xref: /dragonfly/sys/net/if.c (revision 9afa2da7)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/lock.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 #include <sys/jail.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/msgport2.h>
62 #include <sys/mutex2.h>
63 
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/if_dl.h>
67 #include <net/if_types.h>
68 #include <net/if_var.h>
69 #include <net/if_ringmap.h>
70 #include <net/ifq_var.h>
71 #include <net/radix.h>
72 #include <net/route.h>
73 #include <net/if_clone.h>
74 #include <net/netisr2.h>
75 #include <net/netmsg2.h>
76 
77 #include <machine/atomic.h>
78 #include <machine/stdarg.h>
79 #include <machine/smp.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #ifdef INET6
86 #include <netinet6/in6_var.h>
87 #include <netinet6/in6_ifattach.h>
88 #endif /* INET6 */
89 #endif /* INET || INET6 */
90 
91 struct netmsg_ifaddr {
92 	struct netmsg_base base;
93 	struct ifaddr	*ifa;
94 	struct ifnet	*ifp;
95 	int		tail;
96 };
97 
98 struct ifsubq_stage_head {
99 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
100 } __cachealign;
101 
102 struct if_ringmap {
103 	int		rm_cnt;
104 	int		rm_grid;
105 	int		rm_cpumap[];
106 };
107 
108 #define RINGMAP_FLAG_NONE		0x0
109 #define RINGMAP_FLAG_POWEROF2		0x1
110 
111 /*
112  * System initialization
113  */
114 static void	if_attachdomain(void *);
115 static void	if_attachdomain1(struct ifnet *);
116 static int	ifconf(u_long, caddr_t, struct ucred *);
117 static void	ifinit(void *);
118 static void	ifnetinit(void *);
119 static void	if_slowtimo(void *);
120 static void	link_rtrequest(int, struct rtentry *);
121 static int	if_rtdel(struct radix_node *, void *);
122 static void	if_slowtimo_dispatch(netmsg_t);
123 
124 /* Helper functions */
125 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
126 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
127 static struct ifnet_array *ifnet_array_alloc(int);
128 static void	ifnet_array_free(struct ifnet_array *);
129 static struct ifnet_array *ifnet_array_add(struct ifnet *,
130 		    const struct ifnet_array *);
131 static struct ifnet_array *ifnet_array_del(struct ifnet *,
132 		    const struct ifnet_array *);
133 static struct ifg_group *if_creategroup(const char *);
134 static int	if_destroygroup(struct ifg_group *);
135 static int	if_delgroup_locked(struct ifnet *, const char *);
136 static int	if_getgroups(struct ifgroupreq *, struct ifnet *);
137 static int	if_getgroupmembers(struct ifgroupreq *);
138 
139 #ifdef INET6
140 /*
141  * XXX: declare here to avoid to include many inet6 related files..
142  * should be more generalized?
143  */
144 extern void	nd6_setmtu(struct ifnet *);
145 #endif
146 
147 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
148 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
149 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
150 
151 static int ifsq_stage_cntmax = 16;
152 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
153 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
154     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
155 
156 static int if_stats_compat = 0;
157 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
158     &if_stats_compat, 0, "Compat the old ifnet stats");
159 
160 static int if_ringmap_dumprdr = 0;
161 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
162     &if_ringmap_dumprdr, 0, "dump redirect table");
163 
164 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
165 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
166 
167 static if_com_alloc_t *if_com_alloc[256];
168 static if_com_free_t *if_com_free[256];
169 
170 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
171 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
172 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
173 
174 int			ifqmaxlen = IFQ_MAXLEN;
175 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
176 struct ifgrouphead	ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
177 static struct lock	ifgroup_lock;
178 
179 static struct ifnet_array	ifnet_array0;
180 static struct ifnet_array	*ifnet_array = &ifnet_array0;
181 
182 static struct callout		if_slowtimo_timer;
183 static struct netmsg_base	if_slowtimo_netmsg;
184 
185 int			if_index = 0;
186 struct ifnet		**ifindex2ifnet = NULL;
187 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
188 
189 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
190 
191 #ifdef notyet
192 #define IFQ_KTR_STRING		"ifq=%p"
193 #define IFQ_KTR_ARGS		struct ifaltq *ifq
194 #ifndef KTR_IFQ
195 #define KTR_IFQ			KTR_ALL
196 #endif
197 KTR_INFO_MASTER(ifq);
198 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
199 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
200 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
201 
202 #define IF_START_KTR_STRING	"ifp=%p"
203 #define IF_START_KTR_ARGS	struct ifnet *ifp
204 #ifndef KTR_IF_START
205 #define KTR_IF_START		KTR_ALL
206 #endif
207 KTR_INFO_MASTER(if_start);
208 KTR_INFO(KTR_IF_START, if_start, run, 0,
209 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
210 KTR_INFO(KTR_IF_START, if_start, sched, 1,
211 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
212 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
213 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
214 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
215 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
216 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
217 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
218 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
219 #endif /* notyet */
220 
221 /*
222  * Network interface utility routines.
223  *
224  * Routines with ifa_ifwith* names take sockaddr *'s as
225  * parameters.
226  */
227 /* ARGSUSED */
228 static void
229 ifinit(void *dummy)
230 {
231 	lockinit(&ifgroup_lock, "ifgroup", 0, 0);
232 
233 	callout_init_mp(&if_slowtimo_timer);
234 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
235 	    MSGF_PRIORITY, if_slowtimo_dispatch);
236 
237 	/* Start if_slowtimo */
238 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
239 }
240 
241 static void
242 ifsq_ifstart_ipifunc(void *arg)
243 {
244 	struct ifaltq_subque *ifsq = arg;
245 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
246 
247 	crit_enter();
248 	if (lmsg->ms_flags & MSGF_DONE)
249 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
250 	crit_exit();
251 }
252 
253 static __inline void
254 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
255 {
256 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
257 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
258 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
259 	stage->stg_cnt = 0;
260 	stage->stg_len = 0;
261 }
262 
263 static __inline void
264 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
265 {
266 	KKASSERT((stage->stg_flags &
267 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
268 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
269 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
270 }
271 
272 /*
273  * Schedule ifnet.if_start on the subqueue owner CPU
274  */
275 static void
276 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
277 {
278 	int cpu;
279 
280 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
281 	    ifsq_stage_cntmax > 0) {
282 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
283 
284 		stage->stg_cnt = 0;
285 		stage->stg_len = 0;
286 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
287 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
288 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
289 		return;
290 	}
291 
292 	cpu = ifsq_get_cpuid(ifsq);
293 	if (cpu != mycpuid)
294 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
295 	else
296 		ifsq_ifstart_ipifunc(ifsq);
297 }
298 
299 /*
300  * NOTE:
301  * This function will release ifnet.if_start subqueue interlock,
302  * if ifnet.if_start for the subqueue does not need to be scheduled
303  */
304 static __inline int
305 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
306 {
307 	if (!running || ifsq_is_empty(ifsq)
308 #ifdef ALTQ
309 	    || ifsq->ifsq_altq->altq_tbr != NULL
310 #endif
311 	) {
312 		ALTQ_SQ_LOCK(ifsq);
313 		/*
314 		 * ifnet.if_start subqueue interlock is released, if:
315 		 * 1) Hardware can not take any packets, due to
316 		 *    o  interface is marked down
317 		 *    o  hardware queue is full (ifsq_is_oactive)
318 		 *    Under the second situation, hardware interrupt
319 		 *    or polling(4) will call/schedule ifnet.if_start
320 		 *    on the subqueue when hardware queue is ready
321 		 * 2) There is no packet in the subqueue.
322 		 *    Further ifq_dispatch or ifq_handoff will call/
323 		 *    schedule ifnet.if_start on the subqueue.
324 		 * 3) TBR is used and it does not allow further
325 		 *    dequeueing.
326 		 *    TBR callout will call ifnet.if_start on the
327 		 *    subqueue.
328 		 */
329 		if (!running || !ifsq_data_ready(ifsq)) {
330 			ifsq_clr_started(ifsq);
331 			ALTQ_SQ_UNLOCK(ifsq);
332 			return 0;
333 		}
334 		ALTQ_SQ_UNLOCK(ifsq);
335 	}
336 	return 1;
337 }
338 
339 static void
340 ifsq_ifstart_dispatch(netmsg_t msg)
341 {
342 	struct lwkt_msg *lmsg = &msg->base.lmsg;
343 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
344 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
345 	struct globaldata *gd = mycpu;
346 	int running = 0, need_sched;
347 
348 	crit_enter_gd(gd);
349 
350 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
351 
352 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
353 		/*
354 		 * We need to chase the subqueue owner CPU change.
355 		 */
356 		ifsq_ifstart_schedule(ifsq, 1);
357 		crit_exit_gd(gd);
358 		return;
359 	}
360 
361 	ifsq_serialize_hw(ifsq);
362 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
363 		ifp->if_start(ifp, ifsq);
364 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
365 			running = 1;
366 	}
367 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
368 	ifsq_deserialize_hw(ifsq);
369 
370 	if (need_sched) {
371 		/*
372 		 * More data need to be transmitted, ifnet.if_start is
373 		 * scheduled on the subqueue owner CPU, and we keep going.
374 		 * NOTE: ifnet.if_start subqueue interlock is not released.
375 		 */
376 		ifsq_ifstart_schedule(ifsq, 0);
377 	}
378 
379 	crit_exit_gd(gd);
380 }
381 
382 /* Device driver ifnet.if_start helper function */
383 void
384 ifsq_devstart(struct ifaltq_subque *ifsq)
385 {
386 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
387 	int running = 0;
388 
389 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
390 
391 	ALTQ_SQ_LOCK(ifsq);
392 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
393 		ALTQ_SQ_UNLOCK(ifsq);
394 		return;
395 	}
396 	ifsq_set_started(ifsq);
397 	ALTQ_SQ_UNLOCK(ifsq);
398 
399 	ifp->if_start(ifp, ifsq);
400 
401 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
402 		running = 1;
403 
404 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
405 		/*
406 		 * More data need to be transmitted, ifnet.if_start is
407 		 * scheduled on ifnet's CPU, and we keep going.
408 		 * NOTE: ifnet.if_start interlock is not released.
409 		 */
410 		ifsq_ifstart_schedule(ifsq, 0);
411 	}
412 }
413 
414 void
415 if_devstart(struct ifnet *ifp)
416 {
417 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
418 }
419 
420 /* Device driver ifnet.if_start schedule helper function */
421 void
422 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
423 {
424 	ifsq_ifstart_schedule(ifsq, 1);
425 }
426 
427 void
428 if_devstart_sched(struct ifnet *ifp)
429 {
430 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
431 }
432 
433 static void
434 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
435 {
436 	lwkt_serialize_enter(ifp->if_serializer);
437 }
438 
439 static void
440 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
441 {
442 	lwkt_serialize_exit(ifp->if_serializer);
443 }
444 
445 static int
446 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
447 {
448 	return lwkt_serialize_try(ifp->if_serializer);
449 }
450 
451 #ifdef INVARIANTS
452 static void
453 if_default_serialize_assert(struct ifnet *ifp,
454 			    enum ifnet_serialize slz __unused,
455 			    boolean_t serialized)
456 {
457 	if (serialized)
458 		ASSERT_SERIALIZED(ifp->if_serializer);
459 	else
460 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
461 }
462 #endif
463 
464 /*
465  * Attach an interface to the list of "active" interfaces.
466  *
467  * The serializer is optional.
468  */
469 void
470 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
471 {
472 	unsigned socksize;
473 	int namelen, masklen;
474 	struct sockaddr_dl *sdl, *sdl_addr;
475 	struct ifaddr *ifa;
476 	struct ifaltq *ifq;
477 	struct ifnet **old_ifindex2ifnet = NULL;
478 	struct ifnet_array *old_ifnet_array;
479 	int i, q, qlen;
480 	char qlenname[64];
481 
482 	static int if_indexlim = 8;
483 
484 	if (ifp->if_serialize != NULL) {
485 		KASSERT(ifp->if_deserialize != NULL &&
486 			ifp->if_tryserialize != NULL &&
487 			ifp->if_serialize_assert != NULL,
488 			("serialize functions are partially setup"));
489 
490 		/*
491 		 * If the device supplies serialize functions,
492 		 * then clear if_serializer to catch any invalid
493 		 * usage of this field.
494 		 */
495 		KASSERT(serializer == NULL,
496 			("both serialize functions and default serializer "
497 			 "are supplied"));
498 		ifp->if_serializer = NULL;
499 	} else {
500 		KASSERT(ifp->if_deserialize == NULL &&
501 			ifp->if_tryserialize == NULL &&
502 			ifp->if_serialize_assert == NULL,
503 			("serialize functions are partially setup"));
504 		ifp->if_serialize = if_default_serialize;
505 		ifp->if_deserialize = if_default_deserialize;
506 		ifp->if_tryserialize = if_default_tryserialize;
507 #ifdef INVARIANTS
508 		ifp->if_serialize_assert = if_default_serialize_assert;
509 #endif
510 
511 		/*
512 		 * The serializer can be passed in from the device,
513 		 * allowing the same serializer to be used for both
514 		 * the interrupt interlock and the device queue.
515 		 * If not specified, the netif structure will use an
516 		 * embedded serializer.
517 		 */
518 		if (serializer == NULL) {
519 			serializer = &ifp->if_default_serializer;
520 			lwkt_serialize_init(serializer);
521 		}
522 		ifp->if_serializer = serializer;
523 	}
524 
525 	/*
526 	 * Make if_addrhead available on all CPUs, since they
527 	 * could be accessed by any threads.
528 	 */
529 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
530 				    M_IFADDR, M_WAITOK | M_ZERO);
531 	for (i = 0; i < ncpus; ++i)
532 		TAILQ_INIT(&ifp->if_addrheads[i]);
533 
534 	TAILQ_INIT(&ifp->if_multiaddrs);
535 	TAILQ_INIT(&ifp->if_groups);
536 	getmicrotime(&ifp->if_lastchange);
537 	if_addgroup(ifp, IFG_ALL);
538 
539 	/*
540 	 * create a Link Level name for this device
541 	 */
542 	namelen = strlen(ifp->if_xname);
543 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
544 	socksize = masklen + ifp->if_addrlen;
545 	if (socksize < sizeof(*sdl))
546 		socksize = sizeof(*sdl);
547 	socksize = RT_ROUNDUP(socksize);
548 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
549 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
550 	sdl->sdl_len = socksize;
551 	sdl->sdl_family = AF_LINK;
552 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
553 	sdl->sdl_nlen = namelen;
554 	sdl->sdl_type = ifp->if_type;
555 	ifp->if_lladdr = ifa;
556 	ifa->ifa_ifp = ifp;
557 	ifa->ifa_rtrequest = link_rtrequest;
558 	ifa->ifa_addr = (struct sockaddr *)sdl;
559 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
560 	ifa->ifa_netmask = (struct sockaddr *)sdl;
561 	sdl->sdl_len = masklen;
562 	while (namelen != 0)
563 		sdl->sdl_data[--namelen] = 0xff;
564 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
565 
566 	/*
567 	 * Make if_data available on all CPUs, since they could
568 	 * be updated by hardware interrupt routing, which could
569 	 * be bound to any CPU.
570 	 */
571 	ifp->if_data_pcpu = kmalloc(ncpus * sizeof(struct ifdata_pcpu),
572 				    M_DEVBUF,
573 				    M_WAITOK | M_ZERO | M_CACHEALIGN);
574 
575 	if (ifp->if_mapsubq == NULL)
576 		ifp->if_mapsubq = ifq_mapsubq_default;
577 
578 	ifq = &ifp->if_snd;
579 	ifq->altq_type = 0;
580 	ifq->altq_disc = NULL;
581 	ifq->altq_flags &= ALTQF_CANTCHANGE;
582 	ifq->altq_tbr = NULL;
583 	ifq->altq_ifp = ifp;
584 
585 	if (ifq->altq_subq_cnt <= 0)
586 		ifq->altq_subq_cnt = 1;
587 	ifq->altq_subq =
588 		kmalloc(ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
589 			M_DEVBUF,
590 			M_WAITOK | M_ZERO | M_CACHEALIGN);
591 
592 	if (ifq->altq_maxlen == 0) {
593 		if_printf(ifp, "driver didn't set altq_maxlen\n");
594 		ifq_set_maxlen(ifq, ifqmaxlen);
595 	}
596 
597 	/* Allow user to override driver's setting. */
598 	ksnprintf(qlenname, sizeof(qlenname), "net.%s.qlenmax", ifp->if_xname);
599 	qlen = -1;
600 	TUNABLE_INT_FETCH(qlenname, &qlen);
601 	if (qlen > 0) {
602 		if_printf(ifp, "qlenmax -> %d\n", qlen);
603 		ifq_set_maxlen(ifq, qlen);
604 	}
605 
606 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
607 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
608 
609 		ALTQ_SQ_LOCK_INIT(ifsq);
610 		ifsq->ifsq_index = q;
611 
612 		ifsq->ifsq_altq = ifq;
613 		ifsq->ifsq_ifp = ifp;
614 
615 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
616 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
617 		ifsq->ifsq_prepended = NULL;
618 		ifsq->ifsq_started = 0;
619 		ifsq->ifsq_hw_oactive = 0;
620 		ifsq_set_cpuid(ifsq, 0);
621 		if (ifp->if_serializer != NULL)
622 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
623 
624 		/* XXX: netisr_ncpus */
625 		ifsq->ifsq_stage =
626 			kmalloc(ncpus * sizeof(struct ifsubq_stage),
627 				M_DEVBUF,
628 				M_WAITOK | M_ZERO | M_CACHEALIGN);
629 		for (i = 0; i < ncpus; ++i)
630 			ifsq->ifsq_stage[i].stg_subq = ifsq;
631 
632 		/*
633 		 * Allocate one if_start message for each CPU, since
634 		 * the hardware TX ring could be assigned to any CPU.
635 		 *
636 		 * NOTE:
637 		 * If the hardware TX ring polling CPU and the hardware
638 		 * TX ring interrupt CPU are same, one if_start message
639 		 * should be enough.
640 		 */
641 		ifsq->ifsq_ifstart_nmsg =
642 		    kmalloc(ncpus * sizeof(struct netmsg_base),
643 		    M_LWKTMSG, M_WAITOK);
644 		for (i = 0; i < ncpus; ++i) {
645 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
646 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
647 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
648 		}
649 	}
650 	ifq_set_classic(ifq);
651 
652 	/*
653 	 * Increase mbuf cluster/jcluster limits for the mbufs that
654 	 * could sit on the device queues for quite some time.
655 	 */
656 	if (ifp->if_nmbclusters > 0)
657 		mcl_inclimit(ifp->if_nmbclusters);
658 	if (ifp->if_nmbjclusters > 0)
659 		mjcl_inclimit(ifp->if_nmbjclusters);
660 
661 	/*
662 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
663 	 * array after it is setup.
664 	 *
665 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
666 	 * by ifnet lock, so that non-netisr threads could get a
667 	 * consistent view.
668 	 */
669 	ifnet_lock();
670 
671 	/* Don't update if_index until ifindex2ifnet is setup */
672 	ifp->if_index = if_index + 1;
673 	sdl_addr->sdl_index = ifp->if_index;
674 
675 	/*
676 	 * Install this ifp into ifindex2ifnet
677 	 */
678 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
679 		unsigned int n;
680 		struct ifnet **q;
681 
682 		/*
683 		 * Grow ifindex2ifnet
684 		 */
685 		if_indexlim <<= 1;
686 		n = if_indexlim * sizeof(*q);
687 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
688 		if (ifindex2ifnet != NULL) {
689 			bcopy(ifindex2ifnet, q, n/2);
690 			/* Free old ifindex2ifnet after sync all netisrs */
691 			old_ifindex2ifnet = ifindex2ifnet;
692 		}
693 		ifindex2ifnet = q;
694 	}
695 	ifindex2ifnet[ifp->if_index] = ifp;
696 	/*
697 	 * Update if_index after this ifp is installed into ifindex2ifnet,
698 	 * so that netisrs could get a consistent view of ifindex2ifnet.
699 	 */
700 	cpu_sfence();
701 	if_index = ifp->if_index;
702 
703 	/*
704 	 * Install this ifp into ifnet array.
705 	 */
706 	/* Free old ifnet array after sync all netisrs */
707 	old_ifnet_array = ifnet_array;
708 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
709 
710 	/*
711 	 * Install this ifp into ifnet queue.
712 	 */
713 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
714 
715 	ifnet_unlock();
716 
717 	/*
718 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
719 	 * are no longer accessed and we can free them safely later on.
720 	 */
721 	netmsg_service_sync();
722 	if (old_ifindex2ifnet != NULL)
723 		kfree(old_ifindex2ifnet, M_IFADDR);
724 	ifnet_array_free(old_ifnet_array);
725 
726 	if (!SLIST_EMPTY(&domains))
727 		if_attachdomain1(ifp);
728 
729 	/* Announce the interface. */
730 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
731 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
732 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
733 }
734 
735 static void
736 if_attachdomain(void *dummy)
737 {
738 	struct ifnet *ifp;
739 
740 	ifnet_lock();
741 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
742 		if_attachdomain1(ifp);
743 	ifnet_unlock();
744 }
745 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
746 	if_attachdomain, NULL);
747 
748 static void
749 if_attachdomain1(struct ifnet *ifp)
750 {
751 	struct domain *dp;
752 
753 	crit_enter();
754 
755 	/* address family dependent data region */
756 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
757 	SLIST_FOREACH(dp, &domains, dom_next)
758 		if (dp->dom_ifattach)
759 			ifp->if_afdata[dp->dom_family] =
760 				(*dp->dom_ifattach)(ifp);
761 	crit_exit();
762 }
763 
764 /*
765  * Purge all addresses whose type is _not_ AF_LINK
766  */
767 static void
768 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
769 {
770 	struct ifnet *ifp = nmsg->lmsg.u.ms_resultp;
771 	struct ifaddr_container *ifac, *next;
772 
773 	ASSERT_NETISR0;
774 
775 	/*
776 	 * The ifaddr processing in the following loop will block,
777 	 * however, this function is called in netisr0, in which
778 	 * ifaddr list changes happen, so we don't care about the
779 	 * blockness of the ifaddr processing here.
780 	 */
781 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
782 			      ifa_link, next) {
783 		struct ifaddr *ifa = ifac->ifa;
784 
785 		/* Ignore marker */
786 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
787 			continue;
788 
789 		/* Leave link ifaddr as it is */
790 		if (ifa->ifa_addr->sa_family == AF_LINK)
791 			continue;
792 #ifdef INET
793 		/* XXX: Ugly!! ad hoc just for INET */
794 		if (ifa->ifa_addr->sa_family == AF_INET) {
795 			struct ifaliasreq ifr;
796 			struct sockaddr_in saved_addr, saved_dst;
797 #ifdef IFADDR_DEBUG_VERBOSE
798 			int i;
799 
800 			kprintf("purge in4 addr %p: ", ifa);
801 			for (i = 0; i < ncpus; ++i) {
802 				kprintf("%d ",
803 				    ifa->ifa_containers[i].ifa_refcnt);
804 			}
805 			kprintf("\n");
806 #endif
807 
808 			/* Save information for panic. */
809 			memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
810 			if (ifa->ifa_dstaddr != NULL) {
811 				memcpy(&saved_dst, ifa->ifa_dstaddr,
812 				    sizeof(saved_dst));
813 			} else {
814 				memset(&saved_dst, 0, sizeof(saved_dst));
815 			}
816 
817 			bzero(&ifr, sizeof ifr);
818 			ifr.ifra_addr = *ifa->ifa_addr;
819 			if (ifa->ifa_dstaddr)
820 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
821 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
822 				       NULL) == 0)
823 				continue;
824 
825 			/* MUST NOT HAPPEN */
826 			panic("%s: in_control failed %x, dst %x", ifp->if_xname,
827 			    ntohl(saved_addr.sin_addr.s_addr),
828 			    ntohl(saved_dst.sin_addr.s_addr));
829 		}
830 #endif /* INET */
831 #ifdef INET6
832 		if (ifa->ifa_addr->sa_family == AF_INET6) {
833 #ifdef IFADDR_DEBUG_VERBOSE
834 			int i;
835 
836 			kprintf("purge in6 addr %p: ", ifa);
837 			for (i = 0; i < ncpus; ++i) {
838 				kprintf("%d ",
839 				    ifa->ifa_containers[i].ifa_refcnt);
840 			}
841 			kprintf("\n");
842 #endif
843 
844 			in6_purgeaddr(ifa);
845 			/* ifp_addrhead is already updated */
846 			continue;
847 		}
848 #endif /* INET6 */
849 		if_printf(ifp, "destroy ifaddr family %d\n",
850 		    ifa->ifa_addr->sa_family);
851 		ifa_ifunlink(ifa, ifp);
852 		ifa_destroy(ifa);
853 	}
854 
855 	netisr_replymsg(&nmsg->base, 0);
856 }
857 
858 void
859 if_purgeaddrs_nolink(struct ifnet *ifp)
860 {
861 	struct netmsg_base nmsg;
862 
863 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
864 	    if_purgeaddrs_nolink_dispatch);
865 	nmsg.lmsg.u.ms_resultp = ifp;
866 	netisr_domsg(&nmsg, 0);
867 }
868 
869 static void
870 ifq_stage_detach_handler(netmsg_t nmsg)
871 {
872 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
873 	int q;
874 
875 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
876 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
877 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
878 
879 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
880 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
881 	}
882 	lwkt_replymsg(&nmsg->lmsg, 0);
883 }
884 
885 static void
886 ifq_stage_detach(struct ifaltq *ifq)
887 {
888 	struct netmsg_base base;
889 	int cpu;
890 
891 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
892 	    ifq_stage_detach_handler);
893 	base.lmsg.u.ms_resultp = ifq;
894 
895 	/* XXX netisr_ncpus */
896 	for (cpu = 0; cpu < ncpus; ++cpu)
897 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
898 }
899 
900 struct netmsg_if_rtdel {
901 	struct netmsg_base	base;
902 	struct ifnet		*ifp;
903 };
904 
905 static void
906 if_rtdel_dispatch(netmsg_t msg)
907 {
908 	struct netmsg_if_rtdel *rmsg = (void *)msg;
909 	int i, cpu;
910 
911 	cpu = mycpuid;
912 	ASSERT_NETISR_NCPUS(cpu);
913 
914 	for (i = 1; i <= AF_MAX; i++) {
915 		struct radix_node_head	*rnh;
916 
917 		if ((rnh = rt_tables[cpu][i]) == NULL)
918 			continue;
919 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
920 	}
921 	netisr_forwardmsg(&msg->base, cpu + 1);
922 }
923 
924 /*
925  * Detach an interface, removing it from the
926  * list of "active" interfaces.
927  */
928 void
929 if_detach(struct ifnet *ifp)
930 {
931 	struct ifnet_array *old_ifnet_array;
932 	struct ifg_list *ifgl;
933 	struct netmsg_if_rtdel msg;
934 	struct domain *dp;
935 	int q;
936 
937 	/* Announce that the interface is gone. */
938 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
939 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
940 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
941 
942 	/*
943 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
944 	 * array before it is whacked.
945 	 *
946 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
947 	 * by ifnet lock, so that non-netisr threads could get a
948 	 * consistent view.
949 	 */
950 	ifnet_lock();
951 
952 	/*
953 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
954 	 */
955 	ifindex2ifnet[ifp->if_index] = NULL;
956 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
957 		if_index--;
958 
959 	/*
960 	 * Remove this ifp from ifnet queue.
961 	 */
962 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
963 
964 	/*
965 	 * Remove this ifp from ifnet array.
966 	 */
967 	/* Free old ifnet array after sync all netisrs */
968 	old_ifnet_array = ifnet_array;
969 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
970 
971 	ifnet_unlock();
972 
973 	ifgroup_lockmgr(LK_EXCLUSIVE);
974 	while ((ifgl = TAILQ_FIRST(&ifp->if_groups)) != NULL)
975 		if_delgroup_locked(ifp, ifgl->ifgl_group->ifg_group);
976 	ifgroup_lockmgr(LK_RELEASE);
977 
978 	/*
979 	 * Sync all netisrs so that the old ifnet array is no longer
980 	 * accessed and we can free it safely later on.
981 	 */
982 	netmsg_service_sync();
983 	ifnet_array_free(old_ifnet_array);
984 
985 	/*
986 	 * Remove routes and flush queues.
987 	 */
988 	crit_enter();
989 #ifdef IFPOLL_ENABLE
990 	if (ifp->if_flags & IFF_NPOLLING)
991 		ifpoll_deregister(ifp);
992 #endif
993 	if_down(ifp);
994 
995 	/* Decrease the mbuf clusters/jclusters limits increased by us */
996 	if (ifp->if_nmbclusters > 0)
997 		mcl_inclimit(-ifp->if_nmbclusters);
998 	if (ifp->if_nmbjclusters > 0)
999 		mjcl_inclimit(-ifp->if_nmbjclusters);
1000 
1001 #ifdef ALTQ
1002 	if (ifq_is_enabled(&ifp->if_snd))
1003 		altq_disable(&ifp->if_snd);
1004 	if (ifq_is_attached(&ifp->if_snd))
1005 		altq_detach(&ifp->if_snd);
1006 #endif
1007 
1008 	/*
1009 	 * Clean up all addresses.
1010 	 */
1011 	ifp->if_lladdr = NULL;
1012 
1013 	if_purgeaddrs_nolink(ifp);
1014 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
1015 		struct ifaddr *ifa;
1016 
1017 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1018 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
1019 			("non-link ifaddr is left on if_addrheads"));
1020 
1021 		ifa_ifunlink(ifa, ifp);
1022 		ifa_destroy(ifa);
1023 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1024 			("there are still ifaddrs left on if_addrheads"));
1025 	}
1026 
1027 #ifdef INET
1028 	/*
1029 	 * Remove all IPv4 kernel structures related to ifp.
1030 	 */
1031 	in_ifdetach(ifp);
1032 #endif
1033 
1034 #ifdef INET6
1035 	/*
1036 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1037 	 * before removing routing entries below, since IPv6 interface direct
1038 	 * routes are expected to be removed by the IPv6-specific kernel API.
1039 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1040 	 */
1041 	in6_ifdetach(ifp);
1042 #endif
1043 
1044 	/*
1045 	 * Delete all remaining routes using this interface
1046 	 */
1047 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1048 	    if_rtdel_dispatch);
1049 	msg.ifp = ifp;
1050 	netisr_domsg_global(&msg.base);
1051 
1052 	SLIST_FOREACH(dp, &domains, dom_next) {
1053 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1054 			(*dp->dom_ifdetach)(ifp,
1055 				ifp->if_afdata[dp->dom_family]);
1056 	}
1057 
1058 	kfree(ifp->if_addrheads, M_IFADDR);
1059 
1060 	lwkt_synchronize_ipiqs("if_detach");
1061 	ifq_stage_detach(&ifp->if_snd);
1062 
1063 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1064 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1065 
1066 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1067 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1068 	}
1069 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1070 
1071 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1072 
1073 	crit_exit();
1074 }
1075 
1076 int
1077 ifgroup_lockmgr(u_int flags)
1078 {
1079 	return lockmgr(&ifgroup_lock, flags);
1080 }
1081 
1082 /*
1083  * Create an empty interface group.
1084  */
1085 static struct ifg_group *
1086 if_creategroup(const char *groupname)
1087 {
1088 	struct ifg_group *ifg;
1089 
1090 	ifg = kmalloc(sizeof(*ifg), M_IFNET, M_WAITOK);
1091 	strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1092 	ifg->ifg_refcnt = 0;
1093 	ifg->ifg_carp_demoted = 0;
1094 	TAILQ_INIT(&ifg->ifg_members);
1095 
1096 	ifgroup_lockmgr(LK_EXCLUSIVE);
1097 	TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1098 	ifgroup_lockmgr(LK_RELEASE);
1099 
1100 	EVENTHANDLER_INVOKE(group_attach_event, ifg);
1101 
1102 	return (ifg);
1103 }
1104 
1105 /*
1106  * Destroy an empty interface group.
1107  */
1108 static int
1109 if_destroygroup(struct ifg_group *ifg)
1110 {
1111 	KASSERT(ifg->ifg_refcnt == 0,
1112 		("trying to delete a non-empty interface group"));
1113 
1114 	ifgroup_lockmgr(LK_EXCLUSIVE);
1115 	TAILQ_REMOVE(&ifg_head, ifg, ifg_next);
1116 	ifgroup_lockmgr(LK_RELEASE);
1117 
1118 	EVENTHANDLER_INVOKE(group_detach_event, ifg);
1119 	kfree(ifg, M_IFNET);
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Add the interface to a group.
1126  * The target group will be created if it doesn't exist.
1127  */
1128 int
1129 if_addgroup(struct ifnet *ifp, const char *groupname)
1130 {
1131 	struct ifg_list *ifgl;
1132 	struct ifg_group *ifg;
1133 	struct ifg_member *ifgm;
1134 
1135 	if (groupname[0] &&
1136 	    groupname[strlen(groupname) - 1] >= '0' &&
1137 	    groupname[strlen(groupname) - 1] <= '9')
1138 		return (EINVAL);
1139 
1140 	ifgroup_lockmgr(LK_SHARED);
1141 
1142 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1143 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) {
1144 			ifgroup_lockmgr(LK_RELEASE);
1145 			return (EEXIST);
1146 		}
1147 	}
1148 
1149 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1150 		if (strcmp(ifg->ifg_group, groupname) == 0)
1151 			break;
1152 	}
1153 
1154 	ifgroup_lockmgr(LK_RELEASE);
1155 
1156 	if (ifg == NULL)
1157 		ifg = if_creategroup(groupname);
1158 
1159 	ifgl = kmalloc(sizeof(*ifgl), M_IFNET, M_WAITOK);
1160 	ifgm = kmalloc(sizeof(*ifgm), M_IFNET, M_WAITOK);
1161 	ifgl->ifgl_group = ifg;
1162 	ifgm->ifgm_ifp = ifp;
1163 	ifg->ifg_refcnt++;
1164 
1165 	ifgroup_lockmgr(LK_EXCLUSIVE);
1166 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1167 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1168 	ifgroup_lockmgr(LK_RELEASE);
1169 
1170 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Remove the interface from a group.
1177  * The group will be destroyed if it becomes empty.
1178  *
1179  * The 'ifgroup_lock' must be hold exclusively when calling this.
1180  */
1181 static int
1182 if_delgroup_locked(struct ifnet *ifp, const char *groupname)
1183 {
1184 	struct ifg_list *ifgl;
1185 	struct ifg_member *ifgm;
1186 
1187 	KKASSERT(lockstatus(&ifgroup_lock, curthread) == LK_EXCLUSIVE);
1188 
1189 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1190 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1191 			break;
1192 	}
1193 	if (ifgl == NULL)
1194 		return (ENOENT);
1195 
1196 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1197 
1198 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1199 		if (ifgm->ifgm_ifp == ifp)
1200 			break;
1201 	}
1202 
1203 	if (ifgm != NULL) {
1204 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1205 
1206 		ifgroup_lockmgr(LK_RELEASE);
1207 		EVENTHANDLER_INVOKE(group_change_event, groupname);
1208 		ifgroup_lockmgr(LK_EXCLUSIVE);
1209 
1210 		kfree(ifgm, M_IFNET);
1211 		ifgl->ifgl_group->ifg_refcnt--;
1212 	}
1213 
1214 	if (ifgl->ifgl_group->ifg_refcnt == 0) {
1215 		ifgroup_lockmgr(LK_RELEASE);
1216 		if_destroygroup(ifgl->ifgl_group);
1217 		ifgroup_lockmgr(LK_EXCLUSIVE);
1218 	}
1219 
1220 	kfree(ifgl, M_IFNET);
1221 
1222 	return (0);
1223 }
1224 
1225 int
1226 if_delgroup(struct ifnet *ifp, const char *groupname)
1227 {
1228 	int error;
1229 
1230 	ifgroup_lockmgr(LK_EXCLUSIVE);
1231 	error = if_delgroup_locked(ifp, groupname);
1232 	ifgroup_lockmgr(LK_RELEASE);
1233 
1234 	return (error);
1235 }
1236 
1237 /*
1238  * Store all the groups that the interface belongs to in memory
1239  * pointed to by data.
1240  */
1241 static int
1242 if_getgroups(struct ifgroupreq *ifgr, struct ifnet *ifp)
1243 {
1244 	struct ifg_list *ifgl;
1245 	struct ifg_req *ifgrq, *p;
1246 	int len, error;
1247 
1248 	len = 0;
1249 	ifgroup_lockmgr(LK_SHARED);
1250 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1251 		len += sizeof(struct ifg_req);
1252 	ifgroup_lockmgr(LK_RELEASE);
1253 
1254 	if (ifgr->ifgr_len == 0) {
1255 		/*
1256 		 * Caller is asking how much memory should be allocated in
1257 		 * the next request in order to hold all the groups.
1258 		 */
1259 		ifgr->ifgr_len = len;
1260 		return (0);
1261 	} else if (ifgr->ifgr_len != len) {
1262 		return (EINVAL);
1263 	}
1264 
1265 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1266 	if (ifgrq == NULL)
1267 		return (ENOMEM);
1268 
1269 	ifgroup_lockmgr(LK_SHARED);
1270 	p = ifgrq;
1271 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1272 		if (len < sizeof(struct ifg_req)) {
1273 			ifgroup_lockmgr(LK_RELEASE);
1274 			return (EINVAL);
1275 		}
1276 
1277 		strlcpy(p->ifgrq_group, ifgl->ifgl_group->ifg_group,
1278 			sizeof(ifgrq->ifgrq_group));
1279 		len -= sizeof(struct ifg_req);
1280 		p++;
1281 	}
1282 	ifgroup_lockmgr(LK_RELEASE);
1283 
1284 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1285 	kfree(ifgrq, M_TEMP);
1286 	if (error)
1287 		return (error);
1288 
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Store all the members of a group in memory pointed to by data.
1294  */
1295 static int
1296 if_getgroupmembers(struct ifgroupreq *ifgr)
1297 {
1298 	struct ifg_group *ifg;
1299 	struct ifg_member *ifgm;
1300 	struct ifg_req *ifgrq, *p;
1301 	int len, error;
1302 
1303 	ifgroup_lockmgr(LK_SHARED);
1304 
1305 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next) {
1306 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1307 			break;
1308 	}
1309 	if (ifg == NULL) {
1310 		ifgroup_lockmgr(LK_RELEASE);
1311 		return (ENOENT);
1312 	}
1313 
1314 	len = 0;
1315 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1316 		len += sizeof(struct ifg_req);
1317 
1318 	ifgroup_lockmgr(LK_RELEASE);
1319 
1320 	if (ifgr->ifgr_len == 0) {
1321 		ifgr->ifgr_len = len;
1322 		return (0);
1323 	} else if (ifgr->ifgr_len != len) {
1324 		return (EINVAL);
1325 	}
1326 
1327 	ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO);
1328 	if (ifgrq == NULL)
1329 		return (ENOMEM);
1330 
1331 	ifgroup_lockmgr(LK_SHARED);
1332 	p = ifgrq;
1333 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1334 		if (len < sizeof(struct ifg_req)) {
1335 			ifgroup_lockmgr(LK_RELEASE);
1336 			return (EINVAL);
1337 		}
1338 
1339 		strlcpy(p->ifgrq_member, ifgm->ifgm_ifp->if_xname,
1340 			sizeof(p->ifgrq_member));
1341 		len -= sizeof(struct ifg_req);
1342 		p++;
1343 	}
1344 	ifgroup_lockmgr(LK_RELEASE);
1345 
1346 	error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len);
1347 	kfree(ifgrq, M_TEMP);
1348 	if (error)
1349 		return (error);
1350 
1351 	return (0);
1352 }
1353 
1354 /*
1355  * Delete Routes for a Network Interface
1356  *
1357  * Called for each routing entry via the rnh->rnh_walktree() call above
1358  * to delete all route entries referencing a detaching network interface.
1359  *
1360  * Arguments:
1361  *	rn	pointer to node in the routing table
1362  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1363  *
1364  * Returns:
1365  *	0	successful
1366  *	errno	failed - reason indicated
1367  *
1368  */
1369 static int
1370 if_rtdel(struct radix_node *rn, void *arg)
1371 {
1372 	struct rtentry	*rt = (struct rtentry *)rn;
1373 	struct ifnet	*ifp = arg;
1374 	int		err;
1375 
1376 	if (rt->rt_ifp == ifp) {
1377 
1378 		/*
1379 		 * Protect (sorta) against walktree recursion problems
1380 		 * with cloned routes
1381 		 */
1382 		if (!(rt->rt_flags & RTF_UP))
1383 			return (0);
1384 
1385 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1386 				rt_mask(rt), rt->rt_flags,
1387 				NULL);
1388 		if (err) {
1389 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1390 		}
1391 	}
1392 
1393 	return (0);
1394 }
1395 
1396 static __inline boolean_t
1397 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1398 {
1399 	if (old_ifa == NULL)
1400 		return TRUE;
1401 
1402 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1403 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1404 		return TRUE;
1405 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1406 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1407 		return TRUE;
1408 	return FALSE;
1409 }
1410 
1411 /*
1412  * Locate an interface based on a complete address.
1413  */
1414 struct ifaddr *
1415 ifa_ifwithaddr(struct sockaddr *addr)
1416 {
1417 	const struct ifnet_array *arr;
1418 	int i;
1419 
1420 	arr = ifnet_array_get();
1421 	for (i = 0; i < arr->ifnet_count; ++i) {
1422 		struct ifnet *ifp = arr->ifnet_arr[i];
1423 		struct ifaddr_container *ifac;
1424 
1425 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1426 			struct ifaddr *ifa = ifac->ifa;
1427 
1428 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1429 				continue;
1430 			if (sa_equal(addr, ifa->ifa_addr))
1431 				return (ifa);
1432 			if ((ifp->if_flags & IFF_BROADCAST) &&
1433 			    ifa->ifa_broadaddr &&
1434 			    /* IPv6 doesn't have broadcast */
1435 			    ifa->ifa_broadaddr->sa_len != 0 &&
1436 			    sa_equal(ifa->ifa_broadaddr, addr))
1437 				return (ifa);
1438 		}
1439 	}
1440 	return (NULL);
1441 }
1442 
1443 /*
1444  * Locate the point to point interface with a given destination address.
1445  */
1446 struct ifaddr *
1447 ifa_ifwithdstaddr(struct sockaddr *addr)
1448 {
1449 	const struct ifnet_array *arr;
1450 	int i;
1451 
1452 	arr = ifnet_array_get();
1453 	for (i = 0; i < arr->ifnet_count; ++i) {
1454 		struct ifnet *ifp = arr->ifnet_arr[i];
1455 		struct ifaddr_container *ifac;
1456 
1457 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1458 			continue;
1459 
1460 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1461 			struct ifaddr *ifa = ifac->ifa;
1462 
1463 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1464 				continue;
1465 			if (ifa->ifa_dstaddr &&
1466 			    sa_equal(addr, ifa->ifa_dstaddr))
1467 				return (ifa);
1468 		}
1469 	}
1470 	return (NULL);
1471 }
1472 
1473 /*
1474  * Find an interface on a specific network.  If many, choice
1475  * is most specific found.
1476  */
1477 struct ifaddr *
1478 ifa_ifwithnet(struct sockaddr *addr)
1479 {
1480 	struct ifaddr *ifa_maybe = NULL;
1481 	u_int af = addr->sa_family;
1482 	char *addr_data = addr->sa_data, *cplim;
1483 	const struct ifnet_array *arr;
1484 	int i;
1485 
1486 	/*
1487 	 * AF_LINK addresses can be looked up directly by their index number,
1488 	 * so do that if we can.
1489 	 */
1490 	if (af == AF_LINK) {
1491 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1492 
1493 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1494 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1495 	}
1496 
1497 	/*
1498 	 * Scan though each interface, looking for ones that have
1499 	 * addresses in this address family.
1500 	 */
1501 	arr = ifnet_array_get();
1502 	for (i = 0; i < arr->ifnet_count; ++i) {
1503 		struct ifnet *ifp = arr->ifnet_arr[i];
1504 		struct ifaddr_container *ifac;
1505 
1506 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1507 			struct ifaddr *ifa = ifac->ifa;
1508 			char *cp, *cp2, *cp3;
1509 
1510 			if (ifa->ifa_addr->sa_family != af)
1511 next:				continue;
1512 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1513 				/*
1514 				 * This is a bit broken as it doesn't
1515 				 * take into account that the remote end may
1516 				 * be a single node in the network we are
1517 				 * looking for.
1518 				 * The trouble is that we don't know the
1519 				 * netmask for the remote end.
1520 				 */
1521 				if (ifa->ifa_dstaddr != NULL &&
1522 				    sa_equal(addr, ifa->ifa_dstaddr))
1523 					return (ifa);
1524 			} else {
1525 				/*
1526 				 * if we have a special address handler,
1527 				 * then use it instead of the generic one.
1528 				 */
1529 				if (ifa->ifa_claim_addr) {
1530 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1531 						return (ifa);
1532 					} else {
1533 						continue;
1534 					}
1535 				}
1536 
1537 				/*
1538 				 * Scan all the bits in the ifa's address.
1539 				 * If a bit dissagrees with what we are
1540 				 * looking for, mask it with the netmask
1541 				 * to see if it really matters.
1542 				 * (A byte at a time)
1543 				 */
1544 				if (ifa->ifa_netmask == 0)
1545 					continue;
1546 				cp = addr_data;
1547 				cp2 = ifa->ifa_addr->sa_data;
1548 				cp3 = ifa->ifa_netmask->sa_data;
1549 				cplim = ifa->ifa_netmask->sa_len +
1550 					(char *)ifa->ifa_netmask;
1551 				while (cp3 < cplim)
1552 					if ((*cp++ ^ *cp2++) & *cp3++)
1553 						goto next; /* next address! */
1554 				/*
1555 				 * If the netmask of what we just found
1556 				 * is more specific than what we had before
1557 				 * (if we had one) then remember the new one
1558 				 * before continuing to search for an even
1559 				 * better one.  If the netmasks are equal,
1560 				 * we prefer the this ifa based on the result
1561 				 * of ifa_prefer().
1562 				 */
1563 				if (ifa_maybe == NULL ||
1564 				    rn_refines((char *)ifa->ifa_netmask,
1565 				        (char *)ifa_maybe->ifa_netmask) ||
1566 				    (sa_equal(ifa_maybe->ifa_netmask,
1567 				        ifa->ifa_netmask) &&
1568 				     ifa_prefer(ifa, ifa_maybe)))
1569 					ifa_maybe = ifa;
1570 			}
1571 		}
1572 	}
1573 	return (ifa_maybe);
1574 }
1575 
1576 /*
1577  * Find an interface address specific to an interface best matching
1578  * a given address.
1579  */
1580 struct ifaddr *
1581 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1582 {
1583 	struct ifaddr_container *ifac;
1584 	char *cp, *cp2, *cp3;
1585 	char *cplim;
1586 	struct ifaddr *ifa_maybe = NULL;
1587 	u_int af = addr->sa_family;
1588 
1589 	if (af >= AF_MAX)
1590 		return (0);
1591 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1592 		struct ifaddr *ifa = ifac->ifa;
1593 
1594 		if (ifa->ifa_addr->sa_family != af)
1595 			continue;
1596 		if (ifa_maybe == NULL)
1597 			ifa_maybe = ifa;
1598 		if (ifa->ifa_netmask == NULL) {
1599 			if (sa_equal(addr, ifa->ifa_addr) ||
1600 			    (ifa->ifa_dstaddr != NULL &&
1601 			     sa_equal(addr, ifa->ifa_dstaddr)))
1602 				return (ifa);
1603 			continue;
1604 		}
1605 		if (ifp->if_flags & IFF_POINTOPOINT) {
1606 			if (sa_equal(addr, ifa->ifa_dstaddr))
1607 				return (ifa);
1608 		} else {
1609 			cp = addr->sa_data;
1610 			cp2 = ifa->ifa_addr->sa_data;
1611 			cp3 = ifa->ifa_netmask->sa_data;
1612 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1613 			for (; cp3 < cplim; cp3++)
1614 				if ((*cp++ ^ *cp2++) & *cp3)
1615 					break;
1616 			if (cp3 == cplim)
1617 				return (ifa);
1618 		}
1619 	}
1620 	return (ifa_maybe);
1621 }
1622 
1623 /*
1624  * Default action when installing a route with a Link Level gateway.
1625  * Lookup an appropriate real ifa to point to.
1626  * This should be moved to /sys/net/link.c eventually.
1627  */
1628 static void
1629 link_rtrequest(int cmd, struct rtentry *rt)
1630 {
1631 	struct ifaddr *ifa;
1632 	struct sockaddr *dst;
1633 	struct ifnet *ifp;
1634 
1635 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1636 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1637 		return;
1638 	ifa = ifaof_ifpforaddr(dst, ifp);
1639 	if (ifa != NULL) {
1640 		IFAFREE(rt->rt_ifa);
1641 		IFAREF(ifa);
1642 		rt->rt_ifa = ifa;
1643 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1644 			ifa->ifa_rtrequest(cmd, rt);
1645 	}
1646 }
1647 
1648 struct netmsg_ifroute {
1649 	struct netmsg_base	base;
1650 	struct ifnet		*ifp;
1651 	int			flag;
1652 	int			fam;
1653 };
1654 
1655 /*
1656  * Mark an interface down and notify protocols of the transition.
1657  */
1658 static void
1659 if_unroute_dispatch(netmsg_t nmsg)
1660 {
1661 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1662 	struct ifnet *ifp = msg->ifp;
1663 	int flag = msg->flag, fam = msg->fam;
1664 	struct ifaddr_container *ifac;
1665 
1666 	ASSERT_NETISR0;
1667 
1668 	ifp->if_flags &= ~flag;
1669 	getmicrotime(&ifp->if_lastchange);
1670 	/*
1671 	 * The ifaddr processing in the following loop will block,
1672 	 * however, this function is called in netisr0, in which
1673 	 * ifaddr list changes happen, so we don't care about the
1674 	 * blockness of the ifaddr processing here.
1675 	 */
1676 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1677 		struct ifaddr *ifa = ifac->ifa;
1678 
1679 		/* Ignore marker */
1680 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1681 			continue;
1682 
1683 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1684 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1685 	}
1686 	ifq_purge_all(&ifp->if_snd);
1687 	rt_ifmsg(ifp);
1688 
1689 	netisr_replymsg(&nmsg->base, 0);
1690 }
1691 
1692 void
1693 if_unroute(struct ifnet *ifp, int flag, int fam)
1694 {
1695 	struct netmsg_ifroute msg;
1696 
1697 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1698 	    if_unroute_dispatch);
1699 	msg.ifp = ifp;
1700 	msg.flag = flag;
1701 	msg.fam = fam;
1702 	netisr_domsg(&msg.base, 0);
1703 }
1704 
1705 /*
1706  * Mark an interface up and notify protocols of the transition.
1707  */
1708 static void
1709 if_route_dispatch(netmsg_t nmsg)
1710 {
1711 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1712 	struct ifnet *ifp = msg->ifp;
1713 	int flag = msg->flag, fam = msg->fam;
1714 	struct ifaddr_container *ifac;
1715 
1716 	ASSERT_NETISR0;
1717 
1718 	ifq_purge_all(&ifp->if_snd);
1719 	ifp->if_flags |= flag;
1720 	getmicrotime(&ifp->if_lastchange);
1721 	/*
1722 	 * The ifaddr processing in the following loop will block,
1723 	 * however, this function is called in netisr0, in which
1724 	 * ifaddr list changes happen, so we don't care about the
1725 	 * blockness of the ifaddr processing here.
1726 	 */
1727 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1728 		struct ifaddr *ifa = ifac->ifa;
1729 
1730 		/* Ignore marker */
1731 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1732 			continue;
1733 
1734 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1735 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1736 	}
1737 	rt_ifmsg(ifp);
1738 #ifdef INET6
1739 	in6_if_up(ifp);
1740 #endif
1741 
1742 	netisr_replymsg(&nmsg->base, 0);
1743 }
1744 
1745 void
1746 if_route(struct ifnet *ifp, int flag, int fam)
1747 {
1748 	struct netmsg_ifroute msg;
1749 
1750 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1751 	    if_route_dispatch);
1752 	msg.ifp = ifp;
1753 	msg.flag = flag;
1754 	msg.fam = fam;
1755 	netisr_domsg(&msg.base, 0);
1756 }
1757 
1758 /*
1759  * Mark an interface down and notify protocols of the transition.  An
1760  * interface going down is also considered to be a synchronizing event.
1761  * We must ensure that all packet processing related to the interface
1762  * has completed before we return so e.g. the caller can free the ifnet
1763  * structure that the mbufs may be referencing.
1764  *
1765  * NOTE: must be called at splnet or eqivalent.
1766  */
1767 void
1768 if_down(struct ifnet *ifp)
1769 {
1770 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
1771 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1772 	netmsg_service_sync();
1773 }
1774 
1775 /*
1776  * Mark an interface up and notify protocols of
1777  * the transition.
1778  * NOTE: must be called at splnet or eqivalent.
1779  */
1780 void
1781 if_up(struct ifnet *ifp)
1782 {
1783 	if_route(ifp, IFF_UP, AF_UNSPEC);
1784 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
1785 }
1786 
1787 /*
1788  * Process a link state change.
1789  * NOTE: must be called at splsoftnet or equivalent.
1790  */
1791 void
1792 if_link_state_change(struct ifnet *ifp)
1793 {
1794 	int link_state = ifp->if_link_state;
1795 
1796 	rt_ifmsg(ifp);
1797 	devctl_notify("IFNET", ifp->if_xname,
1798 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1799 
1800 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
1801 }
1802 
1803 /*
1804  * Handle interface watchdog timer routines.  Called
1805  * from softclock, we decrement timers (if set) and
1806  * call the appropriate interface routine on expiration.
1807  */
1808 static void
1809 if_slowtimo_dispatch(netmsg_t nmsg)
1810 {
1811 	struct globaldata *gd = mycpu;
1812 	const struct ifnet_array *arr;
1813 	int i;
1814 
1815 	ASSERT_NETISR0;
1816 
1817 	crit_enter_gd(gd);
1818 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1819 	crit_exit_gd(gd);
1820 
1821 	arr = ifnet_array_get();
1822 	for (i = 0; i < arr->ifnet_count; ++i) {
1823 		struct ifnet *ifp = arr->ifnet_arr[i];
1824 
1825 		crit_enter_gd(gd);
1826 
1827 		if (if_stats_compat) {
1828 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1829 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1830 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1831 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1832 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1833 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1834 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1835 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1836 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1837 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1838 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1839 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1840 		}
1841 
1842 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1843 			crit_exit_gd(gd);
1844 			continue;
1845 		}
1846 		if (ifp->if_watchdog) {
1847 			if (ifnet_tryserialize_all(ifp)) {
1848 				(*ifp->if_watchdog)(ifp);
1849 				ifnet_deserialize_all(ifp);
1850 			} else {
1851 				/* try again next timeout */
1852 				++ifp->if_timer;
1853 			}
1854 		}
1855 
1856 		crit_exit_gd(gd);
1857 	}
1858 
1859 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1860 }
1861 
1862 static void
1863 if_slowtimo(void *arg __unused)
1864 {
1865 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1866 
1867 	KASSERT(mycpuid == 0, ("not on cpu0"));
1868 	crit_enter();
1869 	if (lmsg->ms_flags & MSGF_DONE)
1870 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1871 	crit_exit();
1872 }
1873 
1874 /*
1875  * Map interface name to
1876  * interface structure pointer.
1877  */
1878 struct ifnet *
1879 ifunit(const char *name)
1880 {
1881 	struct ifnet *ifp;
1882 
1883 	/*
1884 	 * Search all the interfaces for this name/number
1885 	 */
1886 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1887 
1888 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1889 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1890 			break;
1891 	}
1892 	return (ifp);
1893 }
1894 
1895 struct ifnet *
1896 ifunit_netisr(const char *name)
1897 {
1898 	const struct ifnet_array *arr;
1899 	int i;
1900 
1901 	/*
1902 	 * Search all the interfaces for this name/number
1903 	 */
1904 
1905 	arr = ifnet_array_get();
1906 	for (i = 0; i < arr->ifnet_count; ++i) {
1907 		struct ifnet *ifp = arr->ifnet_arr[i];
1908 
1909 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1910 			return ifp;
1911 	}
1912 	return NULL;
1913 }
1914 
1915 /*
1916  * Interface ioctls.
1917  */
1918 int
1919 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1920 {
1921 	struct ifnet *ifp;
1922 	struct ifgroupreq *ifgr;
1923 	struct ifreq *ifr;
1924 	struct ifstat *ifs;
1925 	int error, do_ifup = 0;
1926 	short oif_flags;
1927 	int new_flags;
1928 	size_t namelen, onamelen;
1929 	char new_name[IFNAMSIZ];
1930 	struct ifaddr *ifa;
1931 	struct sockaddr_dl *sdl;
1932 
1933 	switch (cmd) {
1934 	case SIOCGIFCONF:
1935 		return (ifconf(cmd, data, cred));
1936 	default:
1937 		break;
1938 	}
1939 
1940 	ifr = (struct ifreq *)data;
1941 
1942 	switch (cmd) {
1943 	case SIOCIFCREATE:
1944 	case SIOCIFCREATE2:
1945 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1946 			return (error);
1947 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1948 			cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1949 	case SIOCIFDESTROY:
1950 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1951 			return (error);
1952 		return (if_clone_destroy(ifr->ifr_name));
1953 	case SIOCIFGCLONERS:
1954 		return (if_clone_list((struct if_clonereq *)data));
1955 	case SIOCGIFGMEMB:
1956 		return (if_getgroupmembers((struct ifgroupreq *)data));
1957 	default:
1958 		break;
1959 	}
1960 
1961 	/*
1962 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1963 	 * lock to serialize the ifconfig ioctl operation.
1964 	 */
1965 	ifnet_lock();
1966 
1967 	ifp = ifunit(ifr->ifr_name);
1968 	if (ifp == NULL) {
1969 		ifnet_unlock();
1970 		return (ENXIO);
1971 	}
1972 	error = 0;
1973 
1974 	switch (cmd) {
1975 	case SIOCGIFINDEX:
1976 		ifr->ifr_index = ifp->if_index;
1977 		break;
1978 
1979 	case SIOCGIFFLAGS:
1980 		ifr->ifr_flags = ifp->if_flags;
1981 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1982 		break;
1983 
1984 	case SIOCGIFCAP:
1985 		ifr->ifr_reqcap = ifp->if_capabilities;
1986 		ifr->ifr_curcap = ifp->if_capenable;
1987 		break;
1988 
1989 	case SIOCGIFMETRIC:
1990 		ifr->ifr_metric = ifp->if_metric;
1991 		break;
1992 
1993 	case SIOCGIFMTU:
1994 		ifr->ifr_mtu = ifp->if_mtu;
1995 		break;
1996 
1997 	case SIOCGIFTSOLEN:
1998 		ifr->ifr_tsolen = ifp->if_tsolen;
1999 		break;
2000 
2001 	case SIOCGIFDATA:
2002 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
2003 				sizeof(ifp->if_data));
2004 		break;
2005 
2006 	case SIOCGIFPHYS:
2007 		ifr->ifr_phys = ifp->if_physical;
2008 		break;
2009 
2010 	case SIOCGIFPOLLCPU:
2011 		ifr->ifr_pollcpu = -1;
2012 		break;
2013 
2014 	case SIOCSIFPOLLCPU:
2015 		break;
2016 
2017 	case SIOCSIFFLAGS:
2018 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2019 		if (error)
2020 			break;
2021 		new_flags = (ifr->ifr_flags & 0xffff) |
2022 		    (ifr->ifr_flagshigh << 16);
2023 		if (ifp->if_flags & IFF_SMART) {
2024 			/* Smart drivers twiddle their own routes */
2025 		} else if (ifp->if_flags & IFF_UP &&
2026 		    (new_flags & IFF_UP) == 0) {
2027 			if_down(ifp);
2028 		} else if (new_flags & IFF_UP &&
2029 		    (ifp->if_flags & IFF_UP) == 0) {
2030 			do_ifup = 1;
2031 		}
2032 
2033 #ifdef IFPOLL_ENABLE
2034 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
2035 			if (new_flags & IFF_NPOLLING)
2036 				ifpoll_register(ifp);
2037 			else
2038 				ifpoll_deregister(ifp);
2039 		}
2040 #endif
2041 
2042 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2043 			(new_flags &~ IFF_CANTCHANGE);
2044 		if (new_flags & IFF_PPROMISC) {
2045 			/* Permanently promiscuous mode requested */
2046 			ifp->if_flags |= IFF_PROMISC;
2047 		} else if (ifp->if_pcount == 0) {
2048 			ifp->if_flags &= ~IFF_PROMISC;
2049 		}
2050 		if (ifp->if_ioctl) {
2051 			ifnet_serialize_all(ifp);
2052 			ifp->if_ioctl(ifp, cmd, data, cred);
2053 			ifnet_deserialize_all(ifp);
2054 		}
2055 		if (do_ifup)
2056 			if_up(ifp);
2057 		getmicrotime(&ifp->if_lastchange);
2058 		break;
2059 
2060 	case SIOCSIFCAP:
2061 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2062 		if (error)
2063 			break;
2064 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
2065 			error = EINVAL;
2066 			break;
2067 		}
2068 		ifnet_serialize_all(ifp);
2069 		ifp->if_ioctl(ifp, cmd, data, cred);
2070 		ifnet_deserialize_all(ifp);
2071 		break;
2072 
2073 	case SIOCSIFNAME:
2074 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2075 		if (error)
2076 			break;
2077 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
2078 		if (error)
2079 			break;
2080 		if (new_name[0] == '\0') {
2081 			error = EINVAL;
2082 			break;
2083 		}
2084 		if (ifunit(new_name) != NULL) {
2085 			error = EEXIST;
2086 			break;
2087 		}
2088 
2089 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
2090 
2091 		/* Announce the departure of the interface. */
2092 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
2093 
2094 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
2095 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2096 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
2097 		namelen = strlen(new_name);
2098 		onamelen = sdl->sdl_nlen;
2099 		/*
2100 		 * Move the address if needed.  This is safe because we
2101 		 * allocate space for a name of length IFNAMSIZ when we
2102 		 * create this in if_attach().
2103 		 */
2104 		if (namelen != onamelen) {
2105 			bcopy(sdl->sdl_data + onamelen,
2106 			    sdl->sdl_data + namelen, sdl->sdl_alen);
2107 		}
2108 		bcopy(new_name, sdl->sdl_data, namelen);
2109 		sdl->sdl_nlen = namelen;
2110 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2111 		bzero(sdl->sdl_data, onamelen);
2112 		while (namelen != 0)
2113 			sdl->sdl_data[--namelen] = 0xff;
2114 
2115 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2116 
2117 		/* Announce the return of the interface. */
2118 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2119 		break;
2120 
2121 	case SIOCSIFMETRIC:
2122 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2123 		if (error)
2124 			break;
2125 		ifp->if_metric = ifr->ifr_metric;
2126 		getmicrotime(&ifp->if_lastchange);
2127 		break;
2128 
2129 	case SIOCSIFPHYS:
2130 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2131 		if (error)
2132 			break;
2133 		if (ifp->if_ioctl == NULL) {
2134 		        error = EOPNOTSUPP;
2135 			break;
2136 		}
2137 		ifnet_serialize_all(ifp);
2138 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2139 		ifnet_deserialize_all(ifp);
2140 		if (error == 0)
2141 			getmicrotime(&ifp->if_lastchange);
2142 		break;
2143 
2144 	case SIOCSIFMTU:
2145 	{
2146 		u_long oldmtu = ifp->if_mtu;
2147 
2148 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2149 		if (error)
2150 			break;
2151 		if (ifp->if_ioctl == NULL) {
2152 			error = EOPNOTSUPP;
2153 			break;
2154 		}
2155 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2156 			error = EINVAL;
2157 			break;
2158 		}
2159 		ifnet_serialize_all(ifp);
2160 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2161 		ifnet_deserialize_all(ifp);
2162 		if (error == 0) {
2163 			getmicrotime(&ifp->if_lastchange);
2164 			rt_ifmsg(ifp);
2165 		}
2166 		/*
2167 		 * If the link MTU changed, do network layer specific procedure.
2168 		 */
2169 		if (ifp->if_mtu != oldmtu) {
2170 #ifdef INET6
2171 			nd6_setmtu(ifp);
2172 #endif
2173 		}
2174 		break;
2175 	}
2176 
2177 	case SIOCSIFTSOLEN:
2178 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2179 		if (error)
2180 			break;
2181 
2182 		/* XXX need driver supplied upper limit */
2183 		if (ifr->ifr_tsolen <= 0) {
2184 			error = EINVAL;
2185 			break;
2186 		}
2187 		ifp->if_tsolen = ifr->ifr_tsolen;
2188 		break;
2189 
2190 	case SIOCADDMULTI:
2191 	case SIOCDELMULTI:
2192 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2193 		if (error)
2194 			break;
2195 
2196 		/* Don't allow group membership on non-multicast interfaces. */
2197 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2198 			error = EOPNOTSUPP;
2199 			break;
2200 		}
2201 
2202 		/* Don't let users screw up protocols' entries. */
2203 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2204 			error = EINVAL;
2205 			break;
2206 		}
2207 
2208 		if (cmd == SIOCADDMULTI) {
2209 			struct ifmultiaddr *ifma;
2210 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2211 		} else {
2212 			error = if_delmulti(ifp, &ifr->ifr_addr);
2213 		}
2214 		if (error == 0)
2215 			getmicrotime(&ifp->if_lastchange);
2216 		break;
2217 
2218 	case SIOCSIFPHYADDR:
2219 	case SIOCDIFPHYADDR:
2220 #ifdef INET6
2221 	case SIOCSIFPHYADDR_IN6:
2222 #endif
2223 	case SIOCSLIFPHYADDR:
2224 	case SIOCSIFMEDIA:
2225 	case SIOCSIFGENERIC:
2226 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2227 		if (error)
2228 			break;
2229 		if (ifp->if_ioctl == NULL) {
2230 			error = EOPNOTSUPP;
2231 			break;
2232 		}
2233 		ifnet_serialize_all(ifp);
2234 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2235 		ifnet_deserialize_all(ifp);
2236 		if (error == 0)
2237 			getmicrotime(&ifp->if_lastchange);
2238 		break;
2239 
2240 	case SIOCGIFSTATUS:
2241 		ifs = (struct ifstat *)data;
2242 		ifs->ascii[0] = '\0';
2243 		/* fall through */
2244 	case SIOCGIFPSRCADDR:
2245 	case SIOCGIFPDSTADDR:
2246 	case SIOCGLIFPHYADDR:
2247 	case SIOCGIFMEDIA:
2248 	case SIOCGIFGENERIC:
2249 		if (ifp->if_ioctl == NULL) {
2250 			error = EOPNOTSUPP;
2251 			break;
2252 		}
2253 		ifnet_serialize_all(ifp);
2254 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2255 		ifnet_deserialize_all(ifp);
2256 		break;
2257 
2258 	case SIOCSIFLLADDR:
2259 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2260 		if (error)
2261 			break;
2262 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2263 				     ifr->ifr_addr.sa_len);
2264 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2265 		break;
2266 
2267 	case SIOCAIFGROUP:
2268 		ifgr = (struct ifgroupreq *)ifr;
2269 		if ((error = priv_check_cred(cred, PRIV_NET_ADDIFGROUP, 0)))
2270 			return (error);
2271 		if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
2272 			return (error);
2273 		break;
2274 
2275 	case SIOCDIFGROUP:
2276 		ifgr = (struct ifgroupreq *)ifr;
2277 		if ((error = priv_check_cred(cred, PRIV_NET_DELIFGROUP, 0)))
2278 			return (error);
2279 		if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
2280 			return (error);
2281 		break;
2282 
2283 	case SIOCGIFGROUP:
2284 		ifgr = (struct ifgroupreq *)ifr;
2285 		if ((error = if_getgroups(ifgr, ifp)))
2286 			return (error);
2287 		break;
2288 
2289 	default:
2290 		oif_flags = ifp->if_flags;
2291 		if (so->so_proto == 0) {
2292 			error = EOPNOTSUPP;
2293 			break;
2294 		}
2295 		error = so_pru_control_direct(so, cmd, data, ifp);
2296 
2297 		/*
2298 		 * If the socket control method returns EOPNOTSUPP, pass the
2299 		 * request directly to the interface.
2300 		 *
2301 		 * Exclude the SIOCSIF{ADDR,BRDADDR,DSTADDR,NETMASK} ioctls,
2302 		 * because drivers may trust these ioctls to come from an
2303 		 * already privileged layer and thus do not perform credentials
2304 		 * checks or input validation.
2305 		 */
2306 		if (error == EOPNOTSUPP &&
2307 		    ifp->if_ioctl != NULL &&
2308 		    cmd != SIOCSIFADDR &&
2309 		    cmd != SIOCSIFBRDADDR &&
2310 		    cmd != SIOCSIFDSTADDR &&
2311 		    cmd != SIOCSIFNETMASK) {
2312 			ifnet_serialize_all(ifp);
2313 			error = ifp->if_ioctl(ifp, cmd, data, cred);
2314 			ifnet_deserialize_all(ifp);
2315 		}
2316 
2317 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2318 #ifdef INET6
2319 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2320 			if (ifp->if_flags & IFF_UP) {
2321 				crit_enter();
2322 				in6_if_up(ifp);
2323 				crit_exit();
2324 			}
2325 #endif
2326 		}
2327 		break;
2328 	}
2329 
2330 	ifnet_unlock();
2331 	return (error);
2332 }
2333 
2334 /*
2335  * Set/clear promiscuous mode on interface ifp based on the truth value
2336  * of pswitch.  The calls are reference counted so that only the first
2337  * "on" request actually has an effect, as does the final "off" request.
2338  * Results are undefined if the "off" and "on" requests are not matched.
2339  */
2340 int
2341 ifpromisc(struct ifnet *ifp, int pswitch)
2342 {
2343 	struct ifreq ifr;
2344 	int error;
2345 	int oldflags;
2346 
2347 	oldflags = ifp->if_flags;
2348 	if (ifp->if_flags & IFF_PPROMISC) {
2349 		/* Do nothing if device is in permanently promiscuous mode */
2350 		ifp->if_pcount += pswitch ? 1 : -1;
2351 		return (0);
2352 	}
2353 	if (pswitch) {
2354 		/*
2355 		 * If the device is not configured up, we cannot put it in
2356 		 * promiscuous mode.
2357 		 */
2358 		if ((ifp->if_flags & IFF_UP) == 0)
2359 			return (ENETDOWN);
2360 		if (ifp->if_pcount++ != 0)
2361 			return (0);
2362 		ifp->if_flags |= IFF_PROMISC;
2363 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2364 		    ifp->if_xname);
2365 	} else {
2366 		if (--ifp->if_pcount > 0)
2367 			return (0);
2368 		ifp->if_flags &= ~IFF_PROMISC;
2369 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2370 		    ifp->if_xname);
2371 	}
2372 	ifr.ifr_flags = ifp->if_flags;
2373 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2374 	ifnet_serialize_all(ifp);
2375 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2376 	ifnet_deserialize_all(ifp);
2377 	if (error == 0)
2378 		rt_ifmsg(ifp);
2379 	else
2380 		ifp->if_flags = oldflags;
2381 	return error;
2382 }
2383 
2384 /*
2385  * Return interface configuration
2386  * of system.  List may be used
2387  * in later ioctl's (above) to get
2388  * other information.
2389  */
2390 static int
2391 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2392 {
2393 	struct ifconf *ifc = (struct ifconf *)data;
2394 	struct ifnet *ifp;
2395 	struct sockaddr *sa;
2396 	struct ifreq ifr, *ifrp;
2397 	int space = ifc->ifc_len, error = 0;
2398 
2399 	ifrp = ifc->ifc_req;
2400 
2401 	ifnet_lock();
2402 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2403 		struct ifaddr_container *ifac, *ifac_mark;
2404 		struct ifaddr_marker mark;
2405 		struct ifaddrhead *head;
2406 		int addrs;
2407 
2408 		if (space <= sizeof ifr)
2409 			break;
2410 
2411 		/*
2412 		 * Zero the stack declared structure first to prevent
2413 		 * memory disclosure.
2414 		 */
2415 		bzero(&ifr, sizeof(ifr));
2416 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2417 		    >= sizeof(ifr.ifr_name)) {
2418 			error = ENAMETOOLONG;
2419 			break;
2420 		}
2421 
2422 		/*
2423 		 * Add a marker, since copyout() could block and during that
2424 		 * period the list could be changed.  Inserting the marker to
2425 		 * the header of the list will not cause trouble for the code
2426 		 * assuming that the first element of the list is AF_LINK; the
2427 		 * marker will be moved to the next position w/o blocking.
2428 		 */
2429 		ifa_marker_init(&mark, ifp);
2430 		ifac_mark = &mark.ifac;
2431 		head = &ifp->if_addrheads[mycpuid];
2432 
2433 		addrs = 0;
2434 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2435 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2436 			struct ifaddr *ifa = ifac->ifa;
2437 
2438 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2439 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2440 
2441 			/* Ignore marker */
2442 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2443 				continue;
2444 
2445 			if (space <= sizeof ifr)
2446 				break;
2447 			sa = ifa->ifa_addr;
2448 			if (cred->cr_prison &&
2449 			    prison_if(cred, sa))
2450 				continue;
2451 			addrs++;
2452 			/*
2453 			 * Keep a reference on this ifaddr, so that it will
2454 			 * not be destroyed when its address is copied to
2455 			 * the userland, which could block.
2456 			 */
2457 			IFAREF(ifa);
2458 			if (sa->sa_len <= sizeof(*sa)) {
2459 				ifr.ifr_addr = *sa;
2460 				error = copyout(&ifr, ifrp, sizeof ifr);
2461 				ifrp++;
2462 			} else {
2463 				if (space < (sizeof ifr) + sa->sa_len -
2464 					    sizeof(*sa)) {
2465 					IFAFREE(ifa);
2466 					break;
2467 				}
2468 				space -= sa->sa_len - sizeof(*sa);
2469 				error = copyout(&ifr, ifrp,
2470 						sizeof ifr.ifr_name);
2471 				if (error == 0)
2472 					error = copyout(sa, &ifrp->ifr_addr,
2473 							sa->sa_len);
2474 				ifrp = (struct ifreq *)
2475 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2476 			}
2477 			IFAFREE(ifa);
2478 			if (error)
2479 				break;
2480 			space -= sizeof ifr;
2481 		}
2482 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2483 		if (error)
2484 			break;
2485 		if (!addrs) {
2486 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2487 			error = copyout(&ifr, ifrp, sizeof ifr);
2488 			if (error)
2489 				break;
2490 			space -= sizeof ifr;
2491 			ifrp++;
2492 		}
2493 	}
2494 	ifnet_unlock();
2495 
2496 	ifc->ifc_len -= space;
2497 	return (error);
2498 }
2499 
2500 /*
2501  * Just like if_promisc(), but for all-multicast-reception mode.
2502  */
2503 int
2504 if_allmulti(struct ifnet *ifp, int onswitch)
2505 {
2506 	int error = 0;
2507 	struct ifreq ifr;
2508 
2509 	crit_enter();
2510 
2511 	if (onswitch) {
2512 		if (ifp->if_amcount++ == 0) {
2513 			ifp->if_flags |= IFF_ALLMULTI;
2514 			ifr.ifr_flags = ifp->if_flags;
2515 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2516 			ifnet_serialize_all(ifp);
2517 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2518 					      NULL);
2519 			ifnet_deserialize_all(ifp);
2520 		}
2521 	} else {
2522 		if (ifp->if_amcount > 1) {
2523 			ifp->if_amcount--;
2524 		} else {
2525 			ifp->if_amcount = 0;
2526 			ifp->if_flags &= ~IFF_ALLMULTI;
2527 			ifr.ifr_flags = ifp->if_flags;
2528 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2529 			ifnet_serialize_all(ifp);
2530 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2531 					      NULL);
2532 			ifnet_deserialize_all(ifp);
2533 		}
2534 	}
2535 
2536 	crit_exit();
2537 
2538 	if (error == 0)
2539 		rt_ifmsg(ifp);
2540 	return error;
2541 }
2542 
2543 /*
2544  * Add a multicast listenership to the interface in question.
2545  * The link layer provides a routine which converts
2546  */
2547 int
2548 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2549     struct ifmultiaddr **retifma)
2550 {
2551 	struct sockaddr *llsa, *dupsa;
2552 	int error;
2553 	struct ifmultiaddr *ifma;
2554 
2555 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2556 
2557 	/*
2558 	 * If the matching multicast address already exists
2559 	 * then don't add a new one, just add a reference
2560 	 */
2561 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2562 		if (sa_equal(sa, ifma->ifma_addr)) {
2563 			ifma->ifma_refcount++;
2564 			if (retifma)
2565 				*retifma = ifma;
2566 			return 0;
2567 		}
2568 	}
2569 
2570 	/*
2571 	 * Give the link layer a chance to accept/reject it, and also
2572 	 * find out which AF_LINK address this maps to, if it isn't one
2573 	 * already.
2574 	 */
2575 	if (ifp->if_resolvemulti) {
2576 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2577 		if (error)
2578 			return error;
2579 	} else {
2580 		llsa = NULL;
2581 	}
2582 
2583 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2584 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2585 	bcopy(sa, dupsa, sa->sa_len);
2586 
2587 	ifma->ifma_addr = dupsa;
2588 	ifma->ifma_lladdr = llsa;
2589 	ifma->ifma_ifp = ifp;
2590 	ifma->ifma_refcount = 1;
2591 	ifma->ifma_protospec = NULL;
2592 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2593 
2594 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2595 	if (retifma)
2596 		*retifma = ifma;
2597 
2598 	if (llsa != NULL) {
2599 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2600 			if (sa_equal(ifma->ifma_addr, llsa))
2601 				break;
2602 		}
2603 		if (ifma) {
2604 			ifma->ifma_refcount++;
2605 		} else {
2606 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2607 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2608 			bcopy(llsa, dupsa, llsa->sa_len);
2609 			ifma->ifma_addr = dupsa;
2610 			ifma->ifma_ifp = ifp;
2611 			ifma->ifma_refcount = 1;
2612 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2613 		}
2614 	}
2615 	/*
2616 	 * We are certain we have added something, so call down to the
2617 	 * interface to let them know about it.
2618 	 */
2619 	if (ifp->if_ioctl)
2620 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2621 
2622 	return 0;
2623 }
2624 
2625 int
2626 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2627     struct ifmultiaddr **retifma)
2628 {
2629 	int error;
2630 
2631 	ifnet_serialize_all(ifp);
2632 	error = if_addmulti_serialized(ifp, sa, retifma);
2633 	ifnet_deserialize_all(ifp);
2634 
2635 	return error;
2636 }
2637 
2638 /*
2639  * Remove a reference to a multicast address on this interface.  Yell
2640  * if the request does not match an existing membership.
2641  */
2642 static int
2643 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2644 {
2645 	struct ifmultiaddr *ifma;
2646 
2647 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2648 
2649 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2650 		if (sa_equal(sa, ifma->ifma_addr))
2651 			break;
2652 	if (ifma == NULL)
2653 		return ENOENT;
2654 
2655 	if (ifma->ifma_refcount > 1) {
2656 		ifma->ifma_refcount--;
2657 		return 0;
2658 	}
2659 
2660 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2661 	sa = ifma->ifma_lladdr;
2662 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2663 	/*
2664 	 * Make sure the interface driver is notified
2665 	 * in the case of a link layer mcast group being left.
2666 	 */
2667 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2668 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2669 	kfree(ifma->ifma_addr, M_IFMADDR);
2670 	kfree(ifma, M_IFMADDR);
2671 	if (sa == NULL)
2672 		return 0;
2673 
2674 	/*
2675 	 * Now look for the link-layer address which corresponds to
2676 	 * this network address.  It had been squirreled away in
2677 	 * ifma->ifma_lladdr for this purpose (so we don't have
2678 	 * to call ifp->if_resolvemulti() again), and we saved that
2679 	 * value in sa above.  If some nasty deleted the
2680 	 * link-layer address out from underneath us, we can deal because
2681 	 * the address we stored was is not the same as the one which was
2682 	 * in the record for the link-layer address.  (So we don't complain
2683 	 * in that case.)
2684 	 */
2685 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2686 		if (sa_equal(sa, ifma->ifma_addr))
2687 			break;
2688 	if (ifma == NULL)
2689 		return 0;
2690 
2691 	if (ifma->ifma_refcount > 1) {
2692 		ifma->ifma_refcount--;
2693 		return 0;
2694 	}
2695 
2696 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2697 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2698 	kfree(ifma->ifma_addr, M_IFMADDR);
2699 	kfree(sa, M_IFMADDR);
2700 	kfree(ifma, M_IFMADDR);
2701 
2702 	return 0;
2703 }
2704 
2705 int
2706 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2707 {
2708 	int error;
2709 
2710 	ifnet_serialize_all(ifp);
2711 	error = if_delmulti_serialized(ifp, sa);
2712 	ifnet_deserialize_all(ifp);
2713 
2714 	return error;
2715 }
2716 
2717 /*
2718  * Delete all multicast group membership for an interface.
2719  * Should be used to quickly flush all multicast filters.
2720  */
2721 void
2722 if_delallmulti_serialized(struct ifnet *ifp)
2723 {
2724 	struct ifmultiaddr *ifma, mark;
2725 	struct sockaddr sa;
2726 
2727 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2728 
2729 	bzero(&sa, sizeof(sa));
2730 	sa.sa_family = AF_UNSPEC;
2731 	sa.sa_len = sizeof(sa);
2732 
2733 	bzero(&mark, sizeof(mark));
2734 	mark.ifma_addr = &sa;
2735 
2736 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2737 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2738 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2739 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2740 		    ifma_link);
2741 
2742 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2743 			continue;
2744 
2745 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2746 	}
2747 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2748 }
2749 
2750 
2751 /*
2752  * Set the link layer address on an interface.
2753  *
2754  * At this time we only support certain types of interfaces,
2755  * and we don't allow the length of the address to change.
2756  */
2757 int
2758 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2759 {
2760 	struct sockaddr_dl *sdl;
2761 	struct ifreq ifr;
2762 
2763 	sdl = IF_LLSOCKADDR(ifp);
2764 	if (sdl == NULL)
2765 		return (EINVAL);
2766 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2767 		return (EINVAL);
2768 	switch (ifp->if_type) {
2769 	case IFT_ETHER:			/* these types use struct arpcom */
2770 	case IFT_XETHER:
2771 	case IFT_L2VLAN:
2772 	case IFT_IEEE8023ADLAG:
2773 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2774 		bcopy(lladdr, LLADDR(sdl), len);
2775 		break;
2776 	default:
2777 		return (ENODEV);
2778 	}
2779 	/*
2780 	 * If the interface is already up, we need
2781 	 * to re-init it in order to reprogram its
2782 	 * address filter.
2783 	 */
2784 	ifnet_serialize_all(ifp);
2785 	if ((ifp->if_flags & IFF_UP) != 0) {
2786 #ifdef INET
2787 		struct ifaddr_container *ifac;
2788 #endif
2789 
2790 		ifp->if_flags &= ~IFF_UP;
2791 		ifr.ifr_flags = ifp->if_flags;
2792 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2793 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2794 			      NULL);
2795 		ifp->if_flags |= IFF_UP;
2796 		ifr.ifr_flags = ifp->if_flags;
2797 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2798 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2799 				 NULL);
2800 #ifdef INET
2801 		/*
2802 		 * Also send gratuitous ARPs to notify other nodes about
2803 		 * the address change.
2804 		 */
2805 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2806 			struct ifaddr *ifa = ifac->ifa;
2807 
2808 			if (ifa->ifa_addr != NULL &&
2809 			    ifa->ifa_addr->sa_family == AF_INET)
2810 				arp_gratuitous(ifp, ifa);
2811 		}
2812 #endif
2813 	}
2814 	ifnet_deserialize_all(ifp);
2815 	return (0);
2816 }
2817 
2818 
2819 /*
2820  * Locate an interface based on a complete address.
2821  */
2822 struct ifnet *
2823 if_bylla(const void *lla, unsigned char lla_len)
2824 {
2825 	const struct ifnet_array *arr;
2826 	struct ifnet *ifp;
2827 	struct sockaddr_dl *sdl;
2828 	int i;
2829 
2830 	arr = ifnet_array_get();
2831 	for (i = 0; i < arr->ifnet_count; ++i) {
2832 		ifp = arr->ifnet_arr[i];
2833 		if (ifp->if_addrlen != lla_len)
2834 			continue;
2835 
2836 		sdl = IF_LLSOCKADDR(ifp);
2837 		if (memcmp(lla, LLADDR(sdl), lla_len) == 0)
2838 			return (ifp);
2839 	}
2840 	return (NULL);
2841 }
2842 
2843 struct ifmultiaddr *
2844 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2845 {
2846 	struct ifmultiaddr *ifma;
2847 
2848 	/* TODO: need ifnet_serialize_main */
2849 	ifnet_serialize_all(ifp);
2850 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2851 		if (sa_equal(ifma->ifma_addr, sa))
2852 			break;
2853 	ifnet_deserialize_all(ifp);
2854 
2855 	return ifma;
2856 }
2857 
2858 /*
2859  * This function locates the first real ethernet MAC from a network
2860  * card and loads it into node, returning 0 on success or ENOENT if
2861  * no suitable interfaces were found.  It is used by the uuid code to
2862  * generate a unique 6-byte number.
2863  */
2864 int
2865 if_getanyethermac(uint16_t *node, int minlen)
2866 {
2867 	struct ifnet *ifp;
2868 	struct sockaddr_dl *sdl;
2869 
2870 	ifnet_lock();
2871 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2872 		if (ifp->if_type != IFT_ETHER)
2873 			continue;
2874 		sdl = IF_LLSOCKADDR(ifp);
2875 		if (sdl->sdl_alen < minlen)
2876 			continue;
2877 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2878 		      minlen);
2879 		ifnet_unlock();
2880 		return(0);
2881 	}
2882 	ifnet_unlock();
2883 	return (ENOENT);
2884 }
2885 
2886 /*
2887  * The name argument must be a pointer to storage which will last as
2888  * long as the interface does.  For physical devices, the result of
2889  * device_get_name(dev) is a good choice and for pseudo-devices a
2890  * static string works well.
2891  */
2892 void
2893 if_initname(struct ifnet *ifp, const char *name, int unit)
2894 {
2895 	ifp->if_dname = name;
2896 	ifp->if_dunit = unit;
2897 	if (unit != IF_DUNIT_NONE)
2898 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2899 	else
2900 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2901 }
2902 
2903 int
2904 if_printf(struct ifnet *ifp, const char *fmt, ...)
2905 {
2906 	__va_list ap;
2907 	int retval;
2908 
2909 	retval = kprintf("%s: ", ifp->if_xname);
2910 	__va_start(ap, fmt);
2911 	retval += kvprintf(fmt, ap);
2912 	__va_end(ap);
2913 	return (retval);
2914 }
2915 
2916 struct ifnet *
2917 if_alloc(uint8_t type)
2918 {
2919 	struct ifnet *ifp;
2920 	size_t size;
2921 
2922 	/*
2923 	 * XXX temporary hack until arpcom is setup in if_l2com
2924 	 */
2925 	if (type == IFT_ETHER)
2926 		size = sizeof(struct arpcom);
2927 	else
2928 		size = sizeof(struct ifnet);
2929 
2930 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2931 
2932 	ifp->if_type = type;
2933 
2934 	if (if_com_alloc[type] != NULL) {
2935 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2936 		if (ifp->if_l2com == NULL) {
2937 			kfree(ifp, M_IFNET);
2938 			return (NULL);
2939 		}
2940 	}
2941 	return (ifp);
2942 }
2943 
2944 void
2945 if_free(struct ifnet *ifp)
2946 {
2947 	kfree(ifp, M_IFNET);
2948 }
2949 
2950 void
2951 ifq_set_classic(struct ifaltq *ifq)
2952 {
2953 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2954 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2955 }
2956 
2957 void
2958 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2959     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2960 {
2961 	int q;
2962 
2963 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2964 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2965 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2966 	KASSERT(request != NULL, ("request is not specified"));
2967 
2968 	ifq->altq_mapsubq = mapsubq;
2969 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2970 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2971 
2972 		ifsq->ifsq_enqueue = enqueue;
2973 		ifsq->ifsq_dequeue = dequeue;
2974 		ifsq->ifsq_request = request;
2975 	}
2976 }
2977 
2978 static void
2979 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2980 {
2981 
2982 	classq_add(&ifsq->ifsq_norm, m);
2983 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2984 }
2985 
2986 static void
2987 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2988 {
2989 
2990 	classq_add(&ifsq->ifsq_prio, m);
2991 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2992 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2993 }
2994 
2995 static struct mbuf *
2996 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2997 {
2998 	struct mbuf *m;
2999 
3000 	m = classq_get(&ifsq->ifsq_norm);
3001 	if (m != NULL)
3002 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
3003 	return (m);
3004 }
3005 
3006 static struct mbuf *
3007 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
3008 {
3009 	struct mbuf *m;
3010 
3011 	m = classq_get(&ifsq->ifsq_prio);
3012 	if (m != NULL) {
3013 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
3014 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
3015 	}
3016 	return (m);
3017 }
3018 
3019 int
3020 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
3021     struct altq_pktattr *pa __unused)
3022 {
3023 
3024 	M_ASSERTPKTHDR(m);
3025 again:
3026 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
3027 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
3028 		struct mbuf *m_drop;
3029 
3030 		if (m->m_flags & M_PRIO) {
3031 			m_drop = NULL;
3032 			if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
3033 			    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
3034 				/* Try dropping some from normal queue. */
3035 				m_drop = ifsq_norm_dequeue(ifsq);
3036 			}
3037 			if (m_drop == NULL)
3038 				m_drop = ifsq_prio_dequeue(ifsq);
3039 		} else {
3040 			m_drop = ifsq_norm_dequeue(ifsq);
3041 		}
3042 		if (m_drop != NULL) {
3043 			IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
3044 			m_freem(m_drop);
3045 			goto again;
3046 		}
3047 		/*
3048 		 * No old packets could be dropped!
3049 		 * NOTE: Caller increases oqdrops.
3050 		 */
3051 		m_freem(m);
3052 		return (ENOBUFS);
3053 	} else {
3054 		if (m->m_flags & M_PRIO)
3055 			ifsq_prio_enqueue(ifsq, m);
3056 		else
3057 			ifsq_norm_enqueue(ifsq, m);
3058 		return (0);
3059 	}
3060 }
3061 
3062 struct mbuf *
3063 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
3064 {
3065 	struct mbuf *m;
3066 
3067 	switch (op) {
3068 	case ALTDQ_POLL:
3069 		m = classq_head(&ifsq->ifsq_prio);
3070 		if (m == NULL)
3071 			m = classq_head(&ifsq->ifsq_norm);
3072 		break;
3073 
3074 	case ALTDQ_REMOVE:
3075 		m = ifsq_prio_dequeue(ifsq);
3076 		if (m == NULL)
3077 			m = ifsq_norm_dequeue(ifsq);
3078 		break;
3079 
3080 	default:
3081 		panic("unsupported ALTQ dequeue op: %d", op);
3082 	}
3083 	return m;
3084 }
3085 
3086 int
3087 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
3088 {
3089 	switch (req) {
3090 	case ALTRQ_PURGE:
3091 		for (;;) {
3092 			struct mbuf *m;
3093 
3094 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
3095 			if (m == NULL)
3096 				break;
3097 			m_freem(m);
3098 		}
3099 		break;
3100 
3101 	default:
3102 		panic("unsupported ALTQ request: %d", req);
3103 	}
3104 	return 0;
3105 }
3106 
3107 static void
3108 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
3109 {
3110 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3111 	int running = 0, need_sched;
3112 
3113 	/*
3114 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
3115 	 * contention on the subqueue hardware serializer, ifnet.if_start on
3116 	 * the subqueue will be scheduled on the subqueue owner CPU.
3117 	 */
3118 	if (!ifsq_tryserialize_hw(ifsq)) {
3119 		/*
3120 		 * Subqueue hardware serializer contention happened,
3121 		 * ifnet.if_start on the subqueue is scheduled on
3122 		 * the subqueue owner CPU, and we keep going.
3123 		 */
3124 		ifsq_ifstart_schedule(ifsq, 1);
3125 		return;
3126 	}
3127 
3128 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
3129 		ifp->if_start(ifp, ifsq);
3130 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
3131 			running = 1;
3132 	}
3133 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
3134 
3135 	ifsq_deserialize_hw(ifsq);
3136 
3137 	if (need_sched) {
3138 		/*
3139 		 * More data need to be transmitted, ifnet.if_start on the
3140 		 * subqueue is scheduled on the subqueue owner CPU, and we
3141 		 * keep going.
3142 		 * NOTE: ifnet.if_start subqueue interlock is not released.
3143 		 */
3144 		ifsq_ifstart_schedule(ifsq, force_sched);
3145 	}
3146 }
3147 
3148 /*
3149  * Subqeue packets staging mechanism:
3150  *
3151  * The packets enqueued into the subqueue are staged to a certain amount
3152  * before the ifnet.if_start on the subqueue is called.  In this way, the
3153  * driver could avoid writing to hardware registers upon every packet,
3154  * instead, hardware registers could be written when certain amount of
3155  * packets are put onto hardware TX ring.  The measurement on several modern
3156  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
3157  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
3158  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
3159  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
3160  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
3161  *
3162  * Subqueue packets staging is performed for two entry points into drivers'
3163  * transmission function:
3164  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
3165  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
3166  *
3167  * Subqueue packets staging will be stopped upon any of the following
3168  * conditions:
3169  * - If the count of packets enqueued on the current CPU is great than or
3170  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
3171  * - If the total length of packets enqueued on the current CPU is great
3172  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
3173  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3174  *   is usually less than hardware's MTU.
3175  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3176  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3177  *   released.
3178  * - The if_start_rollup(), which is registered as low priority netisr
3179  *   rollup function, is called; probably because no more work is pending
3180  *   for netisr.
3181  *
3182  * NOTE:
3183  * Currently subqueue packet staging is only performed in netisr threads.
3184  */
3185 int
3186 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3187 {
3188 	struct ifaltq *ifq = &ifp->if_snd;
3189 	struct ifaltq_subque *ifsq;
3190 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3191 	struct ifsubq_stage_head *head = NULL;
3192 	struct ifsubq_stage *stage = NULL;
3193 	struct globaldata *gd = mycpu;
3194 	struct thread *td = gd->gd_curthread;
3195 
3196 	crit_enter_quick(td);
3197 
3198 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3199 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3200 
3201 	len = m->m_pkthdr.len;
3202 	if (m->m_flags & M_MCAST)
3203 		mcast = 1;
3204 
3205 	if (td->td_type == TD_TYPE_NETISR) {
3206 		head = &ifsubq_stage_heads[mycpuid];
3207 		stage = ifsq_get_stage(ifsq, mycpuid);
3208 
3209 		stage->stg_cnt++;
3210 		stage->stg_len += len;
3211 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3212 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3213 			avoid_start = 1;
3214 	}
3215 
3216 	ALTQ_SQ_LOCK(ifsq);
3217 	error = ifsq_enqueue_locked(ifsq, m, pa);
3218 	if (error) {
3219 		IFNET_STAT_INC(ifp, oqdrops, 1);
3220 		if (!ifsq_data_ready(ifsq)) {
3221 			ALTQ_SQ_UNLOCK(ifsq);
3222 			crit_exit_quick(td);
3223 			return error;
3224 		}
3225 		avoid_start = 0;
3226 	}
3227 	if (!ifsq_is_started(ifsq)) {
3228 		if (avoid_start) {
3229 			ALTQ_SQ_UNLOCK(ifsq);
3230 
3231 			KKASSERT(!error);
3232 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3233 				ifsq_stage_insert(head, stage);
3234 
3235 			IFNET_STAT_INC(ifp, obytes, len);
3236 			if (mcast)
3237 				IFNET_STAT_INC(ifp, omcasts, 1);
3238 			crit_exit_quick(td);
3239 			return error;
3240 		}
3241 
3242 		/*
3243 		 * Hold the subqueue interlock of ifnet.if_start
3244 		 */
3245 		ifsq_set_started(ifsq);
3246 		start = 1;
3247 	}
3248 	ALTQ_SQ_UNLOCK(ifsq);
3249 
3250 	if (!error) {
3251 		IFNET_STAT_INC(ifp, obytes, len);
3252 		if (mcast)
3253 			IFNET_STAT_INC(ifp, omcasts, 1);
3254 	}
3255 
3256 	if (stage != NULL) {
3257 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3258 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3259 			if (!avoid_start) {
3260 				ifsq_stage_remove(head, stage);
3261 				ifsq_ifstart_schedule(ifsq, 1);
3262 			}
3263 			crit_exit_quick(td);
3264 			return error;
3265 		}
3266 
3267 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3268 			ifsq_stage_remove(head, stage);
3269 		} else {
3270 			stage->stg_cnt = 0;
3271 			stage->stg_len = 0;
3272 		}
3273 	}
3274 
3275 	if (!start) {
3276 		crit_exit_quick(td);
3277 		return error;
3278 	}
3279 
3280 	ifsq_ifstart_try(ifsq, 0);
3281 
3282 	crit_exit_quick(td);
3283 	return error;
3284 }
3285 
3286 void *
3287 ifa_create(int size)
3288 {
3289 	struct ifaddr *ifa;
3290 	int i;
3291 
3292 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3293 
3294 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3295 
3296 	/*
3297 	 * Make ifa_container availabel on all CPUs, since they
3298 	 * could be accessed by any threads.
3299 	 */
3300 	ifa->ifa_containers =
3301 		kmalloc(ncpus * sizeof(struct ifaddr_container),
3302 			M_IFADDR,
3303 			M_INTWAIT | M_ZERO | M_CACHEALIGN);
3304 
3305 	ifa->ifa_ncnt = ncpus;
3306 	for (i = 0; i < ncpus; ++i) {
3307 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3308 
3309 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3310 		ifac->ifa = ifa;
3311 		ifac->ifa_refcnt = 1;
3312 	}
3313 #ifdef IFADDR_DEBUG
3314 	kprintf("alloc ifa %p %d\n", ifa, size);
3315 #endif
3316 	return ifa;
3317 }
3318 
3319 void
3320 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3321 {
3322 	struct ifaddr *ifa = ifac->ifa;
3323 
3324 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3325 	KKASSERT(ifac->ifa_refcnt == 0);
3326 	KASSERT(ifac->ifa_listmask == 0,
3327 		("ifa is still on %#x lists", ifac->ifa_listmask));
3328 
3329 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3330 
3331 #ifdef IFADDR_DEBUG_VERBOSE
3332 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3333 #endif
3334 
3335 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3336 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3337 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3338 #ifdef IFADDR_DEBUG
3339 		kprintf("free ifa %p\n", ifa);
3340 #endif
3341 		kfree(ifa->ifa_containers, M_IFADDR);
3342 		kfree(ifa, M_IFADDR);
3343 	}
3344 }
3345 
3346 static void
3347 ifa_iflink_dispatch(netmsg_t nmsg)
3348 {
3349 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3350 	struct ifaddr *ifa = msg->ifa;
3351 	struct ifnet *ifp = msg->ifp;
3352 	int cpu = mycpuid;
3353 	struct ifaddr_container *ifac;
3354 
3355 	crit_enter();
3356 
3357 	ifac = &ifa->ifa_containers[cpu];
3358 	ASSERT_IFAC_VALID(ifac);
3359 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3360 		("ifaddr is on if_addrheads"));
3361 
3362 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3363 	if (msg->tail)
3364 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3365 	else
3366 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3367 
3368 	crit_exit();
3369 
3370 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3371 }
3372 
3373 void
3374 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3375 {
3376 	struct netmsg_ifaddr msg;
3377 
3378 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3379 		    0, ifa_iflink_dispatch);
3380 	msg.ifa = ifa;
3381 	msg.ifp = ifp;
3382 	msg.tail = tail;
3383 
3384 	netisr_domsg(&msg.base, 0);
3385 }
3386 
3387 static void
3388 ifa_ifunlink_dispatch(netmsg_t nmsg)
3389 {
3390 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3391 	struct ifaddr *ifa = msg->ifa;
3392 	struct ifnet *ifp = msg->ifp;
3393 	int cpu = mycpuid;
3394 	struct ifaddr_container *ifac;
3395 
3396 	crit_enter();
3397 
3398 	ifac = &ifa->ifa_containers[cpu];
3399 	ASSERT_IFAC_VALID(ifac);
3400 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3401 		("ifaddr is not on if_addrhead"));
3402 
3403 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3404 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3405 
3406 	crit_exit();
3407 
3408 	netisr_forwardmsg_all(&nmsg->base, cpu + 1);
3409 }
3410 
3411 void
3412 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3413 {
3414 	struct netmsg_ifaddr msg;
3415 
3416 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3417 		    0, ifa_ifunlink_dispatch);
3418 	msg.ifa = ifa;
3419 	msg.ifp = ifp;
3420 
3421 	netisr_domsg(&msg.base, 0);
3422 }
3423 
3424 static void
3425 ifa_destroy_dispatch(netmsg_t nmsg)
3426 {
3427 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3428 
3429 	IFAFREE(msg->ifa);
3430 	netisr_forwardmsg_all(&nmsg->base, mycpuid + 1);
3431 }
3432 
3433 void
3434 ifa_destroy(struct ifaddr *ifa)
3435 {
3436 	struct netmsg_ifaddr msg;
3437 
3438 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3439 		    0, ifa_destroy_dispatch);
3440 	msg.ifa = ifa;
3441 
3442 	netisr_domsg(&msg.base, 0);
3443 }
3444 
3445 static void
3446 if_start_rollup(void)
3447 {
3448 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3449 	struct ifsubq_stage *stage;
3450 
3451 	crit_enter();
3452 
3453 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3454 		struct ifaltq_subque *ifsq = stage->stg_subq;
3455 		int is_sched = 0;
3456 
3457 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3458 			is_sched = 1;
3459 		ifsq_stage_remove(head, stage);
3460 
3461 		if (is_sched) {
3462 			ifsq_ifstart_schedule(ifsq, 1);
3463 		} else {
3464 			int start = 0;
3465 
3466 			ALTQ_SQ_LOCK(ifsq);
3467 			if (!ifsq_is_started(ifsq)) {
3468 				/*
3469 				 * Hold the subqueue interlock of
3470 				 * ifnet.if_start
3471 				 */
3472 				ifsq_set_started(ifsq);
3473 				start = 1;
3474 			}
3475 			ALTQ_SQ_UNLOCK(ifsq);
3476 
3477 			if (start)
3478 				ifsq_ifstart_try(ifsq, 1);
3479 		}
3480 		KKASSERT((stage->stg_flags &
3481 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3482 	}
3483 
3484 	crit_exit();
3485 }
3486 
3487 static void
3488 ifnetinit(void *dummy __unused)
3489 {
3490 	int i;
3491 
3492 	/* XXX netisr_ncpus */
3493 	for (i = 0; i < ncpus; ++i)
3494 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3495 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3496 }
3497 
3498 void
3499 if_register_com_alloc(u_char type,
3500     if_com_alloc_t *a, if_com_free_t *f)
3501 {
3502 
3503         KASSERT(if_com_alloc[type] == NULL,
3504             ("if_register_com_alloc: %d already registered", type));
3505         KASSERT(if_com_free[type] == NULL,
3506             ("if_register_com_alloc: %d free already registered", type));
3507 
3508         if_com_alloc[type] = a;
3509         if_com_free[type] = f;
3510 }
3511 
3512 void
3513 if_deregister_com_alloc(u_char type)
3514 {
3515 
3516         KASSERT(if_com_alloc[type] != NULL,
3517             ("if_deregister_com_alloc: %d not registered", type));
3518         KASSERT(if_com_free[type] != NULL,
3519             ("if_deregister_com_alloc: %d free not registered", type));
3520         if_com_alloc[type] = NULL;
3521         if_com_free[type] = NULL;
3522 }
3523 
3524 void
3525 ifq_set_maxlen(struct ifaltq *ifq, int len)
3526 {
3527 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3528 }
3529 
3530 int
3531 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3532 {
3533 	return ALTQ_SUBQ_INDEX_DEFAULT;
3534 }
3535 
3536 int
3537 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3538 {
3539 
3540 	return (cpuid % ifq->altq_subq_mappriv);
3541 }
3542 
3543 static void
3544 ifsq_watchdog(void *arg)
3545 {
3546 	struct ifsubq_watchdog *wd = arg;
3547 	struct ifnet *ifp;
3548 
3549 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3550 		goto done;
3551 
3552 	ifp = ifsq_get_ifp(wd->wd_subq);
3553 	if (ifnet_tryserialize_all(ifp)) {
3554 		wd->wd_watchdog(wd->wd_subq);
3555 		ifnet_deserialize_all(ifp);
3556 	} else {
3557 		/* try again next timeout */
3558 		wd->wd_timer = 1;
3559 	}
3560 done:
3561 	ifsq_watchdog_reset(wd);
3562 }
3563 
3564 static void
3565 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3566 {
3567 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3568 	    ifsq_get_cpuid(wd->wd_subq));
3569 }
3570 
3571 void
3572 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3573     ifsq_watchdog_t watchdog)
3574 {
3575 	callout_init_mp(&wd->wd_callout);
3576 	wd->wd_timer = 0;
3577 	wd->wd_subq = ifsq;
3578 	wd->wd_watchdog = watchdog;
3579 }
3580 
3581 void
3582 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3583 {
3584 	wd->wd_timer = 0;
3585 	ifsq_watchdog_reset(wd);
3586 }
3587 
3588 void
3589 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3590 {
3591 	wd->wd_timer = 0;
3592 	callout_stop(&wd->wd_callout);
3593 }
3594 
3595 void
3596 ifnet_lock(void)
3597 {
3598 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3599 	    ("try holding ifnet lock in netisr"));
3600 	mtx_lock(&ifnet_mtx);
3601 }
3602 
3603 void
3604 ifnet_unlock(void)
3605 {
3606 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3607 	    ("try holding ifnet lock in netisr"));
3608 	mtx_unlock(&ifnet_mtx);
3609 }
3610 
3611 static struct ifnet_array *
3612 ifnet_array_alloc(int count)
3613 {
3614 	struct ifnet_array *arr;
3615 
3616 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3617 	    M_IFNET, M_WAITOK);
3618 	arr->ifnet_count = count;
3619 
3620 	return arr;
3621 }
3622 
3623 static void
3624 ifnet_array_free(struct ifnet_array *arr)
3625 {
3626 	if (arr == &ifnet_array0)
3627 		return;
3628 	kfree(arr, M_IFNET);
3629 }
3630 
3631 static struct ifnet_array *
3632 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3633 {
3634 	struct ifnet_array *arr;
3635 	int count, i;
3636 
3637 	KASSERT(old_arr->ifnet_count >= 0,
3638 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3639 	count = old_arr->ifnet_count + 1;
3640 	arr = ifnet_array_alloc(count);
3641 
3642 	/*
3643 	 * Save the old ifnet array and append this ifp to the end of
3644 	 * the new ifnet array.
3645 	 */
3646 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3647 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3648 		    ("%s is already in ifnet array", ifp->if_xname));
3649 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3650 	}
3651 	KASSERT(i == count - 1,
3652 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3653 	     ifp->if_xname, count - 1, i));
3654 	arr->ifnet_arr[i] = ifp;
3655 
3656 	return arr;
3657 }
3658 
3659 static struct ifnet_array *
3660 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3661 {
3662 	struct ifnet_array *arr;
3663 	int count, i, idx, found = 0;
3664 
3665 	KASSERT(old_arr->ifnet_count > 0,
3666 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3667 	count = old_arr->ifnet_count - 1;
3668 	arr = ifnet_array_alloc(count);
3669 
3670 	/*
3671 	 * Save the old ifnet array, but skip this ifp.
3672 	 */
3673 	idx = 0;
3674 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3675 		if (old_arr->ifnet_arr[i] == ifp) {
3676 			KASSERT(!found,
3677 			    ("dup %s is in ifnet array", ifp->if_xname));
3678 			found = 1;
3679 			continue;
3680 		}
3681 		KASSERT(idx < count,
3682 		    ("invalid ifnet array index %d, count %d", idx, count));
3683 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3684 		++idx;
3685 	}
3686 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3687 	KASSERT(idx == count,
3688 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3689 	     ifp->if_xname, count, idx));
3690 
3691 	return arr;
3692 }
3693 
3694 const struct ifnet_array *
3695 ifnet_array_get(void)
3696 {
3697 	const struct ifnet_array *ret;
3698 
3699 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3700 	ret = ifnet_array;
3701 	/* Make sure 'ret' is really used. */
3702 	cpu_ccfence();
3703 	return (ret);
3704 }
3705 
3706 int
3707 ifnet_array_isempty(void)
3708 {
3709 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3710 	if (ifnet_array->ifnet_count == 0)
3711 		return 1;
3712 	else
3713 		return 0;
3714 }
3715 
3716 void
3717 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3718 {
3719 	struct ifaddr *ifa;
3720 
3721 	memset(mark, 0, sizeof(*mark));
3722 	ifa = &mark->ifa;
3723 
3724 	mark->ifac.ifa = ifa;
3725 
3726 	ifa->ifa_addr = &mark->addr;
3727 	ifa->ifa_dstaddr = &mark->dstaddr;
3728 	ifa->ifa_netmask = &mark->netmask;
3729 	ifa->ifa_ifp = ifp;
3730 }
3731 
3732 static int
3733 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3734 {
3735 
3736 	KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3737 
3738 	if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3739 		ring_cnt = ring_cntmax;
3740 	if (ring_cnt > netisr_ncpus)
3741 		ring_cnt = netisr_ncpus;
3742 	return (ring_cnt);
3743 }
3744 
3745 static void
3746 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3747 {
3748 	int i, offset;
3749 
3750 	KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3751 	KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3752 	    grid, rm->rm_cnt));
3753 	rm->rm_grid = grid;
3754 
3755 	offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3756 	for (i = 0; i < rm->rm_cnt; ++i) {
3757 		rm->rm_cpumap[i] = offset + i;
3758 		KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3759 		    ("invalid cpumap[%d] = %d, offset %d", i,
3760 		     rm->rm_cpumap[i], offset));
3761 	}
3762 }
3763 
3764 static struct if_ringmap *
3765 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3766     uint32_t flags)
3767 {
3768 	struct if_ringmap *rm;
3769 	int i, grid = 0, prev_grid;
3770 
3771 	ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3772 	rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3773 	    M_DEVBUF, M_WAITOK | M_ZERO);
3774 
3775 	rm->rm_cnt = ring_cnt;
3776 	if (flags & RINGMAP_FLAG_POWEROF2)
3777 		rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3778 
3779 	prev_grid = netisr_ncpus;
3780 	for (i = 0; i < netisr_ncpus; ++i) {
3781 		if (netisr_ncpus % (i + 1) != 0)
3782 			continue;
3783 
3784 		grid = netisr_ncpus / (i + 1);
3785 		if (rm->rm_cnt > grid) {
3786 			grid = prev_grid;
3787 			break;
3788 		}
3789 
3790 		if (rm->rm_cnt > netisr_ncpus / (i + 2))
3791 			break;
3792 		prev_grid = grid;
3793 	}
3794 	if_ringmap_set_grid(dev, rm, grid);
3795 
3796 	return (rm);
3797 }
3798 
3799 struct if_ringmap *
3800 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3801 {
3802 
3803 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3804 	    RINGMAP_FLAG_NONE));
3805 }
3806 
3807 struct if_ringmap *
3808 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3809 {
3810 
3811 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3812 	    RINGMAP_FLAG_POWEROF2));
3813 }
3814 
3815 void
3816 if_ringmap_free(struct if_ringmap *rm)
3817 {
3818 
3819 	kfree(rm, M_DEVBUF);
3820 }
3821 
3822 /*
3823  * Align the two ringmaps.
3824  *
3825  * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3826  *
3827  * Before:
3828  *
3829  * CPU      0  1  2  3   4  5  6  7
3830  * NIC_RX               n0 n1 n2 n3
3831  * NIC_TX        N0 N1
3832  *
3833  * After:
3834  *
3835  * CPU      0  1  2  3   4  5  6  7
3836  * NIC_RX               n0 n1 n2 n3
3837  * NIC_TX               N0 N1
3838  */
3839 void
3840 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3841 {
3842 
3843 	if (rm0->rm_grid > rm1->rm_grid)
3844 		if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
3845 	else if (rm0->rm_grid < rm1->rm_grid)
3846 		if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
3847 }
3848 
3849 void
3850 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3851 {
3852 	int subset_grid, cnt, divisor, mod, offset, i;
3853 	struct if_ringmap *subset_rm, *rm;
3854 	int old_rm0_grid, old_rm1_grid;
3855 
3856 	if (rm0->rm_grid == rm1->rm_grid)
3857 		return;
3858 
3859 	/* Save grid for later use */
3860 	old_rm0_grid = rm0->rm_grid;
3861 	old_rm1_grid = rm1->rm_grid;
3862 
3863 	if_ringmap_align(dev, rm0, rm1);
3864 
3865 	/*
3866 	 * Re-shuffle rings to get more even distribution.
3867 	 *
3868 	 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3869 	 *
3870 	 * CPU       0  1  2  3   4  5  6  7   8  9 10 11
3871 	 *
3872 	 * NIC_RX   a0 a1 a2 a3  b0 b1 b2 b3  c0 c1 c2 c3
3873 	 * NIC_TX   A0 A1        B0 B1        C0 C1
3874 	 *
3875 	 * NIC_RX   d0 d1 d2 d3  e0 e1 e2 e3  f0 f1 f2 f3
3876 	 * NIC_TX         D0 D1        E0 E1        F0 F1
3877 	 */
3878 
3879 	if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
3880 		cnt = rm0->rm_cnt;
3881 		subset_grid = old_rm1_grid;
3882 		subset_rm = rm1;
3883 		rm = rm0;
3884 	} else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
3885 		cnt = rm1->rm_cnt;
3886 		subset_grid = old_rm0_grid;
3887 		subset_rm = rm0;
3888 		rm = rm1;
3889 	} else {
3890 		/* No space to shuffle. */
3891 		return;
3892 	}
3893 
3894 	mod = cnt / subset_grid;
3895 	KKASSERT(mod >= 2);
3896 	divisor = netisr_ncpus / rm->rm_grid;
3897 	offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
3898 
3899 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3900 		subset_rm->rm_cpumap[i] += offset;
3901 		KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
3902 		    ("match: invalid cpumap[%d] = %d, offset %d",
3903 		     i, subset_rm->rm_cpumap[i], offset));
3904 	}
3905 #ifdef INVARIANTS
3906 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3907 		int j;
3908 
3909 		for (j = 0; j < rm->rm_cnt; ++j) {
3910 			if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
3911 				break;
3912 		}
3913 		KASSERT(j < rm->rm_cnt,
3914 		    ("subset cpumap[%d] = %d not found in superset",
3915 		     i, subset_rm->rm_cpumap[i]));
3916 	}
3917 #endif
3918 }
3919 
3920 int
3921 if_ringmap_count(const struct if_ringmap *rm)
3922 {
3923 
3924 	return (rm->rm_cnt);
3925 }
3926 
3927 int
3928 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
3929 {
3930 
3931 	KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
3932 	return (rm->rm_cpumap[ring]);
3933 }
3934 
3935 void
3936 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
3937 {
3938 	int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
3939 
3940 	KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
3941 	    ("invalid redirect table entries %d", table_nent));
3942 
3943 	grid_idx = 0;
3944 	for (i = 0; i < NETISR_CPUMAX; ++i) {
3945 		table[i] = grid_idx++ % rm->rm_cnt;
3946 
3947 		if (grid_idx == rm->rm_grid)
3948 			grid_idx = 0;
3949 	}
3950 
3951 	/*
3952 	 * Make the ring distributed more evenly for the remainder
3953 	 * of each grid.
3954 	 *
3955 	 * e.g. 12 netisrs, rm contains 8 rings.
3956 	 *
3957 	 * Redirect table before:
3958 	 *
3959 	 *  0  1  2  3  4  5  6  7  0  1  2  3  0  1  2  3
3960 	 *  4  5  6  7  0  1  2  3  0  1  2  3  4  5  6  7
3961 	 *  0  1  2  3  0  1  2  3  4  5  6  7  0  1  2  3
3962 	 *  ....
3963 	 *
3964 	 * Redirect table after being patched (pX, patched entries):
3965 	 *
3966 	 *  0  1  2  3  4  5  6  7 p0 p1 p2 p3  0  1  2  3
3967 	 *  4  5  6  7 p4 p5 p6 p7  0  1  2  3  4  5  6  7
3968 	 * p0 p1 p2 p3  0  1  2  3  4  5  6  7 p4 p5 p6 p7
3969 	 *  ....
3970 	 */
3971 	patch_cnt = rm->rm_grid % rm->rm_cnt;
3972 	if (patch_cnt == 0)
3973 		goto done;
3974 	patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
3975 
3976 	grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
3977 	grid_idx = 0;
3978 	for (i = 0; i < grid_cnt; ++i) {
3979 		int j;
3980 
3981 		for (j = 0; j < patch_cnt; ++j) {
3982 			int fix_idx;
3983 
3984 			fix_idx = (i * rm->rm_grid) + patch_off + j;
3985 			if (fix_idx >= NETISR_CPUMAX)
3986 				goto done;
3987 			table[fix_idx] = grid_idx++ % rm->rm_cnt;
3988 		}
3989 	}
3990 done:
3991 	/*
3992 	 * If the device supports larger redirect table, duplicate
3993 	 * the first NETISR_CPUMAX entries to the rest of the table,
3994 	 * so that it matches upper layer's expectation:
3995 	 * (hash & NETISR_CPUMASK) % netisr_ncpus
3996 	 */
3997 	ncopy = table_nent / NETISR_CPUMAX;
3998 	for (i = 1; i < ncopy; ++i) {
3999 		memcpy(&table[i * NETISR_CPUMAX], table,
4000 		    NETISR_CPUMAX * sizeof(table[0]));
4001 	}
4002 	if (if_ringmap_dumprdr) {
4003 		for (i = 0; i < table_nent; ++i) {
4004 			if (i != 0 && i % 16 == 0)
4005 				kprintf("\n");
4006 			kprintf("%03d ", table[i]);
4007 		}
4008 		kprintf("\n");
4009 	}
4010 }
4011 
4012 int
4013 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
4014 {
4015 	struct if_ringmap *rm = arg1;
4016 	int i, error = 0;
4017 
4018 	for (i = 0; i < rm->rm_cnt; ++i) {
4019 		int cpu = rm->rm_cpumap[i];
4020 
4021 		error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
4022 		if (error)
4023 			break;
4024 	}
4025 	return (error);
4026 }
4027