 		logifstart(avoid, ifp);
2176 		return 0;
2177 	}
2178 
2179 	if (ifq_dispatch_schedonly) {
2180 		/*
2181 		 * Always schedule ifnet.if_start on ifnet's CPU,
2182 		 * short circuit the rest of this function.
2183 		 */
2184 		logifstart(sched, ifp);
2185 		if_start_schedule(ifp);
2186 		return 0;
2187 	}
2188 
2189 	/*
2190 	 * Try to do direct ifnet.if_start first, if there is
2191 	 * contention on ifnet's serializer, ifnet.if_start will
2192 	 * be scheduled on ifnet's CPU.
2193 	 */
2194 	if (!ifnet_tryserialize_tx(ifp)) {
2195 		/*
2196 		 * ifnet serializer contention happened,
2197 		 * ifnet.if_start is scheduled on ifnet's
2198 		 * CPU, and we keep going.
2199 		 */
2200 		logifstart(contend_sched, ifp);
2201 		if_start_schedule(ifp);
2202 		return 0;
2203 	}
2204 
2205 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2206 		logifstart(run, ifp);
2207 		ifp->if_start(ifp);
2208 		if ((ifp->if_flags &
2209 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2210 			running = 1;
2211 	}
2212 
2213 	ifnet_deserialize_tx(ifp);
2214 
2215 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2216 		/*
2217 		 * More data need to be transmitted, ifnet.if_start is
2218 		 * scheduled on ifnet's CPU, and we keep going.
2219 		 * NOTE: ifnet.if_start interlock is not released.
2220 		 */
2221 		logifstart(sched, ifp);
2222 		if_start_schedule(ifp);
2223 	}
2224 	return 0;
2225 }
2226 
2227 void *
2228 ifa_create(int size, int flags)
2229 {
2230 	struct ifaddr *ifa;
2231 	int i;
2232 
2233 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2234 
2235 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2236 	if (ifa == NULL)
2237 		return NULL;
2238 
2239 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2240 				      M_IFADDR, M_WAITOK | M_ZERO);
2241 	ifa->ifa_ncnt = ncpus;
2242 	for (i = 0; i < ncpus; ++i) {
2243 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2244 
2245 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2246 		ifac->ifa = ifa;
2247 		ifac->ifa_refcnt = 1;
2248 	}
2249 #ifdef IFADDR_DEBUG
2250 	kprintf("alloc ifa %p %d\n", ifa, size);
2251 #endif
2252 	return ifa;
2253 }
2254 
2255 void
2256 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2257 {
2258 	struct ifaddr *ifa = ifac->ifa;
2259 
2260 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2261 	KKASSERT(ifac->ifa_refcnt == 0);
2262 	KASSERT(ifac->ifa_listmask == 0,
2263 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2264 
2265 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2266 
2267 #ifdef IFADDR_DEBUG_VERBOSE
2268 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2269 #endif
2270 
2271 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2272 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2273 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2274 #ifdef IFADDR_DEBUG
2275 		kprintf("free ifa %p\n", ifa);
2276 #endif
2277 		kfree(ifa->ifa_containers, M_IFADDR);
2278 		kfree(ifa, M_IFADDR);
2279 	}
2280 }
2281 
2282 static void
2283 ifa_iflink_dispatch(struct netmsg *nmsg)
2284 {
2285 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2286 	struct ifaddr *ifa = msg->ifa;
2287 	struct ifnet *ifp = msg->ifp;
2288 	int cpu = mycpuid;
2289 	struct ifaddr_container *ifac;
2290 
2291 	crit_enter();
2292 
2293 	ifac = &ifa->ifa_containers[cpu];
2294 	ASSERT_IFAC_VALID(ifac);
2295 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2296 		("ifaddr is on if_addrheads\n"));
2297 
2298 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2299 	if (msg->tail)
2300 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2301 	else
2302 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2303 
2304 	crit_exit();
2305 
2306 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2307 }
2308 
2309 void
2310 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2311 {
2312 	struct netmsg_ifaddr msg;
2313 
2314 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2315 		    ifa_iflink_dispatch);
2316 	msg.ifa = ifa;
2317 	msg.ifp = ifp;
2318 	msg.tail = tail;
2319 
2320 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2321 }
2322 
2323 static void
2324 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2325 {
2326 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2327 	struct ifaddr *ifa = msg->ifa;
2328 	struct ifnet *ifp = msg->ifp;
2329 	int cpu = mycpuid;
2330 	struct ifaddr_container *ifac;
2331 
2332 	crit_enter();
2333 
2334 	ifac = &ifa->ifa_containers[cpu];
2335 	ASSERT_IFAC_VALID(ifac);
2336 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2337 		("ifaddr is not on if_addrhead\n"));
2338 
2339 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2340 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2341 
2342 	crit_exit();
2343 
2344 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2345 }
2346 
2347 void
2348 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2349 {
2350 	struct netmsg_ifaddr msg;
2351 
2352 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2353 		    ifa_ifunlink_dispatch);
2354 	msg.ifa = ifa;
2355 	msg.ifp = ifp;
2356 
2357 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2358 }
2359 
2360 static void
2361 ifa_destroy_dispatch(struct netmsg *nmsg)
2362 {
2363 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2364 
2365 	IFAFREE(msg->ifa);
2366 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2367 }
2368 
2369 void
2370 ifa_destroy(struct ifaddr *ifa)
2371 {
2372 	struct netmsg_ifaddr msg;
2373 
2374 	netmsg_init(&msg.netmsg, &curthread->td_msgport, 0,
2375 		    ifa_destroy_dispatch);
2376 	msg.ifa = ifa;
2377 
2378 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2379 }
2380 
2381 struct lwkt_port *
2382 ifnet_portfn(int cpu)
2383 {
2384 	return &ifnet_threads[cpu].td_msgport;
2385 }
2386 
2387 void
2388 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2389 {
2390 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2391 
2392 	if (next_cpu < ncpus)
2393 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2394 	else
2395 		lwkt_replymsg(lmsg, 0);
2396 }
2397 
2398 int
2399 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2400 {
2401 	KKASSERT(cpu < ncpus);
2402 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2403 }
2404 
2405 void
2406 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2407 {
2408 	KKASSERT(cpu < ncpus);
2409 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2410 }
2411 
2412 static void
2413 ifnetinit(void *dummy __unused)
2414 {
2415 	int i;
2416 
2417 	for (i = 0; i < ncpus; ++i) {
2418 		struct thread *thr = &ifnet_threads[i];
2419 
2420 		lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2421 			    thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2422 		netmsg_service_port_init(&thr->td_msgport);
2423 	}
2424 }
2425