xref: /dragonfly/sys/net/if.c (revision b0d289c2)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 static void	if_slowtimo_dispatch(netmsg_t);
117 
118 /* Helper functions */
119 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
121 static struct ifnet_array *ifnet_array_alloc(int);
122 static void	ifnet_array_free(struct ifnet_array *);
123 static struct ifnet_array *ifnet_array_add(struct ifnet *,
124 		    const struct ifnet_array *);
125 static struct ifnet_array *ifnet_array_del(struct ifnet *,
126 		    const struct ifnet_array *);
127 
128 #ifdef INET6
129 /*
130  * XXX: declare here to avoid to include many inet6 related files..
131  * should be more generalized?
132  */
133 extern void	nd6_setmtu(struct ifnet *);
134 #endif
135 
136 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
137 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
138 
139 static int ifsq_stage_cntmax = 4;
140 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
141 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
142     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
143 
144 static int if_stats_compat = 0;
145 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
146     &if_stats_compat, 0, "Compat the old ifnet stats");
147 
148 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
149 /* Must be after netisr_init */
150 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
151 
152 static  if_com_alloc_t *if_com_alloc[256];
153 static  if_com_free_t *if_com_free[256];
154 
155 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
156 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
157 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
158 
159 int			ifqmaxlen = IFQ_MAXLEN;
160 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
161 
162 static struct ifnet_array	ifnet_array0;
163 static struct ifnet_array	*ifnet_array = &ifnet_array0;
164 
165 static struct callout		if_slowtimo_timer;
166 static struct netmsg_base	if_slowtimo_netmsg;
167 
168 int			if_index = 0;
169 struct ifnet		**ifindex2ifnet = NULL;
170 static struct thread	ifnet_threads[MAXCPU];
171 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
172 
173 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
174 
175 #ifdef notyet
176 #define IFQ_KTR_STRING		"ifq=%p"
177 #define IFQ_KTR_ARGS	struct ifaltq *ifq
178 #ifndef KTR_IFQ
179 #define KTR_IFQ			KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
184 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
185 
186 #define IF_START_KTR_STRING	"ifp=%p"
187 #define IF_START_KTR_ARGS	struct ifnet *ifp
188 #ifndef KTR_IF_START
189 #define KTR_IF_START		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
203 #endif
204 
205 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
206 
207 /*
208  * Network interface utility routines.
209  *
210  * Routines with ifa_ifwith* names take sockaddr *'s as
211  * parameters.
212  */
213 /* ARGSUSED*/
214 void
215 ifinit(void *dummy)
216 {
217 	struct ifnet *ifp;
218 
219 	callout_init_mp(&if_slowtimo_timer);
220 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
221 	    MSGF_PRIORITY, if_slowtimo_dispatch);
222 
223 	/* XXX is this necessary? */
224 	ifnet_lock();
225 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
226 		if (ifp->if_snd.altq_maxlen == 0) {
227 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
228 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
229 		}
230 	}
231 	ifnet_unlock();
232 
233 	/* Start if_slowtimo */
234 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
235 }
236 
237 static void
238 ifsq_ifstart_ipifunc(void *arg)
239 {
240 	struct ifaltq_subque *ifsq = arg;
241 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
242 
243 	crit_enter();
244 	if (lmsg->ms_flags & MSGF_DONE)
245 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
246 	crit_exit();
247 }
248 
249 static __inline void
250 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
251 {
252 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
253 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
254 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
255 	stage->stg_cnt = 0;
256 	stage->stg_len = 0;
257 }
258 
259 static __inline void
260 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
261 {
262 	KKASSERT((stage->stg_flags &
263 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
264 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
265 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
266 }
267 
268 /*
269  * Schedule ifnet.if_start on the subqueue owner CPU
270  */
271 static void
272 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
273 {
274 	int cpu;
275 
276 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
277 	    ifsq_stage_cntmax > 0) {
278 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
279 
280 		stage->stg_cnt = 0;
281 		stage->stg_len = 0;
282 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
283 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
284 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
285 		return;
286 	}
287 
288 	cpu = ifsq_get_cpuid(ifsq);
289 	if (cpu != mycpuid)
290 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
291 	else
292 		ifsq_ifstart_ipifunc(ifsq);
293 }
294 
295 /*
296  * NOTE:
297  * This function will release ifnet.if_start subqueue interlock,
298  * if ifnet.if_start for the subqueue does not need to be scheduled
299  */
300 static __inline int
301 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
302 {
303 	if (!running || ifsq_is_empty(ifsq)
304 #ifdef ALTQ
305 	    || ifsq->ifsq_altq->altq_tbr != NULL
306 #endif
307 	) {
308 		ALTQ_SQ_LOCK(ifsq);
309 		/*
310 		 * ifnet.if_start subqueue interlock is released, if:
311 		 * 1) Hardware can not take any packets, due to
312 		 *    o  interface is marked down
313 		 *    o  hardware queue is full (ifsq_is_oactive)
314 		 *    Under the second situation, hardware interrupt
315 		 *    or polling(4) will call/schedule ifnet.if_start
316 		 *    on the subqueue when hardware queue is ready
317 		 * 2) There is no packet in the subqueue.
318 		 *    Further ifq_dispatch or ifq_handoff will call/
319 		 *    schedule ifnet.if_start on the subqueue.
320 		 * 3) TBR is used and it does not allow further
321 		 *    dequeueing.
322 		 *    TBR callout will call ifnet.if_start on the
323 		 *    subqueue.
324 		 */
325 		if (!running || !ifsq_data_ready(ifsq)) {
326 			ifsq_clr_started(ifsq);
327 			ALTQ_SQ_UNLOCK(ifsq);
328 			return 0;
329 		}
330 		ALTQ_SQ_UNLOCK(ifsq);
331 	}
332 	return 1;
333 }
334 
335 static void
336 ifsq_ifstart_dispatch(netmsg_t msg)
337 {
338 	struct lwkt_msg *lmsg = &msg->base.lmsg;
339 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
340 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
341 	struct globaldata *gd = mycpu;
342 	int running = 0, need_sched;
343 
344 	crit_enter_gd(gd);
345 
346 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
347 
348 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
349 		/*
350 		 * We need to chase the subqueue owner CPU change.
351 		 */
352 		ifsq_ifstart_schedule(ifsq, 1);
353 		crit_exit_gd(gd);
354 		return;
355 	}
356 
357 	ifsq_serialize_hw(ifsq);
358 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
359 		ifp->if_start(ifp, ifsq);
360 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
361 			running = 1;
362 	}
363 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
364 	ifsq_deserialize_hw(ifsq);
365 
366 	if (need_sched) {
367 		/*
368 		 * More data need to be transmitted, ifnet.if_start is
369 		 * scheduled on the subqueue owner CPU, and we keep going.
370 		 * NOTE: ifnet.if_start subqueue interlock is not released.
371 		 */
372 		ifsq_ifstart_schedule(ifsq, 0);
373 	}
374 
375 	crit_exit_gd(gd);
376 }
377 
378 /* Device driver ifnet.if_start helper function */
379 void
380 ifsq_devstart(struct ifaltq_subque *ifsq)
381 {
382 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
383 	int running = 0;
384 
385 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
386 
387 	ALTQ_SQ_LOCK(ifsq);
388 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
389 		ALTQ_SQ_UNLOCK(ifsq);
390 		return;
391 	}
392 	ifsq_set_started(ifsq);
393 	ALTQ_SQ_UNLOCK(ifsq);
394 
395 	ifp->if_start(ifp, ifsq);
396 
397 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
398 		running = 1;
399 
400 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
401 		/*
402 		 * More data need to be transmitted, ifnet.if_start is
403 		 * scheduled on ifnet's CPU, and we keep going.
404 		 * NOTE: ifnet.if_start interlock is not released.
405 		 */
406 		ifsq_ifstart_schedule(ifsq, 0);
407 	}
408 }
409 
410 void
411 if_devstart(struct ifnet *ifp)
412 {
413 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
414 }
415 
416 /* Device driver ifnet.if_start schedule helper function */
417 void
418 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
419 {
420 	ifsq_ifstart_schedule(ifsq, 1);
421 }
422 
423 void
424 if_devstart_sched(struct ifnet *ifp)
425 {
426 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
427 }
428 
429 static void
430 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
431 {
432 	lwkt_serialize_enter(ifp->if_serializer);
433 }
434 
435 static void
436 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
437 {
438 	lwkt_serialize_exit(ifp->if_serializer);
439 }
440 
441 static int
442 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
443 {
444 	return lwkt_serialize_try(ifp->if_serializer);
445 }
446 
447 #ifdef INVARIANTS
448 static void
449 if_default_serialize_assert(struct ifnet *ifp,
450 			    enum ifnet_serialize slz __unused,
451 			    boolean_t serialized)
452 {
453 	if (serialized)
454 		ASSERT_SERIALIZED(ifp->if_serializer);
455 	else
456 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
457 }
458 #endif
459 
460 /*
461  * Attach an interface to the list of "active" interfaces.
462  *
463  * The serializer is optional.
464  */
465 void
466 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
467 {
468 	unsigned socksize, ifasize;
469 	int namelen, masklen;
470 	struct sockaddr_dl *sdl, *sdl_addr;
471 	struct ifaddr *ifa;
472 	struct ifaltq *ifq;
473 	struct ifnet **old_ifindex2ifnet = NULL;
474 	struct ifnet_array *old_ifnet_array;
475 	int i, q;
476 
477 	static int if_indexlim = 8;
478 
479 	if (ifp->if_serialize != NULL) {
480 		KASSERT(ifp->if_deserialize != NULL &&
481 			ifp->if_tryserialize != NULL &&
482 			ifp->if_serialize_assert != NULL,
483 			("serialize functions are partially setup"));
484 
485 		/*
486 		 * If the device supplies serialize functions,
487 		 * then clear if_serializer to catch any invalid
488 		 * usage of this field.
489 		 */
490 		KASSERT(serializer == NULL,
491 			("both serialize functions and default serializer "
492 			 "are supplied"));
493 		ifp->if_serializer = NULL;
494 	} else {
495 		KASSERT(ifp->if_deserialize == NULL &&
496 			ifp->if_tryserialize == NULL &&
497 			ifp->if_serialize_assert == NULL,
498 			("serialize functions are partially setup"));
499 		ifp->if_serialize = if_default_serialize;
500 		ifp->if_deserialize = if_default_deserialize;
501 		ifp->if_tryserialize = if_default_tryserialize;
502 #ifdef INVARIANTS
503 		ifp->if_serialize_assert = if_default_serialize_assert;
504 #endif
505 
506 		/*
507 		 * The serializer can be passed in from the device,
508 		 * allowing the same serializer to be used for both
509 		 * the interrupt interlock and the device queue.
510 		 * If not specified, the netif structure will use an
511 		 * embedded serializer.
512 		 */
513 		if (serializer == NULL) {
514 			serializer = &ifp->if_default_serializer;
515 			lwkt_serialize_init(serializer);
516 		}
517 		ifp->if_serializer = serializer;
518 	}
519 
520 	/*
521 	 * XXX -
522 	 * The old code would work if the interface passed a pre-existing
523 	 * chain of ifaddrs to this code.  We don't trust our callers to
524 	 * properly initialize the tailq, however, so we no longer allow
525 	 * this unlikely case.
526 	 */
527 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
528 				    M_IFADDR, M_WAITOK | M_ZERO);
529 	for (i = 0; i < ncpus; ++i)
530 		TAILQ_INIT(&ifp->if_addrheads[i]);
531 
532 	TAILQ_INIT(&ifp->if_multiaddrs);
533 	TAILQ_INIT(&ifp->if_groups);
534 	getmicrotime(&ifp->if_lastchange);
535 
536 	/*
537 	 * create a Link Level name for this device
538 	 */
539 	namelen = strlen(ifp->if_xname);
540 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
541 	socksize = masklen + ifp->if_addrlen;
542 	if (socksize < sizeof(*sdl))
543 		socksize = sizeof(*sdl);
544 	socksize = RT_ROUNDUP(socksize);
545 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
546 	ifa = ifa_create(ifasize, M_WAITOK);
547 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
548 	sdl->sdl_len = socksize;
549 	sdl->sdl_family = AF_LINK;
550 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
551 	sdl->sdl_nlen = namelen;
552 	sdl->sdl_type = ifp->if_type;
553 	ifp->if_lladdr = ifa;
554 	ifa->ifa_ifp = ifp;
555 	ifa->ifa_rtrequest = link_rtrequest;
556 	ifa->ifa_addr = (struct sockaddr *)sdl;
557 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
558 	ifa->ifa_netmask = (struct sockaddr *)sdl;
559 	sdl->sdl_len = masklen;
560 	while (namelen != 0)
561 		sdl->sdl_data[--namelen] = 0xff;
562 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
563 
564 	ifp->if_data_pcpu = kmalloc_cachealign(
565 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
566 
567 	if (ifp->if_mapsubq == NULL)
568 		ifp->if_mapsubq = ifq_mapsubq_default;
569 
570 	ifq = &ifp->if_snd;
571 	ifq->altq_type = 0;
572 	ifq->altq_disc = NULL;
573 	ifq->altq_flags &= ALTQF_CANTCHANGE;
574 	ifq->altq_tbr = NULL;
575 	ifq->altq_ifp = ifp;
576 
577 	if (ifq->altq_subq_cnt <= 0)
578 		ifq->altq_subq_cnt = 1;
579 	ifq->altq_subq = kmalloc_cachealign(
580 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
581 	    M_DEVBUF, M_WAITOK | M_ZERO);
582 
583 	if (ifq->altq_maxlen == 0) {
584 		if_printf(ifp, "driver didn't set altq_maxlen\n");
585 		ifq_set_maxlen(ifq, ifqmaxlen);
586 	}
587 
588 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
589 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
590 
591 		ALTQ_SQ_LOCK_INIT(ifsq);
592 		ifsq->ifsq_index = q;
593 
594 		ifsq->ifsq_altq = ifq;
595 		ifsq->ifsq_ifp = ifp;
596 
597 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
598 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
599 		ifsq->ifsq_prepended = NULL;
600 		ifsq->ifsq_started = 0;
601 		ifsq->ifsq_hw_oactive = 0;
602 		ifsq_set_cpuid(ifsq, 0);
603 		if (ifp->if_serializer != NULL)
604 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
605 
606 		ifsq->ifsq_stage =
607 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
608 		    M_DEVBUF, M_WAITOK | M_ZERO);
609 		for (i = 0; i < ncpus; ++i)
610 			ifsq->ifsq_stage[i].stg_subq = ifsq;
611 
612 		ifsq->ifsq_ifstart_nmsg =
613 		    kmalloc(ncpus * sizeof(struct netmsg_base),
614 		    M_LWKTMSG, M_WAITOK);
615 		for (i = 0; i < ncpus; ++i) {
616 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
617 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
618 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
619 		}
620 	}
621 	ifq_set_classic(ifq);
622 
623 	/*
624 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
625 	 * array after it is setup.
626 	 *
627 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
628 	 * by ifnet lock, so that non-netisr threads could get a
629 	 * consistent view.
630 	 */
631 	ifnet_lock();
632 
633 	/* Don't update if_index until ifindex2ifnet is setup */
634 	ifp->if_index = if_index + 1;
635 	sdl_addr->sdl_index = ifp->if_index;
636 
637 	/*
638 	 * Install this ifp into ifindex2ifnet
639 	 */
640 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
641 		unsigned int n;
642 		struct ifnet **q;
643 
644 		/*
645 		 * Grow ifindex2ifnet
646 		 */
647 		if_indexlim <<= 1;
648 		n = if_indexlim * sizeof(*q);
649 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
650 		if (ifindex2ifnet != NULL) {
651 			bcopy(ifindex2ifnet, q, n/2);
652 			/* Free old ifindex2ifnet after sync all netisrs */
653 			old_ifindex2ifnet = ifindex2ifnet;
654 		}
655 		ifindex2ifnet = q;
656 	}
657 	ifindex2ifnet[ifp->if_index] = ifp;
658 	/*
659 	 * Update if_index after this ifp is installed into ifindex2ifnet,
660 	 * so that netisrs could get a consistent view of ifindex2ifnet.
661 	 */
662 	cpu_sfence();
663 	if_index = ifp->if_index;
664 
665 	/*
666 	 * Install this ifp into ifnet array.
667 	 */
668 	/* Free old ifnet array after sync all netisrs */
669 	old_ifnet_array = ifnet_array;
670 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
671 
672 	/*
673 	 * Install this ifp into ifnet queue.
674 	 */
675 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
676 
677 	ifnet_unlock();
678 
679 	/*
680 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
681 	 * are no longer accessed and we can free them safely later on.
682 	 */
683 	netmsg_service_sync();
684 	if (old_ifindex2ifnet != NULL)
685 		kfree(old_ifindex2ifnet, M_IFADDR);
686 	ifnet_array_free(old_ifnet_array);
687 
688 	if (!SLIST_EMPTY(&domains))
689 		if_attachdomain1(ifp);
690 
691 	/* Announce the interface. */
692 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
693 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
694 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
695 }
696 
697 static void
698 if_attachdomain(void *dummy)
699 {
700 	struct ifnet *ifp;
701 
702 	ifnet_lock();
703 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
704 		if_attachdomain1(ifp);
705 	ifnet_unlock();
706 }
707 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
708 	if_attachdomain, NULL);
709 
710 static void
711 if_attachdomain1(struct ifnet *ifp)
712 {
713 	struct domain *dp;
714 
715 	crit_enter();
716 
717 	/* address family dependent data region */
718 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
719 	SLIST_FOREACH(dp, &domains, dom_next)
720 		if (dp->dom_ifattach)
721 			ifp->if_afdata[dp->dom_family] =
722 				(*dp->dom_ifattach)(ifp);
723 	crit_exit();
724 }
725 
726 /*
727  * Purge all addresses whose type is _not_ AF_LINK
728  */
729 static void
730 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
731 {
732 	struct lwkt_msg *lmsg = &nmsg->lmsg;
733 	struct ifnet *ifp = lmsg->u.ms_resultp;
734 	struct ifaddr_container *ifac, *next;
735 
736 	KASSERT(&curthread->td_msgport == netisr_cpuport(0),
737 	    ("not in netisr0"));
738 
739 	/*
740 	 * The ifaddr processing in the following loop will block,
741 	 * however, this function is called in netisr0, in which
742 	 * ifaddr list changes happen, so we don't care about the
743 	 * blockness of the ifaddr processing here.
744 	 */
745 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
746 			      ifa_link, next) {
747 		struct ifaddr *ifa = ifac->ifa;
748 
749 		/* Ignore marker */
750 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
751 			continue;
752 
753 		/* Leave link ifaddr as it is */
754 		if (ifa->ifa_addr->sa_family == AF_LINK)
755 			continue;
756 #ifdef INET
757 		/* XXX: Ugly!! ad hoc just for INET */
758 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
759 			struct ifaliasreq ifr;
760 #ifdef IFADDR_DEBUG_VERBOSE
761 			int i;
762 
763 			kprintf("purge in4 addr %p: ", ifa);
764 			for (i = 0; i < ncpus; ++i)
765 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
766 			kprintf("\n");
767 #endif
768 
769 			bzero(&ifr, sizeof ifr);
770 			ifr.ifra_addr = *ifa->ifa_addr;
771 			if (ifa->ifa_dstaddr)
772 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
773 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
774 				       NULL) == 0)
775 				continue;
776 		}
777 #endif /* INET */
778 #ifdef INET6
779 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
780 #ifdef IFADDR_DEBUG_VERBOSE
781 			int i;
782 
783 			kprintf("purge in6 addr %p: ", ifa);
784 			for (i = 0; i < ncpus; ++i)
785 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
786 			kprintf("\n");
787 #endif
788 
789 			in6_purgeaddr(ifa);
790 			/* ifp_addrhead is already updated */
791 			continue;
792 		}
793 #endif /* INET6 */
794 		ifa_ifunlink(ifa, ifp);
795 		ifa_destroy(ifa);
796 	}
797 
798 	lwkt_replymsg(lmsg, 0);
799 }
800 
801 void
802 if_purgeaddrs_nolink(struct ifnet *ifp)
803 {
804 	struct netmsg_base nmsg;
805 	struct lwkt_msg *lmsg = &nmsg.lmsg;
806 
807 	ASSERT_CANDOMSG_NETISR0(curthread);
808 
809 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
810 	    if_purgeaddrs_nolink_dispatch);
811 	lmsg->u.ms_resultp = ifp;
812 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
813 }
814 
815 static void
816 ifq_stage_detach_handler(netmsg_t nmsg)
817 {
818 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
819 	int q;
820 
821 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
822 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
823 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
824 
825 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
826 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
827 	}
828 	lwkt_replymsg(&nmsg->lmsg, 0);
829 }
830 
831 static void
832 ifq_stage_detach(struct ifaltq *ifq)
833 {
834 	struct netmsg_base base;
835 	int cpu;
836 
837 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
838 	    ifq_stage_detach_handler);
839 	base.lmsg.u.ms_resultp = ifq;
840 
841 	for (cpu = 0; cpu < ncpus; ++cpu)
842 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
843 }
844 
845 struct netmsg_if_rtdel {
846 	struct netmsg_base	base;
847 	struct ifnet		*ifp;
848 };
849 
850 static void
851 if_rtdel_dispatch(netmsg_t msg)
852 {
853 	struct netmsg_if_rtdel *rmsg = (void *)msg;
854 	int i, nextcpu, cpu;
855 
856 	cpu = mycpuid;
857 	for (i = 1; i <= AF_MAX; i++) {
858 		struct radix_node_head	*rnh;
859 
860 		if ((rnh = rt_tables[cpu][i]) == NULL)
861 			continue;
862 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
863 	}
864 
865 	nextcpu = cpu + 1;
866 	if (nextcpu < ncpus)
867 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
868 	else
869 		lwkt_replymsg(&rmsg->base.lmsg, 0);
870 }
871 
872 /*
873  * Detach an interface, removing it from the
874  * list of "active" interfaces.
875  */
876 void
877 if_detach(struct ifnet *ifp)
878 {
879 	struct ifnet_array *old_ifnet_array;
880 	struct netmsg_if_rtdel msg;
881 	struct domain *dp;
882 	int q;
883 
884 	/* Announce that the interface is gone. */
885 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
886 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
887 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
888 
889 	/*
890 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
891 	 * array before it is whacked.
892 	 *
893 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
894 	 * by ifnet lock, so that non-netisr threads could get a
895 	 * consistent view.
896 	 */
897 	ifnet_lock();
898 
899 	/*
900 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
901 	 */
902 	ifindex2ifnet[ifp->if_index] = NULL;
903 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
904 		if_index--;
905 
906 	/*
907 	 * Remove this ifp from ifnet queue.
908 	 */
909 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
910 
911 	/*
912 	 * Remove this ifp from ifnet array.
913 	 */
914 	/* Free old ifnet array after sync all netisrs */
915 	old_ifnet_array = ifnet_array;
916 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
917 
918 	ifnet_unlock();
919 
920 	/*
921 	 * Sync all netisrs so that the old ifnet array is no longer
922 	 * accessed and we can free it safely later on.
923 	 */
924 	netmsg_service_sync();
925 	ifnet_array_free(old_ifnet_array);
926 
927 	/*
928 	 * Remove routes and flush queues.
929 	 */
930 	crit_enter();
931 #ifdef IFPOLL_ENABLE
932 	if (ifp->if_flags & IFF_NPOLLING)
933 		ifpoll_deregister(ifp);
934 #endif
935 	if_down(ifp);
936 
937 #ifdef ALTQ
938 	if (ifq_is_enabled(&ifp->if_snd))
939 		altq_disable(&ifp->if_snd);
940 	if (ifq_is_attached(&ifp->if_snd))
941 		altq_detach(&ifp->if_snd);
942 #endif
943 
944 	/*
945 	 * Clean up all addresses.
946 	 */
947 	ifp->if_lladdr = NULL;
948 
949 	if_purgeaddrs_nolink(ifp);
950 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
951 		struct ifaddr *ifa;
952 
953 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
954 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
955 			("non-link ifaddr is left on if_addrheads"));
956 
957 		ifa_ifunlink(ifa, ifp);
958 		ifa_destroy(ifa);
959 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
960 			("there are still ifaddrs left on if_addrheads"));
961 	}
962 
963 #ifdef INET
964 	/*
965 	 * Remove all IPv4 kernel structures related to ifp.
966 	 */
967 	in_ifdetach(ifp);
968 #endif
969 
970 #ifdef INET6
971 	/*
972 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
973 	 * before removing routing entries below, since IPv6 interface direct
974 	 * routes are expected to be removed by the IPv6-specific kernel API.
975 	 * Otherwise, the kernel will detect some inconsistency and bark it.
976 	 */
977 	in6_ifdetach(ifp);
978 #endif
979 
980 	/*
981 	 * Delete all remaining routes using this interface
982 	 */
983 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
984 	    if_rtdel_dispatch);
985 	msg.ifp = ifp;
986 	rt_domsg_global(&msg.base);
987 
988 	SLIST_FOREACH(dp, &domains, dom_next)
989 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
990 			(*dp->dom_ifdetach)(ifp,
991 				ifp->if_afdata[dp->dom_family]);
992 
993 	kfree(ifp->if_addrheads, M_IFADDR);
994 
995 	lwkt_synchronize_ipiqs("if_detach");
996 	ifq_stage_detach(&ifp->if_snd);
997 
998 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
999 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1000 
1001 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1002 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1003 	}
1004 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1005 
1006 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1007 
1008 	crit_exit();
1009 }
1010 
1011 /*
1012  * Create interface group without members
1013  */
1014 struct ifg_group *
1015 if_creategroup(const char *groupname)
1016 {
1017         struct ifg_group        *ifg = NULL;
1018 
1019         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1020             M_TEMP, M_NOWAIT)) == NULL)
1021                 return (NULL);
1022 
1023         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1024         ifg->ifg_refcnt = 0;
1025         ifg->ifg_carp_demoted = 0;
1026         TAILQ_INIT(&ifg->ifg_members);
1027 #if NPF > 0
1028         pfi_attach_ifgroup(ifg);
1029 #endif
1030         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1031 
1032         return (ifg);
1033 }
1034 
1035 /*
1036  * Add a group to an interface
1037  */
1038 int
1039 if_addgroup(struct ifnet *ifp, const char *groupname)
1040 {
1041 	struct ifg_list		*ifgl;
1042 	struct ifg_group	*ifg = NULL;
1043 	struct ifg_member	*ifgm;
1044 
1045 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1046 	    groupname[strlen(groupname) - 1] <= '9')
1047 		return (EINVAL);
1048 
1049 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1050 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1051 			return (EEXIST);
1052 
1053 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1054 		return (ENOMEM);
1055 
1056 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1057 		kfree(ifgl, M_TEMP);
1058 		return (ENOMEM);
1059 	}
1060 
1061 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1062 		if (!strcmp(ifg->ifg_group, groupname))
1063 			break;
1064 
1065 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1066 		kfree(ifgl, M_TEMP);
1067 		kfree(ifgm, M_TEMP);
1068 		return (ENOMEM);
1069 	}
1070 
1071 	ifg->ifg_refcnt++;
1072 	ifgl->ifgl_group = ifg;
1073 	ifgm->ifgm_ifp = ifp;
1074 
1075 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1076 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1077 
1078 #if NPF > 0
1079 	pfi_group_change(groupname);
1080 #endif
1081 
1082 	return (0);
1083 }
1084 
1085 /*
1086  * Remove a group from an interface
1087  */
1088 int
1089 if_delgroup(struct ifnet *ifp, const char *groupname)
1090 {
1091 	struct ifg_list		*ifgl;
1092 	struct ifg_member	*ifgm;
1093 
1094 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1095 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1096 			break;
1097 	if (ifgl == NULL)
1098 		return (ENOENT);
1099 
1100 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1101 
1102 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1103 		if (ifgm->ifgm_ifp == ifp)
1104 			break;
1105 
1106 	if (ifgm != NULL) {
1107 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1108 		kfree(ifgm, M_TEMP);
1109 	}
1110 
1111 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1112 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1113 #if NPF > 0
1114 		pfi_detach_ifgroup(ifgl->ifgl_group);
1115 #endif
1116 		kfree(ifgl->ifgl_group, M_TEMP);
1117 	}
1118 
1119 	kfree(ifgl, M_TEMP);
1120 
1121 #if NPF > 0
1122 	pfi_group_change(groupname);
1123 #endif
1124 
1125 	return (0);
1126 }
1127 
1128 /*
1129  * Stores all groups from an interface in memory pointed
1130  * to by data
1131  */
1132 int
1133 if_getgroup(caddr_t data, struct ifnet *ifp)
1134 {
1135 	int			 len, error;
1136 	struct ifg_list		*ifgl;
1137 	struct ifg_req		 ifgrq, *ifgp;
1138 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1139 
1140 	if (ifgr->ifgr_len == 0) {
1141 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1142 			ifgr->ifgr_len += sizeof(struct ifg_req);
1143 		return (0);
1144 	}
1145 
1146 	len = ifgr->ifgr_len;
1147 	ifgp = ifgr->ifgr_groups;
1148 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1149 		if (len < sizeof(ifgrq))
1150 			return (EINVAL);
1151 		bzero(&ifgrq, sizeof ifgrq);
1152 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1153 		    sizeof(ifgrq.ifgrq_group));
1154 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1155 		    sizeof(struct ifg_req))))
1156 			return (error);
1157 		len -= sizeof(ifgrq);
1158 		ifgp++;
1159 	}
1160 
1161 	return (0);
1162 }
1163 
1164 /*
1165  * Stores all members of a group in memory pointed to by data
1166  */
1167 int
1168 if_getgroupmembers(caddr_t data)
1169 {
1170 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1171 	struct ifg_group	*ifg;
1172 	struct ifg_member	*ifgm;
1173 	struct ifg_req		 ifgrq, *ifgp;
1174 	int			 len, error;
1175 
1176 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1177 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1178 			break;
1179 	if (ifg == NULL)
1180 		return (ENOENT);
1181 
1182 	if (ifgr->ifgr_len == 0) {
1183 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1184 			ifgr->ifgr_len += sizeof(ifgrq);
1185 		return (0);
1186 	}
1187 
1188 	len = ifgr->ifgr_len;
1189 	ifgp = ifgr->ifgr_groups;
1190 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1191 		if (len < sizeof(ifgrq))
1192 			return (EINVAL);
1193 		bzero(&ifgrq, sizeof ifgrq);
1194 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1195 		    sizeof(ifgrq.ifgrq_member));
1196 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1197 		    sizeof(struct ifg_req))))
1198 			return (error);
1199 		len -= sizeof(ifgrq);
1200 		ifgp++;
1201 	}
1202 
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Delete Routes for a Network Interface
1208  *
1209  * Called for each routing entry via the rnh->rnh_walktree() call above
1210  * to delete all route entries referencing a detaching network interface.
1211  *
1212  * Arguments:
1213  *	rn	pointer to node in the routing table
1214  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1215  *
1216  * Returns:
1217  *	0	successful
1218  *	errno	failed - reason indicated
1219  *
1220  */
1221 static int
1222 if_rtdel(struct radix_node *rn, void *arg)
1223 {
1224 	struct rtentry	*rt = (struct rtentry *)rn;
1225 	struct ifnet	*ifp = arg;
1226 	int		err;
1227 
1228 	if (rt->rt_ifp == ifp) {
1229 
1230 		/*
1231 		 * Protect (sorta) against walktree recursion problems
1232 		 * with cloned routes
1233 		 */
1234 		if (!(rt->rt_flags & RTF_UP))
1235 			return (0);
1236 
1237 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1238 				rt_mask(rt), rt->rt_flags,
1239 				NULL);
1240 		if (err) {
1241 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1242 		}
1243 	}
1244 
1245 	return (0);
1246 }
1247 
1248 /*
1249  * Locate an interface based on a complete address.
1250  */
1251 struct ifaddr *
1252 ifa_ifwithaddr(struct sockaddr *addr)
1253 {
1254 	const struct ifnet_array *arr;
1255 	int i;
1256 
1257 	arr = ifnet_array_get();
1258 	for (i = 0; i < arr->ifnet_count; ++i) {
1259 		struct ifnet *ifp = arr->ifnet_arr[i];
1260 		struct ifaddr_container *ifac;
1261 
1262 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1263 			struct ifaddr *ifa = ifac->ifa;
1264 
1265 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1266 				continue;
1267 			if (sa_equal(addr, ifa->ifa_addr))
1268 				return (ifa);
1269 			if ((ifp->if_flags & IFF_BROADCAST) &&
1270 			    ifa->ifa_broadaddr &&
1271 			    /* IPv6 doesn't have broadcast */
1272 			    ifa->ifa_broadaddr->sa_len != 0 &&
1273 			    sa_equal(ifa->ifa_broadaddr, addr))
1274 				return (ifa);
1275 		}
1276 	}
1277 	return (NULL);
1278 }
1279 /*
1280  * Locate the point to point interface with a given destination address.
1281  */
1282 struct ifaddr *
1283 ifa_ifwithdstaddr(struct sockaddr *addr)
1284 {
1285 	const struct ifnet_array *arr;
1286 	int i;
1287 
1288 	arr = ifnet_array_get();
1289 	for (i = 0; i < arr->ifnet_count; ++i) {
1290 		struct ifnet *ifp = arr->ifnet_arr[i];
1291 		struct ifaddr_container *ifac;
1292 
1293 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1294 			continue;
1295 
1296 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1297 			struct ifaddr *ifa = ifac->ifa;
1298 
1299 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1300 				continue;
1301 			if (ifa->ifa_dstaddr &&
1302 			    sa_equal(addr, ifa->ifa_dstaddr))
1303 				return (ifa);
1304 		}
1305 	}
1306 	return (NULL);
1307 }
1308 
1309 /*
1310  * Find an interface on a specific network.  If many, choice
1311  * is most specific found.
1312  */
1313 struct ifaddr *
1314 ifa_ifwithnet(struct sockaddr *addr)
1315 {
1316 	struct ifaddr *ifa_maybe = NULL;
1317 	u_int af = addr->sa_family;
1318 	char *addr_data = addr->sa_data, *cplim;
1319 	const struct ifnet_array *arr;
1320 	int i;
1321 
1322 	/*
1323 	 * AF_LINK addresses can be looked up directly by their index number,
1324 	 * so do that if we can.
1325 	 */
1326 	if (af == AF_LINK) {
1327 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1328 
1329 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1330 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1331 	}
1332 
1333 	/*
1334 	 * Scan though each interface, looking for ones that have
1335 	 * addresses in this address family.
1336 	 */
1337 	arr = ifnet_array_get();
1338 	for (i = 0; i < arr->ifnet_count; ++i) {
1339 		struct ifnet *ifp = arr->ifnet_arr[i];
1340 		struct ifaddr_container *ifac;
1341 
1342 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1343 			struct ifaddr *ifa = ifac->ifa;
1344 			char *cp, *cp2, *cp3;
1345 
1346 			if (ifa->ifa_addr->sa_family != af)
1347 next:				continue;
1348 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1349 				/*
1350 				 * This is a bit broken as it doesn't
1351 				 * take into account that the remote end may
1352 				 * be a single node in the network we are
1353 				 * looking for.
1354 				 * The trouble is that we don't know the
1355 				 * netmask for the remote end.
1356 				 */
1357 				if (ifa->ifa_dstaddr != NULL &&
1358 				    sa_equal(addr, ifa->ifa_dstaddr))
1359 					return (ifa);
1360 			} else {
1361 				/*
1362 				 * if we have a special address handler,
1363 				 * then use it instead of the generic one.
1364 				 */
1365 				if (ifa->ifa_claim_addr) {
1366 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1367 						return (ifa);
1368 					} else {
1369 						continue;
1370 					}
1371 				}
1372 
1373 				/*
1374 				 * Scan all the bits in the ifa's address.
1375 				 * If a bit dissagrees with what we are
1376 				 * looking for, mask it with the netmask
1377 				 * to see if it really matters.
1378 				 * (A byte at a time)
1379 				 */
1380 				if (ifa->ifa_netmask == 0)
1381 					continue;
1382 				cp = addr_data;
1383 				cp2 = ifa->ifa_addr->sa_data;
1384 				cp3 = ifa->ifa_netmask->sa_data;
1385 				cplim = ifa->ifa_netmask->sa_len +
1386 					(char *)ifa->ifa_netmask;
1387 				while (cp3 < cplim)
1388 					if ((*cp++ ^ *cp2++) & *cp3++)
1389 						goto next; /* next address! */
1390 				/*
1391 				 * If the netmask of what we just found
1392 				 * is more specific than what we had before
1393 				 * (if we had one) then remember the new one
1394 				 * before continuing to search
1395 				 * for an even better one.
1396 				 */
1397 				if (ifa_maybe == NULL ||
1398 				    rn_refines((char *)ifa->ifa_netmask,
1399 					       (char *)ifa_maybe->ifa_netmask))
1400 					ifa_maybe = ifa;
1401 			}
1402 		}
1403 	}
1404 	return (ifa_maybe);
1405 }
1406 
1407 /*
1408  * Find an interface address specific to an interface best matching
1409  * a given address.
1410  */
1411 struct ifaddr *
1412 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1413 {
1414 	struct ifaddr_container *ifac;
1415 	char *cp, *cp2, *cp3;
1416 	char *cplim;
1417 	struct ifaddr *ifa_maybe = NULL;
1418 	u_int af = addr->sa_family;
1419 
1420 	if (af >= AF_MAX)
1421 		return (0);
1422 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1423 		struct ifaddr *ifa = ifac->ifa;
1424 
1425 		if (ifa->ifa_addr->sa_family != af)
1426 			continue;
1427 		if (ifa_maybe == NULL)
1428 			ifa_maybe = ifa;
1429 		if (ifa->ifa_netmask == NULL) {
1430 			if (sa_equal(addr, ifa->ifa_addr) ||
1431 			    (ifa->ifa_dstaddr != NULL &&
1432 			     sa_equal(addr, ifa->ifa_dstaddr)))
1433 				return (ifa);
1434 			continue;
1435 		}
1436 		if (ifp->if_flags & IFF_POINTOPOINT) {
1437 			if (sa_equal(addr, ifa->ifa_dstaddr))
1438 				return (ifa);
1439 		} else {
1440 			cp = addr->sa_data;
1441 			cp2 = ifa->ifa_addr->sa_data;
1442 			cp3 = ifa->ifa_netmask->sa_data;
1443 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1444 			for (; cp3 < cplim; cp3++)
1445 				if ((*cp++ ^ *cp2++) & *cp3)
1446 					break;
1447 			if (cp3 == cplim)
1448 				return (ifa);
1449 		}
1450 	}
1451 	return (ifa_maybe);
1452 }
1453 
1454 /*
1455  * Default action when installing a route with a Link Level gateway.
1456  * Lookup an appropriate real ifa to point to.
1457  * This should be moved to /sys/net/link.c eventually.
1458  */
1459 static void
1460 link_rtrequest(int cmd, struct rtentry *rt)
1461 {
1462 	struct ifaddr *ifa;
1463 	struct sockaddr *dst;
1464 	struct ifnet *ifp;
1465 
1466 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1467 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1468 		return;
1469 	ifa = ifaof_ifpforaddr(dst, ifp);
1470 	if (ifa != NULL) {
1471 		IFAFREE(rt->rt_ifa);
1472 		IFAREF(ifa);
1473 		rt->rt_ifa = ifa;
1474 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1475 			ifa->ifa_rtrequest(cmd, rt);
1476 	}
1477 }
1478 
1479 struct netmsg_ifroute {
1480 	struct netmsg_base	base;
1481 	struct ifnet		*ifp;
1482 	int			flag;
1483 	int			fam;
1484 };
1485 
1486 /*
1487  * Mark an interface down and notify protocols of the transition.
1488  */
1489 static void
1490 if_unroute_dispatch(netmsg_t nmsg)
1491 {
1492 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1493 	struct ifnet *ifp = msg->ifp;
1494 	int flag = msg->flag, fam = msg->fam;
1495 	struct ifaddr_container *ifac;
1496 
1497 	ifp->if_flags &= ~flag;
1498 	getmicrotime(&ifp->if_lastchange);
1499 	/*
1500 	 * The ifaddr processing in the following loop will block,
1501 	 * however, this function is called in netisr0, in which
1502 	 * ifaddr list changes happen, so we don't care about the
1503 	 * blockness of the ifaddr processing here.
1504 	 */
1505 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1506 		struct ifaddr *ifa = ifac->ifa;
1507 
1508 		/* Ignore marker */
1509 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1510 			continue;
1511 
1512 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1513 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1514 	}
1515 	ifq_purge_all(&ifp->if_snd);
1516 	rt_ifmsg(ifp);
1517 
1518 	lwkt_replymsg(&nmsg->lmsg, 0);
1519 }
1520 
1521 void
1522 if_unroute(struct ifnet *ifp, int flag, int fam)
1523 {
1524 	struct netmsg_ifroute msg;
1525 
1526 	ASSERT_CANDOMSG_NETISR0(curthread);
1527 
1528 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1529 	    if_unroute_dispatch);
1530 	msg.ifp = ifp;
1531 	msg.flag = flag;
1532 	msg.fam = fam;
1533 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1534 }
1535 
1536 /*
1537  * Mark an interface up and notify protocols of the transition.
1538  */
1539 static void
1540 if_route_dispatch(netmsg_t nmsg)
1541 {
1542 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1543 	struct ifnet *ifp = msg->ifp;
1544 	int flag = msg->flag, fam = msg->fam;
1545 	struct ifaddr_container *ifac;
1546 
1547 	ifq_purge_all(&ifp->if_snd);
1548 	ifp->if_flags |= flag;
1549 	getmicrotime(&ifp->if_lastchange);
1550 	/*
1551 	 * The ifaddr processing in the following loop will block,
1552 	 * however, this function is called in netisr0, in which
1553 	 * ifaddr list changes happen, so we don't care about the
1554 	 * blockness of the ifaddr processing here.
1555 	 */
1556 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1557 		struct ifaddr *ifa = ifac->ifa;
1558 
1559 		/* Ignore marker */
1560 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1561 			continue;
1562 
1563 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1564 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1565 	}
1566 	rt_ifmsg(ifp);
1567 #ifdef INET6
1568 	in6_if_up(ifp);
1569 #endif
1570 
1571 	lwkt_replymsg(&nmsg->lmsg, 0);
1572 }
1573 
1574 void
1575 if_route(struct ifnet *ifp, int flag, int fam)
1576 {
1577 	struct netmsg_ifroute msg;
1578 
1579 	ASSERT_CANDOMSG_NETISR0(curthread);
1580 
1581 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1582 	    if_route_dispatch);
1583 	msg.ifp = ifp;
1584 	msg.flag = flag;
1585 	msg.fam = fam;
1586 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1587 }
1588 
1589 /*
1590  * Mark an interface down and notify protocols of the transition.  An
1591  * interface going down is also considered to be a synchronizing event.
1592  * We must ensure that all packet processing related to the interface
1593  * has completed before we return so e.g. the caller can free the ifnet
1594  * structure that the mbufs may be referencing.
1595  *
1596  * NOTE: must be called at splnet or eqivalent.
1597  */
1598 void
1599 if_down(struct ifnet *ifp)
1600 {
1601 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1602 	netmsg_service_sync();
1603 }
1604 
1605 /*
1606  * Mark an interface up and notify protocols of
1607  * the transition.
1608  * NOTE: must be called at splnet or eqivalent.
1609  */
1610 void
1611 if_up(struct ifnet *ifp)
1612 {
1613 	if_route(ifp, IFF_UP, AF_UNSPEC);
1614 }
1615 
1616 /*
1617  * Process a link state change.
1618  * NOTE: must be called at splsoftnet or equivalent.
1619  */
1620 void
1621 if_link_state_change(struct ifnet *ifp)
1622 {
1623 	int link_state = ifp->if_link_state;
1624 
1625 	rt_ifmsg(ifp);
1626 	devctl_notify("IFNET", ifp->if_xname,
1627 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1628 }
1629 
1630 /*
1631  * Handle interface watchdog timer routines.  Called
1632  * from softclock, we decrement timers (if set) and
1633  * call the appropriate interface routine on expiration.
1634  */
1635 static void
1636 if_slowtimo_dispatch(netmsg_t nmsg)
1637 {
1638 	struct globaldata *gd = mycpu;
1639 	const struct ifnet_array *arr;
1640 	int i;
1641 
1642 	KASSERT(&curthread->td_msgport == netisr_cpuport(0),
1643 	    ("not in netisr0"));
1644 
1645 	crit_enter_gd(gd);
1646 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1647 	crit_exit_gd(gd);
1648 
1649 	arr = ifnet_array_get();
1650 	for (i = 0; i < arr->ifnet_count; ++i) {
1651 		struct ifnet *ifp = arr->ifnet_arr[i];
1652 
1653 		crit_enter_gd(gd);
1654 
1655 		if (if_stats_compat) {
1656 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1657 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1658 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1659 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1660 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1661 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1662 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1663 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1664 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1665 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1666 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1667 		}
1668 
1669 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1670 			crit_exit_gd(gd);
1671 			continue;
1672 		}
1673 		if (ifp->if_watchdog) {
1674 			if (ifnet_tryserialize_all(ifp)) {
1675 				(*ifp->if_watchdog)(ifp);
1676 				ifnet_deserialize_all(ifp);
1677 			} else {
1678 				/* try again next timeout */
1679 				++ifp->if_timer;
1680 			}
1681 		}
1682 
1683 		crit_exit_gd(gd);
1684 	}
1685 
1686 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1687 }
1688 
1689 static void
1690 if_slowtimo(void *arg __unused)
1691 {
1692 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1693 
1694 	KASSERT(mycpuid == 0, ("not on cpu0"));
1695 	crit_enter();
1696 	if (lmsg->ms_flags & MSGF_DONE)
1697 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1698 	crit_exit();
1699 }
1700 
1701 /*
1702  * Map interface name to
1703  * interface structure pointer.
1704  */
1705 struct ifnet *
1706 ifunit(const char *name)
1707 {
1708 	struct ifnet *ifp;
1709 
1710 	/*
1711 	 * Search all the interfaces for this name/number
1712 	 */
1713 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1714 
1715 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1716 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1717 			break;
1718 	}
1719 	return (ifp);
1720 }
1721 
1722 struct ifnet *
1723 ifunit_netisr(const char *name)
1724 {
1725 	const struct ifnet_array *arr;
1726 	int i;
1727 
1728 	/*
1729 	 * Search all the interfaces for this name/number
1730 	 */
1731 
1732 	arr = ifnet_array_get();
1733 	for (i = 0; i < arr->ifnet_count; ++i) {
1734 		struct ifnet *ifp = arr->ifnet_arr[i];
1735 
1736 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1737 			return ifp;
1738 	}
1739 	return NULL;
1740 }
1741 
1742 /*
1743  * Interface ioctls.
1744  */
1745 int
1746 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1747 {
1748 	struct ifnet *ifp;
1749 	struct ifreq *ifr;
1750 	struct ifstat *ifs;
1751 	int error;
1752 	short oif_flags;
1753 	int new_flags;
1754 #ifdef COMPAT_43
1755 	int ocmd;
1756 #endif
1757 	size_t namelen, onamelen;
1758 	char new_name[IFNAMSIZ];
1759 	struct ifaddr *ifa;
1760 	struct sockaddr_dl *sdl;
1761 
1762 	switch (cmd) {
1763 	case SIOCGIFCONF:
1764 	case OSIOCGIFCONF:
1765 		return (ifconf(cmd, data, cred));
1766 	default:
1767 		break;
1768 	}
1769 
1770 	ifr = (struct ifreq *)data;
1771 
1772 	switch (cmd) {
1773 	case SIOCIFCREATE:
1774 	case SIOCIFCREATE2:
1775 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1776 			return (error);
1777 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1778 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1779 	case SIOCIFDESTROY:
1780 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1781 			return (error);
1782 		return (if_clone_destroy(ifr->ifr_name));
1783 	case SIOCIFGCLONERS:
1784 		return (if_clone_list((struct if_clonereq *)data));
1785 	default:
1786 		break;
1787 	}
1788 
1789 	/*
1790 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1791 	 * lock to serialize the ifconfig ioctl operation.
1792 	 */
1793 	ifnet_lock();
1794 
1795 	ifp = ifunit(ifr->ifr_name);
1796 	if (ifp == NULL) {
1797 		ifnet_unlock();
1798 		return (ENXIO);
1799 	}
1800 	error = 0;
1801 
1802 	switch (cmd) {
1803 	case SIOCGIFINDEX:
1804 		ifr->ifr_index = ifp->if_index;
1805 		break;
1806 
1807 	case SIOCGIFFLAGS:
1808 		ifr->ifr_flags = ifp->if_flags;
1809 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1810 		break;
1811 
1812 	case SIOCGIFCAP:
1813 		ifr->ifr_reqcap = ifp->if_capabilities;
1814 		ifr->ifr_curcap = ifp->if_capenable;
1815 		break;
1816 
1817 	case SIOCGIFMETRIC:
1818 		ifr->ifr_metric = ifp->if_metric;
1819 		break;
1820 
1821 	case SIOCGIFMTU:
1822 		ifr->ifr_mtu = ifp->if_mtu;
1823 		break;
1824 
1825 	case SIOCGIFTSOLEN:
1826 		ifr->ifr_tsolen = ifp->if_tsolen;
1827 		break;
1828 
1829 	case SIOCGIFDATA:
1830 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1831 				sizeof(ifp->if_data));
1832 		break;
1833 
1834 	case SIOCGIFPHYS:
1835 		ifr->ifr_phys = ifp->if_physical;
1836 		break;
1837 
1838 	case SIOCGIFPOLLCPU:
1839 		ifr->ifr_pollcpu = -1;
1840 		break;
1841 
1842 	case SIOCSIFPOLLCPU:
1843 		break;
1844 
1845 	case SIOCSIFFLAGS:
1846 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1847 		if (error)
1848 			break;
1849 		new_flags = (ifr->ifr_flags & 0xffff) |
1850 		    (ifr->ifr_flagshigh << 16);
1851 		if (ifp->if_flags & IFF_SMART) {
1852 			/* Smart drivers twiddle their own routes */
1853 		} else if (ifp->if_flags & IFF_UP &&
1854 		    (new_flags & IFF_UP) == 0) {
1855 			crit_enter();
1856 			if_down(ifp);
1857 			crit_exit();
1858 		} else if (new_flags & IFF_UP &&
1859 		    (ifp->if_flags & IFF_UP) == 0) {
1860 			crit_enter();
1861 			if_up(ifp);
1862 			crit_exit();
1863 		}
1864 
1865 #ifdef IFPOLL_ENABLE
1866 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1867 			if (new_flags & IFF_NPOLLING)
1868 				ifpoll_register(ifp);
1869 			else
1870 				ifpoll_deregister(ifp);
1871 		}
1872 #endif
1873 
1874 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1875 			(new_flags &~ IFF_CANTCHANGE);
1876 		if (new_flags & IFF_PPROMISC) {
1877 			/* Permanently promiscuous mode requested */
1878 			ifp->if_flags |= IFF_PROMISC;
1879 		} else if (ifp->if_pcount == 0) {
1880 			ifp->if_flags &= ~IFF_PROMISC;
1881 		}
1882 		if (ifp->if_ioctl) {
1883 			ifnet_serialize_all(ifp);
1884 			ifp->if_ioctl(ifp, cmd, data, cred);
1885 			ifnet_deserialize_all(ifp);
1886 		}
1887 		getmicrotime(&ifp->if_lastchange);
1888 		break;
1889 
1890 	case SIOCSIFCAP:
1891 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1892 		if (error)
1893 			break;
1894 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1895 			error = EINVAL;
1896 			break;
1897 		}
1898 		ifnet_serialize_all(ifp);
1899 		ifp->if_ioctl(ifp, cmd, data, cred);
1900 		ifnet_deserialize_all(ifp);
1901 		break;
1902 
1903 	case SIOCSIFNAME:
1904 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1905 		if (error)
1906 			break;
1907 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1908 		if (error)
1909 			break;
1910 		if (new_name[0] == '\0') {
1911 			error = EINVAL;
1912 			break;
1913 		}
1914 		if (ifunit(new_name) != NULL) {
1915 			error = EEXIST;
1916 			break;
1917 		}
1918 
1919 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1920 
1921 		/* Announce the departure of the interface. */
1922 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1923 
1924 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1925 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1926 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1927 		namelen = strlen(new_name);
1928 		onamelen = sdl->sdl_nlen;
1929 		/*
1930 		 * Move the address if needed.  This is safe because we
1931 		 * allocate space for a name of length IFNAMSIZ when we
1932 		 * create this in if_attach().
1933 		 */
1934 		if (namelen != onamelen) {
1935 			bcopy(sdl->sdl_data + onamelen,
1936 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1937 		}
1938 		bcopy(new_name, sdl->sdl_data, namelen);
1939 		sdl->sdl_nlen = namelen;
1940 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1941 		bzero(sdl->sdl_data, onamelen);
1942 		while (namelen != 0)
1943 			sdl->sdl_data[--namelen] = 0xff;
1944 
1945 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1946 
1947 		/* Announce the return of the interface. */
1948 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1949 		break;
1950 
1951 	case SIOCSIFMETRIC:
1952 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1953 		if (error)
1954 			break;
1955 		ifp->if_metric = ifr->ifr_metric;
1956 		getmicrotime(&ifp->if_lastchange);
1957 		break;
1958 
1959 	case SIOCSIFPHYS:
1960 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1961 		if (error)
1962 			break;
1963 		if (ifp->if_ioctl == NULL) {
1964 		        error = EOPNOTSUPP;
1965 			break;
1966 		}
1967 		ifnet_serialize_all(ifp);
1968 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1969 		ifnet_deserialize_all(ifp);
1970 		if (error == 0)
1971 			getmicrotime(&ifp->if_lastchange);
1972 		break;
1973 
1974 	case SIOCSIFMTU:
1975 	{
1976 		u_long oldmtu = ifp->if_mtu;
1977 
1978 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1979 		if (error)
1980 			break;
1981 		if (ifp->if_ioctl == NULL) {
1982 			error = EOPNOTSUPP;
1983 			break;
1984 		}
1985 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1986 			error = EINVAL;
1987 			break;
1988 		}
1989 		ifnet_serialize_all(ifp);
1990 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1991 		ifnet_deserialize_all(ifp);
1992 		if (error == 0) {
1993 			getmicrotime(&ifp->if_lastchange);
1994 			rt_ifmsg(ifp);
1995 		}
1996 		/*
1997 		 * If the link MTU changed, do network layer specific procedure.
1998 		 */
1999 		if (ifp->if_mtu != oldmtu) {
2000 #ifdef INET6
2001 			nd6_setmtu(ifp);
2002 #endif
2003 		}
2004 		break;
2005 	}
2006 
2007 	case SIOCSIFTSOLEN:
2008 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2009 		if (error)
2010 			break;
2011 
2012 		/* XXX need driver supplied upper limit */
2013 		if (ifr->ifr_tsolen <= 0) {
2014 			error = EINVAL;
2015 			break;
2016 		}
2017 		ifp->if_tsolen = ifr->ifr_tsolen;
2018 		break;
2019 
2020 	case SIOCADDMULTI:
2021 	case SIOCDELMULTI:
2022 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2023 		if (error)
2024 			break;
2025 
2026 		/* Don't allow group membership on non-multicast interfaces. */
2027 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2028 			error = EOPNOTSUPP;
2029 			break;
2030 		}
2031 
2032 		/* Don't let users screw up protocols' entries. */
2033 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2034 			error = EINVAL;
2035 			break;
2036 		}
2037 
2038 		if (cmd == SIOCADDMULTI) {
2039 			struct ifmultiaddr *ifma;
2040 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2041 		} else {
2042 			error = if_delmulti(ifp, &ifr->ifr_addr);
2043 		}
2044 		if (error == 0)
2045 			getmicrotime(&ifp->if_lastchange);
2046 		break;
2047 
2048 	case SIOCSIFPHYADDR:
2049 	case SIOCDIFPHYADDR:
2050 #ifdef INET6
2051 	case SIOCSIFPHYADDR_IN6:
2052 #endif
2053 	case SIOCSLIFPHYADDR:
2054         case SIOCSIFMEDIA:
2055 	case SIOCSIFGENERIC:
2056 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2057 		if (error)
2058 			break;
2059 		if (ifp->if_ioctl == 0) {
2060 			error = EOPNOTSUPP;
2061 			break;
2062 		}
2063 		ifnet_serialize_all(ifp);
2064 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2065 		ifnet_deserialize_all(ifp);
2066 		if (error == 0)
2067 			getmicrotime(&ifp->if_lastchange);
2068 		break;
2069 
2070 	case SIOCGIFSTATUS:
2071 		ifs = (struct ifstat *)data;
2072 		ifs->ascii[0] = '\0';
2073 		/* fall through */
2074 	case SIOCGIFPSRCADDR:
2075 	case SIOCGIFPDSTADDR:
2076 	case SIOCGLIFPHYADDR:
2077 	case SIOCGIFMEDIA:
2078 	case SIOCGIFGENERIC:
2079 		if (ifp->if_ioctl == NULL) {
2080 			error = EOPNOTSUPP;
2081 			break;
2082 		}
2083 		ifnet_serialize_all(ifp);
2084 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2085 		ifnet_deserialize_all(ifp);
2086 		break;
2087 
2088 	case SIOCSIFLLADDR:
2089 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2090 		if (error)
2091 			break;
2092 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2093 				     ifr->ifr_addr.sa_len);
2094 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2095 		break;
2096 
2097 	default:
2098 		oif_flags = ifp->if_flags;
2099 		if (so->so_proto == 0) {
2100 			error = EOPNOTSUPP;
2101 			break;
2102 		}
2103 #ifndef COMPAT_43
2104 		error = so_pru_control_direct(so, cmd, data, ifp);
2105 #else
2106 		ocmd = cmd;
2107 
2108 		switch (cmd) {
2109 		case SIOCSIFDSTADDR:
2110 		case SIOCSIFADDR:
2111 		case SIOCSIFBRDADDR:
2112 		case SIOCSIFNETMASK:
2113 #if BYTE_ORDER != BIG_ENDIAN
2114 			if (ifr->ifr_addr.sa_family == 0 &&
2115 			    ifr->ifr_addr.sa_len < 16) {
2116 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
2117 				ifr->ifr_addr.sa_len = 16;
2118 			}
2119 #else
2120 			if (ifr->ifr_addr.sa_len == 0)
2121 				ifr->ifr_addr.sa_len = 16;
2122 #endif
2123 			break;
2124 		case OSIOCGIFADDR:
2125 			cmd = SIOCGIFADDR;
2126 			break;
2127 		case OSIOCGIFDSTADDR:
2128 			cmd = SIOCGIFDSTADDR;
2129 			break;
2130 		case OSIOCGIFBRDADDR:
2131 			cmd = SIOCGIFBRDADDR;
2132 			break;
2133 		case OSIOCGIFNETMASK:
2134 			cmd = SIOCGIFNETMASK;
2135 			break;
2136 		default:
2137 			break;
2138 		}
2139 
2140 		error = so_pru_control_direct(so, cmd, data, ifp);
2141 
2142 		switch (ocmd) {
2143 		case OSIOCGIFADDR:
2144 		case OSIOCGIFDSTADDR:
2145 		case OSIOCGIFBRDADDR:
2146 		case OSIOCGIFNETMASK:
2147 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
2148 			break;
2149 		}
2150 #endif /* COMPAT_43 */
2151 
2152 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2153 #ifdef INET6
2154 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2155 			if (ifp->if_flags & IFF_UP) {
2156 				crit_enter();
2157 				in6_if_up(ifp);
2158 				crit_exit();
2159 			}
2160 #endif
2161 		}
2162 		break;
2163 	}
2164 
2165 	ifnet_unlock();
2166 	return (error);
2167 }
2168 
2169 /*
2170  * Set/clear promiscuous mode on interface ifp based on the truth value
2171  * of pswitch.  The calls are reference counted so that only the first
2172  * "on" request actually has an effect, as does the final "off" request.
2173  * Results are undefined if the "off" and "on" requests are not matched.
2174  */
2175 int
2176 ifpromisc(struct ifnet *ifp, int pswitch)
2177 {
2178 	struct ifreq ifr;
2179 	int error;
2180 	int oldflags;
2181 
2182 	oldflags = ifp->if_flags;
2183 	if (ifp->if_flags & IFF_PPROMISC) {
2184 		/* Do nothing if device is in permanently promiscuous mode */
2185 		ifp->if_pcount += pswitch ? 1 : -1;
2186 		return (0);
2187 	}
2188 	if (pswitch) {
2189 		/*
2190 		 * If the device is not configured up, we cannot put it in
2191 		 * promiscuous mode.
2192 		 */
2193 		if ((ifp->if_flags & IFF_UP) == 0)
2194 			return (ENETDOWN);
2195 		if (ifp->if_pcount++ != 0)
2196 			return (0);
2197 		ifp->if_flags |= IFF_PROMISC;
2198 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2199 		    ifp->if_xname);
2200 	} else {
2201 		if (--ifp->if_pcount > 0)
2202 			return (0);
2203 		ifp->if_flags &= ~IFF_PROMISC;
2204 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2205 		    ifp->if_xname);
2206 	}
2207 	ifr.ifr_flags = ifp->if_flags;
2208 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2209 	ifnet_serialize_all(ifp);
2210 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2211 	ifnet_deserialize_all(ifp);
2212 	if (error == 0)
2213 		rt_ifmsg(ifp);
2214 	else
2215 		ifp->if_flags = oldflags;
2216 	return error;
2217 }
2218 
2219 /*
2220  * Return interface configuration
2221  * of system.  List may be used
2222  * in later ioctl's (above) to get
2223  * other information.
2224  */
2225 static int
2226 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2227 {
2228 	struct ifconf *ifc = (struct ifconf *)data;
2229 	struct ifnet *ifp;
2230 	struct sockaddr *sa;
2231 	struct ifreq ifr, *ifrp;
2232 	int space = ifc->ifc_len, error = 0;
2233 
2234 	ifrp = ifc->ifc_req;
2235 
2236 	ifnet_lock();
2237 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2238 		struct ifaddr_container *ifac, *ifac_mark;
2239 		struct ifaddr_marker mark;
2240 		struct ifaddrhead *head;
2241 		int addrs;
2242 
2243 		if (space <= sizeof ifr)
2244 			break;
2245 
2246 		/*
2247 		 * Zero the stack declared structure first to prevent
2248 		 * memory disclosure.
2249 		 */
2250 		bzero(&ifr, sizeof(ifr));
2251 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2252 		    >= sizeof(ifr.ifr_name)) {
2253 			error = ENAMETOOLONG;
2254 			break;
2255 		}
2256 
2257 		/*
2258 		 * Add a marker, since copyout() could block and during that
2259 		 * period the list could be changed.  Inserting the marker to
2260 		 * the header of the list will not cause trouble for the code
2261 		 * assuming that the first element of the list is AF_LINK; the
2262 		 * marker will be moved to the next position w/o blocking.
2263 		 */
2264 		ifa_marker_init(&mark, ifp);
2265 		ifac_mark = &mark.ifac;
2266 		head = &ifp->if_addrheads[mycpuid];
2267 
2268 		addrs = 0;
2269 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2270 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2271 			struct ifaddr *ifa = ifac->ifa;
2272 
2273 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2274 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2275 
2276 			/* Ignore marker */
2277 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2278 				continue;
2279 
2280 			if (space <= sizeof ifr)
2281 				break;
2282 			sa = ifa->ifa_addr;
2283 			if (cred->cr_prison &&
2284 			    prison_if(cred, sa))
2285 				continue;
2286 			addrs++;
2287 			/*
2288 			 * Keep a reference on this ifaddr, so that it will
2289 			 * not be destroyed when its address is copied to
2290 			 * the userland, which could block.
2291 			 */
2292 			IFAREF(ifa);
2293 #ifdef COMPAT_43
2294 			if (cmd == OSIOCGIFCONF) {
2295 				struct osockaddr *osa =
2296 					 (struct osockaddr *)&ifr.ifr_addr;
2297 				ifr.ifr_addr = *sa;
2298 				osa->sa_family = sa->sa_family;
2299 				error = copyout(&ifr, ifrp, sizeof ifr);
2300 				ifrp++;
2301 			} else
2302 #endif
2303 			if (sa->sa_len <= sizeof(*sa)) {
2304 				ifr.ifr_addr = *sa;
2305 				error = copyout(&ifr, ifrp, sizeof ifr);
2306 				ifrp++;
2307 			} else {
2308 				if (space < (sizeof ifr) + sa->sa_len -
2309 					    sizeof(*sa)) {
2310 					IFAFREE(ifa);
2311 					break;
2312 				}
2313 				space -= sa->sa_len - sizeof(*sa);
2314 				error = copyout(&ifr, ifrp,
2315 						sizeof ifr.ifr_name);
2316 				if (error == 0)
2317 					error = copyout(sa, &ifrp->ifr_addr,
2318 							sa->sa_len);
2319 				ifrp = (struct ifreq *)
2320 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2321 			}
2322 			IFAFREE(ifa);
2323 			if (error)
2324 				break;
2325 			space -= sizeof ifr;
2326 		}
2327 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2328 		if (error)
2329 			break;
2330 		if (!addrs) {
2331 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2332 			error = copyout(&ifr, ifrp, sizeof ifr);
2333 			if (error)
2334 				break;
2335 			space -= sizeof ifr;
2336 			ifrp++;
2337 		}
2338 	}
2339 	ifnet_unlock();
2340 
2341 	ifc->ifc_len -= space;
2342 	return (error);
2343 }
2344 
2345 /*
2346  * Just like if_promisc(), but for all-multicast-reception mode.
2347  */
2348 int
2349 if_allmulti(struct ifnet *ifp, int onswitch)
2350 {
2351 	int error = 0;
2352 	struct ifreq ifr;
2353 
2354 	crit_enter();
2355 
2356 	if (onswitch) {
2357 		if (ifp->if_amcount++ == 0) {
2358 			ifp->if_flags |= IFF_ALLMULTI;
2359 			ifr.ifr_flags = ifp->if_flags;
2360 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2361 			ifnet_serialize_all(ifp);
2362 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2363 					      NULL);
2364 			ifnet_deserialize_all(ifp);
2365 		}
2366 	} else {
2367 		if (ifp->if_amcount > 1) {
2368 			ifp->if_amcount--;
2369 		} else {
2370 			ifp->if_amcount = 0;
2371 			ifp->if_flags &= ~IFF_ALLMULTI;
2372 			ifr.ifr_flags = ifp->if_flags;
2373 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2374 			ifnet_serialize_all(ifp);
2375 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2376 					      NULL);
2377 			ifnet_deserialize_all(ifp);
2378 		}
2379 	}
2380 
2381 	crit_exit();
2382 
2383 	if (error == 0)
2384 		rt_ifmsg(ifp);
2385 	return error;
2386 }
2387 
2388 /*
2389  * Add a multicast listenership to the interface in question.
2390  * The link layer provides a routine which converts
2391  */
2392 int
2393 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2394     struct ifmultiaddr **retifma)
2395 {
2396 	struct sockaddr *llsa, *dupsa;
2397 	int error;
2398 	struct ifmultiaddr *ifma;
2399 
2400 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2401 
2402 	/*
2403 	 * If the matching multicast address already exists
2404 	 * then don't add a new one, just add a reference
2405 	 */
2406 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2407 		if (sa_equal(sa, ifma->ifma_addr)) {
2408 			ifma->ifma_refcount++;
2409 			if (retifma)
2410 				*retifma = ifma;
2411 			return 0;
2412 		}
2413 	}
2414 
2415 	/*
2416 	 * Give the link layer a chance to accept/reject it, and also
2417 	 * find out which AF_LINK address this maps to, if it isn't one
2418 	 * already.
2419 	 */
2420 	if (ifp->if_resolvemulti) {
2421 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2422 		if (error)
2423 			return error;
2424 	} else {
2425 		llsa = NULL;
2426 	}
2427 
2428 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2429 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2430 	bcopy(sa, dupsa, sa->sa_len);
2431 
2432 	ifma->ifma_addr = dupsa;
2433 	ifma->ifma_lladdr = llsa;
2434 	ifma->ifma_ifp = ifp;
2435 	ifma->ifma_refcount = 1;
2436 	ifma->ifma_protospec = NULL;
2437 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2438 
2439 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2440 	if (retifma)
2441 		*retifma = ifma;
2442 
2443 	if (llsa != NULL) {
2444 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2445 			if (sa_equal(ifma->ifma_addr, llsa))
2446 				break;
2447 		}
2448 		if (ifma) {
2449 			ifma->ifma_refcount++;
2450 		} else {
2451 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2452 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2453 			bcopy(llsa, dupsa, llsa->sa_len);
2454 			ifma->ifma_addr = dupsa;
2455 			ifma->ifma_ifp = ifp;
2456 			ifma->ifma_refcount = 1;
2457 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2458 		}
2459 	}
2460 	/*
2461 	 * We are certain we have added something, so call down to the
2462 	 * interface to let them know about it.
2463 	 */
2464 	if (ifp->if_ioctl)
2465 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2466 
2467 	return 0;
2468 }
2469 
2470 int
2471 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2472     struct ifmultiaddr **retifma)
2473 {
2474 	int error;
2475 
2476 	ifnet_serialize_all(ifp);
2477 	error = if_addmulti_serialized(ifp, sa, retifma);
2478 	ifnet_deserialize_all(ifp);
2479 
2480 	return error;
2481 }
2482 
2483 /*
2484  * Remove a reference to a multicast address on this interface.  Yell
2485  * if the request does not match an existing membership.
2486  */
2487 static int
2488 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2489 {
2490 	struct ifmultiaddr *ifma;
2491 
2492 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2493 
2494 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2495 		if (sa_equal(sa, ifma->ifma_addr))
2496 			break;
2497 	if (ifma == NULL)
2498 		return ENOENT;
2499 
2500 	if (ifma->ifma_refcount > 1) {
2501 		ifma->ifma_refcount--;
2502 		return 0;
2503 	}
2504 
2505 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2506 	sa = ifma->ifma_lladdr;
2507 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2508 	/*
2509 	 * Make sure the interface driver is notified
2510 	 * in the case of a link layer mcast group being left.
2511 	 */
2512 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2513 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2514 	kfree(ifma->ifma_addr, M_IFMADDR);
2515 	kfree(ifma, M_IFMADDR);
2516 	if (sa == NULL)
2517 		return 0;
2518 
2519 	/*
2520 	 * Now look for the link-layer address which corresponds to
2521 	 * this network address.  It had been squirreled away in
2522 	 * ifma->ifma_lladdr for this purpose (so we don't have
2523 	 * to call ifp->if_resolvemulti() again), and we saved that
2524 	 * value in sa above.  If some nasty deleted the
2525 	 * link-layer address out from underneath us, we can deal because
2526 	 * the address we stored was is not the same as the one which was
2527 	 * in the record for the link-layer address.  (So we don't complain
2528 	 * in that case.)
2529 	 */
2530 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2531 		if (sa_equal(sa, ifma->ifma_addr))
2532 			break;
2533 	if (ifma == NULL)
2534 		return 0;
2535 
2536 	if (ifma->ifma_refcount > 1) {
2537 		ifma->ifma_refcount--;
2538 		return 0;
2539 	}
2540 
2541 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2542 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2543 	kfree(ifma->ifma_addr, M_IFMADDR);
2544 	kfree(sa, M_IFMADDR);
2545 	kfree(ifma, M_IFMADDR);
2546 
2547 	return 0;
2548 }
2549 
2550 int
2551 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2552 {
2553 	int error;
2554 
2555 	ifnet_serialize_all(ifp);
2556 	error = if_delmulti_serialized(ifp, sa);
2557 	ifnet_deserialize_all(ifp);
2558 
2559 	return error;
2560 }
2561 
2562 /*
2563  * Delete all multicast group membership for an interface.
2564  * Should be used to quickly flush all multicast filters.
2565  */
2566 void
2567 if_delallmulti_serialized(struct ifnet *ifp)
2568 {
2569 	struct ifmultiaddr *ifma, mark;
2570 	struct sockaddr sa;
2571 
2572 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2573 
2574 	bzero(&sa, sizeof(sa));
2575 	sa.sa_family = AF_UNSPEC;
2576 	sa.sa_len = sizeof(sa);
2577 
2578 	bzero(&mark, sizeof(mark));
2579 	mark.ifma_addr = &sa;
2580 
2581 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2582 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2583 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2584 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2585 		    ifma_link);
2586 
2587 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2588 			continue;
2589 
2590 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2591 	}
2592 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2593 }
2594 
2595 
2596 /*
2597  * Set the link layer address on an interface.
2598  *
2599  * At this time we only support certain types of interfaces,
2600  * and we don't allow the length of the address to change.
2601  */
2602 int
2603 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2604 {
2605 	struct sockaddr_dl *sdl;
2606 	struct ifreq ifr;
2607 
2608 	sdl = IF_LLSOCKADDR(ifp);
2609 	if (sdl == NULL)
2610 		return (EINVAL);
2611 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2612 		return (EINVAL);
2613 	switch (ifp->if_type) {
2614 	case IFT_ETHER:			/* these types use struct arpcom */
2615 	case IFT_XETHER:
2616 	case IFT_L2VLAN:
2617 	case IFT_IEEE8023ADLAG:
2618 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2619 		bcopy(lladdr, LLADDR(sdl), len);
2620 		break;
2621 	default:
2622 		return (ENODEV);
2623 	}
2624 	/*
2625 	 * If the interface is already up, we need
2626 	 * to re-init it in order to reprogram its
2627 	 * address filter.
2628 	 */
2629 	ifnet_serialize_all(ifp);
2630 	if ((ifp->if_flags & IFF_UP) != 0) {
2631 #ifdef INET
2632 		struct ifaddr_container *ifac;
2633 #endif
2634 
2635 		ifp->if_flags &= ~IFF_UP;
2636 		ifr.ifr_flags = ifp->if_flags;
2637 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2638 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2639 			      NULL);
2640 		ifp->if_flags |= IFF_UP;
2641 		ifr.ifr_flags = ifp->if_flags;
2642 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2643 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2644 				 NULL);
2645 #ifdef INET
2646 		/*
2647 		 * Also send gratuitous ARPs to notify other nodes about
2648 		 * the address change.
2649 		 */
2650 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2651 			struct ifaddr *ifa = ifac->ifa;
2652 
2653 			if (ifa->ifa_addr != NULL &&
2654 			    ifa->ifa_addr->sa_family == AF_INET)
2655 				arp_gratuitous(ifp, ifa);
2656 		}
2657 #endif
2658 	}
2659 	ifnet_deserialize_all(ifp);
2660 	return (0);
2661 }
2662 
2663 struct ifmultiaddr *
2664 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2665 {
2666 	struct ifmultiaddr *ifma;
2667 
2668 	/* TODO: need ifnet_serialize_main */
2669 	ifnet_serialize_all(ifp);
2670 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2671 		if (sa_equal(ifma->ifma_addr, sa))
2672 			break;
2673 	ifnet_deserialize_all(ifp);
2674 
2675 	return ifma;
2676 }
2677 
2678 /*
2679  * This function locates the first real ethernet MAC from a network
2680  * card and loads it into node, returning 0 on success or ENOENT if
2681  * no suitable interfaces were found.  It is used by the uuid code to
2682  * generate a unique 6-byte number.
2683  */
2684 int
2685 if_getanyethermac(uint16_t *node, int minlen)
2686 {
2687 	struct ifnet *ifp;
2688 	struct sockaddr_dl *sdl;
2689 
2690 	ifnet_lock();
2691 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2692 		if (ifp->if_type != IFT_ETHER)
2693 			continue;
2694 		sdl = IF_LLSOCKADDR(ifp);
2695 		if (sdl->sdl_alen < minlen)
2696 			continue;
2697 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2698 		      minlen);
2699 		ifnet_unlock();
2700 		return(0);
2701 	}
2702 	ifnet_unlock();
2703 	return (ENOENT);
2704 }
2705 
2706 /*
2707  * The name argument must be a pointer to storage which will last as
2708  * long as the interface does.  For physical devices, the result of
2709  * device_get_name(dev) is a good choice and for pseudo-devices a
2710  * static string works well.
2711  */
2712 void
2713 if_initname(struct ifnet *ifp, const char *name, int unit)
2714 {
2715 	ifp->if_dname = name;
2716 	ifp->if_dunit = unit;
2717 	if (unit != IF_DUNIT_NONE)
2718 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2719 	else
2720 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2721 }
2722 
2723 int
2724 if_printf(struct ifnet *ifp, const char *fmt, ...)
2725 {
2726 	__va_list ap;
2727 	int retval;
2728 
2729 	retval = kprintf("%s: ", ifp->if_xname);
2730 	__va_start(ap, fmt);
2731 	retval += kvprintf(fmt, ap);
2732 	__va_end(ap);
2733 	return (retval);
2734 }
2735 
2736 struct ifnet *
2737 if_alloc(uint8_t type)
2738 {
2739         struct ifnet *ifp;
2740 	size_t size;
2741 
2742 	/*
2743 	 * XXX temporary hack until arpcom is setup in if_l2com
2744 	 */
2745 	if (type == IFT_ETHER)
2746 		size = sizeof(struct arpcom);
2747 	else
2748 		size = sizeof(struct ifnet);
2749 
2750 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2751 
2752 	ifp->if_type = type;
2753 
2754 	if (if_com_alloc[type] != NULL) {
2755 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2756 		if (ifp->if_l2com == NULL) {
2757 			kfree(ifp, M_IFNET);
2758 			return (NULL);
2759 		}
2760 	}
2761 	return (ifp);
2762 }
2763 
2764 void
2765 if_free(struct ifnet *ifp)
2766 {
2767 	kfree(ifp, M_IFNET);
2768 }
2769 
2770 void
2771 ifq_set_classic(struct ifaltq *ifq)
2772 {
2773 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2774 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2775 }
2776 
2777 void
2778 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2779     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2780 {
2781 	int q;
2782 
2783 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2784 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2785 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2786 	KASSERT(request != NULL, ("request is not specified"));
2787 
2788 	ifq->altq_mapsubq = mapsubq;
2789 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2790 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2791 
2792 		ifsq->ifsq_enqueue = enqueue;
2793 		ifsq->ifsq_dequeue = dequeue;
2794 		ifsq->ifsq_request = request;
2795 	}
2796 }
2797 
2798 static void
2799 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2800 {
2801 	m->m_nextpkt = NULL;
2802 	if (ifsq->ifsq_norm_tail == NULL)
2803 		ifsq->ifsq_norm_head = m;
2804 	else
2805 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2806 	ifsq->ifsq_norm_tail = m;
2807 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2808 }
2809 
2810 static void
2811 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2812 {
2813 	m->m_nextpkt = NULL;
2814 	if (ifsq->ifsq_prio_tail == NULL)
2815 		ifsq->ifsq_prio_head = m;
2816 	else
2817 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2818 	ifsq->ifsq_prio_tail = m;
2819 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2820 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2821 }
2822 
2823 static struct mbuf *
2824 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2825 {
2826 	struct mbuf *m;
2827 
2828 	m = ifsq->ifsq_norm_head;
2829 	if (m != NULL) {
2830 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2831 			ifsq->ifsq_norm_tail = NULL;
2832 		m->m_nextpkt = NULL;
2833 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2834 	}
2835 	return m;
2836 }
2837 
2838 static struct mbuf *
2839 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2840 {
2841 	struct mbuf *m;
2842 
2843 	m = ifsq->ifsq_prio_head;
2844 	if (m != NULL) {
2845 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2846 			ifsq->ifsq_prio_tail = NULL;
2847 		m->m_nextpkt = NULL;
2848 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2849 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2850 	}
2851 	return m;
2852 }
2853 
2854 int
2855 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2856     struct altq_pktattr *pa __unused)
2857 {
2858 	M_ASSERTPKTHDR(m);
2859 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2860 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2861 		if ((m->m_flags & M_PRIO) &&
2862 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2863 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2864 			struct mbuf *m_drop;
2865 
2866 			/*
2867 			 * Perform drop-head on normal queue
2868 			 */
2869 			m_drop = ifsq_norm_dequeue(ifsq);
2870 			if (m_drop != NULL) {
2871 				m_freem(m_drop);
2872 				ifsq_prio_enqueue(ifsq, m);
2873 				return 0;
2874 			}
2875 			/* XXX nothing could be dropped? */
2876 		}
2877 		m_freem(m);
2878 		return ENOBUFS;
2879 	} else {
2880 		if (m->m_flags & M_PRIO)
2881 			ifsq_prio_enqueue(ifsq, m);
2882 		else
2883 			ifsq_norm_enqueue(ifsq, m);
2884 		return 0;
2885 	}
2886 }
2887 
2888 struct mbuf *
2889 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2890 {
2891 	struct mbuf *m;
2892 
2893 	switch (op) {
2894 	case ALTDQ_POLL:
2895 		m = ifsq->ifsq_prio_head;
2896 		if (m == NULL)
2897 			m = ifsq->ifsq_norm_head;
2898 		break;
2899 
2900 	case ALTDQ_REMOVE:
2901 		m = ifsq_prio_dequeue(ifsq);
2902 		if (m == NULL)
2903 			m = ifsq_norm_dequeue(ifsq);
2904 		break;
2905 
2906 	default:
2907 		panic("unsupported ALTQ dequeue op: %d", op);
2908 	}
2909 	return m;
2910 }
2911 
2912 int
2913 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2914 {
2915 	switch (req) {
2916 	case ALTRQ_PURGE:
2917 		for (;;) {
2918 			struct mbuf *m;
2919 
2920 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2921 			if (m == NULL)
2922 				break;
2923 			m_freem(m);
2924 		}
2925 		break;
2926 
2927 	default:
2928 		panic("unsupported ALTQ request: %d", req);
2929 	}
2930 	return 0;
2931 }
2932 
2933 static void
2934 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2935 {
2936 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2937 	int running = 0, need_sched;
2938 
2939 	/*
2940 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2941 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2942 	 * the subqueue will be scheduled on the subqueue owner CPU.
2943 	 */
2944 	if (!ifsq_tryserialize_hw(ifsq)) {
2945 		/*
2946 		 * Subqueue hardware serializer contention happened,
2947 		 * ifnet.if_start on the subqueue is scheduled on
2948 		 * the subqueue owner CPU, and we keep going.
2949 		 */
2950 		ifsq_ifstart_schedule(ifsq, 1);
2951 		return;
2952 	}
2953 
2954 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2955 		ifp->if_start(ifp, ifsq);
2956 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2957 			running = 1;
2958 	}
2959 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2960 
2961 	ifsq_deserialize_hw(ifsq);
2962 
2963 	if (need_sched) {
2964 		/*
2965 		 * More data need to be transmitted, ifnet.if_start on the
2966 		 * subqueue is scheduled on the subqueue owner CPU, and we
2967 		 * keep going.
2968 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2969 		 */
2970 		ifsq_ifstart_schedule(ifsq, force_sched);
2971 	}
2972 }
2973 
2974 /*
2975  * Subqeue packets staging mechanism:
2976  *
2977  * The packets enqueued into the subqueue are staged to a certain amount
2978  * before the ifnet.if_start on the subqueue is called.  In this way, the
2979  * driver could avoid writing to hardware registers upon every packet,
2980  * instead, hardware registers could be written when certain amount of
2981  * packets are put onto hardware TX ring.  The measurement on several modern
2982  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2983  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2984  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2985  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2986  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2987  *
2988  * Subqueue packets staging is performed for two entry points into drivers'
2989  * transmission function:
2990  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2991  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2992  *
2993  * Subqueue packets staging will be stopped upon any of the following
2994  * conditions:
2995  * - If the count of packets enqueued on the current CPU is great than or
2996  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2997  * - If the total length of packets enqueued on the current CPU is great
2998  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2999  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
3000  *   is usually less than hardware's MTU.
3001  * - ifsq_ifstart_schedule() is not pending on the current CPU and
3002  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
3003  *   released.
3004  * - The if_start_rollup(), which is registered as low priority netisr
3005  *   rollup function, is called; probably because no more work is pending
3006  *   for netisr.
3007  *
3008  * NOTE:
3009  * Currently subqueue packet staging is only performed in netisr threads.
3010  */
3011 int
3012 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3013 {
3014 	struct ifaltq *ifq = &ifp->if_snd;
3015 	struct ifaltq_subque *ifsq;
3016 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3017 	struct ifsubq_stage_head *head = NULL;
3018 	struct ifsubq_stage *stage = NULL;
3019 	struct globaldata *gd = mycpu;
3020 	struct thread *td = gd->gd_curthread;
3021 
3022 	crit_enter_quick(td);
3023 
3024 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3025 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3026 
3027 	len = m->m_pkthdr.len;
3028 	if (m->m_flags & M_MCAST)
3029 		mcast = 1;
3030 
3031 	if (td->td_type == TD_TYPE_NETISR) {
3032 		head = &ifsubq_stage_heads[mycpuid];
3033 		stage = ifsq_get_stage(ifsq, mycpuid);
3034 
3035 		stage->stg_cnt++;
3036 		stage->stg_len += len;
3037 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3038 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3039 			avoid_start = 1;
3040 	}
3041 
3042 	ALTQ_SQ_LOCK(ifsq);
3043 	error = ifsq_enqueue_locked(ifsq, m, pa);
3044 	if (error) {
3045 		if (!ifsq_data_ready(ifsq)) {
3046 			ALTQ_SQ_UNLOCK(ifsq);
3047 			crit_exit_quick(td);
3048 			return error;
3049 		}
3050 		avoid_start = 0;
3051 	}
3052 	if (!ifsq_is_started(ifsq)) {
3053 		if (avoid_start) {
3054 			ALTQ_SQ_UNLOCK(ifsq);
3055 
3056 			KKASSERT(!error);
3057 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3058 				ifsq_stage_insert(head, stage);
3059 
3060 			IFNET_STAT_INC(ifp, obytes, len);
3061 			if (mcast)
3062 				IFNET_STAT_INC(ifp, omcasts, 1);
3063 			crit_exit_quick(td);
3064 			return error;
3065 		}
3066 
3067 		/*
3068 		 * Hold the subqueue interlock of ifnet.if_start
3069 		 */
3070 		ifsq_set_started(ifsq);
3071 		start = 1;
3072 	}
3073 	ALTQ_SQ_UNLOCK(ifsq);
3074 
3075 	if (!error) {
3076 		IFNET_STAT_INC(ifp, obytes, len);
3077 		if (mcast)
3078 			IFNET_STAT_INC(ifp, omcasts, 1);
3079 	}
3080 
3081 	if (stage != NULL) {
3082 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3083 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3084 			if (!avoid_start) {
3085 				ifsq_stage_remove(head, stage);
3086 				ifsq_ifstart_schedule(ifsq, 1);
3087 			}
3088 			crit_exit_quick(td);
3089 			return error;
3090 		}
3091 
3092 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3093 			ifsq_stage_remove(head, stage);
3094 		} else {
3095 			stage->stg_cnt = 0;
3096 			stage->stg_len = 0;
3097 		}
3098 	}
3099 
3100 	if (!start) {
3101 		crit_exit_quick(td);
3102 		return error;
3103 	}
3104 
3105 	ifsq_ifstart_try(ifsq, 0);
3106 
3107 	crit_exit_quick(td);
3108 	return error;
3109 }
3110 
3111 void *
3112 ifa_create(int size, int flags)
3113 {
3114 	struct ifaddr *ifa;
3115 	int i;
3116 
3117 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3118 
3119 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
3120 	if (ifa == NULL)
3121 		return NULL;
3122 
3123 	ifa->ifa_containers =
3124 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3125 	        M_IFADDR, M_WAITOK | M_ZERO);
3126 	ifa->ifa_ncnt = ncpus;
3127 	for (i = 0; i < ncpus; ++i) {
3128 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3129 
3130 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3131 		ifac->ifa = ifa;
3132 		ifac->ifa_refcnt = 1;
3133 	}
3134 #ifdef IFADDR_DEBUG
3135 	kprintf("alloc ifa %p %d\n", ifa, size);
3136 #endif
3137 	return ifa;
3138 }
3139 
3140 void
3141 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3142 {
3143 	struct ifaddr *ifa = ifac->ifa;
3144 
3145 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3146 	KKASSERT(ifac->ifa_refcnt == 0);
3147 	KASSERT(ifac->ifa_listmask == 0,
3148 		("ifa is still on %#x lists", ifac->ifa_listmask));
3149 
3150 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3151 
3152 #ifdef IFADDR_DEBUG_VERBOSE
3153 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3154 #endif
3155 
3156 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3157 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3158 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3159 #ifdef IFADDR_DEBUG
3160 		kprintf("free ifa %p\n", ifa);
3161 #endif
3162 		kfree(ifa->ifa_containers, M_IFADDR);
3163 		kfree(ifa, M_IFADDR);
3164 	}
3165 }
3166 
3167 static void
3168 ifa_iflink_dispatch(netmsg_t nmsg)
3169 {
3170 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3171 	struct ifaddr *ifa = msg->ifa;
3172 	struct ifnet *ifp = msg->ifp;
3173 	int cpu = mycpuid;
3174 	struct ifaddr_container *ifac;
3175 
3176 	crit_enter();
3177 
3178 	ifac = &ifa->ifa_containers[cpu];
3179 	ASSERT_IFAC_VALID(ifac);
3180 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3181 		("ifaddr is on if_addrheads"));
3182 
3183 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3184 	if (msg->tail)
3185 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3186 	else
3187 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3188 
3189 	crit_exit();
3190 
3191 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3192 }
3193 
3194 void
3195 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3196 {
3197 	struct netmsg_ifaddr msg;
3198 
3199 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3200 		    0, ifa_iflink_dispatch);
3201 	msg.ifa = ifa;
3202 	msg.ifp = ifp;
3203 	msg.tail = tail;
3204 
3205 	ifa_domsg(&msg.base.lmsg, 0);
3206 }
3207 
3208 static void
3209 ifa_ifunlink_dispatch(netmsg_t nmsg)
3210 {
3211 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3212 	struct ifaddr *ifa = msg->ifa;
3213 	struct ifnet *ifp = msg->ifp;
3214 	int cpu = mycpuid;
3215 	struct ifaddr_container *ifac;
3216 
3217 	crit_enter();
3218 
3219 	ifac = &ifa->ifa_containers[cpu];
3220 	ASSERT_IFAC_VALID(ifac);
3221 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3222 		("ifaddr is not on if_addrhead"));
3223 
3224 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3225 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3226 
3227 	crit_exit();
3228 
3229 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3230 }
3231 
3232 void
3233 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3234 {
3235 	struct netmsg_ifaddr msg;
3236 
3237 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3238 		    0, ifa_ifunlink_dispatch);
3239 	msg.ifa = ifa;
3240 	msg.ifp = ifp;
3241 
3242 	ifa_domsg(&msg.base.lmsg, 0);
3243 }
3244 
3245 static void
3246 ifa_destroy_dispatch(netmsg_t nmsg)
3247 {
3248 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3249 
3250 	IFAFREE(msg->ifa);
3251 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3252 }
3253 
3254 void
3255 ifa_destroy(struct ifaddr *ifa)
3256 {
3257 	struct netmsg_ifaddr msg;
3258 
3259 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3260 		    0, ifa_destroy_dispatch);
3261 	msg.ifa = ifa;
3262 
3263 	ifa_domsg(&msg.base.lmsg, 0);
3264 }
3265 
3266 struct lwkt_port *
3267 ifnet_portfn(int cpu)
3268 {
3269 	return &ifnet_threads[cpu].td_msgport;
3270 }
3271 
3272 void
3273 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3274 {
3275 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3276 
3277 	if (next_cpu < ncpus)
3278 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3279 	else
3280 		lwkt_replymsg(lmsg, 0);
3281 }
3282 
3283 int
3284 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3285 {
3286 	KKASSERT(cpu < ncpus);
3287 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3288 }
3289 
3290 void
3291 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3292 {
3293 	KKASSERT(cpu < ncpus);
3294 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3295 }
3296 
3297 /*
3298  * Generic netmsg service loop.  Some protocols may roll their own but all
3299  * must do the basic command dispatch function call done here.
3300  */
3301 static void
3302 ifnet_service_loop(void *arg __unused)
3303 {
3304 	netmsg_t msg;
3305 
3306 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3307 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3308 		msg->base.nm_dispatch(msg);
3309 	}
3310 }
3311 
3312 static void
3313 if_start_rollup(void)
3314 {
3315 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3316 	struct ifsubq_stage *stage;
3317 
3318 	crit_enter();
3319 
3320 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3321 		struct ifaltq_subque *ifsq = stage->stg_subq;
3322 		int is_sched = 0;
3323 
3324 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3325 			is_sched = 1;
3326 		ifsq_stage_remove(head, stage);
3327 
3328 		if (is_sched) {
3329 			ifsq_ifstart_schedule(ifsq, 1);
3330 		} else {
3331 			int start = 0;
3332 
3333 			ALTQ_SQ_LOCK(ifsq);
3334 			if (!ifsq_is_started(ifsq)) {
3335 				/*
3336 				 * Hold the subqueue interlock of
3337 				 * ifnet.if_start
3338 				 */
3339 				ifsq_set_started(ifsq);
3340 				start = 1;
3341 			}
3342 			ALTQ_SQ_UNLOCK(ifsq);
3343 
3344 			if (start)
3345 				ifsq_ifstart_try(ifsq, 1);
3346 		}
3347 		KKASSERT((stage->stg_flags &
3348 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3349 	}
3350 
3351 	crit_exit();
3352 }
3353 
3354 static void
3355 ifnetinit(void *dummy __unused)
3356 {
3357 	int i;
3358 
3359 	for (i = 0; i < ncpus; ++i) {
3360 		struct thread *thr = &ifnet_threads[i];
3361 
3362 		lwkt_create(ifnet_service_loop, NULL, NULL,
3363 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3364 			    i, "ifnet %d", i);
3365 		netmsg_service_port_init(&thr->td_msgport);
3366 		lwkt_schedule(thr);
3367 	}
3368 
3369 	for (i = 0; i < ncpus; ++i)
3370 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3371 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3372 }
3373 
3374 void
3375 if_register_com_alloc(u_char type,
3376     if_com_alloc_t *a, if_com_free_t *f)
3377 {
3378 
3379         KASSERT(if_com_alloc[type] == NULL,
3380             ("if_register_com_alloc: %d already registered", type));
3381         KASSERT(if_com_free[type] == NULL,
3382             ("if_register_com_alloc: %d free already registered", type));
3383 
3384         if_com_alloc[type] = a;
3385         if_com_free[type] = f;
3386 }
3387 
3388 void
3389 if_deregister_com_alloc(u_char type)
3390 {
3391 
3392         KASSERT(if_com_alloc[type] != NULL,
3393             ("if_deregister_com_alloc: %d not registered", type));
3394         KASSERT(if_com_free[type] != NULL,
3395             ("if_deregister_com_alloc: %d free not registered", type));
3396         if_com_alloc[type] = NULL;
3397         if_com_free[type] = NULL;
3398 }
3399 
3400 int
3401 if_ring_count2(int cnt, int cnt_max)
3402 {
3403 	int shift = 0;
3404 
3405 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3406 	    ("invalid ring count max %d", cnt_max));
3407 
3408 	if (cnt <= 0)
3409 		cnt = cnt_max;
3410 	if (cnt > ncpus2)
3411 		cnt = ncpus2;
3412 	if (cnt > cnt_max)
3413 		cnt = cnt_max;
3414 
3415 	while ((1 << (shift + 1)) <= cnt)
3416 		++shift;
3417 	cnt = 1 << shift;
3418 
3419 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3420 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3421 	     cnt, ncpus2, cnt_max));
3422 	return cnt;
3423 }
3424 
3425 void
3426 ifq_set_maxlen(struct ifaltq *ifq, int len)
3427 {
3428 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3429 }
3430 
3431 int
3432 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3433 {
3434 	return ALTQ_SUBQ_INDEX_DEFAULT;
3435 }
3436 
3437 int
3438 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3439 {
3440 	return (cpuid & ifq->altq_subq_mask);
3441 }
3442 
3443 static void
3444 ifsq_watchdog(void *arg)
3445 {
3446 	struct ifsubq_watchdog *wd = arg;
3447 	struct ifnet *ifp;
3448 
3449 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3450 		goto done;
3451 
3452 	ifp = ifsq_get_ifp(wd->wd_subq);
3453 	if (ifnet_tryserialize_all(ifp)) {
3454 		wd->wd_watchdog(wd->wd_subq);
3455 		ifnet_deserialize_all(ifp);
3456 	} else {
3457 		/* try again next timeout */
3458 		wd->wd_timer = 1;
3459 	}
3460 done:
3461 	ifsq_watchdog_reset(wd);
3462 }
3463 
3464 static void
3465 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3466 {
3467 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3468 	    ifsq_get_cpuid(wd->wd_subq));
3469 }
3470 
3471 void
3472 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3473     ifsq_watchdog_t watchdog)
3474 {
3475 	callout_init_mp(&wd->wd_callout);
3476 	wd->wd_timer = 0;
3477 	wd->wd_subq = ifsq;
3478 	wd->wd_watchdog = watchdog;
3479 }
3480 
3481 void
3482 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3483 {
3484 	wd->wd_timer = 0;
3485 	ifsq_watchdog_reset(wd);
3486 }
3487 
3488 void
3489 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3490 {
3491 	wd->wd_timer = 0;
3492 	callout_stop(&wd->wd_callout);
3493 }
3494 
3495 void
3496 ifnet_lock(void)
3497 {
3498 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3499 	    ("try holding ifnet lock in netisr"));
3500 	mtx_lock(&ifnet_mtx);
3501 }
3502 
3503 void
3504 ifnet_unlock(void)
3505 {
3506 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3507 	    ("try holding ifnet lock in netisr"));
3508 	mtx_unlock(&ifnet_mtx);
3509 }
3510 
3511 static struct ifnet_array *
3512 ifnet_array_alloc(int count)
3513 {
3514 	struct ifnet_array *arr;
3515 
3516 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3517 	    M_IFNET, M_WAITOK);
3518 	arr->ifnet_count = count;
3519 
3520 	return arr;
3521 }
3522 
3523 static void
3524 ifnet_array_free(struct ifnet_array *arr)
3525 {
3526 	if (arr == &ifnet_array0)
3527 		return;
3528 	kfree(arr, M_IFNET);
3529 }
3530 
3531 static struct ifnet_array *
3532 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3533 {
3534 	struct ifnet_array *arr;
3535 	int count, i;
3536 
3537 	KASSERT(old_arr->ifnet_count >= 0,
3538 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3539 	count = old_arr->ifnet_count + 1;
3540 	arr = ifnet_array_alloc(count);
3541 
3542 	/*
3543 	 * Save the old ifnet array and append this ifp to the end of
3544 	 * the new ifnet array.
3545 	 */
3546 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3547 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3548 		    ("%s is already in ifnet array", ifp->if_xname));
3549 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3550 	}
3551 	KASSERT(i == count - 1,
3552 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3553 	     ifp->if_xname, count - 1, i));
3554 	arr->ifnet_arr[i] = ifp;
3555 
3556 	return arr;
3557 }
3558 
3559 static struct ifnet_array *
3560 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3561 {
3562 	struct ifnet_array *arr;
3563 	int count, i, idx, found = 0;
3564 
3565 	KASSERT(old_arr->ifnet_count > 0,
3566 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3567 	count = old_arr->ifnet_count - 1;
3568 	arr = ifnet_array_alloc(count);
3569 
3570 	/*
3571 	 * Save the old ifnet array, but skip this ifp.
3572 	 */
3573 	idx = 0;
3574 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3575 		if (old_arr->ifnet_arr[i] == ifp) {
3576 			KASSERT(!found,
3577 			    ("dup %s is in ifnet array", ifp->if_xname));
3578 			found = 1;
3579 			continue;
3580 		}
3581 		KASSERT(idx < count,
3582 		    ("invalid ifnet array index %d, count %d", idx, count));
3583 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3584 		++idx;
3585 	}
3586 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3587 	KASSERT(idx == count,
3588 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3589 	     ifp->if_xname, count, idx));
3590 
3591 	return arr;
3592 }
3593 
3594 const struct ifnet_array *
3595 ifnet_array_get(void)
3596 {
3597 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3598 	return ifnet_array;
3599 }
3600 
3601 int
3602 ifnet_array_isempty(void)
3603 {
3604 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3605 	if (ifnet_array->ifnet_count == 0)
3606 		return 1;
3607 	else
3608 		return 0;
3609 }
3610 
3611 void
3612 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3613 {
3614 	struct ifaddr *ifa;
3615 
3616 	memset(mark, 0, sizeof(*mark));
3617 	ifa = &mark->ifa;
3618 
3619 	mark->ifac.ifa = ifa;
3620 
3621 	ifa->ifa_addr = &mark->addr;
3622 	ifa->ifa_dstaddr = &mark->dstaddr;
3623 	ifa->ifa_netmask = &mark->netmask;
3624 	ifa->ifa_ifp = ifp;
3625 }
3626